CINXE.COM

Search results for: extradosed bridges

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: extradosed bridges</title> <meta name="description" content="Search results for: extradosed bridges"> <meta name="keywords" content="extradosed bridges"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="extradosed bridges" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="extradosed bridges"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 335</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: extradosed bridges</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> Vibration-Based Monitoring of Tensioning Stay Cables of an Extradosed Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Chung%20Chen">Chun-Chung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo-Han%20Lee"> Bo-Han Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Sung"> Yu-Chi Sung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the status of tensioning force of stay cables is a significant issue for the assessment of structural safety of extradosed bridges. Moreover, it is known that there is a high correlation between the existing tension force and the vibration frequencies of cables. This paper presents the characteristic of frequencies of stay cables of a field extradosed bridge by using vibration-based monitoring methods. The vibration frequencies of each stay cables were measured in stages from the beginning to the completion of bridge construction. The result shows that the vibration frequency variation trend of different lengths of cables at each measured stage is different. The observed feature can help the application of the bridge long-term monitoring system and contribute to the assessment of bridge safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration-based%20method" title="vibration-based method">vibration-based method</a>, <a href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges" title=" extradosed bridges"> extradosed bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20health%20monitoring" title=" bridge health monitoring"> bridge health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20stay%20cables" title=" bridge stay cables"> bridge stay cables</a> </p> <a href="https://publications.waset.org/abstracts/105500/vibration-based-monitoring-of-tensioning-stay-cables-of-an-extradosed-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Seismic Fragility Curves Methodologies for Bridges: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirmozafar%20Benshams">Amirmozafar Benshams</a>, <a href="https://publications.waset.org/abstracts/search?q=Khatere%20Kashmari"> Khatere Kashmari</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Hatami"> Farzad Hatami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesbah%20Saybani"> Mesbah Saybani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a part of the transportation network, bridges are one of the most vulnerable structures. In order to investigate the vulnerability and seismic evaluation of bridges performance, identifying of bridge associated with various state of damage is important. Fragility curves provide important data about damage states and performance of bridges against earthquakes. The development of vulnerability information in the form of fragility curves is a widely practiced approach when the information is to be developed accounting for a multitude of uncertain source involved. This paper presents the fragility curve methodologies for bridges and investigates the practice and applications relating to the seismic fragility assessment of bridges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fragility%20curve" title="fragility curve">fragility curve</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge" title=" bridge"> bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=NLTHA" title=" NLTHA"> NLTHA</a>, <a href="https://publications.waset.org/abstracts/search?q=IDA" title=" IDA"> IDA</a> </p> <a href="https://publications.waset.org/abstracts/53795/seismic-fragility-curves-methodologies-for-bridges-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Investigating Re-Use a Historical Masonry Arch Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Erdogan">H. A. Erdogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historical masonry arch bridges built centuries ago have fulfilled their function until recent decades. However, from the beginning of 20th century, these bridges have remained inadequate as a result of increasing speed, size and capacity of the means of transport. Although new bridges have been built in many places, masonry bridges located within the city limits still need to be used. When the size and transportation loads of modern vehicles are taken into account, it is apparent that historical masonry arch bridges would be exposed to greater loads than their initial design loads. Because of that, many precautions taken either remain insufficient or damage these bridges. In this study, the history of Debbaglar Bridge, one of the historic bridges located in the city center of Aksaray/Turkey is presented and its existing condition is evaluated. Structural analysis of the bridge under present conditions and loads is explained. Moreover, the retrofit and restoration application prepared considering the analysis data is described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20re-use" title="adaptive re-use">adaptive re-use</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksaray%20debbaglar%20bridge" title=" Aksaray debbaglar bridge"> Aksaray debbaglar bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20bridge" title=" masonry bridge"> masonry bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/30635/investigating-re-use-a-historical-masonry-arch-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Strengthening of Bridges by Additional Prestressing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouhaloufa">A. Bouhaloufa</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kadri"> T. Kadri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zouaoui"> S. Zouaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belhacene"> A. Belhacene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To put more durable bridges, it is important to maintain existing structures, rather than investing in new structures. Instead of demolishing the old bridge and replace them with new, we must preserve and upgrade using better methods of diagnosis, auscultation and repair, the interest of this work is to increase the bearing capacity bridges damaged by additional prestressing, this type of reinforcement is growing continuously. In addition to excellent static strength, prestressing also has a very high resistance to fatigue, so it is suitable to solve the problem of failure of the bearing capacity of the bridges. This failure often comes to the development of overloads in quantity and quality, that is our daily traffic has increased and become very complicated, on the other hand its constituents are advanced in weight and speed and therefore almost all old bridges became unable to support the movement of the latter and remain disabled to all these problems. The main purpose of this work includes the following three aspects: - Determination of the main diseases and factors affecting the deterioration of bridges in Algeria, - Evaluation of the bearing capacity of bridges, - Proposal technical reinforcement to improve the bearing capacity of a degraded structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridges" title="bridges">bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=repair" title=" repair"> repair</a>, <a href="https://publications.waset.org/abstracts/search?q=auscultation" title=" auscultation"> auscultation</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=pathology" title=" pathology"> pathology</a>, <a href="https://publications.waset.org/abstracts/search?q=additional%20prestressing" title=" additional prestressing"> additional prestressing</a> </p> <a href="https://publications.waset.org/abstracts/21068/strengthening-of-bridges-by-additional-prestressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">613</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Dynamic Amplification Factors of Some City Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Paeglite">I. Paeglite</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Paeglitis"> A. Paeglitis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a study of dynamic effects obtained from the dynamic load testing of the city highway bridges in Latvia carried out from 2005 to 2012. 