CINXE.COM
Search results for: velocity
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: velocity</title> <meta name="description" content="Search results for: velocity"> <meta name="keywords" content="velocity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="velocity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="velocity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1589</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: velocity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1589</span> Measurements of Radial Velocity in Fixed Fluidized Bed for Fischer-Tropsch Synthesis Using LDV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaolai%20Zhang">Xiaolai Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiwen%20Sun"> Qiwen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Weixin%20Qian"> Weixin Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High temperature Fischer-Tropsch synthesis process use fixed fluidized bed as a reactor. In order to understand the flow behavior in the fluidized bed better, the research of how the radial velocity affect the entire flow field is necessary. Laser Doppler Velocimetry (LDV) was used to study the radial velocity distribution along the diameter direction of the cross-section of the particle in a fixed fluidized bed. The velocity in the cross-section is fluctuating within a small range. The direction of the speed is a random phenomenon. In addition to r/R is 1, the axial velocity are more than 6 times of the radial velocity, the radial velocity has little impact on the axial velocity in a fixed fluidized bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fischer-Tropsch%20synthesis" title="Fischer-Tropsch synthesis">Fischer-Tropsch synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Fixed%20fluidized%20bed" title=" Fixed fluidized bed"> Fixed fluidized bed</a>, <a href="https://publications.waset.org/abstracts/search?q=LDV" title=" LDV"> LDV</a>, <a href="https://publications.waset.org/abstracts/search?q=Velocity" title=" Velocity"> Velocity</a> </p> <a href="https://publications.waset.org/abstracts/24993/measurements-of-radial-velocity-in-fixed-fluidized-bed-for-fischer-tropsch-synthesis-using-ldv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1588</span> Velocity Distribution in Open Channels with Sand: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Keramaris">E. Keramaris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, laboratory experiments in open channel flows over a sand bed were conducted. A porous bed (sand bed) with porosity of ε=0.70 and porous thickness of s΄=3 cm was tested. Vertical distributions of velocity were evaluated by using a two-dimensional (2D) Particle Image Velocimetry (PIV). Velocity profiles are measured above the impermeable bed and above the sand bed for the same different total water heights (h= 6, 8, 10 and 12 cm) and for the same slope S=1.5. Measurements of mean velocity indicate the effects of the bed material used (sand bed) on the flow characteristics (Velocity distribution and Reynolds number) in comparison with those above the impermeable bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title="particle image velocimetry">particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20bed" title=" sand bed"> sand bed</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20distribution" title=" velocity distribution"> velocity distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/46893/velocity-distribution-in-open-channels-with-sand-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1587</span> Use of Dendrochronology in Estimation of Creep Velocity and Its Dependence on the Bulk Density of Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Amjad%20Sabir">Mohammad Amjad Sabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishtiaq%20Khan"> Ishtiaq Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahid%20Ali"> Shahid Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Umar%20Shabbir"> Umar Shabbir</a>, <a href="https://publications.waset.org/abstracts/search?q=Aneel%20Ahmad"> Aneel Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Creep, being the main silt contributor to the rivers, is a slow, downhill flow of soils. The creep velocity is measured in millimeters to a couple of centimeters per year and is determined with the help of tilt caused by creep in the vertical objects and needs at least ten years to get a reliable creep velocity. This project was devised to calculate creep velocity using dendrochronology and looking for the difference of creep velocity registered by different trees on the same slope. It was concluded that dendrochronology provides a very reliable procedure of creep velocity estimation if ‘J’ shaped trees are studied for their horizontal movement and age. The age of these trees was measured using tree coring, and the horizontal movement was measured with a conventional tape. Using this procedure it does not require decades and additionally the data reveals the creep velocity for up to 150 years and even more instead of just a decade. It was also concluded that the creep velocity does not only depend on bulk density of soil hence no pronounced effect of bulk density was detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep%20velocity" title="creep velocity">creep velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=Galiyat" title=" Galiyat"> Galiyat</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrochronology" title=" dendrochronology"> dendrochronology</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagri%20Bala" title=" Nagri Bala"> Nagri Bala</a> </p> <a href="https://publications.waset.org/abstracts/100711/use-of-dendrochronology-in-estimation-of-creep-velocity-and-its-dependence-on-the-bulk-density-of-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1586</span> Cold Model Experimental Research on Particle Velocity Distribution in Gas-Solid Circulating Fluidized Bed for Methanol-To-Olefins Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongzheng%20Li">Yongzheng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiwen%20Sun"> Qiwen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radial profiles of particle velocities were investigated in a 6.1 m tall methanol-to-olefins cold model experimental device using a TSI laser Doppler velocimeter. The measurement of axial levels was conducted in the full developed region. The effect of axial level on flow development was not