CINXE.COM

Search results for: arid

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: arid</title> <meta name="description" content="Search results for: arid"> <meta name="keywords" content="arid"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="arid" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="arid"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 376</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: arid</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Monitoring Soil Moisture Dynamic in Root Zone System of Argania spinosa Using Electrical Resistivity Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Ainlhout">F. Ainlhout</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Boutaleb"> S. Boutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Diaz-Barradas"> M. C. Diaz-Barradas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zunzunegui"> M. Zunzunegui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Argania spinosa is an endemic tree of the southwest of Morocco, occupying 828,000 Ha, distributed mainly between Mediterranean vegetation and the desert. This tree can grow in extremely arid regions in Morocco, where annual rainfall ranges between 100-300 mm where no other tree species can live. It has been designated as a UNESCO Biosphere reserve since 1998. Argania tree is of great importance in human and animal feeding of rural population as well as for oil production, it is considered as a multi-usage tree. Admine forest located in the suburbs of Agadir city, 5 km inland, was selected to conduct this work. The aim of the study was to investigate the temporal variation in root-zone moisture dynamic in response to variation in climatic conditions and vegetation water uptake, using a geophysical technique called Electrical resistivity imaging (ERI). This technique discriminates resistive woody roots, dry and moisture soil. Time-dependent measurements (from April till July) of resistivity sections were performed along the surface transect (94 m Length) at 2 m fixed electrode spacing. Transect included eight Argan trees. The interactions between the tree and soil moisture were estimated by following the tree water status variations accompanying the soil moisture deficit. For that purpose we measured midday leaf water potential and relative water content during each sampling day, and for the eight trees. The first results showed that ERI can be used to accurately quantify the spatiotemporal distribution of root-zone moisture content and woody root. The section obtained shows three different layers: middle conductive one (moistured); a moderately resistive layer corresponding to relatively dry soil (calcareous formation with intercalation of marly strata) on top, this layer is interspersed by very resistant layer corresponding to woody roots. Below the conductive layer, we find the moderately resistive layer. We note that throughout the experiment, there was a continuous decrease in soil moisture at the different layers. With the ERI, we can clearly estimate the depth of the woody roots, which does not exceed 4 meters. In previous work on the same species, analyzing the δ18O in water of xylem and in the range of possible water sources, we argued that rain is the main water source in winter and spring, but not in summer, trees are not exploiting deep water from the aquifer as the popular assessment, instead of this they are using soil water at few meter depth. The results of the present work confirm the idea that the roots of Argania spinosa are not growing very deep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Argania%20spinosa" title="Argania spinosa">Argania spinosa</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity%20imaging" title=" electrical resistivity imaging"> electrical resistivity imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20system" title=" root system"> root system</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture" title=" soil moisture"> soil moisture</a> </p> <a href="https://publications.waset.org/abstracts/19701/monitoring-soil-moisture-dynamic-in-root-zone-system-of-argania-spinosa-using-electrical-resistivity-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Water Infrastructure Asset Management: A Comparative Analysis of Three Urban Water Utilities in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elkington%20S.%20Mnguni">Elkington S. Mnguni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water and sanitation services in South Africa are characterized by both achievements and challenges. After the end of apartheid in 1994 the newly elected government faced the challenge of eradicating backlogs with respect to access to basic services, including water and sanitation. Capital investment made in the development of new water and sanitation infrastructure to provide basic services to previously disadvantaged communities has grown, to a certain extent, at the expense of investment in the operation and maintenance of new and existing infrastructure. Challenges resulting from aging infrastructure and poor plant performance highlight the need for investing in the maintenance, rehabilitation, and replacement of existing infrastructure to optimize the return on investment. Advanced water infrastructure asset management (IAM) is key to achieving adequate levels of service, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution and associated risks. Against this backdrop, this paper presents an appraisal of water and sanitation IAM systems in South Africa’s three utilities, being metropolitan cities in the Gauteng Province. About a quarter of the national population lives in the three rapidly urbanizing cities of Johannesburg, Ekurhuleni and Tshwane, located in a semi-arid region. A literature review has been done and field visits to some of the utility facilities are being conducted. Semi-structured interviews will be conducted with the three utilities. The following critical factors are being analysed in terms of compliance with the national Water Services IAM Strategy (2011) and other applicable legislation: asset registers; capacity of assets; current and predicted demand; funding availability / budget allocations; plans: operation & maintenance, renewal & replacement, and risk management; no-drop status (non-revenue water levels); blue drop status (water quality); green drop status (effluent quality); and skills availability. Some of the key challenges identified in the literature review include: funding constraints, Skills shortage, and wastewater treatment plants operating beyond their design capacities. These challenges will be verified during field visits and research interviews. Gaps between literature and practice will be identified and relevant recommendations made if necessary. The objective of this study is to contribute to the resolution of the challenges brought about by the backlogs in the operation and maintenance of water and sanitation assets in the country in general, and in the three cities in particular, thus improving the sustainability thereof. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asset%20management" title="asset management">asset management</a>, <a href="https://publications.waset.org/abstracts/search?q=backlogs" title=" backlogs"> backlogs</a>, <a href="https://publications.waset.org/abstracts/search?q=levels%20of%20service" title=" levels of service"> levels of service</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20and%20sanitation%20infrastructure" title=" water and sanitation infrastructure"> water and sanitation infrastructure</a> </p> <a href="https://publications.waset.org/abstracts/57094/water-infrastructure-asset-management-a-comparative-analysis-of-three-urban-water-utilities-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iman%20Janghorban%20Esfahani">Iman Janghorban Esfahani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation" title="irrigation">irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=pinch%20analysis" title=" pinch analysis"> pinch analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pumping" title=" pumping"> pumping</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/130658/freshwater-pinch-analysis-for-optimal-design-of-the-photovoltaic-powered-pumping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Multivariate Ecoregion Analysis of Nutrient Runoff From Agricultural Land Uses in North America</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Austin%20P.%20Hopkins">Austin P. Hopkins</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Daren%20Harmel"> R. Daren Harmel</a>, <a href="https://publications.waset.org/abstracts/search?q=Jim%20A%20Ippolito"> Jim A Ippolito</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20J.%20A.%20Kleinman"> P. J. A. Kleinman</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Sahoo"> D. Sahoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field-scale runoff and water quality data are critical to understanding the fate and transport of nutrients applied to agricultural lands and minimizing their off-site transport because it is at that scale that agricultural management decisions are typically made based on hydrologic, soil, and land use factors. However, regional influences such as precipitation, temperature, and prevailing cropping systems and land use patterns also impact nutrient runoff. In the present study, the recently-updated MANAGE (Measured Annual Nutrient loads from Agricultural Environments) database was used to conduct an ecoregion-level analysis of nitrogen and phosphorus runoff from agricultural lands in the North America. Specifically, annual N and P runoff loads for cropland and grasslands in North American Level II EPA ecoregions were presented, and the impact of factors such as land use, tillage, and fertilizer timing and placement on N and P runoff were analyzed. Specifically we compiled annual N and P runoff load data (i.e., dissolved, particulate, and total N and P, kg/ha/yr) for each Level 2 EPA ecoregion and for various agricultural management practices (i.e., land use, tillage, fertilizer timing, fertilizer placement) within each ecoregion to showcase the analyses possible with the data in MANAGE. Potential differences in N and P runoff loads were evaluated between and within ecoregions with statistical and graphical approaches. Non-parametric analyses, mainly Mann-Whitney tests were conducted on median values weighted by the site years of data utilizing R because the data were not normally distributed, and we used Dunn tests and box and whisker plots to visually and statistically evaluate significant differences. Out of the 50 total North American Ecoregions, 11 were found that had significant data and site years to be utilized in the analysis. When examining ecoregions alone, it was observed that ER 9.2 temperate prairies had a significantly higher total N at 11.7 kg/ha/yr than ER 9.4 South Central Semi Arid Prairies with a total N of 2.4. When examining total P it was observed that ER 8.5 Mississippi Alluvial and Southeast USA Coastal Plains had a higher load at 3.0 kg/ha/yr than ER 8.2 Southeastern USA Plains with a load of 0.25 kg/ha/yr. Tillage and Land Use had severe impacts on nutrient loads. In ER 9.2 Temperate Prairies, conventional tillage had a total N load of 36.0 kg/ha/yr while conservation tillage had a total N load of 4.8 kg/ha/yr. In all relevant ecoregions, when corn was the predominant land use, total N levels significantly increased compared to grassland or other grains. In ER 8.4 Ozark-Ouachita, Corn had a total N of 22.1 kg/ha/yr while grazed grassland had a total N of 2.9 kg/ha/yr. There are further intricacies of the interactions that agricultural management practices have on one another combined with ecological conditions and their impacts on the continental aquatic nutrient loads that still need to be explored. This research provides a stepping stone to further understanding of land and resource stewardship and best management practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title="water quality">water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=ecoregions" title=" ecoregions"> ecoregions</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=best%20management%20practices" title=" best management practices"> best management practices</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a> </p> <a href="https://publications.waset.org/abstracts/162417/multivariate-ecoregion-analysis-of-nutrient-runoff-from-agricultural-land-uses-in-north-america" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Characterization of Extra Virgin Olive Oil from Olive Cultivars Grown in Pothwar, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abida%20Mariam">Abida Mariam</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwaar%20Ahmed"> Anwaar Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Asif%20Ahmad"> Asif Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sheeraz%20Ahmad"> Muhammad Sheeraz Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Akram%20Khan"> Muhammad Akram Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mazahir"> Muhammad Mazahir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plant olive (Olea europaea L.) is known for its commercial significance due to nutritional and health benefits. Pakistan is ranked 4th among countries who import olive oil whereas, 70% of edible oil is imported to fulfil the needs of the country. There exists great potential for Olea europaea cultivation in Pakistan. The popularity and cultivation of olive fruit has increased in recent past due to its high socio-economic and health significance. There exist almost negligible data on the chemical composition of extra virgin olive oil extracted from cultivars grown in Pothwar, an area with arid climate conducive for growth of olive trees. Keeping in view these factors a study has been conducted to characterize the olive oil extracted from olive cultivars collected from Pothwar regions of Pakistan for their nutritional potential and value addition. Ten olive cultivars (Gemlik, Coratina, Sevillano, Manzanilla, Leccino, Koroneiki, Frantoio, Arbiquina, Earlik and Ottobratica) were