9 pre-stressed concrete bridges and 4 composite bridges were considered. 11 of 13 bridges were designed according to the Eurocodes but two according to the previous structural codes used in Latvia (SNIP 2.05.03-84). The dynamic properties of the bridges were obtained by heavy vehicles passing the bridge roadway with different driving speeds and with or without even pavement. The obtained values of the Dynamic amplification factor (DAF) and bridge natural frequency were analyzed and compared to the values of built-in traffic load models provided in Eurocode 1. The actual DAF values for even bridge deck in the most cases are smaller than the value adopted in Eurocode 1. Vehicle speed for uneven pavements significantly influence Dynamic amplification factor values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge" title="bridge">bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20effects" title=" dynamic effects"> dynamic effects</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20testing" title=" load testing"> load testing</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20amplification%20factor" title=" dynamic amplification factor"> dynamic amplification factor</a> </p> <a href="https://publications.waset.org/abstracts/10727/dynamic-amplification-factors-of-some-city-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Contribution of Intermediate Diaphragms on LDFs of Straight and Skew Concrete Multicell Box-Girder Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iman%20Mohseni">Iman Mohseni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current studies indicate that neglecting the effect of intermediate diaphragms might lead to highly conservative values for bending moment distribution factors and result in non-economic designs for skew bridges. This paper reports on a parametric study performed on 160 prototypes of straight and skew concrete multicell box-girder bridges. The obtained results were used to develop practical expressions to account for the diaphragm effects on American Association of State Highway and Transportation Officials formulas for live load distribution factors. It was observed that decks with internal transverse diaphragms perpendicular to the longitudinal webs are the best arrangement for load distribution in skew bridges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=box%20bridges" title="box bridges">box bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=truck" title=" truck"> truck</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20factor" title=" distribution factor"> distribution factor</a>, <a href="https://publications.waset.org/abstracts/search?q=diaphragm" title=" diaphragm"> diaphragm</a> </p> <a href="https://publications.waset.org/abstracts/46711/contribution-of-intermediate-diaphragms-on-ldfs-of-straight-and-skew-concrete-multicell-box-girder-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Building Bridges on Roads With Major Constructions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Zaidour">Mohamed Zaidour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this summary, we are going to look in brief at the bridges and their building and construction on most roads and we have followed a simple method to explain each field clearly because the geographical and climatic diversity of an area leads to different methods and types of roads and installation engineering in other areas In mountain areas we need to build retaining walls in areas of rain. It needs to construct ferries to discharge water from roads in areas of temporary or permanent rivers. There is a need to build bridges and construct road installations in the process of collecting the necessary information, such as soil type. This information needs it, engineer, when designing the constructor and in this section, we will identify the types and methods of calculation bridge columns rules phrases the walls are chock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridges" title="bridges">bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=buildings" title=" buildings"> buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=constructions" title=" constructions"> constructions</a>, <a href="https://publications.waset.org/abstracts/search?q=roads" title=" roads"> roads</a> </p> <a href="https://publications.waset.org/abstracts/153524/building-bridges-on-roads-with-major-constructions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Weight Regulation Mechanism on Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Siddharth">S. Siddharth</a>, <a href="https://publications.waset.org/abstracts/search?q=Saravana%20Kumar"> Saravana Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All Metros across the world tend to have a large number of bridges and there have been concerns about the safety of these bridges. As the traffic in most cities in India is heterogeneous, Trucks and Heavy vehicles traverse on our roads on an everyday basis this will lead to structural damage on the long run. All bridges are designed with a maximum Load limit and this limit is seldom checked. We have hence come up with an idea to check the load of all the vehicles entering the bridge and block the bridge with barricades if the vehicle surpasses the maximum load , this is done to catch hold of the perpetrators. By doing this we can avoid further structural damage and also provide an effective way to enforce the law. If our solution is put in place structural damage and accidents would be reduced to a great deal and it would also make the law enforcement job easier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous" title="heterogeneous">heterogeneous</a>, <a href="https://publications.waset.org/abstracts/search?q=structural" title=" structural"> structural</a>, <a href="https://publications.waset.org/abstracts/search?q=load" title=" load"> load</a>, <a href="https://publications.waset.org/abstracts/search?q=law" title=" law"> law</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy" title=" heavy"> heavy</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicles" title=" vehicles"> vehicles</a> </p> <a href="https://publications.waset.org/abstracts/16613/weight-regulation-mechanism-on-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> Application of Shape Memory Alloy as Shear Connector in Composite Bridges: Overview of State-of-the-Art</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apurwa%20Rastogi">Apurwa Rastogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anant%20Parghi"> Anant Parghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape memory alloys (SMAs) are memory metals with a high calibre to outperform as a civil construction material. They showcase novel functionality of undergoing large deformations and self-healing capability (pseudoelasticity) that leads to its emerging applications in a variety of areas. In the existing literature, most of the studies focused on the behaviour of SMA when used in critical regions of the smart buildings/bridges designed to withstand severe earthquakes without collapse and also its various applications in retrofitting works. However, despite having high ductility, their uses as construction joints and shear connectors in composite bridges are still unexplored in the research domain. This article presents to gain a broad outlook on whether SMAs can be partially used as shear connectors in composite bridges. In this regard, existing papers on the characteristics of shear connectors in the composite bridges will be discussed thoroughly and matched with the fundamental characteristics and properties of SMA. Since due to the