CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;21 of 21 results for author: <span class="mathjax">Vergara, P P</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/eess" aria-role="search"> Searching in archive <strong>eess</strong>. <a href="/search/?searchtype=author&amp;query=Vergara%2C+P+P">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Vergara, P P"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Vergara%2C+P+P&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Vergara, P P"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14346">arXiv:2411.14346</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14346">pdf</a>, <a href="https://arxiv.org/format/2411.14346">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Lower Dimensional Spherical Representation of Medium Voltage Load Profiles for Visualization, Outlier Detection, and Generative Modelling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Duque%2C+E+M+S">Edgar Mauricio Salazar Duque</a>, <a href="/search/eess?searchtype=author&amp;query=van+der+Holst%2C+B">Bart van der Holst</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a>, <a href="/search/eess?searchtype=author&amp;query=Giraldo%2C+J+S">Juan S. Giraldo</a>, <a href="/search/eess?searchtype=author&amp;query=Nguyen%2C+P+H">Phuong H. Nguyen</a>, <a href="/search/eess?searchtype=author&amp;query=Van+der+Molen%2C+A">Anne Van der Molen</a>, <a href="/search/eess?searchtype=author&amp;query=Han"> Han</a>, <a href="/search/eess?searchtype=author&amp;query=Slootweg"> Slootweg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14346v1-abstract-short" style="display: inline;"> This paper presents the spherical lower dimensional representation for daily medium voltage load profiles, based on principal component analysis. The objective is to unify and simplify the tasks for (i) clustering visualisation, (ii) outlier detection and (iii) generative profile modelling under one concept. The lower dimensional projection of standardised load profiles unveils a latent distributi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14346v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14346v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14346v1-abstract-full" style="display: none;"> This paper presents the spherical lower dimensional representation for daily medium voltage load profiles, based on principal component analysis. The objective is to unify and simplify the tasks for (i) clustering visualisation, (ii) outlier detection and (iii) generative profile modelling under one concept. The lower dimensional projection of standardised load profiles unveils a latent distribution in a three-dimensional sphere. This spherical structure allows us to detect outliers by fitting probability distribution models in the spherical coordinate system, identifying measurements that deviate from the spherical shape. The same latent distribution exhibits an arc shape, suggesting an underlying order among load profiles. We develop a principal curve technique to uncover this order based on similarity, offering new advantages over conventional clustering techniques. This finding reveals that energy consumption in a wide region can be seen as a continuously changing process. Furthermore, we combined the principal curve with a von Mises-Fisher distribution to create a model capable of generating profiles with continuous mixtures between clusters. The presence of the spherical distribution is validated with data from four municipalities in the Netherlands. The uncovered spherical structure implies the possibility of employing new mathematical tools from directional statistics and differential geometry for load profile modelling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14346v1-abstract-full').style.display = 'none'; document.getElementById('2411.14346v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10166">arXiv:2411.10166</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10166">pdf</a>, <a href="https://arxiv.org/format/2411.10166">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Two-Stage Robust Optimal Operation of Distribution Networks using Confidence Level Based Distributionally Information Gap Decision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Xiong%2C+Z">Zhisheng Xiong</a>, <a href="/search/eess?searchtype=author&amp;query=Zeng%2C+B">Bo Zeng</a>, <a href="/search/eess?searchtype=author&amp;query=Palensky%2C+P">Peter Palensky</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10166v1-abstract-short" style="display: inline;"> This paper presents a confidence level-based distributionally information gap decision theory (CL-DIGDT) framework for the two-stage robust optimal operation of distribution networks, aiming at deriving an optimal operational scheme capable of addressing uncertainties related to renewable energy and load demands. Building on conventional IGDT, the proposed framework utilizes the confidence level t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10166v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10166v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10166v1-abstract-full" style="display: none;"> This paper presents a confidence level-based distributionally information gap decision theory (CL-DIGDT) framework for the two-stage robust optimal operation of distribution networks, aiming at deriving an optimal operational scheme capable of addressing uncertainties related to renewable energy and load demands. Building on conventional IGDT, the proposed framework utilizes the confidence level to capture the asymmetric characteristics of uncertainties and maximize the risk-averse capability of the solution in a probabilistic manner. To account for the probabilistic consideration, the imprecise Dirichlet model is employed to construct the ambiguity sets of uncertainties, reducing reliance on precise probability distributions. Consequently, a two-stage robust optimal operation model for distribution networks using CL-DIGDT is developed. An iterative method is proposed to solve the model and determine the upper and lower bounds of the objective function. Case study demonstrates that the proposed approach yields a more robust and statistically optimized solution with required accuracy compared to existing method, contributing to a reduction in first-stage cost by 0.84%, second-stage average cost by 6.7%, and significantly increasing the reliability of the solution by 8%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10166v1-abstract-full').style.display = 'none'; document.getElementById('2411.10166v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00995">arXiv:2411.00995</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00995">pdf</a>, <a href="https://arxiv.org/ps/2411.00995">ps</a>, <a href="https://arxiv.org/format/2411.00995">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Safe Imitation Learning-based Optimal Energy Storage Systems Dispatch in Distribution Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Hou%2C+S">Shengren Hou</a>, <a href="/search/eess?searchtype=author&amp;query=Palensky%2C+P">Peter Palensky</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00995v1-abstract-short" style="display: inline;"> The integration of distributed energy resources (DER) has escalated the challenge of voltage magnitude regulation in distribution networks. Traditional model-based approaches, which rely on complex sequential mathematical formulations, struggle to meet real-time operational demands. Deep reinforcement learning (DRL) offers a promising alternative by enabling offline training with distribution