obvious under the same operating condition. Superficial gas velocity and solid circulating rate had significant influence on particle velocity in the center region of the riser. Besides, comparisons between upward, downward and average particle velocity were conducted. The average particle velocity was close to upward velocity and higher than downward velocity in radial locations except the wall region of riser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circulating%20fluidized%20bed" title="circulating fluidized bed">circulating fluidized bed</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20doppler%20velocimeter" title=" laser doppler velocimeter"> laser doppler velocimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20velocity" title=" particle velocity"> particle velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20profile" title=" radial profile"> radial profile</a> </p> <a href="https://publications.waset.org/abstracts/25000/cold-model-experimental-research-on-particle-velocity-distribution-in-gas-solid-circulating-fluidized-bed-for-methanol-to-olefins-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1585</span> Despiking of Turbulent Flow Data in Gravel Bed Stream </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratul%20Das">Ratul Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20doppler%20velocimeter" title="acoustic doppler velocimeter">acoustic doppler velocimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=gravel-bed" title=" gravel-bed"> gravel-bed</a>, <a href="https://publications.waset.org/abstracts/search?q=spike%20removal" title=" spike removal"> spike removal</a>, <a href="https://publications.waset.org/abstracts/search?q=reynolds%20shear%20stress" title=" reynolds shear stress"> reynolds shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=near-bed%20turbulence" title=" near-bed turbulence"> near-bed turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20power%20spectra" title=" velocity power spectra"> velocity power spectra</a> </p> <a href="https://publications.waset.org/abstracts/47047/despiking-of-turbulent-flow-data-in-gravel-bed-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1584</span> 1D Velocity Model for the Gobi-Altai Region from Local Earthquakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dolgormaa%20Munkhbaatar">Dolgormaa Munkhbaatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Munkhsaikhan%20%20Adiya"> Munkhsaikhan Adiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Tseedulam%20Khuut"> Tseedulam Khuut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We performed an inversion method to determine the 1D-velocity model with station corrections of the Gobi-Altai area in the southern part of Mongolia using earthquake data collected in the National Data Center during the last 10 years. In this study, the concept of the new 1D model has been employed to minimize the average RMS of a set of well-located earthquakes, recorded at permanent (between 2006 and 2016) and temporary seismic stations (between 2014 and 2016), compute solutions for the coupled hypocenter and 1D velocity model. We selected 4800 events with RMS less than 0.5 seconds and with a maximum GAP of 170 degrees and determined velocity structures. Also, we relocated all possible events located in the Gobi-Altai area using the new 1D velocity model and achieved constrained hypocentral determinations for events within this area. We concluded that the estimated new 1D velocity model is a relatively low range compared to the previous velocity model in a significant improvement intend to, and the quality of the information basis for future research center locations to determine the earthquake epicenter area with this new transmission model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1D%20velocity%20model" title="1D velocity model">1D velocity model</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=relocation" title=" relocation"> relocation</a>, <a href="https://publications.waset.org/abstracts/search?q=Velest" title=" Velest"> Velest</a> </p> <a href="https://publications.waset.org/abstracts/121020/1d-velocity-model-for-the-gobi-altai-region-from-local-earthquakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1583</span> Experimental Investigation of S822 and S823 Wind Turbine Airfoils Wake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20B.%20Khoshnevis">Amir B. Khoshnevis</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mirhosseini"> Morteza Mirhosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with a sub-part of an extensive research program on the wake survey method in various Reynolds numbers and angles of attack. This research experimentally investigates the wake flow characteristics behind S823 and S822 airfoils in which designed for small wind turbines. Velocity measurements determined by using hot-wire anemometer. Data acquired in the wake of the airfoil at locations(c is the chord length): 0.01c - 3c. Reynolds number increased due to increase of free stream velocity. Results showed that mean velocity profiles depend on the angle of attack and location of data collections. Data acquired at the low Reynolds numbers (smaller than 10^5). Effects of Reynolds numbers on the mean velocity profiles are more significant in near locations the trailing edge and these effects decrease by taking distance from trailing edge toward downstream. Mean velocity profiles region increased by increasing the angle of attack, except for 7°, and also the maximum velocity deficit (velocity defect) increased. The difference of mean velocity in and out of the wake decreased by taking distance from trailing edge, and mean velocity profile become wider and more uniform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20attack" title="angle of attack">angle of attack</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20deficit" title=" velocity deficit"> velocity deficit</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a> </p> <a href="https://publications.waset.org/abstracts/36863/experimental-investigation-of-s822-and-s823-wind-turbine-airfoils-wake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1582</span> Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Rima%20Cheniti">Aicha Rima Cheniti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Besbes"> Hatem Besbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Haggege"> Joseph Haggege</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Sintes"> Christophe