CINXE.COM
Search results for: arid
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: arid</title> <meta name="description" content="Search results for: arid"> <meta name="keywords" content="arid"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="arid" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="arid"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 385</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: arid</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Rangeland Monitoring by Computerized Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Arzani">H. Arzani</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Arzani"> Z. Arzani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every piece of rangeland has a different set of physical and biological characteristics. This requires the manager to synthesis various information for regular monitoring to define changes trend to get wright decision for sustainable management. So range managers need to use computerized technologies to monitor rangeland, and select. The best management practices. There are four examples of computerized technologies that can benefit sustainable management: (1) Photographic method for cover measurement: The method was tested in different vegetation communities in semi humid and arid regions. Interpretation of pictures of quadrats was done using Arc View software. Data analysis was done by SPSS software using paired t test. Based on the results, generally, photographic method can be used to measure ground cover in most vegetation communities. (2) GPS application for corresponding ground samples and satellite pixels: In two provinces of Tehran and Markazi, six reference points were selected and in each point, eight GPS models were tested. Significant relation among GPS model, time and location with accuracy of estimated coordinates was found. After selection of suitable method, in Markazi province coordinates of plots along four transects in each 6 sites of rangelands was recorded. The best time of GPS application was in the morning hours, Etrex Vista had less error than other models, and a significant relation among GPS model, time and location with accuracy of estimated coordinates was found. (3) Application of satellite data for rangeland monitoring: Focusing on the long term variation of vegetation parameters such as vegetation cover and production is essential. Our study in grass and shrub lands showed that there were significant correlations between quantitative vegetation characteristics and satellite data. So it is possible to monitor rangeland vegetation using digital data for sustainable utilization. (4) Rangeland suitability classification with GIS: Range suitability assessment can facilitate sustainable management planning. Three sub-models of sensitivity to erosion, water suitability and forage production out puts were entered to final range suitability classification model. GIS was facilitate classification of range suitability and produced suitability maps for sheep grazing. Generally digital computers assist range managers to interpret, modify, calibrate or integrating information for correct management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer" title="computer">computer</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=photographic%20method" title=" photographic method"> photographic method</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=rangeland%20ecosystem" title=" rangeland ecosystem"> rangeland ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=suitability" title=" suitability"> suitability</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep%20grazing" title=" sheep grazing"> sheep grazing</a> </p> <a href="https://publications.waset.org/abstracts/5188/rangeland-monitoring-by-computerized-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Spatial Mapping of Variations in Groundwater of Taluka Islamkot Thar Using GIS and Field Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imran%20Aziz%20Tunio">Imran Aziz Tunio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Islamkot is an underdeveloped sub-district (Taluka) in the Tharparkar district Sindh province of Pakistan located between latitude 24°25'19.79"N to 24°47'59.92"N and longitude 70° 1'13.95"E to 70°32'15.11"E. The Islamkot has an arid desert climate and the region is generally devoid of perennial rivers, canals, and streams. It is highly dependent on rainfall which is not considered a reliable surface water source and groundwater is the only key source of water for many centuries. To assess groundwater’s potential, an electrical resistivity survey (ERS) was conducted in Islamkot Taluka. Groundwater investigations for 128 Vertical Electrical Sounding (VES) were collected to determine the groundwater potential and obtain qualitatively and quantitatively layered resistivity parameters. The PASI Model 16 GL-N Resistivity Meter was used by employing a Schlumberger electrode configuration, with half current electrode spacing (AB/2) ranging from 1.5 to 100 m and the potential electrode spacing (MN/2) from 0.5 to 10 m. The data was acquired with a maximum current electrode spacing of 200 m. The data processing for the delineation of dune sand aquifers involved the technique of data inversion, and the interpretation of the inversion results was aided by the use of forward modeling. The measured geo-electrical parameters were examined by Interpex IX1D software, and apparent resistivity curves and synthetic model layered parameters were mapped in the ArcGIS environment using the inverse Distance Weighting (IDW) interpolation technique. Qualitative interpretation of vertical electrical sounding (VES) data shows the number of geo-electrical layers in the area varies from three to four with different resistivity values detected. Out of 128 VES model curves, 42 nos. are 3 layered, and 86 nos. are 4 layered. The resistivity of the first subsurface layers (Loose surface sand) varied from 16.13 Ωm to 3353.3 Ωm and thickness varied from 0.046 m to 17.52m. The resistivity of the second subsurface layer (Semi-consolidated sand) varied from 1.10 Ωm to 7442.8 Ωm and thickness varied from 0.30 m to 56.27 m. The resistivity of the third subsurface layer (Consolidated sand) varied from 0.00001 Ωm to 3190.8 Ωm and thickness varied from 3.26 m to 86.66 m. The resistivity of the fourth subsurface layer (Silt and Clay) varied from 0.0013 Ωm to 16264 Ωm and thickness varied from 13.50 m to 87.68 m. The Dar Zarrouk parameters, i.e. longitudinal unit conductance S is from 0.00024 to 19.91 mho; transverse unit resistance T from 7.34 to 40080.63 Ωm2; longitudinal resistance RS is from 1.22 to 3137.10 Ωm and transverse resistivity RT from 5.84 to 3138.54 Ωm. ERS data and Dar Zarrouk parameters were mapped which revealed that the study area has groundwater potential in the subsurface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity%20survey" title="electrical resistivity survey">electrical resistivity survey</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20%26%20RS" title=" GIS & RS"> GIS & RS</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20potential" title=" groundwater potential"> groundwater potential</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20assessment" title=" environmental assessment"> environmental assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=VES" title=" VES"> VES</a> </p> <a href="https://publications.waset.org/abstracts/164468/spatial-mapping-of-variations-in-groundwater-of-taluka-islamkot-thar-using-gis-and-field-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Palaeo-Environmental Reconstruction of the Wet Zone of Sri Lanka: A Zooarchaeological Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalangi%20Rodrigo">Kalangi Rodrigo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sri Lanka has been known as an island which has a diverse variety of prehistoric occupation among ecological zones. Defining the paleoecology of the past societies has been an archaeological thought developed in the 1960s. It is mainly concerned with the reconstruction from available geological and biological evidence of past biota, populations, communities, landscapes, environments, and ecosystems. Sri Lanka has dealt with this subject, and considerable research has been already undertaken. The fossil and material record of Sri Lanka’s Wet Zone tropical forests continues from c. 38,000–34,000 ybp. This early and persistent human fossil, technical, and cultural florescence, as well as a collection of well-preserved tropical-forest rock shelters with associated 'on-site' palaeoenvironmental records, makes Sri Lanka a central and unusual case study to determine the extent and strength of early human tropical forest encounters. Excavations carried out in prehistoric caves in the low country wet zone has shown that in the last 50,000 years, the temperature in the lowland rainforests has not exceeded 5°C. When taking Batadombalena alone, the entire seven layers have yielded an uninterrupted occupation of Acavus sp and Canerium zeylanicum, a plant that grows in the middle of the rainforest. Acavus, which is highly sensitive to rainforest ecosystems, has been well documented in many of the lowland caves, confirming that the wetland rainforest environment has remained intact at least for the last 50,000 years. If the dry and arid conditions in the upper hills regions affected the wet zone, the Tufted Gray Lunger (semnopithecus priam), must also meet with the prehistoric caves in the wet zone thrown over dry climate. However, the bones in the low country wet zone do not find any of the fragments belonging to Turfed Gray Lunger, and prehistoric human consumption is bestowed with purple-faced leaf monkey (Trachypithecus vetulus) and Toque Macaque (Macaca Sinica). The skeletal remains of Lyriocephalus scutatus, a full-time resident in rain forests, have also been recorded among lowland caves. But, in zoological terms, these remains may be the remains of the Barking deer (Muntiacus muntjak), which is currently found in the wet zone. For further investigations, the mtDNA test of genetic diversity (Bottleneck effect) and pollen study from lowland caves should determine whether the wet zone climate has persisted over the last 50,000 years, or whether the dry weather affected in the mountainous region has invaded the wet zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paleoecology" title="paleoecology">paleoecology</a>, <a href="https://publications.waset.org/abstracts/search?q=prehistory" title=" prehistory"> prehistory</a>, <a href="https://publications.waset.org/abstracts/search?q=zooarchaeology" title=" zooarchaeology"> zooarchaeology</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=palaeo-climate" title=" palaeo-climate"> palaeo-climate</a> </p> <a href="https://publications.waset.org/abstracts/124475/palaeo-environmental-reconstruction-of-the-wet-zone-of-sri-lanka-a-zooarchaeological-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Optimal Applications of Solar Energy Systems: Comparative Analysis of Ground-Mounted and Rooftop Solar PV Installations in Drought-Prone and Residential Areas of the Indian Subcontinent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhabani%20Prasad%20Mukhopadhyay"> Bhabani Prasad Mukhopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing demand for environmentally friendly energy solutions highlights the need to optimize solar energy systems. This study compares two types of solar energy systems: ground-mounted solar panels for drought-prone locations and rooftop solar PV installations measuring 300 sq. ft. (approx. 