collected from Barani Agriculture Research Institute, Chakwal. Extra Virgin Olive Oil (EVOO) was extracted by cold pressing and centrifuging of olive fruits. The highest amount of oil was yielded in Coratina (23.9%) followed by Frantoio (23.7%), Koroneiki (22.8%), Sevillano (22%), Ottobratica (22%), Leccino (20.5%), Arbiquina (19.2%), Manzanilla (17.2%), Earlik (14.4%) and Gemllik (13.1%). The extracted virgin olive oil was studied for various physico- chemical properties and fatty acid profile. The Physical and chemical properties i.e., characteristic odor and taste, light yellow color with no foreign matter, insoluble impurities (≤0.08), fee fatty acid (0.1 to 0.8), acidity (0.5 to 1.6 mg/g acid), peroxide value (1.5 to 5.2 meqO2/kg), Iodine value (82 to 90), saponification value (186 to 192 mg/g) and unsaponifiable matter (4 to 8g/kg), ultraviolet spectrophotometric analysis (k232 and k270), showed values in the acceptable range, established by PSQCA and IOOC set for extra virgin olive oil. Olive oil was analyzed by Near Infra-Red spectrophotometry (NIR) for fatty acids sin olive oils which were found as: palmitic, palmitoleic, stearic, oleic, linoleic and alpha-linolenic. Major fatty acid was Oleic acid in the highest percentage ranging from (55 to 66.1%), followed by linoleic (10.4 to 20.4%), palmitic (13.8 to 19.5%), stearic (3.9 to 4.4%), palmitoleic (0.3 to 1.7%) and alpha-linolenic (0.9 to 1.7%). The results were significant with differences in parameters analyzed for all ten cultivars which confirm that genetic factors are important contributors in the physico-chemical characteristics of oil. The olive oil showed superior physical and chemical properties and recommended as one of the healthiest forms of edible oil. This study will help consumers to be more aware of and make better choices of healthy oils available locally thus contributing towards their better health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=extra%20virgin%20olive%20oil" title=" extra virgin olive oil"> extra virgin olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20yield" title=" oil yield"> oil yield</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a> </p> <a href="https://publications.waset.org/abstracts/154730/characterization-of-extra-virgin-olive-oil-from-olive-cultivars-grown-in-pothwar-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Biotechnological Interventions for Crop Improvement in Nutricereal Pearl Millet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supriya%20Ambawat">Supriya Ambawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Subaran%20Singh"> Subaran Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Tara%20Satyavathi"> C. Tara Satyavathi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Rajpurohit"> B. S. Rajpurohit</a>, <a href="https://publications.waset.org/abstracts/search?q=Ummed%20Singh"> Ummed Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Balraj%20Singh"> Balraj Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important staple food of the arid and semiarid tropical regions of Asia, Africa, and Latin America. It is rightly termed as nutricereal as it has high nutrition value and a good source of carbohydrate, protein, fat, ash, dietary fiber, potassium, magnesium, iron, zinc, etc. Pearl millet has low prolamine fraction and is gluten free which is useful for people having a gluten allergy. It has several health benefits like reduction in blood pressure, thyroid, diabe¬tes, cardiovascular and celiac diseases but its direct consumption as food has significantly declined due to several reasons. Keeping this in view, it is important to reorient the ef¬forts to generate demand through value-addition and quality improvement and create awareness on the nutritional merits of pearl millet. In India, through Indian Council of Agricultural Research-All India Coordinated Research Project on Pearl millet, multilocational coordinated trials for developed hybrids were conducted at various centers. The gene banks of pearl millet contain varieties with high levels of iron and zinc which were used to produce new pearl millet varieties with elevated iron levels bred with the high‐yielding varieties. Thus, using breeding approaches and biochemical analysis, a total of 167 hybrids and 61 varieties were identified and released for cultivation in different agro-ecological zones of the country which also includes some biofortified hybrids rich in Fe and Zn. Further, using several biotechnological interventions such as molecular markers, next-generation sequencing (NGS), association mapping, nested association mapping (NAM), MAGIC populations, genome editing, genotyping by sequencing (GBS), genome wide association studies (GWAS) advancement in millet improvement has become possible by identifying and tagging of genes underlying a trait in the genome. Using DArT markers very high density linkage maps were constructed for pearl millet. Improved HHB67 has been released using marker assisted selection (MAS) strategies, and genomic tools were used to identify Fe-Zn Quantitative Trait Loci (QTL). The draft genome sequence of millet has also opened various ways to explore pearl millet. Further, genomic positions of significantly associated simple sequence repeat (SSR) markers with iron and zinc content in the consensus map is being identified and research is in progress towards mapping QTLs for flour rancidity. The sequence information is being used to explore genes and enzymatic pathways responsible for rancidity of flour. Thus, development and application of several biotechnological approaches along with biofortification can accelerate the genetic gain targets for pearl millet improvement and help improve its quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biotechnological%20approaches" title="Biotechnological approaches">Biotechnological approaches</a>, <a href="https://publications.waset.org/abstracts/search?q=genomic%20tools" title=" genomic tools"> genomic tools</a>, <a href="https://publications.waset.org/abstracts/search?q=malnutrition" title=" malnutrition"> malnutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=MAS" title=" MAS"> MAS</a>, <a href="https://publications.waset.org/abstracts/search?q=nutricereal" title=" nutricereal"> nutricereal</a>, <a href="https://publications.waset.org/abstracts/search?q=pearl%20millet" title=" pearl millet"> pearl millet</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing." title=" sequencing."> sequencing.