Sintes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mean%20carbon%20dioxide%20pressure" title="mean carbon dioxide pressure">mean carbon dioxide pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20mixture%20pressure" title=" mean mixture pressure"> mean mixture pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20velocity" title=" mixture velocity"> mixture velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20velocity%20difference" title=" radial velocity difference"> radial velocity difference</a> </p> <a href="https://publications.waset.org/abstracts/51601/evaluation-of-carbon-dioxide-pressure-through-radial-velocity-difference-in-arterial-blood-modeled-by-drift-flux-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1581</span> Measurement of Steady Streaming from an Oscillating Bubble Using Particle Image Velocimetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongseok%20Kwon">Yongseok Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Woowon%20Jeong"> Woowon Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Eunjin%20Cho"> Eunjin Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangkug%20Chung"> Sangkug Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyehan%20Rhee"> Kyehan Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steady streaming flow fields induced by a 500 um bubble oscillating at 12 kHz were measured using microscopic particle image velocimetry (PIV). The accuracy of velocity measurement using a micro PIV system was checked by comparing the measured velocity fields with the theoretical velocity profiles in fully developed laminar flow. The steady streaming flow velocities were measured in the saggital plane of the bubble attached on the wall. Measured velocity fields showed upward jet flow with two symmetric counter-rotating vortices, and the maximum streaming velocity was about 12 mm/s, which was within the velocity ranges measured by other researchers. The measured streamlines were compared with the analytic solution, and they also showed a reasonable agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oscillating%20bubble" title="oscillating bubble">oscillating bubble</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title=" particle image velocimetry"> particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=microstreaming" title=" microstreaming"> microstreaming</a>, <a href="https://publications.waset.org/abstracts/search?q=vortices" title=" vortices"> vortices</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/1749/measurement-of-steady-streaming-from-an-oscillating-bubble-using-particle-image-velocimetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1580</span> Flow of a Second Order Fluid through Constricted Tube with Slip Velocity at Wall Using Integral Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nosheen%20Zareen%20Khan">Nosheen Zareen Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Majeed%20Siddiqui"> Abdul Majeed Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Afzal%20Rana"> Muhammad Afzal Rana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steady flow of a second order fluid through constricted tube with slip velocity at wall is modeled and analyzed theoretically. The governing equations are simplified by implying no slip in radial direction. Based on Karman Pohlhausen procedure polynomial solution for axial velocity profile is presented. An expressions for pressure gradient, shear stress, separation and reattachment points and radial velocity are also calculated. The effect of slip and no slip velocity on velocity, shear stress, pressure gradient are discussed and depicted graphically. It is noted that when Reynolds number increases velocity of the fluid decreases in both slip and no slip conditions. It is also found that the wall shear stress, separation and reattachment points are strongly effected by Reynolds number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%20solution" title="approximate solution">approximate solution</a>, <a href="https://publications.waset.org/abstracts/search?q=constricted%20tube" title=" constricted tube"> constricted tube</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluids" title=" non-Newtonian fluids"> non-Newtonian fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/34309/flow-of-a-second-order-fluid-through-constricted-tube-with-slip-velocity-at-wall-using-integral-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1579</span> Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Rima%20Cheniti">Aicha Rima Cheniti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Besbes"> Hatem Besbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Haggege"> Joseph Haggege</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Sintes"> Christophe Sintes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mean%20carbon%20dioxide%20pressure" title="mean carbon dioxide pressure">mean carbon dioxide pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20mixture%20pressure" title=" mean mixture pressure"> mean mixture pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20velocity" title=" mixture velocity"> mixture velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20velocity" title=" radial velocity"> radial velocity</a> </p> <a href="https://publications.waset.org/abstracts/52258/gas-pressure-evaluation-through-radial-velocity-measurement-of-fluid-flow-modeled-by-drift-flux-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1578</span> Velocity Distribution in Density Currents Flowing over Rough Beds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Nasrollahpour">Reza Nasrollahpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Hidayat%20Bin%20Jamal"> Mohamad Hidayat Bin Jamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulhilmi%20Bin%20Ismail"> Zulhilmi Bin Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Density currents are generated when the fluid of one density is released into another fluid with a different density. These currents occur in a variety of natural and man-made environments, and this emphasises the importance of studying them. In most practical cases, the density currents flow over the surfaces which are not plane; however, there have been limited investigations in this regard. This study uses laboratory experiments to analyse the influence of bottom roughness on the velocity distribution within these dense underflows. The currents are analysed over a plane surface and three different