28 sq. m.). The electricity output of 4730 kWh/year saves ₹ 14191/year. As a clean and sustainable energy source, solar power is pivotal in reducing greenhouse gas CO2 emissions reduction by 85 tonnes in 25 years and combating climate change. This effort, "PM Suryadaya Ghar-Muft Bijli Yojana," seeks to empower Indian homes by giving free access to solar energy. The initiative is part of the Indian government's larger attempt to encourage clean and renewable energy sources while reducing reliance on traditional fossil fuels. This report reviews various installations and government reports to analyse the performance and impact of both ground-mounted and rooftop solar systems. Besides, effectiveness of government subsidy programs for residential on-grid solar systems, including the ₹78,000 incentive for systems above 3 kW. The study also looks into the subsidy schemes available for domestic agricultural grid use. Systems up to 3 kW receive ₹43,764, while systems over 10 kW receive a fixed subsidy of ₹94,822. Households can save a substantial amount of energy and minimize their reliance on grid electricity by installing the proper solar plant capacity. In terms of monthly consumption at home, the acceptable Rooftop Solar Plant capacity for households is 0-150 units (1-2 kW), 150-300 units (2-3 kW), and >300 units (above 3 kW). Ground-mounted panels, particularly in arid regions, offer benefits such as scalability and optimal orientation but face challenges like land use conflicts and environmental impact, particularly in drought-prone regions. By evaluating the distinct advantages and challenges of each system, this study aims to provide insights into their optimal applications, guiding stakeholders in making informed decisions to enhance solar energy efficiency and sustainability within regulatory constraints. This research also explores the implications of regulations, such as Italy's ban on ground-mounted solar panels on productive agricultural land, on solar energy strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability" title="sustainability">sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=subsidy" title=" subsidy"> subsidy</a>, <a href="https://publications.waset.org/abstracts/search?q=rooftop%20solar%20energy" title=" rooftop solar energy"> rooftop solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/186478/optimal-applications-of-solar-energy-systems-comparative-analysis-of-ground-mounted-and-rooftop-solar-pv-installations-in-drought-prone-and-residential-areas-of-the-indian-subcontinent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Assessing Adaptive Capacity to Climate Change and Agricultural Productivity of Farming Households of Makueni County in Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lilian%20Mbinya%20Muasa">Lilian Mbinya Muasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is inevitable and a global challenge with long term implications to the sustainable development of many countries today. The negative impacts of climate change are creating far reaching social, economic and environmental problems threatening lives and livelihoods of millions of people in the world. Developing countries especially sub-Saharan countries are more vulnerable to climate change due to their weak ecosystem, low adaptive capacity and high dependency on rain fed agriculture. Countries in Sub-Saharan Africa are more vulnerable to climate change impacts due to their weak adaptive capacity and over-reliance on rain fed agriculture. In Kenya, 78% of the rural communities are poor farmers who heavily rely on rain fed agriculture thus are directly affected by climate change impacts.Currently, many parts of Kenya are experiencing successive droughts which are contributing to persistently unstable and declining agricultural productivity especially in semi arid eastern Kenya. As a result, thousands of rural communities repeatedly experience food insecurity which plunge them to an ever over-reliance on relief food from the government and Non-Governmental Organization In addition, they have adopted poverty coping strategies to diversify their income, for instance, deforestation to burn charcoal, sand harvesting and overgrazing which instead contribute to environmental degradation.This research was conducted in Makueni County which is classified as one of the most food insecure counties in Kenya and experiencing acute environmental degradation. The study aimed at analyzing the adaptive capacity to climate change across farming households of Makueni County in Kenya by, 1) analyzing adaptive capacity to climate change and agricultural productivity across farming households, 2) identifying factors that contribute to differences in adaptive capacity across farming households, and 3) understanding the relationship between climate change, agricultural productivity and adaptive capacity. Analytical Hierarchy Process (AHP) was applied to determine adaptive capacity and Total Factor Productivity (TFP) to determine Agricultural productivity per household. Increase in frequency of prolonged droughts and scanty rainfall. Preliminary findings indicate a magnanimous decline in agricultural production in the last 10 years in Makueni County. In addition, there is an over reliance of households on indigenous knowledge which is no longer reliable because of the unpredictability nature of climate change impacts. These findings on adaptive capacity across farming households provide the first step of developing and implementing action-oriented climate change policies in Makueni County and Kenya. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20capacity" title="adaptive capacity">adaptive capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20productivity" title=" agricultural productivity"> agricultural productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/39689/assessing-adaptive-capacity-to-climate-change-and-agricultural-productivity-of-farming-households-of-makueni-county-in-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Multidisciplinary Approach to Mio-Plio-Quaternary Aquifer Study in the Zarzis Region (Southeastern Tunisia)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Ben%20Brahim">Ghada Ben Brahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20El%20Rabia"> Aicha El Rabia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hedi%20Inoubli"> Mohamed Hedi Inoubli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change has exacerbated disparities in the distribution of water resources in Tunisia, resulting in significant degradation in quantity and quality over the past five decades. The Mio-Plio-Quaternary aquifer, the primary water source in the Zarzis region, is subject to climatic, geographical, and geological challenges, as well as human stress. The region is experiencing uneven distribution and growing threats from groundwater salinity and saltwater intrusion. Addressing this challenge is critical for the arid region’s socioeconomic development, and effective water resource management is required to combat climate change and reduce water deficits. This study uses a multidisciplinary approach to determine the groundwater potential of this aquifer, involving geophysics and hydrogeology data analysis. We used advanced techniques such as 3D Euler deconvolution and power spectrum analysis to generate detailed anomaly maps and estimate the depths of density sources, identifying significant Bouguer anomalies trending E-W, NW-SE, and NE-SW. Various techniques, such as wavelength filtering, upward continuation, and horizontal and vertical derivatives, were used to improve the gravity data, resulting in consistent results for anomaly shapes and amplitudes. The Euler deconvolution method revealed two prominent surface faults, trending NE-SW and NW-SE, that have a significant impact on the distribution of sedimentary facies and water quality within the Mio-Plio-Quaternary aquifer. Additionally, depth maxima greater than 1400 m to the North indicate the presence of a Cretaceous paleo-fault. Geoelectrical models and resistivity pseudo-sections were used to interpret the distribution of electrical facies in the Mio-Plio-Quaternary aquifer, highlighting lateral variation and depositional environment type. AI optimises the analysis and interpretation of exploration data, which is important to long-term management and water security. Machine learning algorithms and deep learning models analyse large datasets to provide precise interpretations of subsurface conditions, such as aquifer salinisation. However, AI has limitations, such as the requirement for large datasets, the risk of overfitting, and integration issues with traditional geological methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mio-plio-quaternary%20aquifer" title="mio-plio-quaternary aquifer">mio-plio-quaternary aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=Southeastern%20Tunisia" title=" Southeastern Tunisia"> Southeastern Tunisia</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysical%20methods" title=" geophysical methods"> geophysical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeological%20analysis" title=" hydrogeological analysis"> hydrogeological analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a> </p> <a href="https://publications.waset.org/abstracts/193214/multidisciplinary-approach-to-mio-plio-quaternary-aquifer-study-in-the-zarzis-region-southeastern-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> The Effect of Alternative Organic Fertilizer and Chemical Fertilizer on Nitrogen and Yield of Peppermint (Mentha peperita)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ali%20Mohammad">Seyed Ali Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Modarres%20Sanavy"> Modarres Sanavy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Keshavarz"> Hamed Keshavarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mokhtassi-Bidgoli"> Ali Mokhtassi-Bidgoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the biggest challenges for the current and future generations is to produce sufficient food for the world population with the existing limited available water resources. Peppermint is a specialty crop used for food and medicinal purposes. Its main component is menthol. It is used predominantly for oral hygiene, pharmaceuticals, and foods. Although drought stress is considered as a