CINXE.COM

Ramakrishna Konijeti - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Ramakrishna Konijeti - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="qWxcSZ9CA3dh4UcSKUeX+Z/z3+1JTfjyknN0y4zC8Qrl9hlbMql6TRjrpyZCkFj3R6H6ujap3Cc+AjnmeJ7kVw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="ramakrishna konijeti" /> <meta name="description" content="Ramakrishna Konijeti: 8 Followers, 4 Following, 49 Research papers. Research interests: Food Process Engineering, Response Surface Methodology, and Dairy…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '14c0fcb069cf69ac6cee90ed75bddf2fc1d30817'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15258,"monthly_visitors":"121 million","monthly_visitor_count":121005025,"monthly_visitor_count_in_millions":121,"user_count":278737471,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1734142455000); window.Aedu.timeDifference = new Date().getTime() - 1734142455000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-ef8bdd9e6fe14f709ac2c17454275b572f42cadc208750aa782d6f17d9a3fc6e.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-dfda5927ae1ee89f8950b2f04db8d76f24f5e9fb4811e0663938ed174af2ce52.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/RamakrishnaKonijeti" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-36387d83cd539e943b9d18620c497f48603267394609b45253ce1c9c57bf7240.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti","photo":"https://0.academia-photos.com/26265402/10667984/11909307/s65_ramakrishna.konijeti.jpg","has_photo":true,"is_analytics_public":false,"interests":[{"id":30617,"name":"Food Process Engineering","url":"https://www.academia.edu/Documents/in/Food_Process_Engineering"},{"id":9508,"name":"Response Surface Methodology","url":"https://www.academia.edu/Documents/in/Response_Surface_Methodology"},{"id":4630,"name":"Dairy Science","url":"https://www.academia.edu/Documents/in/Dairy_Science"},{"id":1081,"name":"Food Safety","url":"https://www.academia.edu/Documents/in/Food_Safety"},{"id":38360,"name":"Food Security","url":"https://www.academia.edu/Documents/in/Food_Security"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/RamakrishnaKonijeti&quot;,&quot;location&quot;:&quot;/RamakrishnaKonijeti&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/RamakrishnaKonijeti&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-bcf1a3a2-ab0d-4f2d-ae13-6d6ffee905d7"></div> <div id="ProfileCheckPaperUpdate-react-component-bcf1a3a2-ab0d-4f2d-ae13-6d6ffee905d7"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Ramakrishna Konijeti" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/26265402/10667984/11909307/s200_ramakrishna.konijeti.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Ramakrishna Konijeti</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Ramakrishna" data-follow-user-id="26265402" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="26265402"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">8</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">4</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26265402" href="https://www.academia.edu/Documents/in/Food_Process_Engineering"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/RamakrishnaKonijeti&quot;,&quot;location&quot;:&quot;/RamakrishnaKonijeti&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/RamakrishnaKonijeti&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Food Process Engineering&quot;]}" data-trace="false" data-dom-id="Pill-react-component-17ee0bde-f075-44f2-b598-26ee7240260d"></div> <div id="Pill-react-component-17ee0bde-f075-44f2-b598-26ee7240260d"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26265402" href="https://www.academia.edu/Documents/in/Response_Surface_Methodology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Response Surface Methodology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-da3d94f7-b17c-4f02-b2ec-9723d87fe8a7"></div> <div id="Pill-react-component-da3d94f7-b17c-4f02-b2ec-9723d87fe8a7"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26265402" href="https://www.academia.edu/Documents/in/Dairy_Science"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Dairy Science&quot;]}" data-trace="false" data-dom-id="Pill-react-component-756c0df2-8e6f-4eb3-9ad5-97d06e19b376"></div> <div id="Pill-react-component-756c0df2-8e6f-4eb3-9ad5-97d06e19b376"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26265402" href="https://www.academia.edu/Documents/in/Food_Safety"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Food