CINXE.COM
Search results for: environmentally friendly organic wastes
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: environmentally friendly organic wastes</title> <meta name="description" content="Search results for: environmentally friendly organic wastes"> <meta name="keywords" content="environmentally friendly organic wastes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="environmentally friendly organic wastes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="environmentally friendly organic wastes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4600</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: environmentally friendly organic wastes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4600</span> The Effects of Agricultural Waste Compost Applications on Soil Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilker%20S%C3%B6nmez">Ilker Sönmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Kaplan"> Mustafa Kaplan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wastes that come out as a result of agricultural productions are disposed randomly and always by burning. Agricultural wastes have a great volume and agricultural wastes cause environmental pollution. Spent mushroom compost and cut flower carnation wastes have a serious potential in Turkey and especially in Antalya. One of the best evaluation methods of agricultural wastes is composting methods and so agricultural wastes transformed for a new product. In this study, agricultural wastes were evaluated the effects of compost and organic material on soil pH, EC, soil organic matter, and macro-micro nutrient contents of soil that it growth carnation. The effects of compost applications on soils were found to be statistically significant. Organic material applications have caused an increase in all physical and chemical parameters except for pH that pH decreased with compost added in soils. The best results among the compost applications were determined R1 compost that R1 compost included %75 Carnation Wastes + %25 Spent Mushroom Compost. The structural properties of soils can be improved with reusing of agricultural wastes by composting so it can be provided that decreasing the harmful effects of organic wastes on the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20wastes" title="agricultural wastes">agricultural wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=carnation%20wastes" title=" carnation wastes"> carnation wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20material" title=" organic material"> organic material</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20mushroom%20compost" title=" spent mushroom compost"> spent mushroom compost</a> </p> <a href="https://publications.waset.org/abstracts/28976/the-effects-of-agricultural-waste-compost-applications-on-soil-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4599</span> Influence of Environment-Friendly Organic Wastes on the Properties of Sandy Soil under Growing Zea mays L. in Arid Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Rashad">Mohamed Rashad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hafez"> Mohamed Hafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Emran"> Mohamed Emran</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20Aboukila"> Emad Aboukila</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Nassar"> Ibrahim Nassar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environment-friendly organic wastes of Brewers' spent grain, a byproduct of the brewing process, have recently used as soil amendment to improve soil fertility and plant production. In this work, treatments of 1% (T1) and 2% (T2) of spent grains, 1% (C1) and 2% (C2) of compost and mix of both sources (C1T1) were used and compared to the control for growing <em>Zea mays </em>L. on sandy soil under arid Mediterranean climate. Soils were previously incubated at 65% saturation capacity for a month. The most relevant soil physical and chemical parameters were analysed. Water holding capacity and soil organic matter (OM) increased significantly along the treatments with the highest values in T2. Soil pH decreased along the treatments and the lowest pH was in C1T1. Bicarbonate decreased by 69% in C1T1 comparing to control. Total nitrogen (TN) and available P varied significantly among all treatments and T2, C1T1 and C2 treatments increased 25, 17 and 11 folds in TN and 1.2, 0.6 and 0.3 folds in P, respectively related to control. Available K showed the highest values in C1T1. Soil micronutrients increased significantly along all treatments with the highest values in T2. After corn germination, significant variation was observed in the velocity of germination coefficients (VGC) among all treatments in the order of C1T1>T2>T1>C2>C1>control. The highest records of final germination and germination index were in C1T1 and T2. The spent grains may compensate deficiencies of macro and micronutrients in newly reclaimed sandy soils without adverse effects to sustain crop production with a rider that excessive or continuous use need to be circumvented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corn%20and%20squash%20germination" title="corn and squash germination">corn and squash germination</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20organic%20wastes" title=" environmentally friendly organic wastes"> environmentally friendly organic wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20carbon%20sequestration" title=" soil carbon sequestration"> soil carbon sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20grains%20as%20soil%20amendment" title=" spent grains as soil amendment"> spent grains as soil amendment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20holding%20capacity" title=" water holding capacity"> water holding capacity</a> </p> <a href="https://publications.waset.org/abstracts/51641/influence-of-environment-friendly-organic-wastes-on-the-properties-of-sandy-soil-under-growing-zea-mays-l-in-arid-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4598</span> Payment Subsidies for Environmentally-Friendly Agriculture on Rice Production in Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danielle%20Katrina%20Santos">Danielle Katrina Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Shimada"> Koji Shimada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmentally-friendly agriculture has been promoted for over two decades as a response to the environmental challenges brought by climate change and biological loss. Located above the equator, it is possible that Japan may benefit from future climate change, yet Japan is also a rarely developed country located in the Asian Monsoon climate region, making it vulnerable to the impacts of climate change. In this regard, the Japanese government has initiated policies to adapt to the adverse effects of climate change through the promotion and popularization of environmentally-friendly farming practices. This study aims to determine profit efficiency among environmentally-friendly rice farmers in Shiga Prefecture using the Stochastic Frontier Approach. A cross-sectional survey was conducted among 66 farmers from top rice-producing cities through a structured questionnaire. Results showed that the gross farm income of environmentally-friendly rice farmers was higher by JPY 316,223.00/ha. Production costs were also found to be higher among environmentally-friendly rice farmers, especially on labor costs, which accounted for 32% of the total rice production cost. The resulting net farm income of environmentally-friendly rice farmers was only higher by JPY 18,044/ha. Results from the stochastic frontier analysis further showed that the profit efficiency of conventional farmers was only 69% as compared to environmentally-friendly rice farmers who had a profit efficiency of 76%. Furthermore, environmentally-friendly agriculture participation, other types of subsidy, educational level, and farm size were significant factors positively influencing profit efficiency. The study concluded that substitution of environmentally-friendly agriculture for conventional rice farming would result in an increased profit efficiency due to the direct payment subsidy and price premium received. The direct government policies that would strengthen the popularization of environmentally-friendly agriculture to increase the production of environmentally-friendly products and reduce pollution load to the Lake Biwa ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=profit%20efficiency" title="profit efficiency">profit efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally-friendly%20agriculture" title=" environmentally-friendly agriculture"> environmentally-friendly agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20farmers" title=" rice farmers"> rice farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20payment%20subsidies" title=" direct payment subsidies"> direct payment subsidies</a> </p> <a href="https://publications.waset.org/abstracts/115429/payment-subsidies-for-environmentally-friendly-agriculture-on-rice-production-in-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4597</span> Organic Farming Profitability: Evidence from South Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saem%20Lee">Saem Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanh%20Nguyen"> Thanh Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hio-Jung%20Shin"> Hio-Jung Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Koellner"> Thomas Koellner </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land-use management has an influence on the provision of ecosystem service in dynamic, agricultural landscapes. Agricultural land use is important for maintaining the productivity and sustainability of agricultural ecosystems. However, in Korea, intensive farming activities in this highland agricultural zone, the upper stream of Soyang has led to