negative factor in agriculture, being responsible for severe yield losses; medicinal plants grown under semi-arid conditions usually produce higher concentrations of active substances than same species grown under moderate climates. Nitrogen (N) fertilizer management is central to the profitability and sustainability of forage crop production. Sub-optimal N supply will result in poor yields, and excess N application can lead to nitrate leaching and environmental pollution. In order to determine the response of peppermint to drought stress and different fertilizer treatments, a field experiment with peppermint was conducted in a sandy loam soil at a site of the Tarbiat Modares University, Agriculture Faculty, Tehran, Iran. The experiment used a complete randomized block design, with six rates of fertilizer strategies (F1: control, F2: Urea, F3: 75% urea + 25% vermicompost, F4: 50% urea + 50% vermicompost, F5: 25% urea + 75% vermicompost and F6: vermicompost) and three irrigation regime (S1: 45%, S2: 60% and S3: 75% FC) with three replication. The traits such as nitrogen, chlorophyll, carotenoids, anthocyanin, flavonoid and fresh biomass were studied. The results showed that the treatments had a significant effect on the studied traits as drought stress reduced photosynthetic pigment concentration. Also, drought stress reduced fresh yield of peppermint. Non stress condition had the greater amount of chlorophyll and fresh yield more than other irrigation treatments. The highest concentration of chlorophyll and the fresh biomass was obtained in F2 fertilizing treatments. Sever water stress (S1) produced decreased photosynthetic pigment content fresh yield of peppermint. Supply of N could improve photosynthetic capacity by enhancing photosynthetic pigment content. Perhaps application of vermicompost significantly improved the organic carbon, available N, P and K content in soil over urea fertilization alone. To get sustainable production of peppermint, application of vermicompost along with N through synthetic fertilizer is recommended for light textured sandy loam soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fresh%20yield" title="fresh yield">fresh yield</a>, <a href="https://publications.waset.org/abstracts/search?q=peppermint" title=" peppermint"> peppermint</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20nitrogen" title=" synthetic nitrogen"> synthetic nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a> </p> <a href="https://publications.waset.org/abstracts/66596/the-effect-of-alternative-organic-fertilizer-and-chemical-fertilizer-on-nitrogen-and-yield-of-peppermint-mentha-peperita" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Severe Infestation of Laspeyresia Koenigana Fab. and Alternaria Leaf Spot on Azadirachta Indica (Neem)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiwani%20Bhatnagar">Shiwani Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Srivastava"> K. K. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangeeta%20Singh"> Sangeeta Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameen%20Ullah%20Khan"> Ameen Ullah Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bundesh%20Kumar"> Bundesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lokendra%20Singh%20Rathore"> Lokendra Singh Rathore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the instigation of the world medicinal plants are treated as part and parcel of human society to fight against diseases. Azadirachta indica (Neem) a herbal plant has been used as an Indian traditional medicine since ages and its products are acknowledged to solve agricultural, forestry and public health related problems, owing to its beneficial medicinal properties. Each part of the neem tree is known for its medicinal property. Bark & leaf extracts of neem have been used to control leprosy, respiratory disorders, constipation and also as blood purifier and a general health tonic. Neem is still regarded as ' rural community dispensary' in India or a tree for solving medical problems. Use of Neem as pesticides for the management of insect pest of agriculture crops and forestry has been seen as a shift in the use of synthetic pesticides to ecofriendly botanicals. Neem oil and seed extracts possess germicidal and anti-bacterial properties which when sprayed on the plant helps in protecting them from foliage pests. Azadirachtin, the main active ingredient found in neem tree, acts as an insect repellent and antifeedant. However the young plants are susceptible to many insect pest and foliar diseases. Recently, in the avenue plantation, planted by Arid Forest Research Institute, Jodhpur, around the premises of IIT Jodhpur, two years old neem plants were found to be severely infested with tip borer Laspeyresia koenigana (Family: Eucosmidae). The adult moth of L. koenigana lays eggs on the tender shoots and the young larvae tunnel into the shoot and feed inside. A small pinhole can be seen at the entrance point, from where the larva enters in to the stem. The severely attached apical shoots exhibit profuse gum exudation resulting in development of a callus structure. The internal feeding causes the stem to wilt and the leaves to dry up from the tips resulting in growth retardation. Alternaria Leaf spot and blight symptoms were also recorded on these neem plants. For the management of tip borer and Alternaria Leaf spot, foliar spray of monocrotophos @0.05% and Dithane M-45 @ 0.15% and powermin @ 2ml/lit were found efficient in managing the insect pest and foliar disease problem. No Further incidence of pest/diseases was noticed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azadirachta%20indica" title="azadirachta indica">azadirachta indica</a>, <a href="https://publications.waset.org/abstracts/search?q=alternaria%20leaf%20spot" title=" alternaria leaf spot"> alternaria leaf spot</a>, <a href="https://publications.waset.org/abstracts/search?q=laspeyresia%20koenigana" title=" laspeyresia koenigana"> laspeyresia koenigana</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a> </p> <a href="https://publications.waset.org/abstracts/20829/severe-infestation-of-laspeyresia-koenigana-fab-and-alternaria-leaf-spot-on-azadirachta-indica-neem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Conserving Naubad Karez Cultural Landscape – a Multi-Criteria Approach to Urban Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valliyil%20Govindankutty">Valliyil Govindankutty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human civilizations across the globe stand testimony to water being one of the major interaction points with nature. The interactions with nature especially in drier areas revolve around water, be it harnessing, transporting, usage and management. Many ingenious ideas were born, nurtured and developed for harnessing, transporting, storing and distributing water through the areas in the drier parts of the world. Many methods of water extraction, collection and management could be found throughout the world, some of which are associated with efficient, sustained use of surface water, ground water and rain water. Karez is one such ingenious method of collection, transportation, storage and distribution of ground water. Most of the Karez systems in India were developed during reign of Muslim dynasties with ruling class descending from Persia or having influential connections and inviting expert engineers from there. Karez have strongly influenced the village socio-economic organisations due to multitude of uses they were brought into. These are masterpiece engineering structures to collect groundwater and direct it, through a subsurface gallery with a gradual slope, to surface canals that provide water to settlements and agricultural fields. This ingenious technology, karez was result of need for harnessing groundwater in arid areas like that of Bidar. The study views this traditional technology in historical perspective linked to sustainable utilization and management of groundwater and above all the immediate environment. The karez system is one of the best available demonstration of human ingenuity and adaptability to situations and locations of water scarcity. Bidar, capital of erstwhile Bahmani sultanate with a history of more than 700 years or more is one of the heritage cities of present Karnataka State. The unique water systems of Bidar along with other historic entities have been listed under World Heritage Watch List by World Monument Fund. The Historical or cultural landscape in Bidar is very closely associated to the natural resources of the region, Karez systems being one of the best examples. The Karez systems were the lifeline of Bidar’s historical period providing potable water, fulfilling domestic and irrigation needs, both within and outside the fort enclosures. These systems are still functional, but under great pressure and threat of rapid and unplanned urbanisation. The change in land use and fragmentation of land are already paving way for irreversible modification of the karez cultural and geographic landscape. The Paper discusses the significance of character defining elements of Naubad Karez Landscape, highlights the importance of conserving cultural heritage and presents a geographical approach to its revival. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karez" title="Karez">Karez</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20water%20harvesting" title=" traditional water harvesting"> traditional water harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20heritage%20landscape" title=" cultural heritage landscape"> cultural heritage landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a> </p> <a href="https://publications.waset.org/abstracts/31659/conserving-naubad-karez-cultural-landscape-a-multi-criteria-approach-to-urban-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Monitoring Soil Moisture Dynamic in Root Zone System of Argania spinosa Using Electrical Resistivity Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Ainlhout">F. Ainlhout</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Boutaleb"> S. Boutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Diaz-Barradas"> M. C. Diaz-Barradas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zunzunegui"> M. Zunzunegui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Argania spinosa is an endemic tree of the southwest of Morocco, occupying 828,000 Ha, distributed mainly between Mediterranean vegetation and the desert. This tree can grow in extremely arid regions in Morocco, where annual rainfall ranges between 100-300 mm where no other tree species can live. It has been designated as a UNESCO Biosphere reserve since 1998. Argania tree is of great importance in human and animal feeding of rural population as well as for oil production, it is considered as a multi-usage tree. Admine forest located in the suburbs of Agadir city, 5 km inland, was selected to conduct this work. The aim of the study was to investigate the temporal variation in