Safety&quot;]}" data-trace="false" data-dom-id="Pill-react-component-a3481b88-8a56-41fe-91a4-74a890a7bae5"></div> <div id="Pill-react-component-a3481b88-8a56-41fe-91a4-74a890a7bae5"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26265402" href="https://www.academia.edu/Documents/in/Food_Security"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Food Security&quot;]}" data-trace="false" data-dom-id="Pill-react-component-96212849-e3af-462e-9292-c1a243d86336"></div> <div id="Pill-react-component-96212849-e3af-462e-9292-c1a243d86336"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Ramakrishna Konijeti</h3></div><div class="js-work-strip profile--work_container" data-work-id="116650983"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116650983/Effect_of_magnetic_field_on_mixed_convection_in_superposed_Nanofluid_and_porous_layers_inside_lid_driven_cavity"><img alt="Research paper thumbnail of Effect of magnetic field on mixed convection in superposed Nanofluid and porous layers inside lid-driven cavity" class="work-thumbnail" src="https://attachments.academia-assets.com/112721195/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116650983/Effect_of_magnetic_field_on_mixed_convection_in_superposed_Nanofluid_and_porous_layers_inside_lid_driven_cavity">Effect of magnetic field on mixed convection in superposed Nanofluid and porous layers inside lid-driven cavity</a></div><div class="wp-workCard_item"><span>AL-Rafdain Engineering Journal (AREJ)</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="932f0e10c41c5e56ba9d057e4600b216" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112721195,&quot;asset_id&quot;:116650983,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112721195/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116650983"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116650983"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116650983; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116650983]").text(description); $(".js-view-count[data-work-id=116650983]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116650983; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116650983']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116650983, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "932f0e10c41c5e56ba9d057e4600b216" } } $('.js-work-strip[data-work-id=116650983]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116650983,"title":"Effect of magnetic field on mixed convection in superposed Nanofluid and porous layers inside lid-driven cavity","translated_title":"","metadata":{"publisher":"University of Mosul","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"AL-Rafdain Engineering Journal (AREJ)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/116650983/Effect_of_magnetic_field_on_mixed_convection_in_superposed_Nanofluid_and_porous_layers_inside_lid_driven_cavity","translated_internal_url":"","created_at":"2024-03-24T20:40:44.288-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112721195,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112721195/thumbnails/1.jpg","file_name":"article_164323_c61d3bb540f217d7f5799851dd47d43c.pdf","download_url":"https://www.academia.edu/attachments/112721195/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effect_of_magnetic_field_on_mixed_convec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112721195/article_164323_c61d3bb540f217d7f5799851dd47d43c-libre.pdf?1711338535=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_magnetic_field_on_mixed_convec.pdf\u0026Expires=1734146055\u0026Signature=fcXTz3z3yg2Y6~Qc-gsH7jOxw6W9rf5coFHr5E8vPrWkGHKj8NU~eFq1SVOH1y0GLoouHeSEzM8twHUTC4g8m06-IwUsM-LDimoafCtWagx30xYdOZXtWaz-QykhtCYxd4USsVF89kW2y7kJMSiQf4C7hrTBUFtirnUik2qsrTK9kGWvf1L7~XYXFxHh6~JiRpEPmKVRb99aoSkKHNiBJLedmHPrgNvFoK1oV9hqajGhcuETQ4He3GbYMswr7srEQcqd1i5FU8LODO9MUB8b0XqadEGxKrysdc4LIHyqDqAJIZOs7WAKzTSnbBN-N38DlcD0xITuiVjK3v3~h7UB6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Effect_of_magnetic_field_on_mixed_convection_in_superposed_Nanofluid_and_porous_layers_inside_lid_driven_cavity","translated_slug":"","page_count":11,"language":"ar","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":112721195,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112721195/thumbnails/1.jpg","file_name":"article_164323_c61d3bb540f217d7f5799851dd47d43c.pdf","download_url":"https://www.academia.edu/attachments/112721