high strength, stiffness, and ductility phenomena of SMAs, it is expected to be a good material for the shear connectors in composite bridges, and the collected evidence encourages the prior scrutiny of its partial use in the composite constructions. Based on the comprehensive review, important and necessary conclusions will be affirmed, and further emergence of research direction on the use of SMA will be discussed. This opens the window of new possibilities of using smart materials to enhance the performance of bridges even more in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20bridges" title="composite bridges">composite bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudoelasticity" title=" pseudoelasticity"> pseudoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20connectors" title=" shear connectors"> shear connectors</a> </p> <a href="https://publications.waset.org/abstracts/139173/application-of-shape-memory-alloy-as-shear-connector-in-composite-bridges-overview-of-state-of-the-art" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> Comparative Study of Arch Bridges with Varying Rise to Span Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tauhidur%20Rahman">Tauhidur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Kumar%20Sinha"> Arnab Kumar Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comparative study of Arch bridges based on their varying rise to span ratio. The comparison is done between different steel Arch bridges which have variable span length and rise to span ratio keeping the same support condition. The aim of our present study is to select the optimum value of rise to span ratio of Arch bridge as the cost of the Arch bridge increases with the increasing of the rise. In order to fulfill the objective, several rise to span ratio have been considered for same span of Arch bridge and various structural parameters such as Bending moment, shear force etc have been calculated for different model. A comparative study has been done for several Arch bridges finally to select the optimum rise to span ratio of the Arch bridges. In the present study, Finite Element model for medium to long span, with different rise to span ratio have been modeled and are analyzed with the help of a Computational Software named MIDAS Civil to evaluate the results such as Bending moments, Shear force, displacements, Stresses, influence line diagrams, critical loads. In the present study, 60 models of Arch bridges for 80 to 120 m span with different rise to span ratio has been thoroughly investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arch%20bridge" title="arch bridge">arch bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20study" title=" comparative study"> comparative study</a>, <a href="https://publications.waset.org/abstracts/search?q=rise%20to%20span%20ratio" title=" rise to span ratio"> rise to span ratio</a> </p> <a href="https://publications.waset.org/abstracts/26463/comparative-study-of-arch-bridges-with-varying-rise-to-span-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> Investigate and Solving Analytically at Vibrational structures (In Arched Beam to Bridges) by New Method “AGM”</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Akbari">M. R. Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Soleimani"> P. Soleimani</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Khalili"> R. Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Akbari"> Sara Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analyzing and modeling the vibrational behavior of arched bridges during the earthquake in order to decrease the exerted damages to the structure is a very hard task to do. This item has been done analytically in the present paper for the first time. Due to the importance of building arched bridges as a great structure in the human being civilization and its specifications such as transferring vertical loads to its arcs and the lack of bending moments and shearing forces, this case study is devoted to this special issue. Here, the nonlinear vibration of arched bridges has been modeled and simulated by an arched beam with harmonic vertical loads and its behavior has been investigated by analyzing a nonlinear partial differential equation governing the system. It is notable that the procedure has been done analytically by AGM (Akbari, Ganji Method). Furthermore, comparisons have been made between the obtained results by numerical Method (rkf-45) and AGM in order to assess the scientific validity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20method%20%28AGM%29" title="new method (AGM)">new method (AGM)</a>, <a href="https://publications.waset.org/abstracts/search?q=arched%20beam%20bridges" title=" arched beam bridges"> arched beam bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=angular%20frequency" title=" angular frequency"> angular frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20loads" title=" harmonic loads"> harmonic loads</a> </p> <a href="https://publications.waset.org/abstracts/32317/investigate-and-solving-analytically-at-vibrational-structures-in-arched-beam-to-bridges-by-new-method-agm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> Reliability Based Analysis of Multi-Lane Reinforced Concrete Slab Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mahmoud">Ali Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Shadi%20Najjar"> Shadi Najjar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Mabsout"> Mounir Mabsout</a>, <a href="https://publications.waset.org/abstracts/search?q=Kassim%20Tarhini"> Kassim Tarhini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Empirical expressions for estimating the wheel load distribution and live-load bending moment are typically specified in highway bridge codes such as the AASHTO procedures. The purpose of this paper is to analyze the reliability levels that are inherent in reinforced concrete slab bridges that are designed based on the simplified empirical live load equations in the AASHTO LRFD procedures. To achieve this objective, bridges with multi-lanes (three and four lanes) and different spans are modeled using finite-element analysis (FEA) subjected to HS20 truck loading, tandem loading, and standard lane loading per AASHTO LRFD procedures. The FEA results are compared with the AASHTO LRFD moments in order to quantify the biases that might result from the simplifying assumptions adopted in AASHTO. A reliability analysis is conducted to quantify the reliability index for bridges designed using AASHTO procedures. To reach a consistent level of safety for three- and four-lane bridges, following a previous study restricted to one- and two-lane bridges, the live load factor in the design equation proposed by AASHTO LRFD will be assessed and revised if needed by alternating the live load factor for these lanes. The results will provide structural engineers with more consistent provisions to design concrete slab bridges or evaluate the load-carrying capacity of existing bridges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability%20analysis%20of%20concrete%20bridges" title="reliability analysis of concrete bridges">reliability analysis of concrete bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title=" finite element modeling"> finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20analysis" title=" reliability analysis"> reliability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20bridge%20design" title=" reinforced concrete bridge design"> reinforced concrete bridge design</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20carrying%20capacity" title=" load carrying capacity"> load carrying capacity</a> </p> <a href="https://publications.waset.org/abstracts/73454/reliability-based-analysis-of-multi-lane-reinforced-concrete-slab-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> Structural Behavior of Incomplete Box Girder Bridges Subjected to Unpredicted Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20H.%20N.