contaminated soil caused by over-use pesticides and fertilizers. This has led to decrease in water and soil quality, which has consequences for ecosystem services and human wellbeing. Conventional farming has still high percentage in this area and there is no special measure to prevent low water quality caused by farming activities. Therefore, the adoption of environmentally friendly farming has been considered one of the alternatives that lead to improved water quality and increase in biomass production. Concurrently, farm households with environmentally friendly farming have occupied still low rates. Therefore, our research involved a farm household survey spanning conventional farming, the farm in transition and organic farming in Soyang watershed. Another purpose of our research was to compare economic advantage of the farmers adopting environmentally friendly farming and non-adaptors and to investigate the different factors by logistic regression analysis with socio-economic and benefit-cost ratio variables. The results found that farmers with environmentally friendly farming tended to be younger than conventional farming and farmer in transition. They are similar in terms of gender which was predominately male. Farmers with environmentally friendly farming were more educated and had less farming experience than conventional farming and farmer in transition. Based on the benefit-cost analysis, total costs that farm in transition farmers spent for one year are about two times as much as the sum of costs in environmentally friendly farming. The benefit of organic farmers was assessed with 2,800 KRW per household per year. In logistic regression, the factors having statistical significance are subsidy and district, residence period and benefit-cost ratio. And district and residence period have the negative impact on the practice of environmentally friendly farming techniques. The results of our research make a valuable contribution to provide important information to describe Korean policy-making for agricultural and water management and to consider potential approaches to policy that would substantiate ways beneficial for sustainable resource management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title="organic farming">organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=profitability" title=" profitability"> profitability</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20land-use" title=" agricultural land-use"> agricultural land-use</a> </p> <a href="https://publications.waset.org/abstracts/2004/organic-farming-profitability-evidence-from-south-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4596</span> M. J. Rodríguez, F. M. Sánchez, B. Velardo, P. Calvo, M. J. Serradilla, J. Delgado, J. M. López</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Q.%20Rzina">Q. Rzina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lahrouni"> M. Lahrouni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rida"> S. Rida</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Saadaoui"> N. Saadaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Almossaid"> Y. Almossaid</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Oufdou"> K. Oufdou</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Fares"> K. Fares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many organic solid wastes are produced in the world. Poultry manure (PM), municipal organic wastes (MOW) and sugar beet lime sludge (LS) are produced in large quantities in Morocco. The co-composting of these organic wastes was investigated. The recycling and the valorization of such wastes is environmentally and economically beneficial especially for PM which is known source of bacterial pathogens. The aerobic biodegradation process was carried out by using three windrows of variable compositions: C1 prepared without LS (only MOW were composted with PM), C2 prepared from MOW plus PM and10% LS; and the last one C3 from MOW plus PM and 20% LS. The main process physico-chemical parameters (temperature, pH, humidity and C/N) and microbiological populations (mesophilic and thermophilic flora, total coliform, fecal coliform, Streptococci, Staphylococcus aureus and mesophilic fungi) were monitored over three months to ascertain the compost maturity and to ensure the compost hygienic aspect. The final products were characterized by their relatively high organic matter content, and low C/N ratio of 10.6-10.9. The organic matter degradation was reached approximately 59% for C2 and C3. In addition, the monitoring of the microbial population showed that the produced composts are mature and hygienic. The agronomic valorization of the final composts was tested on radish plant with tree level of composts and poultry manure without composting. The primary results of field trial showed a growth of radish plant biomass and root development without any phytotoxicity detected which reflects the quality of the composts produced. As for poultry manure it allowed to have a better results than other composts because of its readily available nitrogen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20organic%20wastes" title=" municipal organic wastes"> municipal organic wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20manure" title=" poultry manure"> poultry manure</a>, <a href="https://publications.waset.org/abstracts/search?q=radish%20crop" title=" radish crop"> radish crop</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime%20sludge" title=" sugar beet lime sludge"> sugar beet lime sludge</a> </p> <a href="https://publications.waset.org/abstracts/42134/m-j-rodriguez-f-m-sanchez-b-velardo-p-calvo-m-j-serradilla-j-delgado-j-m-lopez" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4595</span> Design of Organic Inhibitors from Quantum Chemistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahma%20Tibigui">Rahma Tibigui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Hadj%20Said"> Ikram Hadj Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Belkada"> Rachid Belkada</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Hammoutene"> Dalila Hammoutene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vulnerability of industrial facilities is highly concerned with multiple risks from corrosion. The commonly adopted solution is based on the use of organic inhibitors, which are gradually being replaced by environmentally friendly organic inhibitors. In our work, we carried out a quantum chemical study based on the Density Functional Theory (DFT) method at the B3LYP/6-311G (d,p) level of theory. The inhibitory performance of a derivative of the tetrazole molecule has been investigated and reported as a carbon steel-friendly corrosion inhibitor in hydrochloric acid (HCl) medium. The relationship is likely to exist between the molecular structure of this compound as well as its various global reactivity descriptors, and its corrosion inhibition efficiency, which was examined and then discussed. The results show low values of ΔE, which represent strong adsorption of the inhibitor on the steel surface. Moreover, the flat adsorption orientation confirmed the great ability to donate (accept) electrons to (from) steel, fabricating an anchored barrier to prevent steel from corrosion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-friendly" title="eco-friendly">eco-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibitors" title=" corrosion inhibitors"> corrosion inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=tetrazole" title=" tetrazole"> tetrazole</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a> </p> <a href="https://publications.waset.org/abstracts/169362/design-of-organic-inhibitors-from-quantum-chemistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4594</span> Anaerobic Digestion of Organic Wastes for Biogas Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayhan%20Varol">Ayhan Varol</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysenur%20Ugurlu"> Aysenur Ugurlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the depletion of fossil fuels and climate change, there is a rising interest in renewable energy sources. In this concept, a wide range of biomass (energy crops, animal manure, solid wastes, etc.) are used for energy production. There has been a growing interest in biomethane production from biomass. Biomethane production from organic wastes is a promising alternative for waste management by providing organic matter stabilization. Anaerobic digestion of organic material produces biogas, and organic substrate is degraded into a more stable material. Therefore, anaerobic digestion technology helps reduction of carbon emissions and produces renewable energy. The hydraulic retention time (HRT) and organic loading rate (OLR), as well as TS (VS) loadings, influences the anaerobic digestion of organic wastes significantly. The optimum range for HRT varies between 15 days to 30 days, whereas OLR differs between 0.5 to 5 g/L.d depending on the substrate type and its lipid, protein and carbohydrate contents. The organic wastes have biogas production potential through anaerobic digestion. In this study, biomethane production potential of wastes like sugar beet bagasse, agricultural residues, food wastes, olive mill pulp, and dairy manure having different characteristics was investigated in mesophilic CSTR reactor, and their performances were compared. The reactor was mixed in order to provide homogenized content at a rate of 80 rpm. The organic matter content of these wastes was between 85 to 94 % with 61% (olive pulp) to 22 % (food waste) dry matter content. The hydraulic retention time changed between 20-30 days. High biogas productions, 13.45 to 5.70 mL/day, were achieved from the wastes studied when operated at 9 to 10.5% TS loadings where OLR varied between 2.92 and 3.95 gVS/L.day. The results showed that food wastes have higher specific methane production rate and volumetric