195/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effect_of_magnetic_field_on_mixed_convec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112721195/article_164323_c61d3bb540f217d7f5799851dd47d43c-libre.pdf?1711338535=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_magnetic_field_on_mixed_convec.pdf\u0026Expires=1734146055\u0026Signature=fcXTz3z3yg2Y6~Qc-gsH7jOxw6W9rf5coFHr5E8vPrWkGHKj8NU~eFq1SVOH1y0GLoouHeSEzM8twHUTC4g8m06-IwUsM-LDimoafCtWagx30xYdOZXtWaz-QykhtCYxd4USsVF89kW2y7kJMSiQf4C7hrTBUFtirnUik2qsrTK9kGWvf1L7~XYXFxHh6~JiRpEPmKVRb99aoSkKHNiBJLedmHPrgNvFoK1oV9hqajGhcuETQ4He3GbYMswr7srEQcqd1i5FU8LODO9MUB8b0XqadEGxKrysdc4LIHyqDqAJIZOs7WAKzTSnbBN-N38DlcD0xITuiVjK3v3~h7UB6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":112721194,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112721194/thumbnails/1.jpg","file_name":"article_164323_c61d3bb540f217d7f5799851dd47d43c.pdf","download_url":"https://www.academia.edu/attachments/112721194/download_file","bulk_download_file_name":"Effect_of_magnetic_field_on_mixed_convec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112721194/article_164323_c61d3bb540f217d7f5799851dd47d43c-libre.pdf?1711338544=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_magnetic_field_on_mixed_convec.pdf\u0026Expires=1734146055\u0026Signature=Rdc0BHj8yMceW7OE~ROCKvNxTcRIfIuaphNLtBy7b1Ssz2lBLaYqyPfYQhsnyhx7Vmj39uYGNv0wcCxrR5hT33mc7uT6cRdYaU9hJ5M2q5GIjt25AIHPXXl90AeTfjdAG2dWJkdndrXtonoMWJJFVZ5pRcNd9wn1E1RGXtQBQNltvHYoQYQZJiXfhKrw7GZxYPeoIP0ifC5nLvImmNjv1yBtfKx5rb7~-tIIjSPEK4tCJHF2O3NbiIOxk2vSTvM8VrPYMm-exm8LOF2TLuECNaQqClrEPQfNxb~eCY3~N5gbJmlbNIuDXwEtm8XmPgROSMPw~gsn2WxxRvAM6lz71w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":34754,"name":"Magnetic field","url":"https://www.academia.edu/Documents/in/Magnetic_field"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"}],"urls":[{"id":40584237,"url":"https://rengj.mosuljournals.com/article_164323_c61d3bb540f217d7f5799851dd47d43c.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111296424"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111296424/Empirical_correlations_to_predict_thermophysical_and_heat_transfer_characteristics_of_nanofluids"><img alt="Research paper thumbnail of Empirical correlations to predict thermophysical and heat transfer characteristics of nanofluids" class="work-thumbnail" src="https://attachments.academia-assets.com/108873707/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111296424/Empirical_correlations_to_predict_thermophysical_and_heat_transfer_characteristics_of_nanofluids">Empirical correlations to predict thermophysical and heat transfer characteristics of nanofluids</a></div><div class="wp-workCard_item"><span>Thermal Science</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nanofluids ex hib its larger ther mal con duc tiv ity due to the pres ence of sus pended nanosize...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nanofluids ex hib its larger ther mal con duc tiv ity due to the pres ence of sus pended nanosized solid par ti cles in them such as Al 2 O 3 , Cu, CuO,TiO 2 , etc. Va ri et ies of mod els have been pro posed by sev eral au thors to ex plain the heat trans fer en hancement of flu ids such as wa ter, eth yl ene gly col, en gine oil con tain ing these par ti cles. This pa per pres ents a sys tem atic lit er a ture sur vey to ex ploit the thermophysical char ac ter is tics of nanofluids. Based on the ex per i men tal data avail able in the lit era ture em pir i cal cor re la tion to pre dict the ther mal con duc tiv ity of Al 2 O 3 , Cu, CuO, and TiO 2 nanoparticles with wa ter and eth yl ene gly col as basefluid is de vel oped and pre sented. Sim i larly the cor re la tions to pre dict the Nusselt num ber un der lam inar and tur bu lent flow con di tions is also de vel oped and pre sented. These cor re lations are use ful to pre dict the heat trans fer abil ity of nanofluids and takes care of vari a tions in vol ume frac tion, nanoparticle size and fluid tem per a ture. The improved thermophysical char ac ter is tics of a nanofluid make it ex cel lently suit able for fu ture heat ex change ap pli ca