%20Gashti">E. H. N. Gashti</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Razzaghi"> J. Razzaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kujala"> K. Kujala </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In general, codes and regulations consider seismic loads only for completed structures of the bridges while, evaluation of incomplete structure of bridges, especially those constructed by free cantilever method, under these loads is also of great importance. Hence, this research tried to study the behavior of incomplete structure of common bridge type (box girder bridge), in construction phase under vertical seismic loads. Subsequently, the paper provided suitable guidelines and solutions to withstand this destructive phenomena. Research results proved that use of preventive methods can significantly reduce the stresses resulted from vertical seismic loads in box cross sections to an acceptable range recommended by design codes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=box%20girder%20bridges" title="box girder bridges">box girder bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=prestress%20loads" title=" prestress loads"> prestress loads</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20cantilever%20method" title=" free cantilever method"> free cantilever method</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20loads" title=" seismic loads"> seismic loads</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20phase" title=" construction phase"> construction phase</a> </p> <a href="https://publications.waset.org/abstracts/16487/structural-behavior-of-incomplete-box-girder-bridges-subjected-to-unpredicted-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Development of a BriMAIN System for Health Monitoring of Railway Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prakher%20Mishra">Prakher Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Dikshant%20Bodana"> Dikshant Bodana</a>, <a href="https://publications.waset.org/abstracts/search?q=Saloni%20Desai"> Saloni Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhanshu%20Dixit"> Sudhanshu Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=Sopan%20Agarwal"> Sopan Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Shriraj%20Patel"> Shriraj Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Railways are sometimes lifeline of nations as they consist of huge network of rail lines and bridges. Reportedly many of the bridges are aging, weak, distressed and accident prone. It becomes a really challenging task for Engineers and workers to keep up a regular maintenance schedule for proper functioning which itself is quite a hard hitting job. In this paper we have come up with an innvovative wireless system of maintenance called BriMAIN. In this system we have installed two types of sensors, first one is called a force sensor which will continously analyse the readings of pressure at joints of the bridges and secondly an MPU-6050 triaxial gyroscope+accelerometer which will analyse the deflection of the deck of the bridge. Apart from this a separate database is also being made at the server room so that the data can be visualized by the engineers and a warning can be issued in case reading of the sensors goes above threshold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Accelerometer" title="Accelerometer">Accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=B-MAIN" title=" B-MAIN"> B-MAIN</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyroscope" title=" Gyroscope"> Gyroscope</a>, <a href="https://publications.waset.org/abstracts/search?q=MPU-6050" title=" MPU-6050"> MPU-6050</a> </p> <a href="https://publications.waset.org/abstracts/77940/development-of-a-brimain-system-for-health-monitoring-of-railway-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> Integral Abutment Bridge: A Study on Types, Importance, Limitations and Design Guidelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babitha%20Elizabeth%20Philip">Babitha Elizabeth Philip</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to study in general about bridges without expansion joints. Integral Abutment Bridges (IAB) fall into this category of bridges. They are having a continuous deck and also the girders are integrated into the abutments. They are most cost effective system in terms of construction, maintenance, and longevity. The main advantage of IAB is that it is corrosion resistant since water is not allowed to pass through the structure. The other attractions of integral bridges are its simple and rapid construction, smooth and uninterrupted deck which provides a safe ride. Also damages to the abutments can be avoided to a great extent due to better load distribution at the bridge ends. Damages due to improper drainage are not seen in IAB because of its properly drained approach slabs thus eliminating the possibility of erosion of the abutment backfill and freeze and thaw damage resulting from saturated backfill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20bridge" title="continuous bridge">continuous bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20abutment%20bridge" title=" integral abutment bridge"> integral abutment bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20bridge" title=" joint bridge"> joint bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20cost" title=" life cycle cost"> life cycle cost</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20interaction" title=" soil interaction"> soil interaction</a> </p> <a href="https://publications.waset.org/abstracts/81370/integral-abutment-bridge-a-study-on-types-importance-limitations-and-design-guidelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingxin%20Hui">Yingxin Hui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20engineering" title="bridge engineering">bridge engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response%20feature" title=" seismic response feature"> seismic response feature</a>, <a href="https://publications.waset.org/abstracts/search?q=across%20faults" title=" across faults"> across faults</a>, <a href="https://publications.waset.org/abstracts/search?q=rupture%20directivity%20effect" title=" rupture directivity effect"> rupture directivity effect</a>, <a href="https://publications.waset.org/abstracts/search?q=fling%20step" title=" fling step"> fling step</a> </p> <a href="https://publications.waset.org/abstracts/19709/study-on-seismic-response-feature-of-multi-span-bridges-crossing-fault" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Parametric Study on the Development of Earth Pressures Behind Integral Bridge Abutments Under Cyclic Translational Movements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lila%20D.%20Sigdel">Lila D. Sigdel</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20J.%20Leo"> Chin J. Leo</a>, <a href="https://publications.waset.org/abstracts/search?q=Samanthika%20Liyanapathirana"> Samanthika Liyanapathirana</a>, <a href="https://publications.waset.org/abstracts/search?q=Pan%20Hu"> Pan Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Minghao%20Lu"> Minghao Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integral bridges are a class of bridges with integral or semi-integral abutments, designed without expansion joints in the bridge deck of the superstructure. Integral bridges are economical alternatives to conventional jointed bridges with lower maintenance costs and greater durability, thereby improving social and economic stability for the community. Integral bridges have also been proven to be effective in lowering the overall construction cost compared to the conventional type of bridges. However, there is significant uncertainty related to the design and analysis of integral bridges in response to cyclic thermal movements induced due to deck expansion and contraction. The cyclic thermal movements of the abutments increase the lateral earth pressures on the abutment and its foundation, leading to soil settlement and heaving of the backfill soil. Thus, the primary objective of this paper is to investigate the soil-abutment interaction under the cyclic translational movement of the abutment. Results from five experiments conducted to simulate different magnitudes of cyclic