methane production potential than the other wastes studied, under the similar OLR values. The SBP was 680, 585, 540, 390 and 295 mL/g VS for food waste, agricultural residues, sugar beet bagasse, olive pulp and dairy manure respectively. The methane content of the biogas varied between 72 and 60 %. The volatile solids conversion rate for food waste was 62%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas%20production" title="biogas production">biogas production</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20wastes" title=" organic wastes"> organic wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=biomethane" title=" biomethane"> biomethane</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a> </p> <a href="https://publications.waset.org/abstracts/52438/anaerobic-digestion-of-organic-wastes-for-biogas-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4593</span> Potentiality of Biohythane Process for the Gaseous Energy Recovery from Organic Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debabrata%20Das">Debabrata Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Mishra"> Preeti Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A two-phase anaerobic process combining biohydrogen followed by biomethane (biohythane technology) serves as an environment-friendly and economically sustainable approach for the improved valorization of organic wastes. Suitability of the pure cultures like Klebsiela pneumonia, C. freundii, B. coagulan, etc. and mixed acidogenic cultures for the biohydrogen production was already studied. The characteristics of organic wastes play a critical role in biohydrogen production. The choice of an appropriate combination of complementary organic wastes can vastly improve the bioenergy generation besides achieving the significant cost reduction. Suitability and economic viability of using the groundnut deoiled cake (GDOC), mustard deoiled cake (MDOC), distillers’ dried grain with soluble (DDGS) and algal biomass (AB) as a co-substrate were studied for a biohythane production. Results show that maximum gaseous energy of 20.7, 9.3, 16.7 and 15.6 % was recovered using GDOC, MDOC, DDGS and AB in the two stage biohythane production, respectively. Both GDOC and DDGS were found to be better co-substrates as compared to MDOC and AB in terms of hythane production, respectively. The maximum cumulative hydrogen and methane production of 150 and 64 mmol/L were achieved using GDOC. Further, 98 % reduction in substrate input cost (SIC) was achieved using the co-supplementation procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biohythane" title="Biohythane">Biohythane</a>, <a href="https://publications.waset.org/abstracts/search?q=algal%20biomass" title=" algal biomass"> algal biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=distillers%E2%80%99%20dried%20grain%20with%20soluble%20%28DDGS%29" title=" distillers’ dried grain with soluble (DDGS)"> distillers’ dried grain with soluble (DDGS)</a>, <a href="https://publications.waset.org/abstracts/search?q=groundnut%20deoiled%20cake%20%28GDOC%29" title=" groundnut deoiled cake (GDOC)"> groundnut deoiled cake (GDOC)</a>, <a href="https://publications.waset.org/abstracts/search?q=mustard%20deoiled%20cake%20%28MDOC%29" title=" mustard deoiled cake (MDOC)"> mustard deoiled cake (MDOC)</a> </p> <a href="https://publications.waset.org/abstracts/71721/potentiality-of-biohythane-process-for-the-gaseous-energy-recovery-from-organic-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4592</span> Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Sources </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annisa%20Ulfah%20Pristya">Annisa Ulfah Pristya</a>, <a href="https://publications.waset.org/abstracts/search?q=Andi%20Setiawan"> Andi Setiawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electricity is the primary requirement today's world, including Indonesia. This is because electricity is a source of electrical energy that is flexible to use. Fossil energy sources are the major energy source that is used as a source of energy power plants. Unfortunately, this conversion process impacts on the depletion of fossil fuel reserves and causes an increase in the amount of CO2 in the atmosphere, disrupting health, ozone depletion, and the greenhouse effect. Solutions have been applied are solar cells, ocean wave power, the wind, water, and so forth. However, low efficiency and complicated treatment led to most people and industry in Indonesia still using fossil fuels. Referring to this Fuel Cell was developed. Fuel Cells are electrochemical technology that continuously converts chemical energy into electrical energy for the fuel and oxidizer are the efficiency is considerably higher than the previous natural source of electrical energy, which is 40-60%. However, Fuel Cells still have some weaknesses in terms of the use of an expensive platinum catalyst which is limited and not environmentally friendly. Because of it, required the simultaneous source of electrical energy and environmentally friendly. On the other hand, Indonesia is a rich country in marine sediments and organic content that is never exhausted. Stacking the organic component can be an alternative energy source continued development of fuel cell is A Microbial Fuel Cell. Microbial Fuel Cells (MFC) is a tool that uses bacteria to generate electricity from organic and non-organic compounds. MFC same tools as usual fuel cell composed of an anode, cathode and electrolyte. Its main advantage is the catalyst in the microbial fuel cell is a microorganism and working conditions carried out in neutral solution, low temperatures, and environmentally friendly than previous fuel cells (Chemistry Fuel Cell). However, when compared to Chemistry Fuel Cell, MFC only have an efficiency of 40%. Therefore, the authors provide a solution in the form of Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Source. Nano-MFC has the advantage of an effective, high efficiency, cheap and environmental friendly. Related stakeholders that helped are government ministers, especially Energy Minister, the Institute for Research, as well as the industry as a production executive facilitator. strategic steps undertaken to achieve that begin from conduct preliminary research, then lab scale testing, and dissemination and build cooperation with related parties (MOU), conduct last research and its applications in the field, then do the licensing and production of Nano-MFC on an industrial scale and publications to the public. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNT" title="CNT">CNT</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=electric" title=" electric"> electric</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/26712/nano-mfc-nano-microbial-fuel-cell-utilization-of-carbon-nano-tube-to-increase-efficiency-of-microbial-fuel-cell-power-as-an-effective-efficient-and-environmentally-friendly-alternative-energy-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4591</span> Pesticide Risk: A Study on the Effectiveness of Organic/Biopesticides in Sustainable Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berk%20K%C4%B1l%C4%B1%C3%A7">Berk Kılıç</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96mer%20Ayd%C4%B1n"> Ömer Aydın</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerem%20Mestani"> Kerem Mestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Defne%20Uzun"> Defne Uzun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In agriculture and farming, pesticides are frequently used to kill off or fend off any pests (bugs, bacteria, fungi, etc.). However, traditional pesticides have proven to have harmful effects on both the environment and the human body, such as hazards in the endocrine, neurodevelopmental, and reproductive systems. This experiment aims to test the effectiveness of organic/bio-pesticides (environmentally friendly pesticides) compared to traditional pesticides. Black pepper and garlic will be used as biopesticides in this experiment. The results support that organic farming applying organic pesticides operates through non-toxic mechanisms, offering minimal threats to human well-being and the environment. Consequently, consuming organic produce can significantly diminish the dangers associated with pesticide intake. In this study, method is introduced to reduce pesticide-related risks by promoting organic farming techniques within organic/bio-pesticide usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide" title="pesticide">pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic" title=" garlic"> garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20pepper" title=" black pepper"> black pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-pesticide" title=" bio-pesticide"> bio-pesticide</a> </p> <a href="https://publications.waset.org/abstracts/179368/pesticide-risk-a-study-on-the-effectiveness-of-organicbiopesticides-in-sustainable-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4590</span> Sustainable Use of Agricultural Waste to Enhance Food Security and Conserve the Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Tawfik">M. M. Tawfik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezzat%20M.%20Abd%20El%20Lateef"> Ezzat M. Abd El Lateef</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20B.%20Mekki"> B. B. Mekki</a>, <a href="https://publications.waset.org/abstracts/search?q=Amany%20A.%20Bahr"> Amany A. Bahr</a>, <a href="https://publications.waset.org/abstracts/search?q=Magda%20H.%20Mohamed"> Magda H. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Gehan%20S.