tions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3fdfb8fc390820b77d8b43e4a78546a0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108873707,&quot;asset_id&quot;:111296424,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108873707/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111296424"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111296424"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111296424; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111296424]").text(description); $(".js-view-count[data-work-id=111296424]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111296424; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111296424']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111296424, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3fdfb8fc390820b77d8b43e4a78546a0" } } $('.js-work-strip[data-work-id=111296424]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111296424,"title":"Empirical correlations to predict thermophysical and heat transfer characteristics of nanofluids","translated_title":"","metadata":{"publisher":"Vinča Institute of Nuclear Sciences","grobid_abstract":"Nanofluids ex hib its larger ther mal con duc tiv ity due to the pres ence of sus pended nanosized solid par ti cles in them such as Al 2 O 3 , Cu, CuO,TiO 2 , etc. Va ri et ies of mod els have been pro posed by sev eral au thors to ex plain the heat trans fer en hancement of flu ids such as wa ter, eth yl ene gly col, en gine oil con tain ing these par ti cles. This pa per pres ents a sys tem atic lit er a ture sur vey to ex ploit the thermophysical char ac ter is tics of nanofluids. Based on the ex per i men tal data avail able in the lit era ture em pir i cal cor re la tion to pre dict the ther mal con duc tiv ity of Al 2 O 3 , Cu, CuO, and TiO 2 nanoparticles with wa ter and eth yl ene gly col as basefluid is de vel oped and pre sented. Sim i larly the cor re la tions to pre dict the Nusselt num ber un der lam inar and tur bu lent flow con di tions is also de vel oped and pre sented. These cor re lations are use ful to pre dict the heat trans fer abil ity of nanofluids and takes care of vari a tions in vol ume frac tion, nanoparticle size and fluid tem per a ture. The improved thermophysical char ac ter is tics of a nanofluid make it ex cel lently suit able for fu ture heat ex change ap pli ca tions.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Thermal Science","grobid_abstract_attachment_id":108873707},"translated_abstract":null,"internal_url":"https://www.academia.edu/111296424/Empirical_correlations_to_predict_thermophysical_and_heat_transfer_characteristics_of_nanofluids","translated_internal_url":"","created_at":"2023-12-12T23:38:08.523-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108873707,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108873707/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108873707/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Empirical_correlations_to_predict_thermo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108873707/ft-libre.pdf?1702456130=\u0026response-content-disposition=attachment%3B+filename%3DEmpirical_correlations_to_predict_thermo.pdf\u0026Expires=1734146055\u0026Signature=bvtqzD35XacNxbhggcZCIS-1ha-Vu6LM7hyhUah-aX~yp62MvtZPNH9V3E2LLTWBSlFA7i4aZ~gBNDo1ke61zrSGC05pndLAQpW8LxYVYV8RzFeRVtLQNQTVryqkITIuwRhEN1Bm04hpbhKEKRBf9jQ4RI-xloAMr-k23c098DTs4FhBjziVRqWVQKV1xYJVSBsoykPv06tRR9Ewl88apwnx-9uLtBfifJgyfwDO3kY8IsXmvBhT82wd4IJfmVc4-CqwaWXD~oPcAhZ--DtfI9GBSiTcoDZB3-RaWGLIeNucY0sH9SWO6agTalNx-VZmeL~99BY7OlTjSyXE3quX1w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Empirical_correlations_to_predict_thermophysical_and_heat_transfer_characteristics_of_nanofluids","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Nanofluids ex hib its larger ther mal con duc tiv ity due to the pres ence of sus pended nanosized solid par ti cles in them such as Al 2 O 3 , Cu, CuO,TiO 2 , etc. Va ri et ies of mod els have been pro posed by sev eral au thors to ex plain the heat trans fer en hancement of flu ids such as wa ter, eth yl ene gly col, en gine oil con tain ing these par ti cles. This pa per pres ents a sys tem atic lit er a ture sur vey to ex ploit the thermophysical char ac ter is tics of nanofluids. Based on the ex per i men tal data avail able in the lit era ture em pir i cal cor re la tion to pre dict the ther mal con duc tiv ity of Al 2 O 3 , Cu, CuO, and TiO 2 nanoparticles with wa ter and eth yl ene gly col as basefluid is de vel oped and pre sented. Sim i larly the cor re la tions to pre dict the Nusselt num ber un der lam inar and tur bu lent flow con di tions is also de vel oped and pre sented. These cor re lations are use ful to pre dict the heat trans fer abil ity of nanofluids and takes care of vari a tions in vol ume frac tion, nanoparticle size and fluid tem per a ture. The improved thermophysical char ac ter is tics of a nanofluid make it ex cel lently suit able for fu ture heat ex change ap pli ca tions.