translational movements of abutments induced by thermal changes are presented, focusing on lateral earth pressure development at the abutment-soil interface. Test results show that the cycle number and magnitude of cyclic translational movements have significant effects on the escalation of lateral earth pressures. Experimentally observed earth pressure distributions behind the integral abutment were compared with the current design approaches, which shows that the most of the practices has under predicted the lateral earth pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integral%20bridge" title="integral bridge">integral bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20thermal%20movement" title=" cyclic thermal movement"> cyclic thermal movement</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20earth%20pressure" title=" lateral earth pressure"> lateral earth pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/152996/parametric-study-on-the-development-of-earth-pressures-behind-integral-bridge-abutments-under-cyclic-translational-movements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Methodologies for Stability Assessment of Existing and Newly Designed Reinforced Concrete Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marija%20Vitanov%D0%B0">Marija Vitanovа</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Gjorgjiev"> Igor Gjorgjiev</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Hristovski"> Viktor Hristovski</a>, <a href="https://publications.waset.org/abstracts/search?q=Vlado%20Micov"> Vlado Micov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaluation of stability is very important in the process of definition of optimal structural measures for maintenance of bridge structures and their strengthening. To define optimal measures for their repair and strengthening, it is necessary to evaluate their static and seismic stability. Presented in this paper are methodologies for evaluation of the seismic stability of existing reinforced concrete bridges designed without consideration of seismic effects and checking of structural justification of newly designed bridge structures. All bridges are located in the territory of the Republic of North Macedonia. A total of 26 existing bridges of different structural systems have been analyzed. Visual inspection has been carried out for all bridges, along with the definition of three main damage categories according to which structures have been categorized in respect to the need for their repair and strengthening. Investigations involving testing the quality of the built-in materials have been carried out, and dynamic tests pointing to the dynamic characteristics of the structures have been conducted by use of non-destructive methods of ambient vibration measurements. The conclusions drawn from the performed measurements and tests have been used for the development of accurate mathematical models that have been analyzed for static and dynamic loads. Based on the geometrical characteristics of the cross-sections and the physical characteristics of the built-in materials, interaction diagrams have been constructed. These diagrams along with the obtained section quantities under seismic effects, have been used to obtain the bearing capacity of the cross-sections. The results obtained from the conducted analyses point to the need for the repair of certain structural parts of the bridge structures. They indicate that the stability of the superstructure elements is not critical during a seismic effect, unlike the elements of the sub-structure, whose strengthening is necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=existing%20bridges" title="existing bridges">existing bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=newly%20designed%20bridges" title=" newly designed bridges"> newly designed bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20bridges" title=" reinforced concrete bridges"> reinforced concrete bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20assessment" title=" stability assessment"> stability assessment</a> </p> <a href="https://publications.waset.org/abstracts/153971/methodologies-for-stability-assessment-of-existing-and-newly-designed-reinforced-concrete-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> Selection of Intensity Measure in Probabilistic Seismic Risk Assessment of a Turkish Railway Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Yilmaz">M. F. Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20%C3%96.%20%C3%87a%C4%9Flayan"> B. Ö. Çağlayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fragility curve is an effective common used tool to determine the earthquake performance of structural and nonstructural components. Also, it is used to determine the nonlinear behavior of bridges. There are many historical bridges in the Turkish railway network; the earthquake performances of these bridges are needed to be investigated. To derive fragility curve Intensity measures (IMs) and Engineering demand parameters (EDP) are needed to be determined. And the relation between IMs and EDP are needed to be derived. In this study, a typical simply supported steel girder riveted railway bridge is studied. Fragility curves of this bridge are derived by two parameters lognormal distribution. Time history analyses are done for selected 60 real earthquake data to determine the relation between IMs and EDP. Moreover, efficiency, practicality, and sufficiency of three different IMs are discussed. PGA, Sa(0.2s) and Sa(1s), the most common used IMs parameters for fragility curve in the literature, are taken into consideration in terms of efficiency, practicality and sufficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=railway%20bridges" title="railway bridges">railway bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20performance" title=" earthquake performance"> earthquake performance</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20analyses" title=" fragility analyses"> fragility analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=selection%20of%20intensity%20measures" title=" selection of intensity measures"> selection of intensity measures</a> </p> <a href="https://publications.waset.org/abstracts/65523/selection-of-intensity-measure-in-probabilistic-seismic-risk-assessment-of-a-turkish-railway-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> Steel Concrete Composite Bridge: Modelling Approach and Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaviyarasan%20D.">Kaviyarasan D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Kumar%20S.%20R."> Satish Kumar S. R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India being vast in area and population with great scope of international business, roadways and railways network connection within the country is expected to have a big growth. There are numerous rail-cum-road bridges constructed across many major rivers in India and few are getting very old. So there is more possibility of repairing or coming up with such new bridges in India. Analysis and design of such bridges are practiced through conventional procedure and end up with heavy and uneconomical sections. Such heavy class steel bridges when subjected to high seismic shaking has more chance to fail by stability because the members are too much rigid and stocky rather than being flexible to dissipate the energy. This work is the collective study of the researches done in the truss bridge and steel concrete composite truss bridges presenting the method of analysis, tools for numerical and analytical modeling which evaluates its seismic behaviour and collapse mechanisms. To ascertain the inelastic and nonlinear behaviour of the structure, generally at research level static pushover analysis is adopted. Though the static pushover analysis is now extensively used for the framed steel and concrete buildings to study its lateral action behaviour, those findings by pushover analysis done for the buildings cannot directly be used for the bridges as such, because the bridges have completely a different performance requirement, behaviour and typology