root-zone moisture dynamic in response to variation in climatic conditions and vegetation water uptake, using a geophysical technique called Electrical resistivity imaging (ERI). This technique discriminates resistive woody roots, dry and moisture soil. Time-dependent measurements (from April till July) of resistivity sections were performed along the surface transect (94 m Length) at 2 m fixed electrode spacing. Transect included eight Argan trees. The interactions between the tree and soil moisture were estimated by following the tree water status variations accompanying the soil moisture deficit. For that purpose we measured midday leaf water potential and relative water content during each sampling day, and for the eight trees. The first results showed that ERI can be used to accurately quantify the spatiotemporal distribution of root-zone moisture content and woody root. The section obtained shows three different layers: middle conductive one (moistured); a moderately resistive layer corresponding to relatively dry soil (calcareous formation with intercalation of marly strata) on top, this layer is interspersed by very resistant layer corresponding to woody roots. Below the conductive layer, we find the moderately resistive layer. We note that throughout the experiment, there was a continuous decrease in soil moisture at the different layers. With the ERI, we can clearly estimate the depth of the woody roots, which does not exceed 4 meters. In previous work on the same species, analyzing the δ18O in water of xylem and in the range of possible water sources, we argued that rain is the main water source in winter and spring, but not in summer, trees are not exploiting deep water from the aquifer as the popular assessment, instead of this they are using soil water at few meter depth. The results of the present work confirm the idea that the roots of Argania spinosa are not growing very deep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Argania%20spinosa" title="Argania spinosa">Argania spinosa</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity%20imaging" title=" electrical resistivity imaging"> electrical resistivity imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20system" title=" root system"> root system</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture" title=" soil moisture"> soil moisture</a> </p> <a href="https://publications.waset.org/abstracts/19701/monitoring-soil-moisture-dynamic-in-root-zone-system-of-argania-spinosa-using-electrical-resistivity-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Water Infrastructure Asset Management: A Comparative Analysis of Three Urban Water Utilities in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elkington%20S.%20Mnguni">Elkington S. Mnguni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water and sanitation services in South Africa are characterized by both achievements and challenges. After the end of apartheid in 1994 the newly elected government faced the challenge of eradicating backlogs with respect to access to basic services, including water and sanitation. Capital investment made in the development of new water and sanitation infrastructure to provide basic services to previously disadvantaged communities has grown, to a certain extent, at the expense of investment in the operation and maintenance of new and existing infrastructure. Challenges resulting from aging infrastructure and poor plant performance highlight the need for investing in the maintenance, rehabilitation, and replacement of existing infrastructure to optimize the return on investment. Advanced water infrastructure asset management (IAM) is key to achieving adequate levels of service, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution and associated risks. Against this backdrop, this paper presents an appraisal of water and sanitation IAM systems in South Africa’s three utilities, being metropolitan cities in the Gauteng Province. About a quarter of the national population lives in the three rapidly urbanizing cities of Johannesburg, Ekurhuleni and Tshwane, located in a semi-arid region. A literature review has been done and field visits to some of the utility facilities are being conducted. Semi-structured interviews will be conducted with the three utilities. The following critical factors are being analysed in terms of compliance with the national Water Services IAM Strategy (2011) and other applicable legislation: asset registers; capacity of assets; current and predicted demand; funding availability / budget allocations; plans: operation & maintenance, renewal & replacement, and risk management; no-drop status (non-revenue water levels); blue drop status (water quality); green drop status (effluent quality); and skills availability. Some of the key challenges identified in the literature review include: funding constraints, Skills shortage, and wastewater treatment plants operating beyond their design capacities. These challenges will be verified during field visits and research interviews. Gaps between literature and practice will be identified and relevant recommendations made if necessary. The objective of this study is to contribute to the resolution of the challenges brought about by the backlogs in the operation and maintenance of water and sanitation assets in the country in general, and in the three cities in particular, thus improving the sustainability thereof. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asset%20management" title="asset management">asset management</a>, <a href="https://publications.waset.org/abstracts/search?q=backlogs" title=" backlogs"> backlogs</a>, <a href="https://publications.waset.org/abstracts/search?q=levels%20of%20service" title=" levels of service"> levels of service</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20and%20sanitation%20infrastructure" title=" water and sanitation infrastructure"> water and sanitation infrastructure</a> </p> <a href="https://publications.waset.org/abstracts/57094/water-infrastructure-asset-management-a-comparative-analysis-of-three-urban-water-utilities-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iman%20Janghorban%20Esfahani">Iman Janghorban Esfahani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation" title="irrigation">irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=pinch%20analysis" title=" pinch analysis"> pinch analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pumping" title=" pumping"> pumping</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/130658/freshwater-pinch-analysis-for-optimal-design-of-the-photovoltaic-powered-pumping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Multivariate Ecoregion Analysis of Nutrient Runoff From Agricultural Land Uses in North America</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Austin%20P.%20Hopkins">Austin P. Hopkins</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Daren%20Harmel"> R. Daren Harmel</a>, <a href="https://publications.waset.org/abstracts/search?q=Jim%20A%20Ippolito"> Jim A Ippolito</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20J.%20A.%20Kleinman"> P. J. A. Kleinman</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Sahoo"> D. Sahoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field-scale runoff and water quality data are critical to understanding the fate and transport of nutrients applied to agricultural lands and minimizing their off-site transport because it is at that scale that agricultural management decisions are typically made based on hydrologic, soil, and land use factors. However, regional influences such as precipitation, temperature, and prevailing cropping systems and land use patterns also impact nutrient runoff. In the present study, the recently-updated MANAGE (Measured Annual Nutrient loads from Agricultural Environments) database was used to conduct an ecoregion-level analysis of nitrogen and phosphorus runoff from agricultural lands in the North America. Specifically, annual N and P runoff loads for cropland and grasslands in North American Level II EPA ecoregions were presented, and the impact of factors such as land use, tillage, and fertilizer timing and placement on N and P runoff were analyzed. Specifically we compiled annual N and P runoff load data (i.e., dissolved, particulate, and total N and P, kg/ha/yr) for each Level 2 EPA ecoregion and for various agricultural management practices (i.e., land use, tillage, fertilizer timing, fertilizer placement) within each ecoregion to showcase the analyses possible with the data in MANAGE. Potential differences in N and P runoff loads were evaluated between and within ecoregions with statistical and graphical approaches. Non-parametric analyses, mainly Mann-Whitney tests were conducted on median values weighted by the site years of data utilizing R because the data were not normally distributed, and we used Dunn tests and box and whisker plots to visually and statistically evaluate significant differences. Out of the 50 total North American Ecoregions, 11 were found that had significant data and site years to be utilized in the analysis. When examining ecoregions alone, it was observed that ER 9.2 temperate prairies had a significantly higher total N at 11.7 kg/ha/yr than ER 9.4 South Central Semi Arid Prairies with a total N of 2.4. When examining total P it was observed that ER 8.5 Mississippi Alluvial and Southeast USA Coastal Plains had a higher load at 3.0 kg/ha/yr than ER 8.2 Southeastern USA Plains with a load of 0.25 kg/ha/yr. Tillage and Land Use had severe impacts on nutrient loads. In ER 9.2 Temperate Prairies, conventional tillage had a total N load of 36.0 kg/ha/yr while conservation tillage had a total N load of 4.8 kg/ha/yr. In all relevant ecoregions, when corn was the predominant land use, total N levels significantly increased compared to grassland or other grains. In ER 8.4 Ozark-Ouachita, Corn had a total N of 22.1 kg/ha/yr while grazed grassland had a total N of 2.9 kg/ha/yr. There are further intricacies of the interactions that agricultural management practices have on one another combined with ecological conditions and their impacts on the continental aquatic nutrient loads that still need to be explored. This research provides a stepping stone to further understanding of land and resource stewardship and best management practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title="water quality">water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=ecoregions" title=" ecoregions"> ecoregions</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=best%20management%20practices" title=" best management practices"> best management practices</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a> </p> <a href="https://publications.waset.org/abstracts/162417/multivariate-ecoregion-analysis-of-nutrient-runoff-from-agricultural-land-uses-in-north-america" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Characterization of Extra Virgin Olive Oil from Olive Cultivars