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":108873707,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108873707/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108873707/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Empirical_correlations_to_predict_thermo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108873707/ft-libre.pdf?1702456130=\u0026response-content-disposition=attachment%3B+filename%3DEmpirical_correlations_to_predict_thermo.pdf\u0026Expires=1734146055\u0026Signature=bvtqzD35XacNxbhggcZCIS-1ha-Vu6LM7hyhUah-aX~yp62MvtZPNH9V3E2LLTWBSlFA7i4aZ~gBNDo1ke61zrSGC05pndLAQpW8LxYVYV8RzFeRVtLQNQTVryqkITIuwRhEN1Bm04hpbhKEKRBf9jQ4RI-xloAMr-k23c098DTs4FhBjziVRqWVQKV1xYJVSBsoykPv06tRR9Ewl88apwnx-9uLtBfifJgyfwDO3kY8IsXmvBhT82wd4IJfmVc4-CqwaWXD~oPcAhZ--DtfI9GBSiTcoDZB3-RaWGLIeNucY0sH9SWO6agTalNx-VZmeL~99BY7OlTjSyXE3quX1w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108873706,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108873706/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108873706/download_file","bulk_download_file_name":"Empirical_correlations_to_predict_thermo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108873706/ft-libre.pdf?1702456132=\u0026response-content-disposition=attachment%3B+filename%3DEmpirical_correlations_to_predict_thermo.pdf\u0026Expires=1734146055\u0026Signature=gVVU7qs6o05KfulIc4mndgSidXwQmW2ufVfFtWV4dzNS8XHkletYhfyr2ziEo9mhP34jSr7LA2RQ~aEW6VskZ66UZzlLBe8r27TOdxKIf7JL6u1lluK~y3Fh~y~miboQYGkRiFK~R5dQTJhOLM-jyEeViIS6NHjOPpydRNT44q4Gviku1qnJDeoVFKUP-mCmelqp7ohsmWUeIzl~WPpWN0YsLK4kLQVjsgiTB9N0ZGTGzJWw73Mtx9TXlWVKADFqaQWcwXuPebRNV1WBif8flnx5IKTGdY3x--O4yurYe69~uAx4birSjQbITtCyNXViJyOH2hqAHsl6Xe95NQVYQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":460900,"name":"Thermal Science","url":"https://www.academia.edu/Documents/in/Thermal_Science"},{"id":698667,"name":"Nusselt Number","url":"https://www.academia.edu/Documents/in/Nusselt_Number"},{"id":1650162,"name":"Ethylene Glycol","url":"https://www.academia.edu/Documents/in/Ethylene_Glycol"},{"id":2295024,"name":"Volume Fraction","url":"https://www.academia.edu/Documents/in/Volume_Fraction"}],"urls":[{"id":36994923,"url":"http://www.doiserbia.nb.rs/ft.aspx?id=0354-98360802027V"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111296414"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111296414/CFD_analysis_of_heat_transfer_by_free_convection_over_a_vertical_cylinder_with_circular_fins_of_triangular_cross_section"><img alt="Research paper thumbnail of CFD analysis of heat transfer by free convection over a vertical cylinder with circular fins of triangular cross-section" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111296414/CFD_analysis_of_heat_transfer_by_free_convection_over_a_vertical_cylinder_with_circular_fins_of_triangular_cross_section">CFD analysis of heat transfer by free convection over a vertical cylinder with circular fins of triangular cross-section</a></div><div class="wp-workCard_item"><span>Multiscale and Multidisciplinary Modeling, Experiments and Design</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111296414"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111296414"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111296414; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111296414]").text(description); $(".js-view-count[data-work-id=111296414]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111296414; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111296414']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111296414, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111296414]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111296414,"title":"CFD analysis of heat transfer by free convection over a vertical cylinder with circular fins of triangular cross-section","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"Multiscale and Multidisciplinary Modeling, Experiments and Design"},"translated_abstract":null,"internal_url":"https://www.academia.edu/111296414/CFD_analysis_of_heat_transfer_by_free_convection_over_a_vertical_cylinder_with_circular_fins_of_triangular_cross_section","translated_internal_url":"","created_at":"2023-12-12T23:38:07.237-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"CFD_analysis_of_heat_transfer_by_free_convection_over_a_vertical_cylinder_with_circular_fins_of_triangular_cross_section","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[],"urls":[{"id":36994913,"url":"https://link.springer.com/content/pdf/10.1007/s41939-023-00237-x.