configurations of beam-roughened beds. The velocity profiles are collected using Acoustic Doppler Velocimetry technique, and the distribution of velocity within these currents is formulated for the tested beds. The results indicate that the empirical power and Gaussian relations can describe the velocity distribution in the inner and outer regions of the profiles, respectively. Moreover, it is found that the bottom roughness is the primary controlling parameter in the inner region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20currents" title="density currents">density currents</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20profiles" title=" velocity profiles"> velocity profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=Acoustic%20Doppler%20Velocimeter" title=" Acoustic Doppler Velocimeter"> Acoustic Doppler Velocimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20roughness" title=" bed roughness"> bed roughness</a> </p> <a href="https://publications.waset.org/abstracts/96631/velocity-distribution-in-density-currents-flowing-over-rough-beds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1577</span> Computational Fluid Dynamic Investigation into the Relationship between Pressure and Velocity Distributions within a Microfluidic Feedback Oscillator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zara%20L.%20Sheady">Zara L. Sheady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluidic oscillators are being utilised in an increasing number of applications in a wide variety of areas; these include on-board vehicle cleaning systems, flow separation control on aircraft and in fluidic circuitry. With this increased use, there is a further understanding required for the mechanics of the fluidics of the fluidic oscillator and why they work in the manner that they do. ANSYS CFX has been utilized to visualise the pressure and velocity within a microfluidic feedback oscillator. The images demonstrate how the pressure vortices build within the oscillator at the points where the velocity is diverted from linear motion through the oscillator. With an enhanced understanding of the pressure and velocity distributions within a fluidic oscillator, it will enable users of microfluidics to more greatly tailor fluidic nozzles to their specification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20CFX" title="ANSYS CFX">ANSYS CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidic%20oscillators" title=" fluidic oscillators"> fluidic oscillators</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanics" title=" mechanics"> mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=relationship" title=" relationship"> relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a> </p> <a href="https://publications.waset.org/abstracts/86615/computational-fluid-dynamic-investigation-into-the-relationship-between-pressure-and-velocity-distributions-within-a-microfluidic-feedback-oscillator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1576</span> Hydraulic Analysis on Microhabitat of Benthic Macroinvertebrates at Riparian Riffles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Hong%20Kim">Jin-Hong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulic analysis on microhabitat of Benthic Macro- invertebrates was performed at riparian riffles of Hongcheon River and Gapyeong Stream. As for the representative species, <em>Ecdyonurus kibunensis</em>, <em>Paraleptophlebia cocorata</em>, <em>Chironomidae </em>sp. and <em>Psilotreta kisoensis iwata</em> were chosen. They showed hydraulically different habitat types by flow velocity and particle diameters of streambed materials. Habitat conditions of the swimmers were determined mainly by the flow velocity rather than by flow depth or by riverbed materials. Burrowers prefer sand and silt, and inhabited at the riverbed. Sprawlers prefer cobble or boulder and inhabited for velocity of 0.05-0.15 m/s. Clingers prefer pebble or cobble and inhabited for velocity of 0.06-0.15 m/s. They were found to be determined mainly by the flow velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benthic%20macroinvertebrates" title="benthic macroinvertebrates">benthic macroinvertebrates</a>, <a href="https://publications.waset.org/abstracts/search?q=riffles" title=" riffles"> riffles</a>, <a href="https://publications.waset.org/abstracts/search?q=clinger" title=" clinger"> clinger</a>, <a href="https://publications.waset.org/abstracts/search?q=swimmer" title=" swimmer"> swimmer</a>, <a href="https://publications.waset.org/abstracts/search?q=burrower" title=" burrower"> burrower</a>, <a href="https://publications.waset.org/abstracts/search?q=sprawler" title=" sprawler"> sprawler</a> </p> <a href="https://publications.waset.org/abstracts/49551/hydraulic-analysis-on-microhabitat-of-benthic-macroinvertebrates-at-riparian-riffles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1575</span> An Automated Bender Element System Used for S-Wave Velocity Tomography during Model Pile Installation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuxin%20Wu">Yuxin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shing%20Wang"> Yu-Shing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zitao%20Zhang"> Zitao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A high-speed and time-lapse S-wave velocity measurement system has been built up for S-wave tomography in sand. This system is based on bender elements and applied to model pile tests in a tailor-made pressurized chamber to monitor the shear wave velocity distribution during pile installation in sand. Tactile pressure sensors are used parallel together with bender elements to monitor the stress changes during the tests. Strain gages are used to monitor the shaft resistance and toe resistance of pile. Since the shear wave velocity (Vs) is determined by the shear modulus of sand and the shaft resistance of pile is also influenced by the shear modulus of sand around the pile, the purposes of this study are to time-lapse monitor the S-wave velocity distribution change at a certain horizontal section during pile installation and to correlate the S-wave velocity distribution and shaft resistance of pile in sand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bender%20element" title="bender element">bender element</a>, <a href="https://publications.waset.org/abstracts/search?q=pile" title=" pile"> pile</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20resistance" title=" shaft resistance"> shaft resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=tomography" title=" tomography"> tomography</a> </p> <a href="https://publications.waset.org/abstracts/59285/an-automated-bender-element-system-used-for-s-wave-velocity-tomography-during-model-pile-installation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1574</span> Effect of Adverse Pressure Gradient on a Fluctuating Velocity over the Co-Flow Jet Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mirhosseini">Morteza Mirhosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20B.