as compared to that of the buildings. Long span steel bridges are mostly the truss bridges. Truss bridges being formed by many members and connections, the failure of the system does not happen suddenly with single event or failure of one member. Failure usually initiates from one member and progresses gradually to the next member and so on when subjected to further loading. This kind of progressive collapse of the truss bridge structure is dependent on many factors, in which the live load distribution and span to length ratio are most significant. The ultimate collapse is anyhow by the buckling of the compression members only. For regular bridges, single step pushover analysis gives results closer to that of the non-linear dynamic analysis. But for a complicated bridge like heavy class steel bridge or the skewed bridges or complicated dynamic behaviour bridges, nonlinear analysis capturing the progressive yielding and collapse pattern is mandatory. With the knowledge of the postelastic behaviour of the bridge and advancements in the computational facility, the current level of analysis and design of bridges has moved to state of ascertaining the performance levels of the bridges based on the damage caused by seismic shaking. This is because the buildings performance levels deals much with the life safety and collapse prevention levels, whereas the bridges mostly deal with the extent damages and how quick it can be repaired with or without disturbing the traffic after a strong earthquake event. The paper would compile the wide spectrum of modeling to analysis of the steel concrete composite truss bridges in general. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20engineering" title="bridge engineering">bridge engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20based%20design%20of%20steel%20truss%20bridge" title=" performance based design of steel truss bridge"> performance based design of steel truss bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design%20of%20composite%20bridge" title=" seismic design of composite bridge"> seismic design of composite bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=steel-concrete%20composite%20bridge" title=" steel-concrete composite bridge"> steel-concrete composite bridge</a> </p> <a href="https://publications.waset.org/abstracts/83153/steel-concrete-composite-bridge-modelling-approach-and-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> An Analytical Approach to Calculate Thermo-Mechanical Stresses in Integral Abutment Bridge Piles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Razmi">Jafar Razmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integral abutment bridges are bridges that do not have joints. If these bridges are subject to large seasonal and daily temperature variations, the expansion and contraction of the bridge slab is transferred to the piles. Since the piles are deep into the soil, displacement induced by slab can cause bending and stresses in piles. These stresses cause fatigue and failure of piles. A complex mechanical interaction exists between the slab, pile, soil and abutment. This complex interaction needs to be understood in order to calculate the stresses in piles. This paper uses a mechanical approach in developing analytical equations for the complex structure to determine the stresses in piles. The solution to these analytical solutions is developed and compared with finite element analysis results and experimental data. Our comparison shows that using analytical approach can accurately predict the displacement in piles. This approach offers a simplified technique that can be utilized without the need for computationally extensive finite element model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integral%20abutment%20bridges" title="integral abutment bridges">integral abutment bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=piles" title=" piles"> piles</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20stress" title=" thermo-mechanical stress"> thermo-mechanical stress</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20and%20strains" title=" stress and strains"> stress and strains</a> </p> <a href="https://publications.waset.org/abstracts/90312/an-analytical-approach-to-calculate-thermo-mechanical-stresses-in-integral-abutment-bridge-piles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> State-of-the Art Practices in Bridge Inspection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salam%20Yaghi">Salam Yaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Abu%20Dabous"> Saleh Abu Dabous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Government reports and published research have flagged and brought to public attention the deteriorating condition of a large percentage of bridges in Canada and the United States. With the increasing number of deteriorated bridges in the US, Canada, and around the globe, condition assessment techniques of concrete bridges are evolving. Investigation for bridges’ defects such as cracks, spalls, and delamination and their level of severity are the main objectives of condition assessment. Inspection and rehabilitation programs are being implemented to monitor and maintain deteriorated bridge infrastructure. This paper highlights the state-of-the art of current practices being performed for concrete bridge inspection. The information is gathered from the literature and through a distributed questionnaire. The current practices in concrete bridge inspection rely on the use of hummer sounding and chain dragging tests. Non-Destructive Testing (NDT) techniques are not being utilized fully in the process. Nonetheless, they are being partially utilized by the recommendation of the bridge inspector after conducting the visual inspection. Lanes are usually closed during the performance of visual inspection and bridge inspection in general. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20inspection" title="bridge inspection">bridge inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20assessment" title=" condition assessment"> condition assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a> </p> <a href="https://publications.waset.org/abstracts/32448/state-of-the-art-practices-in-bridge-inspection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> Assessing the Impacts of Bridges on the Development of Fluvial Islands Using Remote Sensing and GIS: Case Study on the Islands of Khartoum State up to Sabaloka Gorge, Khartoum State, Sudan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Elsadat%20Elmahal">Anwar Elsadat Elmahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdalla"> Ahmed Abdalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The population in Sudan has recently grown to a significant level, Khartoum city the capital has the major portion of this growth. Khartoum is separated by three Niles and linked by eight bridges to Khartoum North and Omdurman. The construction of these bridges disrupted the natural flow of water and sediments which will consequently be reflected on the geomorphological settings of fluvial islands including erosion and sedimentation patterns. The objective of this study is to monitor and assess the development of fluvial islands in Khartoum State up to Sabaloka Gorge using Remote Sensing (RS) and Geographical Information System (GIS) techniques. Landsat Images captured during the period from 1975-2015 with standard false color and standardized 30 m resolution were found useful in understanding the impacts of bridges on disrupting the fluvial cycle. Consequently, the rates, trends of erosions and deposition, and the development of fluvial islands are explained. GIS provides the-state-of-the-art tools in mapping, delineating the fluvial islands during different periods and in quantifying the changes that occurred to fluvial islands as well as creating the geographic databases for the Islands in Khartoum State. It was found that, the developments, shapes and sizes of the islands are directly affected by the construction of bridges, specifically in the Nile River from Tutti Island to Sabaloka gorge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluvial%20islands" title="fluvial islands">fluvial islands</a>, <a href="https://publications.waset.org/abstracts/search?q=fluvial%20cycle" title=" fluvial cycle"> fluvial cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20and%20remote%20Sensing" title=" GIS and remote Sensing"> GIS and remote Sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=Khartoum%20State" title=" Khartoum State"> Khartoum State</a>, <a href="https://publications.waset.org/abstracts/search?q=landsat" title=" landsat"> landsat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabaloka%20Gorge" title=" Sabaloka Gorge"> Sabaloka Gorge</a> </p> <a href="https://publications.waset.org/abstracts/54666/assessing-the-impacts-of-bridges-on-the-development-of-fluvial-islands-using-remote-sensing-and-gis-case-study-on-the-islands-of-khartoum-state-up-to-sabaloka-gorge-khartoum-state-sudan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Early Evaluation of Long-Span Suspension Bridges Using Smartphone Accelerometers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekin%20Ozer">Ekin Ozer</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Q.