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111296409"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111296409/Design_and_investigating_the_inlet_parameters_on_the_performance_of_the_Ranque_Hilsch_vortex_tube"><img alt="Research paper thumbnail of Design and investigating the inlet parameters on the performance of the Ranque-Hilsch vortex tube" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111296409/Design_and_investigating_the_inlet_parameters_on_the_performance_of_the_Ranque_Hilsch_vortex_tube">Design and investigating the inlet parameters on the performance of the Ranque-Hilsch vortex tube</a></div><div class="wp-workCard_item"><span>International Journal on Interactive Design and Manufacturing (IJIDeM)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111296409"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111296409"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111296409; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111296409]").text(description); $(".js-view-count[data-work-id=111296409]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111296409; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111296409']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111296409, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111296409]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111296409,"title":"Design and investigating the inlet parameters on the performance of the Ranque-Hilsch vortex tube","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"International Journal on Interactive Design and Manufacturing (IJIDeM)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/111296409/Design_and_investigating_the_inlet_parameters_on_the_performance_of_the_Ranque_Hilsch_vortex_tube","translated_internal_url":"","created_at":"2023-12-12T23:38:06.351-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Design_and_investigating_the_inlet_parameters_on_the_performance_of_the_Ranque_Hilsch_vortex_tube","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2802,"name":"Turbulence","url":"https://www.academia.edu/Documents/in/Turbulence"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"},{"id":308253,"name":"Vortex Tube","url":"https://www.academia.edu/Documents/in/Vortex_Tube"},{"id":1191327,"name":"Mass Flow Rate","url":"https://www.academia.edu/Documents/in/Mass_Flow_Rate"},{"id":1505264,"name":"Nozzle","url":"https://www.academia.edu/Documents/in/Nozzle"}],"urls":[{"id":36994906,"url":"https://link.springer.com/content/pdf/10.1007/s12008-023-01374-w.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111296360"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111296360/Numerical_and_Experimental_Investigation_of_n_Heptane_Autoignition_in_the_Ignition_Quality_Tester_IQT_"><img alt="Research paper thumbnail of Numerical and Experimental Investigation of n-Heptane Autoignition in the Ignition Quality Tester (IQT)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111296360/Numerical_and_Experimental_Investigation_of_n_Heptane_Autoignition_in_the_Ignition_Quality_Tester_IQT_">Numerical and Experimental Investigation of n-Heptane Autoignition in the Ignition Quality Tester (IQT)</a></div><div class="wp-workCard_item"><span>Energy &amp;amp; Fuels</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Development of advanced compression ignition and low-temperature combustion engines is increasing...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Development of advanced compression ignition and low-temperature combustion engines is increasingly dependent on chemical kinetic ignition models. However, rigorous experimental validation of kinetic models has been limited under engine-like conditions. For example, shock tubes and rapid compression machines are usually restricted to premixed gas-phase studies, precluding the study of heterogeneous combustion and the use of low-volatility surrogates for commercial diesel fuels. The Ignition Quality Tester (IQT) is a constant-volume spray combustion system designed to measure ignition delay of low-volatility fuels, having the potential to validate ignition models. However, a better understanding of the IQT’s fuel spray and combustion processes is necessary to enable chemical kinetic studies. As a first step, n-heptane was studied because numerous reduced chemical mechanisms are available in the literature as it is a common diesel fuel surrogate, as well as a calibration fuel for the IQT. A modified version...