Grown in Pothwar, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abida%20Mariam">Abida Mariam</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwaar%20Ahmed"> Anwaar Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Asif%20Ahmad"> Asif Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sheeraz%20Ahmad"> Muhammad Sheeraz Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Akram%20Khan"> Muhammad Akram Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mazahir"> Muhammad Mazahir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plant olive (Olea europaea L.) is known for its commercial significance due to nutritional and health benefits. Pakistan is ranked 4th among countries who import olive oil whereas, 70% of edible oil is imported to fulfil the needs of the country. There exists great potential for Olea europaea cultivation in Pakistan. The popularity and cultivation of olive fruit has increased in recent past due to its high socio-economic and health significance. There exist almost negligible data on the chemical composition of extra virgin olive oil extracted from cultivars grown in Pothwar, an area with arid climate conducive for growth of olive trees. Keeping in view these factors a study has been conducted to characterize the olive oil extracted from olive cultivars collected from Pothwar regions of Pakistan for their nutritional potential and value addition. Ten olive cultivars (Gemlik, Coratina, Sevillano, Manzanilla, Leccino, Koroneiki, Frantoio, Arbiquina, Earlik and Ottobratica) were collected from Barani Agriculture Research Institute, Chakwal. Extra Virgin Olive Oil (EVOO) was extracted by cold pressing and centrifuging of olive fruits. The highest amount of oil was yielded in Coratina (23.9%) followed by Frantoio (23.7%), Koroneiki (22.8%), Sevillano (22%), Ottobratica (22%), Leccino (20.5%), Arbiquina (19.2%), Manzanilla (17.2%), Earlik (14.4%) and Gemllik (13.1%). The extracted virgin olive oil was studied for various physico- chemical properties and fatty acid profile. The Physical and chemical properties i.e., characteristic odor and taste, light yellow color with no foreign matter, insoluble impurities (≤0.08), fee fatty acid (0.1 to 0.8), acidity (0.5 to 1.6 mg/g acid), peroxide value (1.5 to 5.2 meqO2/kg), Iodine value (82 to 90), saponification value (186 to 192 mg/g) and unsaponifiable matter (4 to 8g/kg), ultraviolet spectrophotometric analysis (k232 and k270), showed values in the acceptable range, established by PSQCA and IOOC set for extra virgin olive oil. Olive oil was analyzed by Near Infra-Red spectrophotometry (NIR) for fatty acids sin olive oils which were found as: palmitic, palmitoleic, stearic, oleic, linoleic and alpha-linolenic. Major fatty acid was Oleic acid in the highest percentage ranging from (55 to 66.1%), followed by linoleic (10.4 to 20.4%), palmitic (13.8 to 19.5%), stearic (3.9 to 4.4%), palmitoleic (0.3 to 1.7%) and alpha-linolenic (0.9 to 1.7%). The results were significant with differences in parameters analyzed for all ten cultivars which confirm that genetic factors are important contributors in the physico-chemical characteristics of oil. The olive oil showed superior physical and chemical properties and recommended as one of the healthiest forms of edible oil. This study will help consumers to be more aware of and make better choices of healthy oils available locally thus contributing towards their better health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=extra%20virgin%20olive%20oil" title=" extra virgin olive oil"> extra virgin olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20yield" title=" oil yield"> oil yield</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a> </p> <a href="https://publications.waset.org/abstracts/154730/characterization-of-extra-virgin-olive-oil-from-olive-cultivars-grown-in-pothwar-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Biotechnological Interventions for Crop Improvement in Nutricereal Pearl Millet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supriya%20Ambawat">Supriya Ambawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Subaran%20Singh"> Subaran Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Tara%20Satyavathi"> C. Tara Satyavathi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Rajpurohit"> B. S. Rajpurohit</a>, <a href="https://publications.waset.org/abstracts/search?q=Ummed%20Singh"> Ummed Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Balraj%20Singh"> Balraj Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important staple food of the arid and semiarid tropical regions of Asia, Africa, and Latin America. It is rightly termed as nutricereal as it has high nutrition value and a good source of carbohydrate, protein, fat, ash, dietary fiber, potassium, magnesium, iron, zinc, etc. Pearl millet has low prolamine fraction and is gluten free which is useful for people having a gluten allergy. It has several health benefits like reduction in blood pressure, thyroid, diabe¬tes, cardiovascular and celiac diseases but its direct consumption as food has significantly declined due to several reasons. Keeping this in view, it is important to reorient the ef¬forts to generate demand through value-addition and quality improvement and create awareness on the nutritional merits of pearl millet. In India, through Indian Council of Agricultural Research-All India Coordinated Research Project on Pearl millet, multilocational coordinated trials for developed hybrids were conducted at various centers. The gene banks of pearl millet contain varieties with high levels of iron and zinc which were used to produce new pearl millet varieties with elevated iron levels bred with the high‐yielding varieties. Thus, using breeding approaches and biochemical analysis, a total of 167 hybrids and 61 varieties were identified and released for cultivation in different agro-ecological zones of the country which also includes some biofortified hybrids rich in Fe and Zn. Further, using several biotechnological interventions such as molecular markers, next-generation sequencing (NGS), association mapping, nested association mapping (NAM), MAGIC populations, genome editing, genotyping by sequencing (GBS), genome wide association studies (GWAS) advancement in millet improvement has become possible by identifying and tagging of genes underlying a trait in the genome. Using DArT markers very high density linkage maps were constructed for pearl millet. Improved HHB67 has been released using marker assisted selection (MAS) strategies, and genomic tools were used to identify Fe-Zn Quantitative Trait Loci (QTL). The draft genome sequence of millet has also opened various ways to explore pearl millet. Further, genomic positions of significantly associated simple sequence repeat (SSR) markers with iron and zinc content in the consensus map is being identified and research is in progress towards mapping QTLs for flour rancidity. The sequence information is being used to explore genes and enzymatic pathways responsible for rancidity of flour. Thus, development and application of several biotechnological approaches along with biofortification can accelerate the genetic gain targets for pearl millet improvement and help improve its quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biotechnological%20approaches" title="Biotechnological approaches">Biotechnological approaches</a>, <a href="https://publications.waset.org/abstracts/search?q=genomic%20tools" title=" genomic tools"> genomic tools</a>, <a href="https://publications.waset.org/abstracts/search?q=malnutrition" title=" malnutrition"> malnutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=MAS" title=" MAS"> MAS</a>, <a href="https://publications.waset.org/abstracts/search?q=nutricereal" title=" nutricereal"> nutricereal</a>, <a href="https://publications.waset.org/abstracts/search?q=pearl%20millet" title=" pearl millet"> pearl millet</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing." title=" sequencing."> sequencing.</a> </p> <a href="https://publications.waset.org/abstracts/106827/biotechnological-interventions-for-crop-improvement-in-nutricereal-pearl-millet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins Performance: North Gaza Emergency Sewage Treatment Plant as Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadi%20Ali">Sadi Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Kishawi"> Yaser Kishawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely cover the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SAT" title="SAT">SAT</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20quality" title=" wastewater quality"> wastewater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20remediation" title=" soil remediation"> soil remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Gaza" title=" North Gaza"> North Gaza</a> </p> <a href="https://publications.waset.org/abstracts/21268/monitoring-and-improving-performance-of-soil-aquifer-treatment-system-and-infiltration-basins-performance-north-gaza-emergency-sewage-treatment-plant-as-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins of North Gaza Emergency Sewage Treatment Plant as Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadi%20Ali">Sadi Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Kishawi"> Yaser Kishawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l, and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20aquifer%20treatment" title="soil aquifer treatment">soil aquifer treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20and%20reuse%20scheme" title=" recovery and reuse scheme"> recovery and reuse scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20basins" title=" infiltration basins"> infiltration basins</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Gaza" title=" North Gaza"> North Gaza</a> </p> <a href="https://publications.waset.org/abstracts/21919/monitoring-and-improving-performance-of-soil-aquifer-treatment-system-and-infiltration-basins-of-north-gaza-emergency-sewage-treatment-plant-as-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Assessment of Energy Efficiency and Life Cycle Greenhouse Gas Emission of Wheat Production on Conservation Agriculture to Achieve Soil Carbon Footprint in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=MD%20Mashiur%20Rahman">MD Mashiur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshadul%20Haque"> Muhammad Arshadul Haque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emerging conservation agriculture (CA) is an option for improving soil health and maintaining environmental sustainability for intensive agriculture, especially in the tropical climate. Three years lengthy research experiment was performed in arid climate from 2018 to 2020 at research field of Bangladesh Agricultural Research Station (RARS)F, Jamalpur (soil texture belongs to Agro-Ecological Zone (AEZ)-8/9, 24˚56'11''N latitude and 89˚55'54''E longitude and an altitude of 16.46m) to evaluate the effect of CA approaches on energy