%20Bakhoom"> Gehan S. Bakhoom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid increase in the world’s population coupled by decrease the arable land per capita has resulted into an increased demand for food which has in turn led to the production of large amounts of agricultural wastes, both at the farmer, municipality and city levels. Agricultural wastes can be a valuable resource for improving food security. Unfortunately, agricultural wastes are likely to cause pollution to the environment or even harm to human health. This calls for increased public awareness on the benefits and potential hazards of agricultural wastes, especially in developing countries. Agricultural wastes (residual stalks, straw, leaves, roots, husks, shells etcetera) and animal waste (manures) are widely available, renewable and virtually free, hence they can be an important resource. They can be converted into heat, steam, charcoal, methanol, ethanol, bio diesel as well as raw materials (animal feed, composting, energy and biogas construction etcetera). agricultural wastes are likely to cause pollution to the environment or even harm to human health, if it is not used in a sustainable manner. Organic wastes could be considered an important source of biofertilizer for enhancing food security in the small holder farming communities that would not afford use of expensive inorganic fertilizers. Moreover, these organic wastes contain high levels of nitrogen, phosphorus, potassium, and organic matter important for improving nutrient status of soils in urban agriculture. Organic compost leading to improved crop yields and its nutritional values as compared with inorganic fertilization. This paper briefly reviews how agricultural wastes can be used to enhance food security and conserve the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste" title="agricultural waste">agricultural waste</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20compost" title=" organic compost"> organic compost</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=valuable%20resources" title=" valuable resources"> valuable resources</a> </p> <a href="https://publications.waset.org/abstracts/22402/sustainable-use-of-agricultural-waste-to-enhance-food-security-and-conserve-the-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4589</span> Conversion of Carcinogenic Liquid-Wastes of Poly Vinyl Chloride (PVC) Industry to an Environmentally Safe Product: Corrosion Inhibitor and Biocide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Hegazy">Mohamed A. Hegazy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of Poly Vinyl Chloride (PVC) petrochemical companies produce huge amount of byproduct which characterized as carcinogenic liquid-wastes, insoluble in water, highly corrosive and highly offensive. This byproduct is partially use, a small part, in the production of hydrochloric acid and the huge part is a waste. Therefore, the aim of this work was to conversion of such PVC wastes, to an environmentally safe product that act as a corrosion Inhibitor for metals in aqueous media and as a biocide for microorganisms. This conversion method was accomplished mainly to protect the environment and to produce high economic value-products. The conversion process was established and the final product was tested for the toxicity, water solubility in comparison to the crude product. Furthermore, the end product was tested as a corrosion inhibitor in 1M HCl and as a broad-spectrum biocide against standard microbial strains and against the environmentally isolated Sulfate-reducing bacteria (SRB) microbial community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVC" title="PVC">PVC</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibitor" title=" corrosion inhibitor"> corrosion inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=biocide" title=" biocide"> biocide</a>, <a href="https://publications.waset.org/abstracts/search?q=SRB" title=" SRB"> SRB</a> </p> <a href="https://publications.waset.org/abstracts/127122/conversion-of-carcinogenic-liquid-wastes-of-poly-vinyl-chloride-pvc-industry-to-an-environmentally-safe-product-corrosion-inhibitor-and-biocide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4588</span> Barriers to Innovation Based on Environmentally Friendly Technology Adoption in Developing Countries: The Case of Production in Rural Areas in Cauca-Colombia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deycy%20Janeth%20Sanchez%20Preciado">Deycy Janeth Sanchez Preciado</a>, <a href="https://publications.waset.org/abstracts/search?q=Bjorn%20Claes"> Bjorn Claes</a>, <a href="https://publications.waset.org/abstracts/search?q=Paola%20Andrade"> Paola Andrade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of appropriate environmentally friendly technologies has aided communities in rural areas in emerging economies to better use their natural resources, increase productivity while reducing pollution. Moreover, it has improved their innovation capabilities and ability to develop products for new markets. However, despite the advances, the adoption of these technologies is not generalized and does not always show the expected benefits for the communities and other actors involved in the co-creation process. In this paper, we study the barriers that inhibit the adoption of technologies to reach innovation levels and study comparative cases in rural areas of Cauca in Colombia. We develop and test a theory grounded framework, and we compile an overview of the most important of barriers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technology%20adoption" title="technology adoption">technology adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20technology" title=" environmentally friendly technology"> environmentally friendly technology</a>, <a href="https://publications.waset.org/abstracts/search?q=developing%20countries" title=" developing countries"> developing countries</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20production" title=" rural production"> rural production</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=appropriate%20technology" title=" appropriate technology"> appropriate technology</a> </p> <a href="https://publications.waset.org/abstracts/139771/barriers-to-innovation-based-on-environmentally-friendly-technology-adoption-in-developing-countries-the-case-of-production-in-rural-areas-in-cauca-colombia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4587</span> Solid Waste Management through Mushroom Cultivation: An Eco Friendly Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mary%20Josephine">Mary Josephine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste of certain process can be the input source of other sectors in order to reduce environmental pollution. Today there are more and more solid wastes are generated, but only very small amount of those are recycled. So, the threatening of environmental pressure to public health is very serious. The methods considered for the treatment of solid waste are biogas tanks or processing to make animal feed and fertilizer, however, they did not perform well. An alternative approach is growing mushrooms on waste residues. This is regarded as an environmental friendly solution with potential economic benefit. The substrate producers do their best to produce quality substrate at low cost. Apart from other methods, this can be achieved by employing biologically degradable wastes used as the resource material component of the substrate. Mushroom growing is a significant tool for the restoration, replenishment and remediation of Earth’s overburdened ecosphere. One of the rational methods of waste utilization involves locally available wastes. The present study aims to find out the yield of mushroom grown on locally available waste for free and to conserve our environment by recycling wastes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=mushroom" title=" mushroom"> mushroom</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation" title=" remediation"> remediation</a> </p> <a href="https://publications.waset.org/abstracts/1389/solid-waste-management-through-mushroom-cultivation-an-eco-friendly-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4586</span> New Environmentally Friendly Material for the Purification of the Fresh Water from Oil Pollution </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ashour">M. A. Ashour </a> </p> <p class="card-text"><strong>Abstract:</strong></p> As it is known Egypt is one of the countries having oldest sugarcane industry, which goes back to the year 710 AD. Cane plantations are the main agricultural product in five governorates in Upper Egypt (El-Menia, Sohag, Qena, Luxor, and Aswan), producing not less than 16 million tons a year. Eight factories (Abou-korkas, Gena, Nagaa-Hamadi, Deshna, Kous, Armant, Edfuo, and Komombo), located in such upper Egypt governorates generates huge amount of wastes during the manufacturing stage, the so called bagasse which is the fibrous, and cellulosic materials remaining after the era of the sugarcane and the juice extraction, presents about 30% of such wastes. The amount of bagasse generated yearly through the manufacturing stage of the above mentioned 8 factories is approximately about 2.8 million tons, getting red safely of such huge amount, presents a serious environmental problem. Storage of that material openly in the so hot climate in upper Egypt, may cause its self-ignition under air temperature reaches 50 degrees centigrade in summer, due to the remained residual content of sugar. At the same time preparing places for safely storage for such amount is very expensive with respect to the valueless of it. So the best way for getting rid of bagasse is converting it into an added value environmentally friendly material, especially till now the utilization of it is so limited. Since oil pollution became a serious concern, the issue of environmental cleaning arises. With the structure of sugarcane bagasse, which contains fiber and high content of carbon, it can be an adsorbent to adsorb the oil contamination from the water. The present study is a trail to introduce a new material for the purification of water systems to score two goals at