%20Khoshnevis"> Amir B. Khoshnevis </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The boundary layer separation and new active flow control of a NACA 0025 airfoil were studied experimentally. This new flow control is sometimes known as a co-flow jet (cfj) airfoil. This paper presents the fluctuating velocity in a wall jet over the co-flow jet airfoil subjected to an adverse pressure gradient and a curved surface. In these results, the fluctuating velocity at the inner part increasing by increased the angle of attack up to 12<sup>o</sup> and this has due to the jet energized, while the angle of attack 20<sup>o</sup> has different. The airfoil cord based Reynolds number has 10<sup>5</sup>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adverse%20pressure%20gradient" title="adverse pressure gradient">adverse pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=fluctuating%20velocity" title=" fluctuating velocity"> fluctuating velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20jet" title=" wall jet"> wall jet</a>, <a href="https://publications.waset.org/abstracts/search?q=co-flow%20jet%20airfoil" title=" co-flow jet airfoil"> co-flow jet airfoil</a> </p> <a href="https://publications.waset.org/abstracts/37038/effect-of-adverse-pressure-gradient-on-a-fluctuating-velocity-over-the-co-flow-jet-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1573</span> The Evaluation of Soil Liquefaction Potential Using Shear Wave Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nghizaderokni">M. Nghizaderokni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Janalizadechobbasty"> A. Janalizadechobbasty</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Azizi"> M. Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naghizaderokni"> M. Naghizaderokni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquefaction resistance of soils can be evaluated using laboratory tests such as cyclic simple shear, cyclic triaxial, cyclic tensional shear, and field methods such as Standard Penetration Test (SPT), Cone Penetration Test (CPT), and Shear Wave Velocity (Vs). This paper outlines a great correlation between shear wave velocity and standard penetration resistance of granular soils was obtained. Using Seeds standard penetration test (SPT) based soil liquefaction charts, new charts of soil liquefaction evaluation based on shear wave velocity data were developed for various magnitude earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20penetration%20resistance" title=" standard penetration resistance "> standard penetration resistance </a> </p> <a href="https://publications.waset.org/abstracts/28944/the-evaluation-of-soil-liquefaction-potential-using-shear-wave-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1572</span> Numerical Simulation of Two-Dimensional Porous Cylinder Flow in In-Line Arrangement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Alhajeri">Hamad Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Almutairi"> Abdulrahman Almutairi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Alenezi"> A. H. Alenezi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Alhajeri"> M. H. Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayedh%20Alajmi"> Ayedh Alajmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow around three porous cylinders in inline arrangement is investigated in this paper computationally using the commercial code FLUENT. The arrangement generally operates with the dirty gases passing through the porous cylinders, the particulate material being deposited on the outside of the cylinders. However, in a combined cycle power plant, filtration is required to allow the hot exhaust gases to be fed to a turbine without causing any physical damage to the turbine blades. Three cylinder elements are placed in a two-dimensional rectangle duct with fixed face velocity and varying the velocity ratio between the approach and face velocity. Particle trajectories are obtained for a number of particle diameters and different inlet (approach) velocity to face filtration velocity ratios to investigate the behavior of particles around the cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20cylinders" title="porous cylinders">porous cylinders</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow" title=" fluid flow"> fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a> </p> <a href="https://publications.waset.org/abstracts/82446/numerical-simulation-of-two-dimensional-porous-cylinder-flow-in-in-line-arrangement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1571</span> Experimental Procedure of Identifying Ground Type by Downhole Test: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhassan%20Naeini">Seyed Abolhassan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Maedeh%20Akhavan%20Tavakkoli"> Maedeh Akhavan Tavakkoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaluating the shear wave velocity (V_s) and primary wave velocity (Vₚ) is necessary to identify the ground type of the site. Identifying the soil type based on different codes can affect the dynamic analysis of geotechnical properties. This study aims to separate the underground layers at the project site based on the shear wave and primary wave velocity (Sₚ) in different depths and determine dynamic elastic modulus based on the shear wave velocity. Bandar Anzali is located in a tectonically very active area. Several active faults surround the study site. In this case, a field investigation of downhole testing is conducted as a geophysics method to identify the ground type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=downhole" title="downhole">downhole</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysics" title=" geophysics"> geophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=case-study" title=" case-study"> case-study</a> </p> <a