use efficiency and a streamlined life cycle greenhouse gas (GHG) emission of wheat production. For this, the conservation tillage practices (strip tillage (ST) and minimum tillage (MT)) were adopted in comparison to the conventional farmers' tillage (CT), with retained a fixed level (30 cm) of residue retention. This study examined the relationship between energy consumption and life cycle greenhouse gas (GHG) emission of wheat cultivation in Jamalpur region of Bangladesh. Standard energy equivalents megajoules (MJ) were used to measure energy from different inputs and output, similarly, the global warming potential values for the 100-year timescale and a standard unit kilogram of carbon dioxide equivalent (kg CO₂eq) was used to estimate direct and indirect GHG emissions from the use of on-farm and off-farm inputs. Farm efficiency analysis tool (FEAT) was used to analyze GHG emission and its intensity. A non-parametric data envelopment (DEA) analysis was used to estimate the optimum energy requirement of wheat production. The results showed that the treatment combination having MT with optimum energy inputs is the best suit for cost-effective, sustainable CA practice in wheat cultivation without compromising with the yield during the dry season. A total of 22045.86 MJ ha⁻¹, 22158.82 MJ ha⁻¹, and 23656.63 MJ ha⁻¹ input energy for the practice of ST, MT, and CT was used in wheat production, and output energy was calculated as 158657.40 MJ ha⁻¹, 162070.55 MJ ha⁻¹, and 149501.58 MJ ha⁻¹, respectively; where energy use efficiency/net energy ratio was found to be 7.20, 7.31 and 6.32. Among these, MT is the most effective practice option taken into account in the wheat production process. The optimum energy requirement was found to be 18236.71 MJ ha⁻¹ demonstrating for the practice of MT that if recommendations are followed, 18.7% of input energy can be saved. The total greenhouse gas (GHG) emission was calculated to be 2288 kgCO₂eq ha⁻¹, 2293 kgCO₂eq ha⁻¹ and 2331 kgCO₂eq ha⁻¹, where GHG intensity is the ratio of kg CO₂eq emission per MJ of output energy produced was estimated to be 0.014 kg CO₂/MJ, 0.014 kg CO₂/MJ and 0.015 kg CO₂/MJ in wheat production. Therefore, CA approaches ST practice with 30 cm residue retention was the most effective GHG mitigation option when the net life cycle GHG emission was considered in wheat production in the silt clay loam soil of Bangladesh. In conclusion, the CA approaches being implemented for wheat production involving MT practice have the potential to mitigate global warming potential in Bangladesh to achieve soil carbon footprint, where the life cycle assessment approach needs to be applied to a more diverse range of wheat-based cropping systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation%20agriculture%20and%20tillage" title="conservation agriculture and tillage">conservation agriculture and tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20use%20efficiency" title=" energy use efficiency"> energy use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20GHG" title=" life cycle GHG"> life cycle GHG</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title=" Bangladesh"> Bangladesh</a> </p> <a href="https://publications.waset.org/abstracts/127585/assessment-of-energy-efficiency-and-life-cycle-greenhouse-gas-emission-of-wheat-production-on-conservation-agriculture-to-achieve-soil-carbon-footprint-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Improving Recovery Reuse and Irrigation Scheme Efficiency – North Gaza Emergency Sewage Treatment Project as Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaser%20S.%20Kishawi">Yaser S. Kishawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadi%20R.%20Ali"> Sadi R. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Part of Palestine, Gaza Strip (365 km2 and 1.8 million inhabitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely cover the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is finding non-conventional water resource from treated wastewater to cover agricultural requirements and serve the population. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, only phase A is functioning. Nearly 23 Mm3 of partially treated wastewater were infiltrated into the aquifer. Phase B and phase C witnessed many delays and this forced a reassessment of the RRS original design. An Environmental Management Plan was conducted from Jul 2013 to Jun 2014 on 13 existing monitoring wells surrounding the project location. This is to measure the efficiency of the SAT system and the spread of the contamination plume with relation to the efficiency of the proposed RRS. Along with the proposed location of the 27 recovery wells as part of the proposed RRS. The results of monitored wells were assessed compared with PWA baseline data. This was put into a groundwater model to simulate the plume to propose the best suitable solution to the delays. The redesign mainly manipulated the pumping rate of wells, proposed locations and functioning schedules (including wells groupings). The proposed simulations were examined using visual MODFLOW V4.2 to simulate the results. The results of monitored wells were assessed based on the location of the monitoring wells related to the proposed recovery wells locations (200m, 500m and 750m away from the IBs). Near the 500m line (the first row of proposed recovery wells), an increase of nitrate (from 30 to 70mg/L) compare to a decrease in Chloride (1500 to below 900mg/L) was found during the monitoring period which indicated an expansion of plume to this distance. On this rate with the required time to construct the recovery scheme, keeping the original design the RRS will fail to capture the plume. Based on that many simulations were conducted leading into three main scenarios. The scenarios manipulated the starting dates, the pumping rate and the locations of recovery wells. A simulation of plume expansion and path-lines were extracted from the model monitoring how to prevent the expansion towards the nearby municipal wells. It was concluded that the location is the most important factor in determining the RRS efficiency. Scenario III was adopted and showed an effective results even with a reduced pumping rates. This scenario proposed adding two additional recovery wells in a location beyond the 750m line to compensate the delays and effectively capture the plume. A continuous monitoring program for current and future monitoring wells should be in place to support the proposed scenario and ensure maximum protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20aquifer%20treatment" title="soil aquifer treatment">soil aquifer treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20and%20reuse%20scheme" title=" recovery and reuse scheme"> recovery and reuse scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20basins" title=" infiltration basins"> infiltration basins</a>, <a href="https://publications.waset.org/abstracts/search?q=north%20gaza" title=" north gaza"> north gaza</a> </p> <a href="https://publications.waset.org/abstracts/27630/improving-recovery-reuse-and-irrigation-scheme-efficiency-north-gaza-emergency-sewage-treatment-project-as-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> The Assessment of Infiltrated Wastewater on the Efficiency of Recovery Reuse and Irrigation Scheme: North Gaza Emergency Sewage Treatment Project as a Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaser%20S.%20Kishawi">Yaser S. Kishawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadi%20R.%20Ali"> Sadi R. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is finding non-conventional water resource from treated wastewater to cover agricultural requirements and serve the population. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line and infiltration basins-IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme–RRS– to capture the spreading plume). Currently, only phase A is functioning. Nearly 23 Mm3 of partially treated wastewater were infiltrated into the aquifer. Phase B and phase C witnessed many delays and this forced a reassessment of the RRS original design. An Environmental Management Plan was conducted from Jul 2013 to Jun 2014 on 13 existing monitoring wells surrounding the project location. This is to measure the efficiency of the SAT system and the spread of the contamination plume with relation to the efficiency of the proposed RRS. Along with the proposed location of the 27 recovery wells as part of the proposed RRS. The results of monitored wells were assessed compared with PWA baseline data. This was put into a groundwater model to simulate the plume to propose the best suitable solution to the delays. The redesign mainly manipulated the pumping rate of wells, proposed locations and functioning schedules (including wells groupings). The proposed simulations were examined using visual MODFLOW V4.2 to simulate the results. The results of monitored wells were assessed based on the location of the monitoring wells related to the proposed recovery wells locations (200m, 500m, and 750m away from the IBs). Near the 500m line (the first row of proposed recovery wells), an increase of nitrate (from 30 to 70mg/L) compare to a decrease in Chloride (1500 to below 900mg/L) was found during the monitoring period which indicated an expansion of plume to this distance. On this rate with the required time to construct the recovery scheme, keeping the original design the RRS will fail to capture the plume. Based on that many simulations were conducted leading into three main scenarios. The scenarios manipulated the starting dates, the pumping rate and the locations of recovery wells. A simulation of plume expansion and path-lines were extracted from the model monitoring how to prevent the expansion towards the nearby municipal wells. It was concluded that the location is the most important factor in determining the RRS efficiency. Scenario III was adopted and showed effective results even with a reduced pumping rates. This scenario proposed adding two additional recovery wells in a location beyond the 750m line to compensate the delays and effectively capture the plume. A continuous monitoring program for current and future monitoring wells should be in place to support the proposed scenario and ensure maximum protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20aquifer%20treatment" title="soil aquifer treatment">soil aquifer treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20reuse%20scheme" title=" recovery reuse scheme"> recovery reuse scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20basins" title=" infiltration basins"> infiltration basins</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Gaza" title=" North Gaza"> North Gaza</a> </p> <a href="https://publications.waset.org/abstracts/21235/the-assessment-of-infiltrated-wastewater-on-the-efficiency-of-recovery-reuse-and-irrigation-scheme-north-gaza-emergency-sewage-treatment-project-as-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Environmental