once, the first is getting rid of that harmful waste safely, the second is converting it to a commercial valuable material for cleaning, and purifying the water from oil spills, and petroleum pollution. Introduced the new material proved very good performance, and higher efficiency than other similar materials available in the local market, in both closed and open systems. The introduced modified material can absorb 10 times its weight of oil, while don't absorb any water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20wastes" title=" agricultural wastes"> agricultural wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20pollution%20control" title=" oil pollution control"> oil pollution control</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane" title=" sugarcane "> sugarcane </a> </p> <a href="https://publications.waset.org/abstracts/39152/new-environmentally-friendly-material-for-the-purification-of-the-fresh-water-from-oil-pollution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4585</span> Waste Minimization through Vermicompost: An Alternative Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mary%20Fabiola">Mary Fabiola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vermicompost is the product or process of composting using various worms. Large-scale vermicomposting is practiced in Canada, Italy, Japan, Malaysia, the Philippines, and the United States. The vermicompost may be used for farming, landscaping, and creating compost tea or for sale. Some of these operations produce worms for bait and/or home vermicomposting. As a processing system, The vermicomposting of organic waste is very simple. Worms ingest the waste material-break it up in their rudimentary. Gizzards, consume the digestible/putrefiable portion and then excrete a stable, Humus-like material that can be immediately marketed. Vermitechnology can be a promising technique that has shown its potential in certain challenging areas like augmentation of food production, waste recycling, management of solid wastes etc. There is no doubt that in India, where on side pollution is increasing due to accumulation of organic wastes and on the other side there is shortage of organic manure, which could increase the fertility and productivity of the land and produce nutritive and safe food. So, the scope for vermicomposting is enormous. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollution" title="pollution">pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20wastes" title=" solid wastes"> solid wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20recycling" title=" waste recycling "> waste recycling </a> </p> <a href="https://publications.waset.org/abstracts/14404/waste-minimization-through-vermicompost-an-alternative-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4584</span> Recycled Use of Solid Wastes in Building Material: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oriyomi%20M.%20Okeyinka">Oriyomi M. Okeyinka</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20A.%20Oloke"> David A. Oloke</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20M.%20Khatib"> Jamal M. Khatib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large quantities of solid wastes being generated worldwide from sources such as household, domestic, industrial, commercial and construction demolition activities, leads to environmental concerns. Utilization of these wastes in making building construction materials can reduce the magnitude of the associated problems. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. Recycling which is regarded as the third most preferred waste disposal option, with its numerous environmental benefits, stand as a viable option to offset the environmental impact associated with the construction industry. This paper reviews the results of laboratory tests and important research findings, and the potential of using these wastes in building construction materials with focus on sustainable development. Research gaps, which includes; the need to develop standard mix design for solid waste based building materials; the need to develop energy efficient method of processing solid waste use in concrete; the need to study the actual behavior or performance of such building materials in practical application and the limited real life application of such building materials have also been identified. Therefore a research is being proposed to develop an environmentally friendly, lightweight building block from recycled waste paper, without the use of cement, and with properties suitable for use as walling unit. This proposed research intends to incorporate, laboratory experimentation and modeling to address the identified research gaps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycling" title="recycling">recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20wastes" title=" solid wastes"> solid wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a> </p> <a href="https://publications.waset.org/abstracts/12957/recycled-use-of-solid-wastes-in-building-material-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4583</span> A Comparative Study on Fish Raised with Feed Formulated with Various Organic Wastes and Commercial Feed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Chijioke%20Dike">Charles Chijioke Dike</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugh%20Clifford%20Chima%20Maduka"> Hugh Clifford Chima Maduka</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinwe%20A.%20Isibor"> Chinwe A. Isibor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish is among the products consumed at a very high rate. In most countries of the world, fish are used as part of the daily meal. The high cost of commercial fish feeds in Africa has made it necessary the development of an alternative source of fish feed processing from organic waste. The objective of this research is to investigate the efficacy of fish feeds processed from various animal wastes in order to know whether those feeds shall be alternatives to commercial feeds. This work shall be carried out at the Research Laboratory Unit of the Department of Human Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Nnamdi Azikiwe University (NAU), Nnewi Campus, Anambra State. The fingerlings to be used shall be gotten from the Agricultural Department of NAU, Awka, Anambra State, and allowed to acclimatize for 14 d. Animal and food wastes shall be gotten from Nnewi. The fish shall be grouped into 1-13 (Chicken manure only, cow dung only, pig manure only, chicken manure + yeast, cow dung + yeast, pig manure + yeast, chicken manure + other wastes + yeast, cow dung + other wastes + yeast, and pig manure + other wastes + yeast. Feed assessment shall be carried out by determining bulk density, feed water absorption, feed hardness, feed oil absorption, and feed water stability. The nutritional analysis shall be carried out on the feeds processed. The risk assessment shall be done on the fish by determining methylmercury (MeHg), polycyclic aromatic hydrocarbons (PAHs), and dichloro-diphenyl-trichloroethane (DDT) in the fish. The results from this study shall be analyzed statistically using SPSS statistical software, version 25. The hypothesis is that fish feeds processed from animal wastes are efficient in raising catfish. The outcome of this study shall provide the basis for the formulation of fish feeds from organic wastes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=feeds" title=" feeds"> feeds</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk" title=" health risk"> health risk</a>, <a href="https://publications.waset.org/abstracts/search?q=wastes" title=" wastes"> wastes</a> </p> <a href="https://publications.waset.org/abstracts/161292/a-comparative-study-on-fish-raised-with-feed-formulated-with-various-organic-wastes-and-commercial-feed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4582</span> A Research for Determining Consumers' Tendency to Prefer Eco-Friendly Products within the Scope of Green Marketing Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haci%20Halil%20Baser">Haci Halil Baser</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurullah%20Ekmekci"> Nurullah Ekmekci</a>, <a href="https://publications.waset.org/abstracts/search?q=Muammer%20Zerenler"> Muammer Zerenler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the age of environmental concerns increasingly becoming more important, consumer attitudes towards environmentally sensitive products attract attention. Threats to the health and the environment are important factors for consumers to tend to eco-friendly practices and products. In this regard, it is seen positive increases in the tendency to consume organic food and recyclable products. Choosing products, selecting manufacturers and sellers have gained more importance because of increasing consumers' environmental concerns. In this case, it is very important for businesses to act eco-friendly approach in marketing. Green marketing has gained importance and became a concept that manufacturers' agenda by environmental understanding. Although the green marketing activities are common worldwide, studies on consumer perceptions and preferences are unsatisfactory in the literature. In this regard, this study aims to investigate the tendency of consumers to prefer eco-friendly products under the green marketing activities. In the frame of this information and the purpose of the study described above, the survey method has been used in the study. The obtained data have been analyzed through SPSS 20.0 software package, hypothesizes have been tested and suggestions have been made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20product" title="eco-friendly product">eco-friendly product</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20concerns" title=" environmental concerns"> environmental concerns</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20consumption" title=" green consumption"> green consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20marketing" title=" green marketing"> green marketing</a> </p> <a href="https://publications.waset.org/abstracts/53523/a-research-for-determining-consumers-tendency-to-prefer-eco-friendly-products-within-the-scope-of-green-marketing-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4581</span> Preparation of Heterogeneous Ferrite Catalysts and Their Application for Fenton-Like Oxidation of Radioactive Organic Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsien%20T.