href="https://publications.waset.org/abstracts/155639/experimental-procedure-of-identifying-ground-type-by-downhole-test-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1570</span> Effect of Baffles on the Cooling of Electronic Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Bendermel">O. Bendermel</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Seladji"> C. Seladji</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khaouani"> M. Khaouani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we made a numerical study of the thermal and dynamic behaviour of air in a horizontal channel with electronic components. The influence to use baffles on the profiles of velocity and temperature is discussed. The finite volume method and the algorithm Simple are used for solving the equations of conservation of mass, momentum and energy. The results found show that baffles improve heat transfer between the cooling air and electronic components. The velocity will increase from 3 times per rapport of the initial velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20components" title="electronic components">electronic components</a>, <a href="https://publications.waset.org/abstracts/search?q=baffles" title=" baffles"> baffles</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=fluids%20engineering" title=" fluids engineering"> fluids engineering</a> </p> <a href="https://publications.waset.org/abstracts/5304/effect-of-baffles-on-the-cooling-of-electronic-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1569</span> Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Afshar">O. Afshar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=receiver%20tube" title="receiver tube">receiver tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20convection" title=" heat convection"> heat convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a> </p> <a href="https://publications.waset.org/abstracts/38149/numerical-investigation-of-hot-oil-velocity-effect-on-force-heat-convection-and-impact-of-wind-velocity-on-convection-heat-transfer-in-receiver-tube-of-parabolic-trough-collector-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1568</span> The Impact of Vertical Velocity Parameter Conditions and Its Relationship with Weather Parameters in the Hail Event</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadine%20Ayasha">Nadine Ayasha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hail happened in Sukabumi (August 23, 2020), Sekadau (August 22, 2020), and Bogor (September 23, 2020), where this extreme weather phenomenon occurred in the dry season. This study uses the ERA5 reanalysis model data, it aims to examine the vertical velocity impact on the hail occurrence in the dry season, as well as its relation to other weather parameters such as relative humidity, streamline, and wind velocity. Moreover, HCAI product satellite data is used as supporting data for the convective cloud development analysis. Based on the results of graphs, contours, and Hovmoller vertical cut from ERA5 modeling, the vertical velocity values in the 925 Mb-300 Mb layer in Sukabumi, Sekadau, and Bogor before the hail event ranged between -1.2-(-0.2), -1.5-(-0.2), -1-0 Pa/s. A negative value indicates that there is an upward motion from the air mass that trigger the convective cloud growth, which produces hail. It is evidenced by the presence of Cumulonimbus cloud on HCAI product when the hail falls. Therefore, the vertical velocity has significant effect on the hail event. In addition, the relative humidity in the 850-700 Mb layer is quite wet, which ranges from 80-90%. Meanwhile, the streamline and wind velocity in the three regions show the convergence with slowing wind velocity ranging from 2-4 knots. These results show that the upward motion of the vertical velocity is enough to form the wet atmospheric humidity and form a convergence for the growth of the convective cloud, which produce hail in the dry season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hail" title="hail">hail</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20weather" title=" extreme weather"> extreme weather</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20velocity" title=" vertical velocity"> vertical velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=streamline" title=" streamline"> streamline</a> </p> <a href="https://publications.waset.org/abstracts/144479/the-impact-of-vertical-velocity-parameter-conditions-and-its-relationship-with-weather-parameters-in-the-hail-event" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1567</span> CFD Effect of the Tidal Grating in Opposite Directions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Thao">N. M. Thao</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Dolguntseva"> I. Dolguntseva</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Leijon"> M. Leijon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow blockages referring to the increase in flow are considered as a vital equipment for marine current energy conversion. However, the shape of these devices will result in extracted energy under the operation. The present work investigates the effect of two configurations of a grating, convergent and divergent that located upstream, to the water flow velocity. Computational Fluid Dynamic simulation studies the flow characteristics by using the ANSYS Fluent solver for these specified arrangements of the grating. The results indicate that distinct features of flow velocity between “convergent” and “divergent” grating placements are up to in confined conditions. Furthermore, the velocity in case of granting is higher than that of the divergent grating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20%20current%20%20energy" title="marine current energy">marine current energy</a>, <a href="https://publications.waset.org/abstracts/search?q=converter" title=" converter"> converter</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20granting" title=" turbine granting"> turbine granting</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS%20simulation" title=" RANS simulation"> RANS simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20flow%20velocity" title=" water flow velocity"> water flow velocity</a> </p> <a href="https://publications.waset.org/abstracts/27716/cfd-effect-of-the-tidal-grating-in-opposite-directions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1566</span> Soil Moisture Regulation in