Impacts of Point and Non-Point Source Pollution in Krishnagiri Reservoir: A Case Study in South India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Ambujam">N. K. Ambujam</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sudha"> V. Sudha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reservoirs are being contaminated all around the world with point source and Non-Point Source (NPS) pollution. The most common NPS pollutants are sediments and nutrients. Krishnagiri Reservoir (KR) has been chosen for the present case study, which is located in the tropical semi-arid climatic zone of Tamil Nadu, South India. It is the main source of surface water in Krishnagiri district to meet the freshwater demands. The reservoir has lost about 40% of its water holding capacity due to sedimentation over the period of 50 years. Hence, from the research and management perspective, there is a need for a sound knowledge on the spatial and seasonal variations of KR water quality. The present study encompasses the specific objectives as (i) to investigate the longitudinal heterogeneity and seasonal variations of physicochemical parameters, nutrients and biological characteristics of KR water and (ii) to examine the extent of degradation of water quality in KR. 15 sampling points were identified by uniform stratified method and a systematic monthly sampling strategy was selected due to high dynamic nature in its hydrological characteristics. The physicochemical parameters, major ions, nutrients and Chlorophyll <em>a </em>(Chl <em>a</em>) were analysed. Trophic status of KR was classified by using Carlson's Trophic State Index (TSI). All statistical analyses were performed by using Statistical Package for Social Sciences programme, version-16.0. Spatial maps were prepared for Chl <em>a</em> using Arc GIS. Observations in KR pointed out that electrical conductivity and major ions are highly variable factors as it receives inflow from the catchment with different land use activities. The study of major ions in KR exhibited different trends in their values and it could be concluded that as the monsoon progresses the major ions in the water decreases or water quality stabilizes. The inflow point of KR showed comparatively higher concentration of nutrients including nitrate, soluble reactive phosphorus (SRP), total phosphors (TP), total suspended phosphorus (TSP) and total dissolved phosphorus (TDP) during monsoon seasons. This evidently showed the input of significant amount of nutrients from the catchment side through agricultural runoff. High concentration of TDP and TSP at the lacustrine zone of the reservoir during summer season evidently revealed that there was a significant release of phosphorus from the bottom sediments. Carlson’s TSI of KR ranged between 81 and 92 during northeast monsoon and summer seasons. High and permanent Cyanobacterial bloom in KR could be mainly due to the internal loading of phosphorus from the bottom sediments. According to Carlson’s TSI classification Krishnagiri reservoir was ranked in the hyper-eutrophic category. This study provides necessary basic data on the spatio-temporal variations of water quality in KR and also proves the impact of point and NPS pollution from the catchment area. High TSI warrants a greater threat for the recovery of internal P loading and hyper-eutrophic condition of KR. Several expensive internal measures for the reduction of internal loading of P were introduced by many scientists. However, the outcome of the present research suggests for the innovative algae harvesting technique for the removal of sediment nutrients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NPS%20pollution" title="NPS pollution">NPS pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper-eutrophication" title=" hyper-eutrophication"> hyper-eutrophication</a>, <a href="https://publications.waset.org/abstracts/search?q=krishnagiri%20reservoir" title=" krishnagiri reservoir"> krishnagiri reservoir</a> </p> <a href="https://publications.waset.org/abstracts/36477/environmental-impacts-of-point-and-non-point-source-pollution-in-krishnagiri-reservoir-a-case-study-in-south-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Empirical Modeling and Spatial Analysis of Heat-Related Morbidity in Maricopa County, Arizona</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chuyuan%20Wang">Chuyuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nayan%20Khare"> Nayan Khare</a>, <a href="https://publications.waset.org/abstracts/search?q=Lily%20Villa"> Lily Villa</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Solis"> Patricia Solis</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20A.%20Wentz"> Elizabeth A. Wentz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maricopa County, Arizona, has a semi-arid hot desert climate that is one of the hottest regions in the United States. The exacerbated urban heat island (UHI) effect caused by rapid urbanization has made the urban area even hotter than the rural surroundings. The Phoenix metropolitan area experiences extremely high temperatures in the summer from June to September that can reach the daily highest of 120 °F (48.9 °C). Morbidity and mortality due to the environmental heat is, therefore, a significant public health issue in Maricopa County, especially because it is largely preventable. Public records from the Maricopa County Department of Public Health (MCDPH) revealed that between 2012 and 2016, there were 10,825 incidents of heat-related morbidity incidents, 267 outdoor environmental heat deaths, and 173 indoor heat-related deaths. A lot of research has examined heat-related death and its contributing factors around the world, but little has been done regarding heat-related morbidity issues, especially for regions that are naturally hot in the summer. The objective of this study is to examine the demographic, socio-economic, housing, and environmental factors that contribute to heat-related morbidity in Maricopa County. We obtained heat-related morbidity data between 2012 and 2016 at census tract level from MCDPH. Demographic, socio-economic, and housing variables were derived using 2012-2016 American Community Survey 5-year estimate from the U.S. Census. Remotely sensed Landsat 7 ETM+ and Landsat 8 OLI satellite images and Level-1 products were acquired for all the summer months (June to September) from 2012 and 2016. The National Land Cover Database (NLCD) 2016 percent tree canopy and percent developed imperviousness data were obtained from the U.S. Geological Survey (USGS). We used ordinary least squares (OLS) regression analysis to examine the empirical relationship between all the independent variables and heat-related morbidity rate. Results showed that higher morbidity rates are found in census tracts with higher values in population aged 65 and older, population under poverty, disability, no vehicle ownership, white non-Hispanic, population with less than high school degree, land surface temperature, and surface reflectance, but lower values in normalized difference vegetation index (NDVI) and housing occupancy. The regression model can be used to explain up to 59.4% of total variation of heat-related morbidity in Maricopa County. The multiscale geographically weighted regression (MGWR) technique was then used to examine the spatially varying relationships between heat-related morbidity rate and all the significant independent variables. The R-squared value of the MGWR model increased to 0.691, that shows a significant improvement in goodness-of-fit than the global OLS model, which means that spatial heterogeneity of some independent variables is another important factor that influences the relationship with heat-related morbidity in Maricopa County. Among these variables, population aged 65 and older, the Hispanic population, disability, vehicle ownership, and housing occupancy have much stronger local effects than other variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=census" title="census">census</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20modeling" title=" empirical modeling"> empirical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat-related%20morbidity" title=" heat-related morbidity"> heat-related morbidity</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20analysis" title=" spatial analysis"> spatial analysis</a> </p> <a href="https://publications.waset.org/abstracts/114025/empirical-modeling-and-spatial-analysis-of-heat-related-morbidity-in-maricopa-county-arizona" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> The Use of Non-Parametric Bootstrap in Computing of Microbial Risk Assessment from Lettuce Consumption Irrigated with Contaminated Water by Sanitary Sewage in Infulene Valley </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20Tauzene%20Afonso%20Matangue">Mario Tauzene Afonso Matangue</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Andres%20Sanchez%20Ortiz"> Ivan Andres Sanchez Ortiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Metropolitan area of Maputo (Mozambique Capital City) is located in semi-arid zone (800 mm annual rainfall) with 1101170 million inhabitants. On the west side, there are the flatlands of Infulene where the Mulauze River flows towards to the Indian Ocean, receiving at this site, the storm water contaminated with sanitary sewage from Maputo, transported through a concrete open channel. In Infulene, local communities grow salads crops such as tomato, onion, garlic, lettuce, and cabbage, which are then commercialized and consumed in several markets in Maputo City. Lettuce is the most daily consumed salad crop in different meals, generally in fast-foods, breakfasts, lunches, and dinners. However, the risk of infection by several pathogens due to the consumption of lettuce, using the Quantitative Microbial Risk Assessment (QMRA) tools, is still unknown since there are few studies or publications concerning to this matter in Mozambique. This work is aimed at determining the annual risk arising from the consumption of lettuce grown in Infulene valley, in Maputo, using QMRA tools. The exposure model was constructed upon the volume of contaminated water remaining in the lettuce leaves, the empirical relations between the number of pathogens and the indicator of microorganisms (E. coli), the consumption of lettuce (g) and reduction of pathogens (days). The reference pathogens were Vibrio cholerae, Cryptosporidium, norovirus, and Ascaris. The water quality samples (E. coli) were collected in the storm water channel from January 2016 to December 2018, comprising 65 samples, and the urban lettuce consumption data were collected through inquiry in Maputo Metropolis covering 350 persons. A non-parametric bootstrap was performed involving 10,000 iterations over the collected dataset, namely, water quality (E. coli) and lettuce consumption. The dose-response models were: Exponential for Cryptosporidium, Kummer Confluent hypergeomtric function (1F1) for Vibrio and Ascaris