</a> </p> <a href="https://publications.waset.org/abstracts/106827/biotechnological-interventions-for-crop-improvement-in-nutricereal-pearl-millet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins Performance: North Gaza Emergency Sewage Treatment Plant as Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadi%20Ali">Sadi Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Kishawi"> Yaser Kishawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely cover the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SAT" title="SAT">SAT</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20quality" title=" wastewater quality"> wastewater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20remediation" title=" soil remediation"> soil remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Gaza" title=" North Gaza"> North Gaza</a> </p> <a href="https://publications.waset.org/abstracts/21268/monitoring-and-improving-performance-of-soil-aquifer-treatment-system-and-infiltration-basins-performance-north-gaza-emergency-sewage-treatment-plant-as-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins of North Gaza Emergency Sewage Treatment Plant as Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadi%20Ali">Sadi Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Kishawi"> Yaser Kishawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l, and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20aquifer%20treatment" title="soil aquifer treatment">soil aquifer treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20and%20reuse%20scheme" title=" recovery and reuse scheme"> recovery and reuse scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20basins" title=" infiltration basins"> infiltration basins</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Gaza" title=" North Gaza"> North Gaza</a> </p> <a href="https://publications.waset.org/abstracts/21919/monitoring-and-improving-performance-of-soil-aquifer-treatment-system-and-infiltration-basins-of-north-gaza-emergency-sewage-treatment-plant-as-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Assessment of Energy Efficiency and Life Cycle Greenhouse Gas Emission of Wheat Production on Conservation Agriculture to Achieve Soil Carbon Footprint in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=MD%20Mashiur%20Rahman">MD Mashiur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshadul%20Haque"> Muhammad Arshadul Haque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emerging conservation agriculture (CA) is an option for improving soil health and maintaining environmental sustainability for intensive agriculture, especially in the tropical climate. Three years lengthy research experiment was performed in arid climate from 2018 to 2020 at research field of Bangladesh Agricultural Research Station (RARS)F, Jamalpur (soil texture belongs to Agro-Ecological Zone (AEZ)-8/9, 24˚56'11''N latitude and 89˚55'54''E longitude and an altitude of 16.46m) to evaluate the effect of CA approaches on energy use efficiency and a streamlined life cycle greenhouse gas (GHG) emission of wheat production. For this, the conservation tillage practices (strip tillage (ST) and minimum tillage (MT)) were adopted in comparison to the conventional farmers' tillage (CT), with retained a fixed level (30 cm) of residue retention. This study examined the relationship between energy consumption and life cycle greenhouse gas (GHG) emission of wheat cultivation in Jamalpur region of Bangladesh. Standard energy equivalents megajoules (MJ) were used to measure energy from different inputs and output, similarly, the global warming potential values for the 100-year timescale and a standard unit kilogram of carbon dioxide equivalent (kg CO₂eq) was used to estimate direct and indirect GHG emissions from the use of on-farm and off-farm inputs. Farm efficiency analysis tool (FEAT) was used to analyze GHG emission and its intensity. A non-parametric data envelopment (DEA) analysis was used to estimate the optimum energy requirement of wheat production. The results showed that the treatment combination having MT with optimum energy inputs is the best suit for cost-effective, sustainable CA practice in wheat cultivation without compromising with the yield during the dry season. A total of 22045.86 MJ ha⁻¹, 22158.82 MJ ha⁻¹, and 23656.63 MJ ha⁻¹ input energy for the practice of ST, MT, and CT was used in wheat production, and output energy was calculated as 158657.40 MJ ha⁻¹, 162070.55 MJ ha⁻¹, and 149501.58 MJ ha⁻¹, respectively; where energy use efficiency/net energy ratio was found to be 7.20, 7.31 and 6.32. Among these, MT is the most effective practice option taken into account in the wheat production process. The optimum energy requirement was found to be 18236.71 MJ ha⁻¹ demonstrating for the practice of MT that if recommendations are followed, 18.7% of input energy can be saved. The total greenhouse gas (GHG) emission was calculated to be 2288 kgCO₂eq ha⁻¹, 2293 kgCO₂eq ha⁻¹ and 2331 kgCO₂eq ha⁻¹, where GHG intensity is the ratio of kg CO₂eq emission per MJ of output energy produced was estimated to be 0.014 kg CO₂/MJ, 0.014 kg CO₂/MJ and 0.015 kg CO₂/MJ in wheat production. Therefore, CA approaches ST practice with 30 cm residue retention was the most effective GHG mitigation option when the net life cycle GHG emission was considered in wheat production in the silt clay loam soil of Bangladesh. In conclusion, the CA approaches being implemented for wheat production involving MT practice have the potential to mitigate global warming potential in Bangladesh to achieve soil carbon footprint, where the life cycle assessment approach needs to be applied to a more diverse range of wheat-based cropping systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation%20agriculture%20and%20tillage" title="conservation agriculture and tillage">conservation agriculture and tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20use%20efficiency" title=" energy use efficiency"> energy use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20GHG" title=" life cycle GHG"> life cycle GHG</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title=" Bangladesh"> Bangladesh</a> </p> <a href="https://publications.waset.org/abstracts/127585/assessment-of-energy-efficiency-and-life-cycle-greenhouse-gas-emission-of-wheat-production-on-conservation-agriculture-to-achieve-soil-carbon-footprint-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Improving Recovery Reuse and Irrigation Scheme Efficiency – North Gaza Emergency Sewage Treatment Project as Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaser%20S.%20Kishawi">Yaser S. Kishawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadi%20R.%20Ali"> Sadi R. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Part of Palestine, Gaza Strip (365 km2 and 1.8 million inhabitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely cover the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is finding non-conventional water resource from treated wastewater to cover agricultural requirements and serve the population. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, only phase A is functioning. Nearly 23 Mm3 of partially treated wastewater were infiltrated into the aquifer. Phase B and phase C witnessed many delays and this forced a reassessment of the RRS original design. An Environmental Management Plan was conducted from Jul 2013 to Jun 2014 on 13 existing monitoring wells surrounding the project location. This is to measure the efficiency of the SAT system and the spread of the contamination plume with relation to the efficiency of the proposed RRS. Along with the proposed location of the 27 recovery wells as part of the proposed RRS. The results of monitored wells were assessed compared with PWA baseline data. This was put into a groundwater model to simulate the plume to propose the best suitable solution to the delays. The redesign mainly manipulated the pumping rate of wells, proposed locations and functioning schedules (including wells groupings). The proposed simulations were examined using visual MODFLOW V4.2 to simulate the results. The results of monitored wells were assessed based on the location of the monitoring wells related to the proposed recovery wells locations (200m, 500m and 750m away from the IBs). Near the 500m line (the first row of proposed recovery wells), an increase of nitrate (from 30 to 70mg/L) compare to a decrease in Chloride (1500 to below 900mg/L) was found during the monitoring period which indicated an expansion of plume to this distance. On this rate with the required time to construct the recovery scheme, keeping the original design the RRS will fail to capture the plume. Based on that many simulations were conducted leading into three main scenarios. The scenarios manipulated the starting dates, the pumping rate and the locations of recovery wells. A simulation of plume expansion and path-lines were extracted from the model monitoring how to prevent the expansion towards the nearby municipal wells. It was concluded that the location is the most important factor in determining the RRS efficiency. Scenario III was adopted and showed an effective results even with a reduced pumping rates. This scenario proposed adding two additional recovery wells in a location beyond the 750m line to compensate the delays and effectively capture the plume. A continuous monitoring program for current and future monitoring wells should be in place to support the proposed scenario and ensure maximum protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20aquifer%20treatment" title="soil aquifer treatment">soil aquifer treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20and%20reuse%20scheme" title=" recovery and reuse scheme"> recovery and reuse scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20basins" title=" infiltration basins"> infiltration basins</a>, <a href="https://publications.waset.org/abstracts/search?q=north%20gaza" title=" north gaza"> north gaza</a> </p> <a href="https://publications.waset.org/abstracts/27630/improving-recovery-reuse-and-irrigation-scheme-efficiency-north-gaza-emergency-sewage-treatment-project-as-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> The Assessment of Infiltrated Wastewater on the Efficiency of Recovery Reuse and Irrigation Scheme: North Gaza Emergency Sewage Treatment Project as a Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaser%20S.%20Kishawi">Yaser S. Kishawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadi%20R.%20Ali"> Sadi R. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is finding non-conventional water resource from treated wastewater to cover agricultural requirements and serve the population. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line and infiltration basins-IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme–RRS– to capture the spreading plume). Currently, only phase A is functioning. Nearly 23 Mm3 of partially treated wastewater were infiltrated into the aquifer. Phase B and phase C witnessed many delays and this forced a reassessment of the RRS original design. An Environmental Management Plan was conducted from Jul 2013 to Jun 2014 on 13 existing monitoring wells surrounding the project location. This is to measure the efficiency of the SAT system and the spread of the contamination plume with relation to the efficiency of the proposed RRS. Along with the proposed location of the 27 recovery wells as part of the proposed RRS. The results of monitored wells were assessed compared with PWA baseline data. This was put into a groundwater model to simulate the plume to propose the best suitable solution to the delays. The redesign mainly manipulated the pumping rate of wells, proposed locations and functioning schedules (including wells groupings). The proposed simulations were examined using visual MODFLOW V4.2 to simulate the results. The results of monitored wells were assessed based on the location of the monitoring wells related to the proposed recovery wells locations (200m, 500m, and 750m away from the IBs). Near the 500m line (the first row of proposed recovery wells), an increase of nitrate (from 30 to 70mg/L) compare to a decrease in Chloride (1500 to below 900mg/L) was found during the monitoring period which indicated an expansion of plume to this distance. On this rate with the required time to construct the recovery scheme, keeping the original design the RRS will fail to capture the plume. Based on that many simulations were conducted leading into three main scenarios. The scenarios manipulated the starting dates, the pumping rate and the locations of recovery wells. A simulation of plume expansion and path-lines were extracted from the model monitoring how to prevent the expansion towards the nearby municipal wells. It was concluded that the location is the most important factor in determining the RRS efficiency. Scenario III was adopted and showed effective results even with a reduced pumping rates. This scenario proposed adding two additional recovery wells in a location beyond the 750m line to compensate the delays and effectively capture the plume. A continuous monitoring program for current and future monitoring wells should be in place to support the proposed scenario and ensure maximum protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20aquifer%20treatment" title="soil aquifer treatment">soil aquifer treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20reuse%20scheme" title=" recovery reuse scheme"> recovery reuse scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20basins" title=" infiltration basins"> infiltration basins</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Gaza" title=" North Gaza"> North Gaza</a> </p> <a href="https://publications.waset.org/abstracts/21235/the-assessment-of-infiltrated-wastewater-on-the-efficiency-of-recovery-reuse-and-irrigation-scheme-north-gaza-emergency-sewage-treatment-project-as-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Environmental Impacts of Point and Non-Point Source Pollution in Krishnagiri Reservoir: A Case Study in South India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Ambujam">N. K. Ambujam</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sudha"> V. Sudha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reservoirs are being contaminated all around the world with point source and Non-Point Source (NPS) pollution. The most common NPS pollutants are sediments and nutrients. Krishnagiri Reservoir (KR) has been chosen for the present case study, which is located in the tropical semi-arid climatic zone of Tamil Nadu, South India. It is the main source of surface water in Krishnagiri district to meet the freshwater demands. The reservoir has lost about 40% of its water holding