%20Hsieh">Hsien T. Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20R.%20Chen"> Chao R. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20C.%20Chuang"> Li C. Chuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20C.%20Shen"> Chin C. Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fenton oxidation technology is the general strategy for the treatment of organic compounds-contained wastewater. However, a considerable amount of ferric sludge was produced during the Fenton process as secondary wastes, which were needed to be further removed from the effluent and treated. In this study, heterogeneous catalysts based on ferrite oxide (Cu-Fe-Ce-O) were synthesized and characterized, and their application for Fenton-like oxidation of simulated and actual radioactive organic wastewater was investigated. The results of TOC decomposition efficiency around 54% ~ 99% were obtained when the catalyst loading, H<sub>2</sub>O<sub>2</sub> loading, pH, temperature, and reaction time were controlled. In this case, no secondary wastes formed and the given catalysts were able to be separated by magnetic devices and reused again. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fenton" title="fenton">fenton</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalyst" title=" heterogeneous catalyst"> heterogeneous catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/50149/preparation-of-heterogeneous-ferrite-catalysts-and-their-application-for-fenton-like-oxidation-of-radioactive-organic-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4580</span> Unlocking the Potential of Phosphatic Wastes: Sustainable Valorization Pathways for Synthesizing Functional Metal-Organic Frameworks and Zeolites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohammed%20Yimer">Ali Mohammed Yimer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayalew%20H.%20Assen"> Ayalew H. Assen</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Belmabkhout"> Youssef Belmabkhout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study delves into sustainable approaches for valorizing phosphatic wastes, specifically phosphate mining wastes and phosphogypsum, which are byproducts of phosphate industries and pose significant environmental challenges due to their accumulation. We propose a unified strategic synthesis method aimed at converting these wastes into hetero-functional porous materials. Our approach involves isolating the primary components of phosphatic wastes, such as CaO, SiO2 and Al2O3 to fabricate functional porous materials falling into two distinct classes. Firstly, alumina and silica components are extracted or isolated to produce zeolites (including CAN, GIS, SOD, FAU, and LTA), characterized by a Si/Al ratio of less than 5. Secondly, residual calcium is utilized to synthesize calcium-based metal–organic frameworks (Ca-MOFs) employing various organic linkers like Ca-BDC, Ca-BTC and Ca-TCPB (SBMOF-2), thereby providing flexibility in material design. Characterization techniques including XRD, SEM-EDX, FTIR, and TGA-MS affirm successful material assembly, while sorption analyses using N2, CO2, and H2O demonstrate the porosity of the materials. Particularly noteworthy is the water/alcohol separation potential exhibited by the Ca-BTC MOF, owing to its optimal pore aperture size (∼3.4 Å). To enhance replicability and scalability, detailed protocols for each synthesis step and specific conditions for each process are provided, ensuring that the methodology can be easily reproduced and scaled up for industrial applications. This synthetic transformation approach represents a valorization route for converting phosphatic wastes into extended porous structures, promising significant environmental and economic benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium-based%20metal-organic%20frameworks" title="calcium-based metal-organic frameworks">calcium-based metal-organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=low-silica%20zeolites" title=" low-silica zeolites"> low-silica zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20materials" title=" porous materials"> porous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20synthesis" title=" sustainable synthesis"> sustainable synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization"> valorization</a> </p> <a href="https://publications.waset.org/abstracts/188791/unlocking-the-potential-of-phosphatic-wastes-sustainable-valorization-pathways-for-synthesizing-functional-metal-organic-frameworks-and-zeolites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4579</span> The Optimization of the Parameters for Eco-Friendly Leaching of Precious Metals from Waste Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silindile%20Gumede">Silindile Gumede</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Mohammadi"> Amir Hossein Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mbuyu%20Germain%20Ntunka"> Mbuyu Germain Ntunka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Goal 12 of the 17 Sustainable Development Goals (SDGs) encourages sustainable consumption and production patterns. This necessitates achieving the environmentally safe management of chemicals and all wastes throughout their life cycle and the proper disposal of pollutants and toxic waste. Fluid catalytic cracking (FCC) catalysts are widely used in the refinery to convert heavy feedstocks to lighter ones. During the refining processes, the catalysts are deactivated and discarded as hazardous toxic solid waste. Spent catalysts (SC) contain high-cost metal, and the recovery of metals from SCs is a tactical plan for supplying part of the demand for these substances and minimizing the environmental impacts. Leaching followed by solvent extraction, has been found to be the most efficient method to recover valuable metals with high purity from spent catalysts. However, the use of inorganic acids during the leaching process causes a secondary environmental issue. Therefore, it is necessary to explore other alternative efficient leaching agents that are economical and environmentally friendly. In this study, the waste catalyst was collected from a domestic refinery and was characterised using XRD, ICP, XRF, and SEM. Response surface methodology (RSM) and Box Behnken design were used to model and optimize the influence of some parameters affecting the acidic leaching process. The parameters selected in this investigation were the acid concentration, temperature, and leaching time. From the characterisation results, it was found that the spent catalyst consists of high concentrations of Vanadium (V) and Nickel (Ni); hence this study focuses on the leaching of Ni and V using a biodegradable acid to eliminate the formation of the secondary pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20leaching" title="eco-friendly leaching">eco-friendly leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title=" metal recovery"> metal recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a> </p> <a href="https://publications.waset.org/abstracts/173528/the-optimization-of-the-parameters-for-eco-friendly-leaching-of-precious-metals-from-waste-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4578</span> Reorientation of Sustainable Livestock Management: A Case Study Applied to Wastes Management in Faculty of Animal Husbandry, Padjadjaran University, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raka%20Rahmatulloh">Raka Rahmatulloh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ilham%20Nugraha"> Mohammad Ilham Nugraha</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ifan%20Fathurrahman"> Muhammad Ifan Fathurrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The agricultural sector covers a wide area, one of them is livestock subsector that supply needs of the food source of animal protein. Animal protein is produced by the main livestock production such as meat, milk, eggs, etc. Besides the main production, livestock would produce metabolic residue, so called livestock wastes. Characteristics of livestock wastes can be either solid (feces), liquid (urine), and gas (methane) which turned out to be useful and has economical value when well-processed and well-controlled. Nowadays, this livestock wastes is considered as a source of pollutants, especially water pollution. If the source of pollutants used in an integrated way, it will have a positive impact on organic farming and a healthy environment. Management of livestock wastes can be integrated with the farming sector to the planting and caring that rely on fertilizers. Most Indonesian farmers still use chemical fertilizers, where the use of it in the long term will disturb the ecological balance of the environment. One of the main efforts is to use organic fertilizers instead of chemical fertilizer that conducted by the Faculty of Animal Husbandry, Padjadjaran University. The method is to use the solid waste of livestock and agricultural wastes into liquid organic fertilizer, feed additive, biogas and vermicompost through decomposition. The decomposition takes as long as 14 days including aeration and extraction process using water as a nutrients solvent media which contained in decomposes and disinfection media to release pathogenic microorganisms in decomposes. Liquid organic fertilizer has highly efficient for the farmers