Gaussian hypergeometric function (2F1-(a,b;c;z) for norovirus. The annual infection risk estimates were performed using R 3.6.0 (CoreTeam) software by Monte Carlo (Latin hypercubes), a sampling technique involving 10,000 iterations. The annual infection risks values expressed by Median and the 95th percentile, per person per year (pppy) arising from the consumption of lettuce are as follows: Vibrio cholerae (1.00, 1.00), Cryptosporidium (3.91x10⁻³, 9.72x 10⁻³), nororvirus (5.22x10⁻¹, 9.99x10⁻¹) and Ascaris (2.59x10⁻¹, 9.65x10⁻¹). Thus, the consumption of the lettuce would result in greater risks than the tolerable levels ( < 10⁻³ pppy or 10⁻⁶ DALY) for all pathogens, and the Vibrio cholerae is the most virulent pathogens, according to the hit-single models followed by the Ascaris lumbricoides and norovirus. The sensitivity analysis carried out in this work pointed out that in the whole QMRA, the most important input variable was the reduction of pathogens (Spearman rank value was 0.69) between harvest and consumption followed by water quality (Spearman rank value was 0.69). The decision-makers (Mozambique Government) must strengthen the prevention measures related to pathogens reduction in lettuce (i.e., washing) and engage in wastewater treatment engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annual%20infections%20risk" title="annual infections risk">annual infections risk</a>, <a href="https://publications.waset.org/abstracts/search?q=lettuce" title=" lettuce"> lettuce</a>, <a href="https://publications.waset.org/abstracts/search?q=non-parametric%20bootstrapping" title=" non-parametric bootstrapping"> non-parametric bootstrapping</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20microbial%20risk%20assessment%20tools" title=" quantitative microbial risk assessment tools"> quantitative microbial risk assessment tools</a> </p> <a href="https://publications.waset.org/abstracts/123837/the-use-of-non-parametric-bootstrap-in-computing-of-microbial-risk-assessment-from-lettuce-consumption-irrigated-with-contaminated-water-by-sanitary-sewage-in-infulene-valley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Determination of Aquifer Geometry Using Geophysical Methods: A Case Study from Sidi Bouzid Basin, Central Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhekra%20Khazri">Dhekra Khazri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakim%20Gabtni"> Hakim Gabtni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of Sidi Bouzid water table overexploitation, this study aims at integrating geophysical methods to determinate aquifers geometry assessing their geological situation and geophysical characteristics. However in highly tectonic zones controlled by Atlassic structural features with NE-SW major directions (central Tunisia), Bouguer gravimetric responses of some areas can be as much dominated by the regional structural tendency, as being non-identified or either defectively interpreted such as the case of Sidi Bouzid basin. This issue required a residual gravity anomaly elaboration isolating the Sidi Bouzid basin gravity response ranging between -8 and -14 mGal and crucial for its aquifers geometry characterization. Several gravity techniques helped constructing the Sidi Bouzid basin's residual gravity anomaly, such as Upwards continuation compared to polynomial regression trends and power spectrum analysis detecting deep basement sources at (3km), intermediate (2km) and shallow sources (1km). A 3D Euler Deconvolution was also performed detecting deepest accidents trending NE-SW, N-S and E-W with depth values reaching 5500 m and delineating the main outcropping structures of the study area. Further gravity treatments highlighted the subsurface geometry and structural features of Sidi Bouzid basin over Horizontal and vertical gradient, and also filters based on them such as Tilt angle and Source Edge detector locating rooted edges or peaks from potential field data detecting a new E-W lineament compartmentalizing the Sidi Bouzid gutter into two unequally residual anomaly and subsiding domains. This subsurface morphology is also detected by the used 2D seismic reflection sections defining the Sidi Bouzid basin as a deep gutter within a tectonic set of negative flower structures, and collapsed and tilted blocks. Furthermore, these structural features were confirmed by forward gravity modeling process over several modeled residual gravity profiles crossing the main area. Sidi Bouzid basin (central Tunisia) is also of a big interest cause of the unknown total thickness and the undefined substratum of its siliciclastic Tertiary package, and its aquifers unbounded structural subsurface features and deep accidents. The Combination of geological, hydrogeological and geophysical methods is then of an ultimate need. Therefore, a geophysical methods integration based on gravity survey supporting available seismic data through forward gravity modeling, enhanced lateral and vertical extent definition of the basin's complex sedimentary fill via 3D gravity models, improved depth estimation by a depth to basement modeling approach, and provided 3D isochronous seismic mapping visualization of the basin's Tertiary complex refining its geostructural schema. A subsurface basin geomorphology mapping, over an ultimate matching between the basin's residual gravity map and the calculated theoretical signature map, was also displayed over the modeled residual gravity profiles. An ultimate multidisciplinary geophysical study of the Sidi Bouzid basin aquifers can be accomplished via an aeromagnetic survey and a 4D Microgravity reservoir monitoring offering temporal tracking of the target aquifer's subsurface fluid dynamics enhancing and rationalizing future groundwater exploitation in this arid area of central Tunisia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquifer%20geometry" title="aquifer geometry">aquifer geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysics" title=" geophysics"> geophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20gravity%20modeling" title=" 3D gravity modeling"> 3D gravity modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=improved%20depths" title=" improved depths"> improved depths</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20edge%20detector" title=" source edge detector"> source edge detector</a> </p> <a href="https://publications.waset.org/abstracts/47048/determination-of-aquifer-geometry-using-geophysical-methods-a-case-study-from-sidi-bouzid-basin-central-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Digital Mapping of First-Order Drainages and Springs of the Guajiru River, Northeast of Brazil, Based on Satellite and Drone Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebasti%C3%A3o%20Milton%20Pinheiro%20da%20Silva">Sebastião Milton Pinheiro da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Barbosa%20da%20Rocha"> Michele Barbosa da Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20L%C3%BAcia%20Fernandes%20Campos"> Ana Lúcia Fernandes Campos</a>, <a href="https://publications.waset.org/abstracts/search?q=Miqu%C3%A9ias%20Rildo%20de%20Souza%20Silva"> Miquéias Rildo de Souza Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is an essential natural resource for life on Earth. Rivers, lakes, lagoons and dams are the main sources of water storage for human consumption. The costs of extracting and using these water sources are lower than those of exploiting groundwater on transition zones to semi-arid terrains. However, the volume of surface water has decreased over time, with the depletion of first-order drainage and the disappearance of springs, phenomena which are easily observed in the field. Climate change worsens water scarcity, compromising supply and hydric security for rural populations. To minimize the expected impacts, producing and storing water through watershed management planning requires detailed cartographic information on the relief and topography, and updated data on the stage and intensity of catchment basin environmental degradation problems. The cartography available of the Brazilian northeastern territory dates to the 70s, with topographic maps, printed, at a scale of 1:100,000 which does not meet the requirements to execute this project. Exceptionally, there are topographic maps at scales of 1:50,000 and 1:25,000 of some coastal regions in northeastern Brazil. Still, due to scale limitations and outdatedness, they are products of little utility for mapping low-order watersheds drainage and springs. Remote sensing data and geographic information systems can contribute to guiding the process of mapping and environmental recovery by integrating detailed relief and topographic data besides social and other environmental information in the Guajiru River Basin, located on the east coast of Rio Grande do Norte, on the Northeast region of Brazil. This study aimed to recognize and map catchment basin, springs and low-order drainage features along estimating morphometric parameters. Alos PALSAR and Copernicus DEM digital elevation models were evaluated and provided regional drainage features and the watersheds limits extracted with Terraview/Terrahidro 5.0 software. CBERS 4A satellite images with 2 m spatial resolution, processed with ESA SNAP Toolbox, allowed generating land use land cover map of Guajiru River. A Mappir Survey 3 multiespectral camera onboard of a DJI Phantom 4, a Mavic 2 Pro PPK Drone and an X91 GNSS receiver to collect the precised position of selected points were employed to detail mapping. Satellite images enabled a first knowledge approach of watershed areas on a more regional scale, yet very current, and drone images were essential in mapping details of catchment basins. The drone multispectral image mosaics, the digital elevation model, the contour lines and geomorphometric parameters were generated using OpenDroneMap/ODM and QGis softwares. The drone images generated facilitated the location, understanding and mapping of watersheds, recharge areas and first-order ephemeral watercourses on an adequate scale and will be used in the following project’s phases: watershed management planning, recovery and environmental protection of Rio's springs Guajiru. Environmental degradation is being analyzed from the perspective of the availability and quality of surface water supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imaging" title="imaging">imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=relief" title=" relief"> relief</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/188402/digital-mapping-of-first-order-drainages-and-springs-of-the-guajiru-river-northeast-of-brazil-based-on-satellite-and-drone-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&page=12" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&page=12">12</a></li> <li class="page-item active"><span class="page-link">13</span></li> <li class="page-item disabled"><span class="page-link">›</span></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>