capacity due to sedimentation over the period of 50 years. Hence, from the research and management perspective, there is a need for a sound knowledge on the spatial and seasonal variations of KR water quality. The present study encompasses the specific objectives as (i) to investigate the longitudinal heterogeneity and seasonal variations of physicochemical parameters, nutrients and biological characteristics of KR water and (ii) to examine the extent of degradation of water quality in KR. 15 sampling points were identified by uniform stratified method and a systematic monthly sampling strategy was selected due to high dynamic nature in its hydrological characteristics. The physicochemical parameters, major ions, nutrients and Chlorophyll <em>a </em>(Chl <em>a</em>) were analysed. Trophic status of KR was classified by using Carlson&#39;s Trophic State Index (TSI). All statistical analyses were performed by using Statistical Package for Social Sciences programme, version-16.0. Spatial maps were prepared for Chl <em>a</em> using Arc GIS. Observations in KR pointed out that electrical conductivity and major ions are highly variable factors as it receives inflow from the catchment with different land use activities. The study of major ions in KR exhibited different trends in their values and it could be concluded that as the monsoon progresses the major ions in the water decreases or water quality stabilizes. The inflow point of KR showed comparatively higher concentration of nutrients including nitrate, soluble reactive phosphorus (SRP), total phosphors (TP), total suspended phosphorus (TSP) and total dissolved phosphorus (TDP) during monsoon seasons. This evidently showed the input of significant amount of nutrients from the catchment side through agricultural runoff. High concentration of TDP and TSP at the lacustrine zone of the reservoir during summer season evidently revealed that there was a significant release of phosphorus from the bottom sediments. Carlson&rsquo;s TSI of KR ranged between 81 and 92 during northeast monsoon and summer seasons. High and permanent Cyanobacterial bloom in KR could be mainly due to the internal loading of phosphorus from the bottom sediments. According to Carlson&rsquo;s TSI classification Krishnagiri reservoir was ranked in the hyper-eutrophic category. This study provides necessary basic data on the spatio-temporal variations of water quality in KR and also proves the impact of point and NPS pollution from the catchment area. High TSI warrants a greater threat for the recovery of internal P loading and hyper-eutrophic condition of KR. Several expensive internal measures for the reduction of internal loading of P were introduced by many scientists. However, the outcome of the present research suggests for the innovative algae harvesting technique for the removal of sediment nutrients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NPS%20pollution" title="NPS pollution">NPS pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper-eutrophication" title=" hyper-eutrophication"> hyper-eutrophication</a>, <a href="https://publications.waset.org/abstracts/search?q=krishnagiri%20reservoir" title=" krishnagiri reservoir"> krishnagiri reservoir</a> </p> <a href="https://publications.waset.org/abstracts/36477/environmental-impacts-of-point-and-non-point-source-pollution-in-krishnagiri-reservoir-a-case-study-in-south-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Empirical Modeling and Spatial Analysis of Heat-Related Morbidity in Maricopa County, Arizona</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chuyuan%20Wang">Chuyuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nayan%20Khare"> Nayan Khare</a>, <a href="https://publications.waset.org/abstracts/search?q=Lily%20Villa"> Lily Villa</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Solis"> Patricia Solis</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20A.%20Wentz"> Elizabeth A. Wentz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maricopa County, Arizona, has a semi-arid hot desert climate that is one of the hottest regions in the United States. The exacerbated urban heat island (UHI) effect caused by rapid urbanization has made the urban area even hotter than the rural surroundings. The Phoenix metropolitan area experiences extremely high temperatures in the summer from June to September that can reach the daily highest of 120 °F (48.9 °C). Morbidity and mortality due to the environmental heat is, therefore, a significant public health issue in Maricopa County, especially because it is largely preventable. Public records from the Maricopa County Department of Public Health (MCDPH) revealed that between 2012 and 2016, there were 10,825 incidents of heat-related morbidity incidents, 267 outdoor environmental heat deaths, and 173 indoor heat-related deaths. A lot of research has examined heat-related death and its contributing factors around the world, but little has been done regarding heat-related morbidity issues, especially for regions that are naturally hot in the summer. The objective of this study is to examine the demographic, socio-economic, housing, and environmental factors that contribute to heat-related morbidity in Maricopa County. We obtained heat-related morbidity data between 2012 and 2016 at census tract level from MCDPH. Demographic, socio-economic, and housing variables were derived using 2012-2016 American Community Survey 5-year estimate from the U.S. Census. Remotely sensed Landsat 7 ETM+ and Landsat 8 OLI satellite images and Level-1 products were acquired for all the summer months (June to September) from 2012 and 2016. The National Land Cover Database (NLCD) 2016 percent tree canopy and percent developed imperviousness data were obtained from the U.S. Geological Survey (USGS). We used ordinary least squares (OLS) regression analysis to examine the empirical relationship between all the independent variables and heat-related morbidity rate. Results showed that higher morbidity rates are found in census tracts with higher values in population aged 65 and older, population under poverty, disability, no vehicle ownership, white non-Hispanic, population with less than high school degree, land surface temperature, and surface reflectance, but lower values in normalized difference vegetation index (NDVI) and housing occupancy. The regression model can be used to explain up to 59.4% of total variation of heat-related morbidity in Maricopa County. The multiscale geographically weighted regression (MGWR) technique was then used to examine the spatially varying relationships between heat-related morbidity rate and all the significant independent variables. The R-squared value of the MGWR model increased to 0.691, that shows a significant improvement in goodness-of-fit than the global OLS model, which means that spatial heterogeneity of some independent variables is another important factor that influences the relationship with heat-related morbidity in Maricopa County. Among these variables, population aged 65 and older, the Hispanic population, disability, vehicle