to have a ratio of carbon/nitrogen (C/N) 25/1 to 30/1 and neutral pH (6.5-7.5) which is good for plant growth. Feed additive may be given to improve the digestibility of feed so that substances can be easily absorbed by the body for production. Biogas contains methane (CH4), which has a high enough heat to produce electricity. Vermicompost is an overhaul of waste organic material that has excellent structure, porosity, aeration, drainage, and moisture holding capacity. Based on the case study above, an integrated livestock wastes management program strongly supports the Indonesian government in the achievement of sustainable livestock development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated" title="integrated">integrated</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock%20wastes" title=" livestock wastes"> livestock wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizer" title=" organic fertilizer"> organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20livestock%20development" title=" sustainable livestock development"> sustainable livestock development</a> </p> <a href="https://publications.waset.org/abstracts/59311/reorientation-of-sustainable-livestock-management-a-case-study-applied-to-wastes-management-in-faculty-of-animal-husbandry-padjadjaran-university-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4577</span> Anaerobic Co-Digestion of Sewage Sludge and Bagasse for Biogas Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raouf%20Ahmed%20Mohamed%20Hassan">Raouf Ahmed Mohamed Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Egypt, the excess sewage sludge from wastewater Treatment Plants (WWTPs) is rapidly increasing due to the continuous increase of population, urban planning and industrial developments. Also, cane bagasses constitute an important component of Urban Solid Waste (USW), especially at the south of Egypt, which are difficult to degrade under normal composting conditions. These wastes need to be environmentally managed to reduce the negative impacts of its application or disposal. In term of biogas recovery, the anaerobic digestion of sewage sludge or bagasse separately is inefficient, due to the presence of nutrients and minerals. Also, the Carbone-Nitrogen Ratio (C/N) play an important role, sewage sludge has a ratio varies from 6-16, where cane bagasse has a ratio around 150, whereas the suggested optimum C/N ratio for anaerobic digestion is in the range of 20 to 30. The anaerobic co-digestion is presented as a successful methodology that combines several biodegradable organic substrates able to decrease the amount of output wastes by biodegradation, sharing processing facilities, reducing operating costs, while enabling recovery of biogas. This paper presents the study of co-digestion of sewage sludge from wastewater treatment plants as a type of organic wastes and bagasse as agriculture wastes. Laboratory-scale mesophilic and thermophilic digesters were operated with varied hydraulic retention times. Different percentage of sludge and bagasse are investigated based on the total solids (TS). Before digestion, the bagasse was subjected to grinding pretreatment and soaked in distilled water (water pretreatment). The effect of operating parameters (mixing, temperature) is investigated in order to optimize the process in the biogas production. The yield and the composition of biogas from the different experiments were evaluated and the cumulative curves were estimated. The conducted tests did show that there is a good potential to using the co-digestion of wastewater sludge and bagasse for biogas production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-digestion" title="co-digestion">co-digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=bagasse" title=" bagasse"> bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic" title=" mesophilic"> mesophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic" title=" thermophilic"> thermophilic</a> </p> <a href="https://publications.waset.org/abstracts/2234/anaerobic-co-digestion-of-sewage-sludge-and-bagasse-for-biogas-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4576</span> Carbon Nanomaterials from Agricultural Wastes for Adsorption of Organic Pollutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Blachnio">Magdalena Blachnio</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Bogatyrov"> Viktor Bogatyrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariia%20Galaburda"> Mariia Galaburda</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Derylo-Marczewska"> Anna Derylo-Marczewska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural waste materials from traditional oil mill and after extraction of natural raw materials in supercritical conditions were used for the preparation of carbon nanomaterials (activated carbons) by two various methods. Chemical activation using acetic acid and physical activation with a gaseous agent (carbon dioxide) were chosen as mild and environmentally friendly ones. The effect of influential factors: type of raw material, temperature and activation agent on the porous structure characteristics of the materials was discussed by using N₂ adsorption/desorption isotherms at 77 K. Furthermore scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to examine the physicochemical properties of the obtained sorbents. Selection of a raw material and an optimization of the conditions of the synthesis process, allowed to obtain the cheap sorbents with a targeted distribution of pores enabling effective adsorption of the model organic pollutants carried out in the multicomponent systems. Adsorption behavior (capacity and rate) of the chosen activated carbons was estimated by utilizing Crystal violet (CV), 4-chlorophenoxyacetic acid (4-CPA), 2.4-dichlorophenoxyacetic acid (2.4-D) as the adsorbates. Both rate and adsorption capacity of the organics on the sorbents evidenced that the activated carbons could be effectively used in sewage treatment plants. The mechanisms of organics adsorption were studied and correlated with activated carbons properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20equilibrium" title=" adsorption equilibrium"> adsorption equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20kinetics" title=" adsorption kinetics"> adsorption kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=organics%20adsorption" title=" organics adsorption"> organics adsorption</a> </p> <a href="https://publications.waset.org/abstracts/90720/carbon-nanomaterials-from-agricultural-wastes-for-adsorption-of-organic-pollutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4575</span> Application of Metroxylon Sagu Waste in Textile Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazlina%20Shaari">Nazlina Shaari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainability is economic, social and environmental systems that make up the community in providing a healthy, productive, meaningful life for all community residents, present and future. The environmental profile of goods and services that satisfy our individual and societal needs were shaped by design activities. The integration of environmental aspect of product design, especially in textiles present much confusion surrounds the incorporation of environmental objectives into the design process. This paper explores the effective use of waste materials that can contribute to the development of more environmentally responsible practice in textile sector. It introduces key elements of the ecological approach and innovative ideas from waste to wealth. The paper focuses on the potential methods of utilizing sago residue as a natural colour enhancer in natural dyeing process. It will discover the potential of waste materials to be fully utilized to attempt to make the production of that textile more environmentally friendly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability" title="sustainability">sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=textiles" title=" textiles"> textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20materials" title=" waste materials"> waste materials</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly" title=" environmentally friendly"> environmentally friendly</a> </p> <a href="https://publications.waset.org/abstracts/1452/application-of-metroxylon-sagu-waste-in-textile-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4574</span> Using Construction Wastes and Recyclable Materials in Sustainable Concrete Manufacture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20T.%20El-Hawary">Mohamed T. El-Hawary</a>, <a href="https://publications.waset.org/abstracts/search?q=Carsten%20Koenke"> Carsten Koenke</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20M.%20El-Nemr"> Amr M. El-Nemr</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagy%20F.