Irrigated Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Kruashvili">I. Kruashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Inashvili"> I. Inashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bziava"> K. Bziava</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lomishvili"> M. Lomishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seepage" title="seepage">seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/53466/soil-moisture-regulation-in-irrigated-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1565</span> Study of the Influence of Nozzle Length and Jet Angles on the Air Entrainment by Plunging Water Jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Luis%20Mu%C3%B1oz-Cobo%20Gonz%C3%A1lez">José Luis Muñoz-Cobo González</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Chiva%20Vicent"> Sergio Chiva Vicent</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Harby%20Mohamed"> Khaled Harby Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a vertical liquid jet plunges into a liquid surface, after passing through a surrounding gas phase, it entrains a large amount of gas bubbles into the receiving pool, and it forms a large submerged two-phase region with a considerable interfacial area. At the intersection of the plunging jet and the liquid surface, free-surface instabilities are developed, and gas entrainment may be observed. If the jet impact velocity exceeds an inception velocity that is a function of the plunging flow conditions, the gas entrainment takes place. The general goal of this work is to study the effect of nozzle parameters (length-to-diameter ratio (lN/dN), jet angle (α) with the free water surface) and the jet operating conditions (initial jet diameters dN, initial jet velocity VN, and jet length x1) on the flow characteristics such as: inception velocity of the gas entrainment Ve, bubble penetration depth Hp, gas entrainment rate, Qa, centerline jet velocity Vc, and the axial jet velocity distribution Vx below the free water surface in a plunging liquid jet system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inclined%20plunging%20water%20jets" title="inclined plunging water jets">inclined plunging water jets</a>, <a href="https://publications.waset.org/abstracts/search?q=entrainment" title=" entrainment"> entrainment</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20flow" title=" two phase flow"> two phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20length" title=" nozzle length"> nozzle length</a> </p> <a href="https://publications.waset.org/abstracts/15058/study-of-the-influence-of-nozzle-length-and-jet-angles-on-the-air-entrainment-by-plunging-water-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1564</span> Analysis of High-Velocity Impacts on Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Concei%C3%A7%C3%A3o">Conceição</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20M."> J. F. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebelo%20H."> Rebelo H.</a>, <a href="https://publications.waset.org/abstracts/search?q=Corneliu%20C."> Corneliu C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pereira%20L."> Pereira L.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research analyses the response of two distinct types of concrete blocks, each possessing an approximate unconfined compressive strength of 30MPa, when exposed to high-velocity impacts produced by an Explosively Formed Penetrator (EFP) traveling at an initial velocity of 1200 m/s. Given the scarcity of studies exploring high-velocity impacts on concrete, the primary aim of this research is to scrutinize how concrete behaves under high-speed impacts, ultimately contributing valuable insights to the development of protective structures. To achieve this objective, a comprehensive numerical analysis was carried out in LS-DYNA to delve into the fracture mechanisms inherent in concrete under such extreme conditions. Subsequently, the obtained numerical outcomes were compared and validated through eight experimental field tests. The methodology employed involved a robust combination of numerical simulations and real-world experiments, ensuring a comprehensive understanding of concrete behavior in scenarios involving rapid, high-energy impacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-velocity" title="high-velocity">high-velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20tests" title=" experimental tests"> experimental tests</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/180950/analysis-of-high-velocity-impacts-on-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1563</span> Observation of Critical Sliding Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Visar%20Baxhuku">Visar Baxhuku</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Demolli"> Halil Demolli</a>, <a href="https://publications.waset.org/abstracts/search?q=Alishukri%20Shkodra"> Alishukri Shkodra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the monitoring of vehicle movement, namely the developing of speed of vehicles during movement in a certain twist. The basic geometry data of twist are measured with the purpose of calculating the slide in border speed. During the research, measuring developed speed of passenger vehicles for the real conditions of the road surface, dry road with average damage, was realised. After setting values, the analysis was done in function security of movement in twist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20sliding%20velocity" title="critical sliding velocity">critical sliding velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20velocity" title=" moving velocity"> moving velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=curve" title=" curve"> curve</a>, <a href="https://publications.waset.org/abstracts/search?q=passenger%20vehicles" title=" passenger vehicles"> passenger vehicles</a> </p> <a href="https://publications.waset.org/abstracts/8578/observation-of-critical-sliding-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1562</span> Visco-Acoustic Full Wave Inversion in the Frequency Domain with Mixed Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheryl%20Avenda%C3%B1o">Sheryl Avendaño</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Ospina"> Miguel Ospina</a>, <a href="https://publications.waset.org/abstracts/search?q=Hebert%20Montegranario"> Hebert Montegranario</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Full Wave Inversion (FWI) is a variant of seismic tomography for obtaining velocity profiles by an