netw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00995v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00995v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00995v1-abstract-full" style="display: none;"> The integration of distributed energy resources (DER) has escalated the challenge of voltage magnitude regulation in distribution networks. Traditional model-based approaches, which rely on complex sequential mathematical formulations, struggle to meet real-time operational demands. Deep reinforcement learning (DRL) offers a promising alternative by enabling offline training with distribution network simulators, followed by real-time execution. However, DRL algorithms tend to converge to local optima due to limited exploration efficiency. Additionally, DRL algorithms can not enforce voltage magnitude constraints, leading to potential operational violations when implemented in the distribution network operation. This study addresses these challenges by proposing a novel safe imitation reinforcement learning (IRL) framework that combines IRL and a designed safety layer, aiming to optimize the operation of Energy Storage Systems (ESSs) in active distribution networks. The proposed safe IRL framework comprises two phases: offline training and online execution. During the offline phase, optimal state-action pairs are collected using an NLP solver, guiding the IRL policy iteration. In the online phase, the trained IRL policy&#39;s decisions are adjusted by the safety layer to maintain safety and constraint compliance. Simulation results demonstrate the efficacy of Safe IRL in balancing operational efficiency and safety, eliminating voltage violations, and maintaining low operation cost errors across various network sizes, while meeting real-time execution requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00995v1-abstract-full').style.display = 'none'; document.getElementById('2411.00995v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19995">arXiv:2409.19995</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19995">pdf</a>, <a href="https://arxiv.org/format/2409.19995">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> A Screening Method for Power System Inertia Zones Identification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Prasad%2C+%7B">{Rashmi Prasad</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a>, <a href="/search/eess?searchtype=author&amp;query=Padhy%2C+N+P">Narayana Prasad Padhy</a>, <a href="/search/eess?searchtype=author&amp;query=Dimitrovski%2C+R">Robert Dimitrovski</a>, <a href="/search/eess?searchtype=author&amp;query=Leki%C4%87%2C+A">Aleksandra Leki膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19995v1-abstract-short" style="display: inline;"> The heterogeneous distribution of frequency support from dispersed renewable generation sources results in varying inertia within the system. The effects of disturbances exhibit non-uniform variations contingent upon the disturbance&#39;s location and the affected region&#39;s topology and inertia. A screening method for inertia-zone identification is proposed considering the combination of network struct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19995v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19995v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19995v1-abstract-full" style="display: none;"> The heterogeneous distribution of frequency support from dispersed renewable generation sources results in varying inertia within the system. The effects of disturbances exhibit non-uniform variations contingent upon the disturbance&#39;s location and the affected region&#39;s topology and inertia. A screening method for inertia-zone identification is proposed considering the combination of network structure and generator inertia distribution that will aid in comprehending the response of nodes to disturbances. The nodes&#39; dynamic nodal weight (DNW) is defined using maximal entropy random walk that defines each node&#39;s spreading power dynamics. Further, a modified weighted kmeans++ clustering technique is proposed using DNW to obtain the equivalent spatial points of each zone and the system to parameterize the inertia status of each zone. The impact of the proposed scheme is justified by simulating a modified IEEE 39 bus system with doubly-fed induction generator (DFIG) integration in the real-time digital simulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19995v1-abstract-full').style.display = 'none'; document.getElementById('2409.19995v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PESGM 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08399">arXiv:2408.08399</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08399">pdf</a>, <a href="https://arxiv.org/format/2408.08399">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> An Efficient and Explainable Transformer-Based Few-Shot Learning for Modeling Electricity Consumption Profiles Across Thousands of Domains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Xia%2C+W">Weijie Xia</a>, <a href="/search/eess?searchtype=author&amp;query=Peng%2C+G">Gao Peng</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+C">Chenguang Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Palensky%2C+P">Peter Palensky</a>, <a href="/search/eess?searchtype=author&amp;query=Pauwels%2C+E">Eric Pauwels</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08399v2-abstract-short" style="display: inline;"> Electricity Consumption Profiles (ECPs) are crucial for operating and planning power distribution systems, especially with the increasing numbers of various low-carbon technologies such as solar panels and electric vehicles. Traditional ECP modeling methods typically assume the availability of sufficient ECP data. However, in practice, the accessibility of ECP data is limited due to privacy issues&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08399v2-abstract-full').style.display = 'inline'; document.getElementById('2408.08399v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08399v2-abstract-full" style="display: none;"> Electricity Consumption Profiles (ECPs) are crucial for operating and planning power distribution systems, especially with the increasing numbers of various low-carbon technologies such as solar panels and electric vehicles. Traditional ECP modeling methods typically assume the availability of sufficient ECP data. However, in practice, the accessibility of ECP data is limited due to privacy issues or the absence of metering devices. Few-shot learning (FSL) has emerged as a promising solution for ECP modeling in data-scarce scenarios. Nevertheless, standard FSL methods, such as those used for images, are unsuitable for ECP modeling because (1) these methods usually assume several source domains with sufficient data and several target domains. However, in the context of ECP modeling, there may be thousands of source domains with a moderate amount of data and thousands of target domains. (2) Standard FSL methods usually involve cumbersome knowledge transfer mechanisms, such as pre-training and fine-tuning, whereas ECP modeling requires more lightweight methods. (3) Deep learning models often lack explainability, hindering their application in industry. This paper proposes a novel FSL method that exploits Transformers and Gaussian Mixture Models (GMMs) for ECP modeling to address the above-described issues. Results show that our method can accurately restore the complex ECP distribution with a minimal amount of ECP data (e.g., only 1.6\% of the complete domain dataset) while it outperforms state-of-the-art time series modeling methods, maintaining the advantages of being both lightweight and interpretable. The project is open-sourced at https://github.com/xiaweijie1996/TransformerEM-GMM.git. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08399v2-abstract-full').style.display = 'none'; document.getElementById('2408.08399v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03685">arXiv:2408.03685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03685">pdf</a>, <a href="https://arxiv.org/ps/2408.03685">ps</a>, <a href="https://arxiv.org/format/2408.03685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> RL-ADN: A High-Performance Deep Reinforcement Learning Environment for Optimal Energy Storage Systems Dispatch in Active Distribution Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Hou%2C+S">Shengren Hou</a>, <a href="/search/eess?searchtype=author&amp;query=Gao%2C+S">Shuyi Gao</a>, <a href="/search/eess?searchtype=author&amp;query=Xia%2C+W">Weijie Xia</a>, <a href="/search/eess?searchtype=author&amp;query=Duque%2C+E+M+S">Edgar Mauricio Salazar Duque</a>, <a href="/search/eess?searchtype=author&amp;query=Palensky%2C+P">Peter Palensky</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03685v2-abstract-short" style="display: inline;"> Deep Reinforcement Learning (DRL) presents a promising avenue for optimizing Energy Storage Systems (ESSs) dispatch in distribution networks. This paper introduces RL-ADN, an innovative open-source library specifically designed for solving the optimal ESSs dispatch in active distribution networks. RL-ADN offers unparalleled flexibility in modeling distribution networks, and ESSs, accommodating a w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03685v2-abstract-full').style.display = 'inline'; document.getElementById('2408.03685v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03685v2-abstract-full" style="display: none;"> Deep Reinforcement Learning (DRL) presents a promising avenue for optimizing Energy Storage Systems (ESSs) dispatch in distribution networks. This paper introduces RL-ADN, an innovative open-source library specifically designed for solving the optimal ESSs dispatch in active distribution networks. RL-ADN offers unparalleled flexibility in modeling distribution networks, and ESSs, accommodating a wide range of research goals. A standout feature of RL-ADN is its data augmentation module, based on Gaussian Mixture Model and Copula (GMC) functions, which elevates the performance ceiling of DRL agents. Additionally, RL-ADN incorporates the Laurent power flow solver, significantly reducing the computational burden of power flow calculations during training without sacrificing accuracy. The effectiveness of RL-ADN is demonstrated using in different sizes of distribution networks, showing marked performance improvements in the adaptability of DRL algorithms for ESS dispatch tasks. This enhancement is particularly beneficial from the increased diversity of training scenarios. Furthermore, RL-ADN achieves a tenfold increase in computational efficiency during training, making it highly suitable for large-scale network applications. The library sets a new benchmark in DRL-based ESSs dispatch in distribution networks and it is poised to advance DRL applications in distribution network operations significantly. RL-ADN is available at: https://github.com/ShengrenHou/RL-ADN and https://github.com/distributionnetworksTUDelft/RL-ADN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03685v2-abstract-full').style.display = 'none'; document.getElementById('2408.03685v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13538">arXiv:2407.13538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13538">pdf</a>, <a href="https://arxiv.org/format/2407.13538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> EnergyDiff: Universal Time-Series Energy Data Generation using Diffusion Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Lin%2C+N">Nan Lin</a>, <a href="/search/eess?searchtype=author&amp;query=Palensky%2C+P">Peter Palensky</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13538v1-abstract-short" style="display: inline;"> High-resolution time series data are crucial for operation and planning in energy systems such as electrical power systems and heating systems. However, due to data collection costs and privacy concerns, such data is often unavailable or insufficient for downstream tasks. Data synthesis is a potential solution for this data scarcity. With the recent development of generative AI, we propose EnergyD&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13538v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13538v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13538v1-abstract-full" style="display: none;"> High-resolution time series data are crucial for operation and planning in energy systems such as electrical power systems and heating systems. However, due to data collection costs and privacy concerns, such data is often unavailable or insufficient for downstream tasks. Data synthesis is a potential solution for this data scarcity. With the recent development of generative AI, we propose EnergyDiff, a universal data generation framework for energy time series data. EnergyDiff builds on state-of-the-art denoising diffusion probabilistic models, utilizing a proposed denoising network dedicated to high-resolution time series data and introducing a novel Marginal Calibration technique. Our extensive experimental results demonstrate that EnergyDiff achieves significant improvement in capturing temporal dependencies and marginal distributions compared to baselines, particularly at the 1-minute resolution. Additionally, EnergyDiff consistently generates high-quality time series data across diverse energy domains, time resolutions, and at both customer and transformer levels with reduced computational need. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13538v1-abstract-full').style.display = 'none'; document.getElementById('2407.13538v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14251">arXiv:2406.14251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.14251">pdf</a>, <a href="https://arxiv.org/format/2406.14251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Optimal Power Flow Based Droop Control in MMC-MTDC Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Du%2C+H">Hongjin Du</a>, <a href="/search/eess?searchtype=author&amp;query=Prasad%2C+R">Rashmi Prasad</a>, <a href="/search/eess?searchtype=author&amp;query=Lekic%2C+A">Aleksandra Lekic</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a>, <a href="/search/eess?searchtype=author&amp;query=Palensky%2C+P">Peter Palensky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14251v1-abstract-short" style="display: inline;"> Optimizing operational set points for modular multilevel converters (MMCs) in Multi-Terminal Direct Current (MTDC) transmission systems is crucial for ensuring efficient power distribution and control. This paper presents an enhanced Optimal Power Flow (OPF) model for MMC-MTDC systems, integrating a novel adaptive voltage droop control strategy. The strategy aims to minimize generation costs and D&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14251v1-abstract-full').style.display = 'inline'; document.getElementById('2406.14251v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14251v1-abstract-full" style="display: none;"> Optimizing operational set points for modular multilevel converters (MMCs) in Multi-Terminal Direct Current (MTDC) transmission systems is crucial for ensuring efficient power distribution and control. This paper presents an enhanced Optimal Power Flow (OPF) model for MMC-MTDC systems, integrating a novel adaptive voltage droop control strategy. The strategy aims to minimize generation