%20Feng"> Maria Q. Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rupa%20Purasinghe"> Rupa Purasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural deterioration of bridge systems possesses an ongoing threat to the transportation networks. Besides, landmark bridges’ integrity and safety are more than sole functionality, since they provide a strong presence for the society and nations. Therefore, an innovative and sustainable method to inspect landmark bridges is essential to ensure their resiliency in the long run. In this paper, a recently introduced concept, smartphone-based modal frequency estimation is addressed, and this paper targets to authenticate the fidelity of smartphone-based vibration measurements gathered from three landmark suspension bridges. Firstly, smartphones located at the bridge mid-span are adopted as portable and standalone vibration measurement devices. Then, their embedded accelerometers are utilized to gather vibration response under operational loads, and eventually frequency domain characteristics are deduced. The preliminary analysis results are compared with the reference publications and high-quality monitoring data to validate the usability of smartphones on long-span landmark suspension bridges. If the technical challenges such as high period of vibration, low amplitude excitation, embedded smartphone sensor features, sampling, and citizen engagement are tackled, smartphones can provide a novel and cost-free crowdsourcing tool for maintenance of these landmark structures. This study presents the early phase findings from three signature structures located in the United States. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20and%20mobile%20sensing" title="smart and mobile sensing">smart and mobile sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=suspension%20bridges" title=" suspension bridges"> suspension bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a> </p> <a href="https://publications.waset.org/abstracts/81843/early-evaluation-of-long-span-suspension-bridges-using-smartphone-accelerometers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> Finite Element Modeling of Integral Abutment Bridge for Lateral Displacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Naji">M. Naji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Khalim"> A. R. Khalim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naji"> M. Naji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integral Abutment Bridges (IAB) are defined as simple or multiple span bridges in which the bridge deck is cast monolithically with the abutment walls. This kind of bridges are becoming very popular due to different aspects such as good response under seismic loading, low initial costs, elimination of bearings and less maintenance. However, the main issue related to the analysis of this type of structures is dealing with soil-structure interaction of the abutment walls and the supporting piles. A two-dimensional, non-linear finite element (FE) model of an integral abutment bridge has been developed to study the effect of lateral time history displacement loading on the soil system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integral%20abutment%20bridge" title="integral abutment bridge">integral abutment bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20structure%20interaction" title=" soil structure interaction"> soil structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title=" finite element modeling"> finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-pile%20interaction" title=" soil-pile interaction"> soil-pile interaction</a> </p> <a href="https://publications.waset.org/abstracts/2655/finite-element-modeling-of-integral-abutment-bridge-for-lateral-displacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">310</span> Review and Classification of the Indicators and Trends Used in Bridge Performance Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Rezaei">S. Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Mirzaei"> Z. Mirzaei</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalighi"> M. Khalighi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bahrami"> J. Bahrami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bridges, as an essential part of road infrastructures, are affected by various deterioration mechanisms over time due to the changes in their performance. As changes in performance can have many negative impacts on society, it is essential to be able to evaluate and measure the performance of bridges throughout their life. This evaluation includes the development or the choice of the appropriate performance indicators, which, in turn, are measured based on the selection of appropriate models for the existing deterioration mechanism. The purpose of this article is a statistical study of indicators and deterioration mechanisms of bridges in order to discover further research capacities in bridges performance assessment. For this purpose, some of the most common indicators of bridge performance, including reliability, risk, vulnerability, robustness, and resilience, were selected. The researches performed on each index based on the desired deterioration mechanisms and hazards were comprehensively reviewed. In addition, the formulation of the indicators and their relationship with each other were studied. The research conducted on the mentioned indicators were classified from the point of view of deterministic or probabilistic method, the level of study (element level, object level, etc.), and the type of hazard and the deterioration mechanism of interest. For each of the indicators, a number of challenges and recommendations were presented according to the review of previous studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge" title="bridge">bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=deterioration%20mechanism" title=" deterioration mechanism"> deterioration mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=lifecycle" title=" lifecycle"> lifecycle</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20indicator" title=" performance indicator"> performance indicator</a> </p> <a href="https://publications.waset.org/abstracts/125555/review-and-classification-of-the-indicators-and-trends-used-in-bridge-performance-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">309</span> Using Finite Element to Predict Failure of Light Weight Bridges Due to Vehicles Impact: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20H.%20Almasria">Amin H. Almasria</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajai%20Z.