%20Hanna"> Nagy F. Hanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable construction materials using solid construction wastes are of great environmental and economic significance. Construction wastes, demolishing wastes, and wastes coming out from the preparation of traditional materials could be used in sustainable concrete manufacture, which is the main scope of this paper. Ceramics, clay bricks, marble, recycled concrete, and many other materials should be tested and validated for use in the manufacture of green concrete. Introducing waste materials in concrete helps in reducing the required landfills, leaving more space for land investments, and decrease the environmental impact of the concrete buildings industry in both stages -construction and demolition-. In this paper, marble aggregate is used as a replacement for the natural aggregate in sustainable green concrete production. The results showed that marble aggregates can be used as a full replacement for the natural aggregates in eco-friendly green concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarse%20aggregate%20replacement" title="coarse aggregate replacement">coarse aggregate replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=economical%20designs" title=" economical designs"> economical designs</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20concrete" title=" green concrete"> green concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=marble%20aggregates" title=" marble aggregates"> marble aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/119963/using-construction-wastes-and-recyclable-materials-in-sustainable-concrete-manufacture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4573</span> The Identification of Environmentally Friendly People: A Case of South Sumatera Province, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marpaleni">Marpaleni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intergovernmental Panel on Climate Change (IPCC) declared in 2007 that global warming and climate change are not just a series of events caused by nature, but rather caused by human behaviour. Thus, to reduce the impact of human activities on climate change it is required to have information about how people respond to the environmental issues and what constraints they face. However, information on these and other phenomena remains largely missing, or not fully integrated within the existing data systems. The proposed study is aimed at filling the gap in this knowledge by focusing on Environmentally Friendly Behaviour (EFB) of the people of Indonesia, by taking the province of South Sumatera as a case of study. EFB is defined as any activity in which people engage to improve the conditions of the natural resources and/or to diminish the impact of their behaviour on the environment. This activity is measured in terms of consumption in five areas at the household level, namely housing, energy, water usage, recycling and transportation. By adopting the Indonesia’s Environmentally Friendly Behaviour conducted by Statistics Indonesia in 2013, this study aims to precisely identify one’s orientation towards EFB based on socio demographic characteristics such as: age, income, occupation, location, education, gender and family size. The results of this research will be useful to precisely identify what support people require to strengthen their EFB, to help identify specific constraints that different actors and groups face and to uncover a more holistic understanding of EFB in relation to particular demographic and socio-economics contexts. As the empirical data are examined from the national data sample framework, which will continue to be collected, it can be used to forecast and monitor the future of EFB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20behavior" title="environmentally friendly behavior">environmentally friendly behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=demographic" title=" demographic"> demographic</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Sumatera" title=" South Sumatera"> South Sumatera</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesia" title=" Indonesia"> Indonesia</a> </p> <a href="https://publications.waset.org/abstracts/37682/the-identification-of-environmentally-friendly-people-a-case-of-south-sumatera-province-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4572</span> Organic Agriculture in Pakistan: Opportunities, Challenges, and Future Directions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sher%20Ali">Sher Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic agriculture has gained significant momentum globally as a sustainable and environmentally friendly farming practice. In Pakistan, amidst growing concerns about food security, environmental degradation, and health issues related to conventional farming methods, the adoption of organic agriculture presents a promising pathway for agricultural development. This abstract aims to provide an overview of the status, opportunities, challenges, and future directions of organic agriculture in Pakistan. It delves into the current state of organic farming practices, including the extent of adoption, key crops cultivated, and the regulatory framework governing organic certification. Furthermore, the abstract discusses the unique opportunities that Pakistan offers for organic agriculture, such as its diverse agro-climatic zones, rich biodiversity, and traditional farming knowledge. It highlights successful initiatives and case studies that showcase the potential of organic farming to improve rural livelihoods, enhance food security, and promote sustainable agricultural practices. However, the abstract also addresses the challenges hindering the widespread adoption of organic agriculture in Pakistan, ranging from limited awareness and technical know-how among farmers to inadequate infrastructure and market linkages. It emphasizes the need for supportive policies, capacity-building programs, and investment in research and extension services to overcome these challenges and promote the growth of the organic agriculture sector. Lastly, the abstract outlines future directions and recommendations for advancing organic agriculture in Pakistan, including strategies for scaling up production, strengthening certification mechanisms, and fostering collaboration among stakeholders. By shedding light on the opportunities, challenges, and potential of organic agriculture in Pakistan, this abstract aims to contribute to the discourse on sustainable farming practices at the upcoming Agro Conference in the USA. It invites participants to engage in dialogue, share experiences, and explore avenues for collaboration toward promoting organic agriculture for a healthier, more resilient food system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges" title=" challenges"> challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=organic" title=" organic"> organic</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a> </p> <a href="https://publications.waset.org/abstracts/186060/organic-agriculture-in-pakistan-opportunities-challenges-and-future-directions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4571</span> Use of Non-woven Polyethylene Terephthalate Fabrics to Improve Certain Properties of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sifatullah%20Bahij">Sifatullah Bahij</a>, <a href="https://publications.waset.org/abstracts/search?q=Safiullah%20Omary"> Safiullah Omary</a>, <a href="https://publications.waset.org/abstracts/search?q=Francoise%20Feugeas"> Francoise Feugeas</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanullah%20Faqiri"> Amanullah Faqiri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plastic packages have been broadly used for a long time. Such widespread usage of plastic has resulted in an increased amount of plastic wastes and many environmental impacts. Plastic wastes are one of the most significant types of waste materials because of their non-degradation and low biodegradability. It is why many researchers tried to find a safe and environmentally friendly solution for plastic wastes. In this goal, in the civil engineering industry, many types of plastic wastes have been incorporated, as a partial substitution of aggregates or as additive materials (fibers) in concrete mixtures because of their lengthier lifetime and lower weight. This work aims to study the mechanical properties (compressive, split tensile and flexural strengths) of concrete with a water-cement ratio (w/c) of 0.45 and with the incorporation of non-woven PET plastic sheets. Five configurations -without PET (reference), 1-layer sheet, 2-side, 3-side, and full sample wrapping- were applied. The 7, 14 and 28-days samples’ compressive strengths, flexural strength and split tensile strength were measured. The outcomes of the study show that the compressive strength was improved for the wrapped samples, particularly for the cylindrical specimens. Also, split tensile and flexural behaviors of the wrapped samples improved significantly compared to the reference ones. Moreover, reference samples were damaged into many parts after mechanical testing, while wrapped specimens were taken by the applied configurations and were not divided into many small fragments. Therefore, non-woven fabrics appeared to improve some properties of the concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20plastic" title="solid waste plastic">solid waste plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=non-woven%20polyethylene%20terephthalate%20sheets" title=" non-woven polyethylene terephthalate sheets"> non-woven polyethylene terephthalate sheets</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behaviors" title=" mechanical behaviors"> mechanical behaviors</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20pattern" title=" crack pattern"> crack pattern</a> </p> <a href="https://publications.waset.org/abstracts/125310/use-of-non-woven-polyethylene-terephthalate-fabrics-to-improve-certain-properties-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20organic%20wastes&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20organic%20wastes&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20organic%20wastes&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20organic%20wastes&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20organic%20wastes&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20organic%20wastes&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20organic%20wastes&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20organic%20wastes&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20organic%20wastes&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20organic%20wastes&page=153">153</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20organic%20wastes&page=154">154</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly%20organic%20wastes&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>