ownership, and housing occupancy have much stronger local effects than other variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=census" title="census">census</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20modeling" title=" empirical modeling"> empirical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat-related%20morbidity" title=" heat-related morbidity"> heat-related morbidity</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20analysis" title=" spatial analysis"> spatial analysis</a> </p> <a href="https://publications.waset.org/abstracts/114025/empirical-modeling-and-spatial-analysis-of-heat-related-morbidity-in-maricopa-county-arizona" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> The Use of Non-Parametric Bootstrap in Computing of Microbial Risk Assessment from Lettuce Consumption Irrigated with Contaminated Water by Sanitary Sewage in Infulene Valley </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20Tauzene%20Afonso%20Matangue">Mario Tauzene Afonso Matangue</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Andres%20Sanchez%20Ortiz"> Ivan Andres Sanchez Ortiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Metropolitan area of Maputo (Mozambique Capital City) is located in semi-arid zone (800 mm annual rainfall) with 1101170 million inhabitants. On the west side, there are the flatlands of Infulene where the Mulauze River flows towards to the Indian Ocean, receiving at this site, the storm water contaminated with sanitary sewage from Maputo, transported through a concrete open channel. In Infulene, local communities grow salads crops such as tomato, onion, garlic, lettuce, and cabbage, which are then commercialized and consumed in several markets in Maputo City. Lettuce is the most daily consumed salad crop in different meals, generally in fast-foods, breakfasts, lunches, and dinners. However, the risk of infection by several pathogens due to the consumption of lettuce, using the Quantitative Microbial Risk Assessment (QMRA) tools, is still unknown since there are few studies or publications concerning to this matter in Mozambique. This work is aimed at determining the annual risk arising from the consumption of lettuce grown in Infulene valley, in Maputo, using QMRA tools. The exposure model was constructed upon the volume of contaminated water remaining in the lettuce leaves, the empirical relations between the number of pathogens and the indicator of microorganisms (E. coli), the consumption of lettuce (g) and reduction of pathogens (days). The reference pathogens were Vibrio cholerae, Cryptosporidium, norovirus, and Ascaris. The water quality samples (E. coli) were collected in the storm water channel from January 2016 to December 2018, comprising 65 samples, and the urban lettuce consumption data were collected through inquiry in Maputo Metropolis covering 350 persons. A non-parametric bootstrap was performed involving 10,000 iterations over the collected dataset, namely, water quality (E. coli) and lettuce consumption. The dose-response models were: Exponential for Cryptosporidium, Kummer Confluent hypergeomtric function (1F1) for Vibrio and Ascaris Gaussian hypergeometric function (2F1-(a,b;c;z) for norovirus. The annual infection risk estimates were performed using R 3.6.0 (CoreTeam) software by Monte Carlo (Latin hypercubes), a sampling technique involving 10,000 iterations. The annual infection risks values expressed by Median and the 95th percentile, per person per year (pppy) arising from the consumption of lettuce are as follows: Vibrio cholerae (1.00, 1.00), Cryptosporidium (3.91x10⁻³, 9.72x 10⁻³), nororvirus (5.22x10⁻¹, 9.99x10⁻¹) and Ascaris (2.59x10⁻¹, 9.65x10⁻¹). Thus, the consumption of the lettuce would result in greater risks than the tolerable levels ( < 10⁻³ pppy or 10⁻⁶ DALY) for all pathogens, and the Vibrio cholerae is the most virulent pathogens, according to the hit-single models followed by the Ascaris lumbricoides and norovirus. The sensitivity analysis carried out in this work pointed out that in the whole QMRA, the most important input variable was the reduction of pathogens (Spearman rank value was 0.69) between harvest and consumption followed by water quality (Spearman rank value was 0.69). The decision-makers (Mozambique Government) must strengthen the prevention measures related to pathogens reduction in lettuce (i.e., washing) and engage in wastewater treatment engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annual%20infections%20risk" title="annual infections risk">annual infections risk</a>, <a href="https://publications.waset.org/abstracts/search?q=lettuce" title=" lettuce"> lettuce</a>, <a href="https://publications.waset.org/abstracts/search?q=non-parametric%20bootstrapping" title=" non-parametric bootstrapping"> non-parametric bootstrapping</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20microbial%20risk%20assessment%20tools" title=" quantitative microbial risk assessment tools"> quantitative microbial risk assessment tools</a> </p> <a href="https://publications.waset.org/abstracts/123837/the-use-of-non-parametric-bootstrap-in-computing-of-microbial-risk-assessment-from-lettuce-consumption-irrigated-with-contaminated-water-by-sanitary-sewage-in-infulene-valley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Determination of Aquifer Geometry Using Geophysical Methods: A Case Study from Sidi Bouzid Basin, Central Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhekra%20Khazri">Dhekra Khazri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakim%20Gabtni"> Hakim Gabtni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of Sidi Bouzid water table overexploitation, this study aims at integrating geophysical methods to determinate aquifers geometry assessing their geological situation and geophysical characteristics. However in highly tectonic zones controlled by Atlassic structural features with NE-SW major directions (central Tunisia), Bouguer gravimetric responses of some areas can be as much dominated by the regional structural tendency, as being non-identified or either defectively interpreted such as the case of Sidi Bouzid basin. This issue required a residual gravity anomaly elaboration isolating the Sidi Bouzid basin gravity response ranging between -8 and -14 mGal and crucial for its aquifers geometry characterization. Several gravity techniques helped constructing the Sidi Bouzid basin's residual gravity anomaly, such as Upwards continuation compared to polynomial regression trends and power spectrum analysis detecting deep basement sources at (3km), intermediate (2km) and shallow sources (1km). A 3D Euler Deconvolution was also performed detecting deepest accidents trending NE-SW, N-S and E-W with depth values reaching 5500 m and delineating the main outcropping structures of the study area. Further gravity treatments highlighted the subsurface geometry and structural features of Sidi Bouzid basin over Horizontal and vertical gradient, and also filters based on them such as Tilt angle and Source Edge detector locating rooted edges or peaks from potential