%20Alrousanb"> Rajai Z. Alrousanb</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Harith%20Manasrah"> Al-Harith Manasrah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The collapse of a light weight pedestrian bridges due to vehicle collision is investigated and studied in detail using a dynamic nonlinear finite element analysis. Typical bridge widely used in Jordan is studied and modeled under truck collision using one dimensional beam finite element in order to minimize analysis time due to the dynamic nature of the problem. Truck collision with the bridge is simulated at different speeds and locations of collisions using dynamic explicit finite element scheme with material nonlinearity taken into account. Energy absorption of bridge is investigated through principle of energy conservation, where truck kinetic energy is assumed to be stored in the bridge as strain energy. Weak failure points in the bridges were identified, and modifications are proposed in order to strengthen the bridge structure and prevent total collapse. The proposed design modifications on bridge structure were successful in allowing the bridge to fail locally rather than globally and expected to help in saving lives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20impact" title=" dynamic impact"> dynamic impact</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridges" title=" pedestrian bridges"> pedestrian bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20energy" title=" strain energy"> strain energy</a>, <a href="https://publications.waset.org/abstracts/search?q=collapse%20failure" title=" collapse failure"> collapse failure</a> </p> <a href="https://publications.waset.org/abstracts/20714/using-finite-element-to-predict-failure-of-light-weight-bridges-due-to-vehicles-impact-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">624</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">308</span> Influence оf Viscous Dampers on Seismic Response оf Isolated Bridges Including Soil Structure Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marija%20Vitanova">Marija Vitanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Bogdanovic"> Aleksandra Bogdanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Edip"> Kemal Edip</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Hristovski"> Viktor Hristovski</a>, <a href="https://publications.waset.org/abstracts/search?q=Vlado%20Micov"> Vlado Micov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bridges represent critical structures in lifeline systems. They provide reliable modes of transportation, so their failure can seriously obstruct relief and rehabilitation work. Earthquake ground motions can cause significant damages in bridges, so during the strong earthquakes, they can easily collapse. The base isolation technique has been quite effective in seismic response mitigation of the bridges in reducing the piers base shear. The effect of soil structure interaction on the dynamic responses of seismically isolated three span girder bridge with viscous dampers is investigated. Viscous dampers are installed in the mid span of the bridge to control bearing displacement. The soil surrounding the foundation of piers has been analyzed by applying different soil densities in order to consider the soil stiffness. The soil medium has been assumed as a four layered infill as dense and loose medium. The boundaries in the soil medium are considered as infinite elements in order to absorb the radiating waves. The formulation of infinite elements is the same as for the finite elements in addition to the mapping of the domain. Based on the iso-parametric concept, the infinite element in global coordinate is mapped onto an element in local coordinate system. In the formulation of the infinite element, only the positive direction extends to infinity thus allowing the waves to propagate outside of the soil medium. Dynamic analyses for two levels of earthquake intensity are performed in time domain using direct integration method. In order to specify the effects of the SSI, the responses of the isolated and controlled isolated bridges are compared. It is observed that the soil surrounding the piers has significant effects on the bearing displacement of the isolated RC bridges. In addition, it is observed that the seismic responses of isolated RC bridge reduced significantly with the installation of the viscous dampers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscous%20dampers" title="viscous dampers">viscous dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20girder%20bridges" title=" reinforced concrete girder bridges"> reinforced concrete girder bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=SSI" title=" SSI"> SSI</a> </p> <a href="https://publications.waset.org/abstracts/115095/influence-of-viscous-dampers-on-seismic-response-of-isolated-bridges-including-soil-structure-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">307</span> Fatigue Evaluation of Link Slab for Continuous Girder-Type Precast Modular Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Joon%20Song">Jae-Joon Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Yoon%20Lee"> Sang-Yoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong-Chul%20Joo"> Bong-Chul Joo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The girder-type precast modular bridge has been developed as a simply supported bridge. The girder-type precast modular bridge could be applied to the multi-span bridges through the continuity method. The continuity of the girder-type precast modular bridge is achieved by using the link slab which is easy to construction and appropriate to the rapid construction. In this study, the link slab with transition zone was used for the continuity of the precast modular bridges, and the construction detail of link slab was modified. In addition, the modified iterative design method of link slab was proposed in this study. To verify the proposed design method, the fatigue test using the mock-up specimen was conducted with cycle loading condition up to two million cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precast" title="precast">precast</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20bridge" title=" modular bridge"> modular bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=link%20slab" title=" link slab"> link slab</a> </p> <a href="https://publications.waset.org/abstracts/21430/fatigue-evaluation-of-link-slab-for-continuous-girder-type-precast-modular-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">306</span> Experimental Investigation on Tsunami Acting on Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iman%20Mazinani">Iman Mazinani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zubaidah%20Ismail"> Zubaidah Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Mustafa%20Hashim"> Ahmad Mustafa Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Reza%20Saba"> Amir Reza Saba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two tragic tsunamis that devastated the west coast of Sumatra Island, Indonesia in 2004 and North East Japan in 2011 had damaged bridges to various extents. Tsunamis have resulted in the catastrophic deterioration of infrastructures i.e. coastal structures, utilities and transportation facilities. A bridge structure performs vital roles to enable people to perform activities related to their daily needs and for development. A damaged bridge needs to be repaired expeditiously. In order to understand the effects of tsunami forces on bridges, experimental tests are carried out to measure the characteristics of hydrodynamic force at various wave heights. Coastal bridge models designed at a 1:40 scale are used in a 24.0 m long hydraulic flume with a cross section of 1.5 m by 2.0 m. The horizontal forces and uplift forces in all cases show that forces increase nonlinearly with increasing wave amplitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tsunami" title="tsunami">tsunami</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge" title=" bridge"> bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20force" title=" horizontal force"> horizontal force</a>, <a href="https://publications.waset.org/abstracts/search?q=uplift%20force" title=" uplift force"> uplift force</a> </p> <a href="https://publications.waset.org/abstracts/14510/experimental-investigation-on-tsunami-acting-on-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10