optimization process that combine forward modelling (or solution of wave equation) with the misfit between synthetic and observed data. In this research we are modelling wave propagation in a visco-acoustic medium in the frequency domain. We apply finite differences for the numerical solution of the wave equation with a mix between usual and rotated grids, where density depends on velocity and there exists a damping function associated to a linear dissipative medium. The velocity profiles are obtained from an initial one and the data have been modeled for a frequency range 0-120 Hz. By an iterative procedure we obtain an estimated velocity profile in which are detailed the remarkable features of the velocity profile from which synthetic data were generated showing promising results for our method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20inversion" title="seismic inversion">seismic inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20wave%20inversion" title=" full wave inversion"> full wave inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=visco%20acoustic%20wave%20equation" title=" visco acoustic wave equation"> visco acoustic wave equation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20diffrence%20methods" title=" finite diffrence methods"> finite diffrence methods</a> </p> <a href="https://publications.waset.org/abstracts/33694/visco-acoustic-full-wave-inversion-in-the-frequency-domain-with-mixed-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1561</span> A Comparison of Computational and Experimental Data to Investigate the Influence of the Tangential Velocity of Inner Rotating Wall on Axial Velocity Profile of Flow through Vertical Annular Pipe with Rotating Inner Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdusalam%20Sharf">Abdusalam Sharf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the oil and gas industries, one of the most important issues in drilling wells is understanding the behavior of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates. The main emphasis is placed on a comparison of experimental and computational investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The computational investigations were carried out by employing CFD software, and Gambit and Fluent. Three turbulence models were used: standard, RNG with enhanced wall treatment, and SST model. The profiles of the axial velocity had investigated at different rotation speeds of the inner pipe with three different volumetric flow rates. The comparison results showed that the calculations satisfactorily predict the qualitative features of the axial and swirl velocity profiles and the RNG model performs the best results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title="computational fluid dynamics (CFD)">computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=SST%20k%E2%88%92%CF%89%20shear-stress%20transport%20%28k%E2%88%92%CF%89%20mode%20variant%29" title=" SST k−ω shear-stress transport (k−ω mode variant)"> SST k−ω shear-stress transport (k−ω mode variant)</a>, <a href="https://publications.waset.org/abstracts/search?q=RNG%20k%E2%80%93%CE%B5%20renormalisation%20group%20%28k%E2%88%92%CE%B5%20mode%20variant%29" title=" RNG k–ε renormalisation group (k−ε mode variant)"> RNG k–ε renormalisation group (k−ε mode variant)</a>, <a href="https://publications.waset.org/abstracts/search?q=y%2B%20dimensionless%20distance%20from%20wall" title=" y+ dimensionless distance from wall"> y+ dimensionless distance from wall</a> </p> <a href="https://publications.waset.org/abstracts/11778/a-comparison-of-computational-and-experimental-data-to-investigate-the-influence-of-the-tangential-velocity-of-inner-rotating-wall-on-axial-velocity-profile-of-flow-through-vertical-annular-pipe-with-rotating-inner-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1560</span> Computational Approaches for Ballistic Impact Response of Stainless Steel 304</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mostafa">A. Mostafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a numerical study on determination of ballistic limit velocity (<em>V<sub>50</sub></em>) of stainless steel 304 (SS 304) used in manufacturing security screens. The simulated ballistic impact tests were conducted on clamped sheets with different thicknesses using ABAQUS/Explicit nonlinear finite element (FE) package. The ballistic limit velocity was determined using three approaches, namely: numerical tests based on material properties, FE calculated residual velocities and FE calculated residual energies. Johnson-Cook plasticity and failure criterion were utilized to simulate the dynamic behaviour of the SS 304 under various strain rates, while the well-known Lambert-Jonas equation was used for the data regression for the residual velocity and energy model. Good agreement between the investigated numerical methods was achieved. Additionally, the dependence of the ballistic limit velocity on the sheet thickness was observed. The proposed approaches present viable and cost-effective assessment methods of the ballistic performance of SS 304, which will support the development of robust security screen systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistic%20velocity" title="ballistic velocity">ballistic velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20approaches" title=" numerical approaches"> numerical approaches</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20screen" title=" security screen"> security screen</a> </p> <a href="https://publications.waset.org/abstracts/125088/computational-approaches-for-ballistic-impact-response-of-stainless-steel-304" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=velocity&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=velocity&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=velocity&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=velocity&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=velocity&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=velocity&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=velocity&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=velocity&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=velocity&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=velocity&page=52">52</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=velocity&page=53">53</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=velocity&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>