field data detecting a new E-W lineament compartmentalizing the Sidi Bouzid gutter into two unequally residual anomaly and subsiding domains. This subsurface morphology is also detected by the used 2D seismic reflection sections defining the Sidi Bouzid basin as a deep gutter within a tectonic set of negative flower structures, and collapsed and tilted blocks. Furthermore, these structural features were confirmed by forward gravity modeling process over several modeled residual gravity profiles crossing the main area. Sidi Bouzid basin (central Tunisia) is also of a big interest cause of the unknown total thickness and the undefined substratum of its siliciclastic Tertiary package, and its aquifers unbounded structural subsurface features and deep accidents. The Combination of geological, hydrogeological and geophysical methods is then of an ultimate need. Therefore, a geophysical methods integration based on gravity survey supporting available seismic data through forward gravity modeling, enhanced lateral and vertical extent definition of the basin's complex sedimentary fill via 3D gravity models, improved depth estimation by a depth to basement modeling approach, and provided 3D isochronous seismic mapping visualization of the basin's Tertiary complex refining its geostructural schema. A subsurface basin geomorphology mapping, over an ultimate matching between the basin's residual gravity map and the calculated theoretical signature map, was also displayed over the modeled residual gravity profiles. An ultimate multidisciplinary geophysical study of the Sidi Bouzid basin aquifers can be accomplished via an aeromagnetic survey and a 4D Microgravity reservoir monitoring offering temporal tracking of the target aquifer's subsurface fluid dynamics enhancing and rationalizing future groundwater exploitation in this arid area of central Tunisia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquifer%20geometry" title="aquifer geometry">aquifer geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysics" title=" geophysics"> geophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20gravity%20modeling" title=" 3D gravity modeling"> 3D gravity modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=improved%20depths" title=" improved depths"> improved depths</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20edge%20detector" title=" source edge detector"> source edge detector</a> </p> <a href="https://publications.waset.org/abstracts/47048/determination-of-aquifer-geometry-using-geophysical-methods-a-case-study-from-sidi-bouzid-basin-central-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Digital Mapping of First-Order Drainages and Springs of the Guajiru River, Northeast of Brazil, Based on Satellite and Drone Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebasti%C3%A3o%20Milton%20Pinheiro%20da%20Silva">Sebastião Milton Pinheiro da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Barbosa%20da%20Rocha"> Michele Barbosa da Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20L%C3%BAcia%20Fernandes%20Campos"> Ana Lúcia Fernandes Campos</a>, <a href="https://publications.waset.org/abstracts/search?q=Miqu%C3%A9ias%20Rildo%20de%20Souza%20Silva"> Miquéias Rildo de Souza Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is an essential natural resource for life on Earth. Rivers, lakes, lagoons and dams are the main sources of water storage for human consumption. The costs of extracting and using these water sources are lower than those of exploiting groundwater on transition zones to semi-arid terrains. However, the volume of surface water has decreased over time, with the depletion of first-order drainage and the disappearance of springs, phenomena which are easily observed in the field. Climate change worsens water scarcity, compromising supply and hydric security for rural populations. To minimize the expected impacts, producing and storing water through watershed management planning requires detailed cartographic information on the relief and topography, and updated data on the stage and intensity of catchment basin environmental degradation problems. The cartography available of the Brazilian northeastern territory dates to the 70s, with topographic maps, printed, at a scale of 1:100,000 which does not meet the requirements to execute this project. Exceptionally, there are topographic maps at scales of 1:50,000 and 1:25,000 of some coastal regions in northeastern Brazil. Still, due to scale limitations and outdatedness, they are products of little utility for mapping low-order watersheds drainage and springs. Remote sensing data and geographic information systems can contribute to guiding the process of mapping and environmental recovery by integrating detailed relief and topographic data besides social and other environmental information in the Guajiru River Basin, located on the east coast of Rio Grande do Norte, on the Northeast region of Brazil. This study aimed to recognize and map catchment basin, springs and low-order drainage features along estimating morphometric parameters. Alos PALSAR and Copernicus DEM digital elevation models were evaluated and provided regional drainage features and the watersheds limits extracted with Terraview/Terrahidro 5.0 software. CBERS 4A satellite images with 2 m spatial resolution, processed with ESA SNAP Toolbox, allowed generating land use land cover map of Guajiru River. A Mappir Survey 3 multiespectral camera onboard of a DJI Phantom 4, a Mavic 2 Pro PPK Drone and an X91 GNSS receiver to collect the precised position of selected points were employed to detail mapping. Satellite images enabled a first knowledge approach of watershed areas on a more regional scale, yet very current, and drone images were essential in mapping details of catchment basins. The drone multispectral image mosaics, the digital elevation model, the contour lines and geomorphometric parameters were generated using OpenDroneMap/ODM and QGis softwares. The drone images generated facilitated the location, understanding and mapping of watersheds, recharge areas and first-order ephemeral watercourses on an adequate scale and will be used in the following project’s phases: watershed management planning, recovery and environmental protection of Rio's springs Guajiru. Environmental degradation is being analyzed from the perspective of the availability and quality of surface water supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imaging" title="imaging">imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=relief" title=" relief"> relief</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/188402/digital-mapping-of-first-order-drainages-and-springs-of-the-guajiru-river-northeast-of-brazil-based-on-satellite-and-drone-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&amp;page=12" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arid&amp;page=12">12</a></li> <li class="page-item active"><span class="page-link">13</span></li> <li class="page-item disabled"><span class="page-link">&rsaquo;</span></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10