costs and DC voltage deviations while ensuring the stable operation of the MTDC grid by dynamically adjusting the system operation points. The modified Nordic 32 test system with an embedded 4-terminal DC grid is modeled in Julia and the proposed control strategy is applied to the power model. The results demonstrate the feasibility and effectiveness of the proposed droop control strategy, affirming its potential value in enhancing the performance and reliability of hybrid AC-DC power systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14251v1-abstract-full').style.display = 'none'; document.getElementById('2406.14251v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11963">arXiv:2405.11963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11963">pdf</a>, <a href="https://arxiv.org/format/2405.11963">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> A Simulation Tool for V2G Enabled Demand Response Based on Model Predictive Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Diaz-Londono%2C+C">Cesar Diaz-Londono</a>, <a href="/search/eess?searchtype=author&amp;query=Orfanoudakis%2C+S">Stavros Orfanoudakis</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a>, <a href="/search/eess?searchtype=author&amp;query=Palensky%2C+P">Peter Palensky</a>, <a href="/search/eess?searchtype=author&amp;query=Ruiz%2C+F">Fredy Ruiz</a>, <a href="/search/eess?searchtype=author&amp;query=Gruosso%2C+G">Giambattista Gruosso</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11963v1-abstract-short" style="display: inline;"> Integrating electric vehicles (EVs) into the power grid can revolutionize energy management strategies, offering both challenges and opportunities for creating a more sustainable and resilient grid. In this context, model predictive control (MPC) emerges as a powerful tool for addressing the complexities of Grid-to-vehicle (G2V) and vehicle-to-grid (V2G) enabled demand response management. By leve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11963v1-abstract-full').style.display = 'inline'; document.getElementById('2405.11963v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11963v1-abstract-full" style="display: none;"> Integrating electric vehicles (EVs) into the power grid can revolutionize energy management strategies, offering both challenges and opportunities for creating a more sustainable and resilient grid. In this context, model predictive control (MPC) emerges as a powerful tool for addressing the complexities of Grid-to-vehicle (G2V) and vehicle-to-grid (V2G) enabled demand response management. By leveraging advanced optimization techniques, MPC algorithms can anticipate future grid conditions and dynamically adjust EV charging and discharging schedules to balance supply and demand while minimizing operational costs and maximizing flexibility. However, no standard tools exist to evaluate novel energy management strategies based on MPC approaches. Our research focuses on harnessing the potential of MPC in G2V and V2G applications, by providing a simulation tool that allows to maximize EV flexibility and support demand response initiatives while mitigating the impact on EV battery health. In this paper, we propose an open-source MPC controller for G2V and V2G-enabled demand response management. The proposed approach is capable of tackling the uncertainties inherent in demand response operations. Through extensive simulation and analysis, we demonstrate the efficacy of our approach in maximizing the benefits of G2V and V2G while assessing the impact on the longevity and reliability of EV batteries. Specifically, our controller enables Charge Point Operators (CPOs) to optimize EV charging and discharging schedules in real-time, taking into account fluctuating energy prices, grid constraints, and EV user preferences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11963v1-abstract-full').style.display = 'none'; document.getElementById('2405.11963v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02180">arXiv:2405.02180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.02180">pdf</a>, <a href="https://arxiv.org/format/2405.02180">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> A Flow-Based Model for Conditional and Probabilistic Electricity Consumption Profile Generation and Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Xia%2C+W">Weijie Xia</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+C">Chenguang Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Palensky%2C+P">Peter Palensky</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02180v3-abstract-short" style="display: inline;"> Residential Load Profile (RLP) generation and prediction are critical for the operation and planning of distribution networks, especially as diverse low-carbon technologies (e.g., photovoltaic and electric vehicles) are increasingly adopted. This paper introduces a novel flow-based generative model, termed Full Convolutional Profile Flow (FCPFlow), which is uniquely designed for both conditional a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02180v3-abstract-full').style.display = 'inline'; document.getElementById('2405.02180v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02180v3-abstract-full" style="display: none;"> Residential Load Profile (RLP) generation and prediction are critical for the operation and planning of distribution networks, especially as diverse low-carbon technologies (e.g., photovoltaic and electric vehicles) are increasingly adopted. This paper introduces a novel flow-based generative model, termed Full Convolutional Profile Flow (FCPFlow), which is uniquely designed for both conditional and unconditional RLP generation, and for probabilistic load forecasting. By introducing two new layers--the invertible linear layer and the invertible normalization layer--the proposed FCPFlow architecture shows three main advantages compared to traditional statistical and contemporary deep generative models: 1) it is well-suited for RLP generation under continuous conditions, such as varying weather and annual electricity consumption, 2) it demonstrates superior scalability in different datasets compared to traditional statistical models, and 3) it also demonstrates better modeling capabilities in capturing the complex correlation of RLPs compared with deep generative models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02180v3-abstract-full').style.display = 'none'; document.getElementById('2405.02180v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02568">arXiv:2404.02568</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02568">pdf</a>, <a href="https://arxiv.org/ps/2404.02568">ps</a>, <a href="https://arxiv.org/format/2404.02568">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> On Future Power Systems Digital Twins: A Vision Towards a Standard Architecture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Zomerdijk%2C+W">Wouter Zomerdijk</a>, <a href="/search/eess?searchtype=author&amp;query=Palensky%2C+P">Peter Palensky</a>, <a href="/search/eess?searchtype=author&amp;query=AlSkaif%2C+T">Tarek AlSkaif</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02568v2-abstract-short" style="display: inline;"> The energy sector&#39;s digital transformation brings mutually dependent communication and energy infrastructure, tightening the relationship between the physical and the digital world. Digital twins (DT) are the key concept for this. This paper initially discusses the evolution of the DT concept across various engineering applications before narrowing its focus to the power systems domain. By reviewi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02568v2-abstract-full').style.display = 'inline'; document.getElementById('2404.02568v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02568v2-abstract-full" style="display: none;"> The energy sector&#39;s digital transformation brings mutually dependent communication and energy infrastructure, tightening the relationship between the physical and the digital world. Digital twins (DT) are the key concept for this. This paper initially discusses the evolution of the DT concept across various engineering applications before narrowing its focus to the power systems domain. By reviewing different definitions and applications, we present a new definition of DTs specifically tailored to power systems. Based on the proposed definition and extensive deliberations and consultations with distribution system operators, energy traders, and municipalities, we introduce a vision of a standard DT ecosystem architecture that offers services beyond real-time updates and can seamlessly integrate with existing transmission and distribution system operators&#39; processes, while reconciling with concepts such as microgrids and local energy communities based on a system-of-systems view. We also discuss our vision related to the integration of power system DTs into various phases of the system&#39;s life cycle, such as long-term planning, emphasizing challenges that remain to be addressed, such as managing measurement and model errors, and uncertainty propagation. Finally, we present our vision of how artificial intelligence and machine learning can enhance several power systems DT modules established in the proposed architecture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02568v2-abstract-full').style.display = 'none'; document.getElementById('2404.02568v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has been submitted for publication in a journal. This corresponds to the submitted version. After acceptance, it may be removed depending on the journal&#39;s requirements for copyright. Version 2 is the revised version after comments from reviewers. Updated contributions in the introduction, added section on TSO/DSO benefits and section on steps to implementation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04578">arXiv:2403.04578</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04578">pdf</a>, <a href="https://arxiv.org/format/2403.04578">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Tensor Power Flow Formulations for Multidimensional Analyses in Distribution Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Duque%2C+E+M+S">Edgar Mauricio Salazar Duque</a>, <a href="/search/eess?searchtype=author&amp;query=Giraldo%2C+J+S">Juan S. Giraldo</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a>, <a href="/search/eess?searchtype=author&amp;query=Nguyen%2C+P+H">Phuong H. Nguyen</a>, <a href="/search/eess?searchtype=author&amp;query=Han"> Han</a>, <a href="/search/eess?searchtype=author&amp;query=Slootweg"> Slootweg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04578v1-abstract-short" style="display: inline;"> In this paper, we present two multidimensional power flow formulations based on a fixed-point iteration (FPI) algorithm to efficiently solve hundreds of thousands of power flows in distribution systems. The presented algorithms are the base for a new TensorPowerFlow (TPF) tool and shine for their simplicity, benefiting from multicore \gls{cpu} and \gls{gpu} parallelization. We also focus on the ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04578v1-abstract-full').style.display = 'inline'; document.getElementById('2403.04578v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04578v1-abstract-full" style="display: none;"> In this paper, we present two multidimensional power flow formulations based on a fixed-point iteration (FPI) algorithm to efficiently solve hundreds of thousands of power flows in distribution systems. The presented algorithms are the base for a new TensorPowerFlow (TPF) tool and shine for their simplicity, benefiting from multicore \gls{cpu} and \gls{gpu} parallelization. We also focus on the mathematical convergence properties of the algorithm, showing that its unique solution is at the practical operational point, which is the solution of high-voltage and low-current. The proof is validated using numerical simulations showing the robustness of the FPI algorithm compared to the classical \gls{nr} approach. In the case study, a benchmark with different PF solution methods is performed, showing that for applications requiring a yearly simulation at 1-minute resolution the computation time is decreased by a factor of 164, compared to the NR in its sparse formulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04578v1-abstract-full').style.display = 'none'; document.getElementById('2403.04578v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.06293">arXiv:2311.06293</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.06293">pdf</a>, <a href="https://arxiv.org/ps/2311.06293">ps</a>, <a href="https://arxiv.org/format/2311.06293">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Quantum Neural Networks for Power Flow Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Kaseb%2C+Z">Zeynab Kaseb</a>, <a href="/search/eess?searchtype=author&amp;query=Moller%2C+M">Matthias Moller</a>, <a href="/search/eess?searchtype=author&amp;query=Balducci%2C+G+T">Giorgio Tosti Balducci</a>, <a href="/search/eess?searchtype=author&amp;query=Palensky%2C+P">Peter Palensky</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.06293v2-abstract-short" style="display: inline;"> This paper explores the potential application of quantum and hybrid quantum-classical neural networks in power flow analysis. Experiments are conducted using two datasets based on 4-bus and 33-bus test systems. A systematic performance comparison is also conducted among quantum, hybrid quantum-classical, and classical neural networks. The comparison is based on (i) generalization ability, (ii) rob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06293v2-abstract-full').style.display = 'inline'; document.getElementById('2311.06293v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.06293v2-abstract-full" style="display: none;"> This paper explores the potential application of quantum and hybrid quantum-classical neural networks in power flow analysis. Experiments are conducted using two datasets based on 4-bus and 33-bus test systems. A systematic performance comparison is also conducted among quantum, hybrid quantum-classical, and classical neural networks. The comparison is based on (i) generalization ability, (ii) robustness, (iii) training dataset size needed, (iv) training error, and (v) training process stability. The results show that the developed hybrid quantum-classical neural network outperforms both quantum and classical neural networks, and hence can improve deep learning-based power flow analysis in the noisy-intermediate-scale quantum (NISQ) and fault-tolerant quantum (FTQ) era. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06293v2-abstract-full').style.display = 'none'; document.getElementById('2311.06293v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03415">arXiv:2311.03415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.03415">pdf</a>, <a href="https://arxiv.org/format/2311.03415">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> PowerFlowNet: Power Flow Approximation Using Message Passing Graph Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Lin%2C+N">Nan Lin</a>, <a href="/search/eess?searchtype=author&amp;query=Orfanoudakis%2C+S">Stavros Orfanoudakis</a>, <a href="/search/eess?searchtype=author&amp;query=Cardenas%2C+N+O">Nathan Ordonez Cardenas</a>, <a href="/search/eess?searchtype=author&amp;query=Giraldo%2C+J+S">Juan S. Giraldo</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03415v3-abstract-short" style="display: inline;"> Accurate and efficient power flow (PF) analysis is crucial in modern electrical networks&#39; operation and planning. Therefore, there is a need for scalable algorithms that can provide accurate and fast solutions for both small and large scale power networks. As the power network can be interpreted as a graph, Graph Neural Networks (GNNs) have emerged as a promising approach for improving the accurac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03415v3-abstract-full').style.display = 'inline'; document.getElementById('2311.03415v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03415v3-abstract-full" style="display: none;"> Accurate and efficient power flow (PF) analysis is crucial in modern electrical networks&#39; operation and planning. Therefore, there is a need for scalable algorithms that can provide accurate and fast solutions for both small and large scale power networks. As the power network can be interpreted as a graph, Graph Neural Networks (GNNs) have emerged as a promising approach for improving the accuracy and speed of PF approximations by exploiting information sharing via the underlying graph structure. In this study, we introduce PowerFlowNet, a novel GNN architecture for PF approximation that showcases similar performance with the traditional Newton-Raphson method but achieves it 4 times faster in the simple IEEE 14-bus system and 145 times faster in the realistic case of the French high voltage network (6470rte). Meanwhile, it significantly outperforms other traditional approximation methods, such as the DC relaxation method, in terms of performance and execution time; therefore, making PowerFlowNet a highly promising solution for real-world PF analysis. Furthermore, we verify the efficacy of our approach by conducting an in-depth experimental evaluation, thoroughly examining the performance, scalability, interpretability, and architectural dependability of PowerFlowNet. The evaluation provides insights into the behavior and potential applications of GNNs in power system analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03415v3-abstract-full').style.display = 'none'; document.getElementById('2311.03415v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15797">arXiv:2308.15797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.15797">pdf</a>, <a href="https://arxiv.org/format/2308.15797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Volt/VAR Optimization in the Presence of Attacks: A Real-Time Co-Simulation Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Aftab%2C+M+A">Mohd Asim Aftab</a>, <a href="/search/eess?searchtype=author&amp;query=Chawla%2C+A">Astha Chawla</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a>, <a href="/search/eess?searchtype=author&amp;query=Ahmed%2C+S">Shehab Ahmed</a>, <a href="/search/eess?searchtype=author&amp;query=Konstantinou%2C+C">Charalambos Konstantinou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15797v1-abstract-short" style="display: inline;"> Traditionally, Volt/VAR optimization (VVO) is performed in distribution networks through legacy devices such as on-load tap changers (OLTCs), voltage regulators (VRs), and capacitor banks. With the amendment in IEEE 1547 standard, distributed energy resources (DERs) can now provide reactive power support to the grid. For this, renewable energy-based DERs, such as PV, are interfaced with the distri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15797v1-abstract-full').style.display = 'inline'; document.getElementById('2308.15797v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15797v1-abstract-full" style="display: none;"> Traditionally, Volt/VAR optimization (VVO) is performed in distribution networks through legacy devices such as on-load tap changers (OLTCs), voltage regulators (VRs), and capacitor banks. With the amendment in IEEE 1547 standard, distributed energy resources (DERs) can now provide reactive power support to the grid. For this, renewable energy-based DERs, such as PV, are interfaced with the distribution networks through smart inverters (SIs). Due to the intermittent nature of such resources, VVO transforms into a dynamic problem that requires extensive communication between the VVO controller and devices performing the VVO scheme. This communication, however, can be potentially tampered with by an adversary rendering the VVO ineffective. In this regard, it is important to assess the impact of cyberattacks on the VVO scheme. This paper develops a real-time co-simulation setup to assess the effect of cyberattacks on VVO. The setup consists of a real-time power system simulator, a communication network emulator, and a master controller in a system-in-the-loop (SITL) setup. The DNP3 communication protocol is adopted for the underlying communication infrastructure. The results show that corrupted communication messages can lead to violation of voltage limits, increased number of setpoint updates of VRs, and economic loss. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15797v1-abstract-full').style.display = 'none'; document.getElementById('2308.15797v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2023 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14304">arXiv:2307.14304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14304">pdf</a>, <a href="https://arxiv.org/ps/2307.14304">ps</a>, <a href="https://arxiv.org/format/2307.14304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> A Constraint Enforcement Deep Reinforcement Learning Framework for Optimal Energy Storage Systems Dispatch </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Hou%2C+S">Shengren Hou</a>, <a href="/search/eess?searchtype=author&amp;query=Duque%2C+E+M+S">Edgar Mauricio Salazar Duque</a>, <a href="/search/eess?searchtype=author&amp;query=Palensky%2C+P">Peter Palensky</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14304v1-abstract-short" style="display: inline;"> The optimal dispatch of energy storage systems (ESSs) presents formidable challenges due to the uncertainty introduced by fluctuations in dynamic prices, demand consumption, and renewable-based energy generation. By exploiting the generalization capabilities of deep neural networks (DNNs), deep reinforcement learning (DRL) algorithms can learn good-quality control models that adaptively respond to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14304v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14304v1-abstract-full" style="display: none;"> The optimal dispatch of energy storage systems (ESSs) presents formidable challenges due to the uncertainty introduced by fluctuations in dynamic prices, demand consumption, and renewable-based energy generation. By exploiting the generalization capabilities of deep neural networks (DNNs), deep reinforcement learning (DRL) algorithms can learn good-quality control models that adaptively respond to distribution networks&#39; stochastic nature. However, current DRL algorithms lack the capabilities to enforce operational constraints strictly, often even providing unfeasible control actions. To address this issue, we propose a DRL framework that effectively handles continuous action spaces while strictly enforcing the environments and action space operational constraints during online operation. Firstly, the proposed framework trains an action-value function modeled using DNNs. Subsequently, this action-value function is formulated as a mixed-integer programming (MIP) formulation enabling the consideration of the environment&#39;s operational constraints. Comprehensive numerical simulations show the superior performance of the proposed MIP-DRL framework, effectively enforcing all constraints while delivering high-quality dispatch decisions when compared with state-of-the-art DRL algorithms and the optimal solution obtained with a perfect forecast of the stochastic variables. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14304v1-abstract-full').style.display = 'none'; document.getElementById('2307.14304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has been submitted to a publication in a journal. This corresponds to the submitted version. After acceptance, it may be removed depending on the journal&#39;s requirements for copyright</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.10775">arXiv:2306.10775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.10775">pdf</a>, <a href="https://arxiv.org/format/2306.10775">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/0.1109/PESGM52003.2023.10252603">0.1109/PESGM52003.2023.10252603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of Dynamic Tariffs for Smart EV Charging on LV Distribution Network Operation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Verbist%2C+F">Flore Verbist</a>, <a href="/search/eess?searchtype=author&amp;query=Panda%2C+N+K">Nanda Kishor Panda</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a>, <a href="/search/eess?searchtype=author&amp;query=Palensky%2C+P">Peter Palensky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.10775v1-abstract-short" style="display: inline;"> With a growing share of electric vehicles (EVs) in our distribution grids, the need for smart charging becomes indispensable to minimise grid reinforcement. To circumvent the associated capacity limitations, this paper evaluates the effectiveness of different levels of network constraints and different dynamic tariffs, including a dynamic network tariff. A detailed optimisation model is first deve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10775v1-abstract-full').style.display = 'inline'; document.getElementById('2306.10775v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.10775v1-abstract-full" style="display: none;"> With a growing share of electric vehicles (EVs) in our distribution grids, the need for smart charging becomes indispensable to minimise grid reinforcement. To circumvent the associated capacity limitations, this paper evaluates the effectiveness of different levels of network constraints and different dynamic tariffs, including a dynamic network tariff. A detailed optimisation model is first developed for public charging electric vehicles in a representative Dutch low voltage (LV) distribution network, susceptible to congestion and voltage problems by 2050 without smart charging of EVs. Later, a detailed reflection is made to assess the influence of the modelled features on the distribution system operator (DSO), charge point operator (CPO) costs, and the EVs&#39; final state-of-charge (SOC) for both mono- (V1G) and bi-directional (V2G) charging. Results show that the dynamic network tariff outperforms other flat tariffs by increasing valley-filling. Consequently, compared to regular day-ahead pricing, a {significant} reduction in the frequency of congestion in the lines is achieved. In addition, V2G ensures the joint optimum for different stakeholders causing adequate EV user satisfaction, decreased CPO costs compared to conventional charging and fewer violations of grid constraints for the DSOs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10775v1-abstract-full').style.display = 'none'; document.getElementById('2306.10775v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the proceedings of IEEE PES GM 2023, Orlando, Florida</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05484">arXiv:2305.05484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05484">pdf</a>, <a href="https://arxiv.org/ps/2305.05484">ps</a>, <a href="https://arxiv.org/format/2305.05484">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Optimal Energy System Scheduling Using A Constraint-Aware Reinforcement Learning Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Shengren%2C+H">Hou Shengren</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a>, <a href="/search/eess?searchtype=author&amp;query=Duque%2C+E+M+S">Edgar Mauricio Salazar Duque</a>, <a href="/search/eess?searchtype=author&amp;query=Palensky%2C+P">Peter Palensky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05484v1-abstract-short" style="display: inline;"> The massive integration of renewable-based distributed energy resources (DERs) inherently increases the energy system&#39;s complexity, especially when it comes to defining its operational schedule. Deep reinforcement learning (DRL) algorithms arise as a promising solution due to their data-driven and model-free features. However, current DRL algorithms fail to enforce rigorous operational constraints&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05484v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05484v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05484v1-abstract-full" style="display: none;"> The massive integration of renewable-based distributed energy resources (DERs) inherently increases the energy system&#39;s complexity, especially when it comes to defining its operational schedule. Deep reinforcement learning (DRL) algorithms arise as a promising solution due to their data-driven and model-free features. However, current DRL algorithms fail to enforce rigorous operational constraints (e.g., power balance, ramping up or down constraints) limiting their implementation in real systems. To overcome this, in this paper, a DRL algorithm (namely MIP-DQN) is proposed, capable of \textit{strictly} enforcing all operational constraints in the action space, ensuring the feasibility of the defined schedule in real-time operation. This is done by leveraging recent optimization advances for deep neural networks (DNNs) that allow their representation as a MIP formulation, enabling further consideration of any action space constraints. Comprehensive numerical simulations show that the proposed algorithm outperforms existing state-of-the-art DRL algorithms, obtaining a lower error when compared with the optimal global solution (upper boundary) obtained after solving a mathematical programming formulation with perfect forecast information; while strictly enforcing all operational constraints (even in unseen test days). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05484v1-abstract-full').style.display = 'none'; document.getElementById('2305.05484v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00564">arXiv:2301.00564</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.00564">pdf</a>, <a href="https://arxiv.org/ps/2301.00564">ps</a>, <a href="https://arxiv.org/format/2301.00564">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.35833/MPCE.2022.000452">10.35833/MPCE.2022.000452 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Estimating Risk-Aware Flexibility Areas for EV Charging Pools via Stochastic AC-OPF </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Giraldo%2C+J+S">Juan S. Giraldo</a>, <a href="/search/eess?searchtype=author&amp;query=Arias%2C+N+B">Nataly Banol Arias</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a>, <a href="/search/eess?searchtype=author&amp;query=Vlasiou%2C+M">Maria Vlasiou</a>, <a href="/search/eess?searchtype=author&amp;query=Hoogsteen%2C+G">Gerwin Hoogsteen</a>, <a href="/search/eess?searchtype=author&amp;query=Hurink%2C+J+L">Johann L. Hurink</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00564v1-abstract-short" style="display: inline;"> This paper introduces a stochastic AC-OPF (SOPF) for the flexibility management of electric vehicle (EV) charging pools in distribution networks under uncertainty. The SOPF considers discrete utility functions from charging pools as a compensation mechanism for eventual energy not served to their charging tasks. An application of the proposed SOPF is described where a distribution system operator&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00564v1-abstract-full').style.display = 'inline'; document.getElementById('2301.00564v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00564v1-abstract-full" style="display: none;"> This paper introduces a stochastic AC-OPF (SOPF) for the flexibility management of electric vehicle (EV) charging pools in distribution networks under uncertainty. The SOPF considers discrete utility functions from charging pools as a compensation mechanism for eventual energy not served to their charging tasks. An application of the proposed SOPF is described where a distribution system operator (DSO) requires flexibility to each charging pool in a day-ahead time frame, minimizing the cost for flexibility while guaranteeing technical limits. Flexibility areas are defined for each charging pool and calculated as a function of a risk parameter involving the solution&#39;s uncertainty. Results show that all players can benefit from this approach, i.e., the DSO obtains a risk-aware solution, while charging pools/tasks perceive a reduction in the total energy payment due to flexibility services. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00564v1-abstract-full').style.display = 'none'; document.getElementById('2301.00564v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.00728">arXiv:2208.00728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.00728">pdf</a>, <a href="https://arxiv.org/ps/2208.00728">ps</a>, <a href="https://arxiv.org/format/2208.00728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Performance Comparison of Deep RL Algorithms for Energy Systems Optimal Scheduling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Shengren%2C+H">Hou Shengren</a>, <a href="/search/eess?searchtype=author&amp;query=Salazar%2C+E+M">Edgar Mauricio Salazar</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a>, <a href="/search/eess?searchtype=author&amp;query=Palensky%2C+P">Peter Palensky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.00728v1-abstract-short" style="display: inline;"> Taking advantage of their data-driven and model-free features, Deep Reinforcement Learning (DRL) algorithms have the potential to deal with the increasing level of uncertainty due to the introduction of renewable-based generation. To deal simultaneously with the energy systems&#39; operational cost and technical constraints (e.g, generation-demand power balance) DRL algorithms must consider a trade-of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00728v1-abstract-full').style.display = 'inline'; document.getElementById('2208.00728v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.00728v1-abstract-full" style="display: none;"> Taking advantage of their data-driven and model-free features, Deep Reinforcement Learning (DRL) algorithms have the potential to deal with the increasing level of uncertainty due to the introduction of renewable-based generation. To deal simultaneously with the energy systems&#39; operational cost and technical constraints (e.g, generation-demand power balance) DRL algorithms must consider a trade-off when designing the reward function. This trade-off introduces extra hyperparameters that impact the DRL algorithms&#39; performance and capability of providing feasible solutions. In this paper, a performance comparison of different DRL algorithms, including DDPG, TD3, SAC, and PPO, are presented. We aim to provide a fair comparison of these DRL algorithms for energy systems optimal scheduling problems. Results show DRL algorithms&#39; capability of providing in real-time good-quality solutions, even in unseen operational scenarios, when compared with a mathematical programming model of the energy system optimal scheduling problem. Nevertheless, in the case of large peak consumption, these algorithms failed to provide feasible solutions, which can impede their practical implementation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00728v1-abstract-full').style.display = 'none'; document.getElementById('2208.00728v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.09831">arXiv:2202.09831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.09831">pdf</a>, <a href="https://arxiv.org/format/2202.09831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Behind Closed Doors: Process-Level Rootkit Attacks in Cyber-Physical Microgrid Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Rath%2C+S">Suman Rath</a>, <a href="/search/eess?searchtype=author&amp;query=Zografopoulos%2C+I">Ioannis Zografopoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Vergara%2C+P+P">Pedro P. Vergara</a>, <a href="/search/eess?searchtype=author&amp;query=Nikolaidis%2C+V+C">Vassilis C. Nikolaidis</a>, <a href="/search/eess?searchtype=author&amp;query=Konstantinou%2C+C">Charalambos Konstantinou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.09831v1-abstract-short" style="display: inline;"> Embedded controllers, sensors, actuators, advanced metering infrastructure, etc. are cornerstone components of cyber-physical energy systems such as microgrids (MGs). Harnessing their monitoring and control functionalities, sophisticated schemes enhancing MG stability can be deployed. However, the deployment of `smart&#39; assets increases the threat surface. Power systems possess mechanisms capable o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09831v1-abstract-full').style.display = 'inline'; document.getElementById('2202.09831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.09831v1-abstract-full" style="display: none;"> Embedded controllers, sensors, actuators, advanced metering infrastructure, etc. are cornerstone components of cyber-physical energy systems such as microgrids (MGs). Harnessing their monitoring and control functionalities, sophisticated schemes enhancing MG stability can be deployed. However, the deployment of `smart&#39; assets increases the threat surface. Power systems possess mechanisms capable of detecting abnormal operations. Furthermore, the lack of sophistication in attack strategies can render them detectable since they blindly violate power system semantics. On the other hand, the recent increase of process-aware rootkits that can attain persistence and compromise operations in undetectable ways requires special attention. In this work, we investigate the steps followed by stealthy rootkits at the process level of control systems pre- and post-compromise. We investigate the rootkits&#39; precompromise stage involving the deployment to multiple system locations and aggregation of system-specific information to build a neural network-based virtual data-driven model (VDDM) of the system. Then, during the weaponization phase, we demonstrate how the VDDM measurement predictions are paramount, first to orchestrate crippling attacks from multiple system standpoints, maximizing the impact, and second, impede detection blinding system operator situational awareness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09831v1-abstract-full').style.display = 'none'; document.getElementById('2202.09831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">IEEE Power &amp; Energy Society General Meeting (PESGM) 2022</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10