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111296360"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111296360"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111296360; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111296360]").text(description); $(".js-view-count[data-work-id=111296360]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111296360; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111296360']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111296360, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111296360]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111296360,"title":"Numerical and Experimental Investigation of n-Heptane Autoignition in the Ignition Quality Tester (IQT)","translated_title":"","metadata":{"abstract":"Development of advanced compression ignition and low-temperature combustion engines is increasingly dependent on chemical kinetic ignition models. However, rigorous experimental validation of kinetic models has been limited under engine-like conditions. For example, shock tubes and rapid compression machines are usually restricted to premixed gas-phase studies, precluding the study of heterogeneous combustion and the use of low-volatility surrogates for commercial diesel fuels. The Ignition Quality Tester (IQT) is a constant-volume spray combustion system designed to measure ignition delay of low-volatility fuels, having the potential to validate ignition models. However, a better understanding of the IQT’s fuel spray and combustion processes is necessary to enable chemical kinetic studies. As a first step, n-heptane was studied because numerous reduced chemical mechanisms are available in the literature as it is a common diesel fuel surrogate, as well as a calibration fuel for the IQT. A modified version...","publisher":"American Chemical Society (ACS)","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Energy \u0026amp; Fuels"},"translated_abstract":"Development of advanced compression ignition and low-temperature combustion engines is increasingly dependent on chemical kinetic ignition models. However, rigorous experimental validation of kinetic models has been limited under engine-like conditions. For example, shock tubes and rapid compression machines are usually restricted to premixed gas-phase studies, precluding the study of heterogeneous combustion and the use of low-volatility surrogates for commercial diesel fuels. The Ignition Quality Tester (IQT) is a constant-volume spray combustion system designed to measure ignition delay of low-volatility fuels, having the potential to validate ignition models. However, a better understanding of the IQT’s fuel spray and combustion processes is necessary to enable chemical kinetic studies. As a first step, n-heptane was studied because numerous reduced chemical mechanisms are available in the literature as it is a common diesel fuel surrogate, as well as a calibration fuel for the IQT. A modified version...","internal_url":"https://www.academia.edu/111296360/Numerical_and_Experimental_Investigation_of_n_Heptane_Autoignition_in_the_Ignition_Quality_Tester_IQT_","translated_internal_url":"","created_at":"2023-12-12T23:37:32.824-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Numerical_and_Experimental_Investigation_of_n_Heptane_Autoignition_in_the_Ignition_Quality_Tester_IQT_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Development of advanced compression ignition and low-temperature combustion engines is increasingly dependent on chemical kinetic ignition models. However, rigorous experimental validation of kinetic models has been limited under engine-like conditions. For example, shock tubes and rapid compression machines are usually restricted to premixed gas-phase studies, precluding the study of heterogeneous combustion and the use of low-volatility surrogates for commercial diesel fuels. The Ignition Quality Tester (IQT) is a constant-volume spray combustion system designed to measure ignition delay of low-volatility fuels, having the potential to validate ignition models. However, a better understanding of the IQT’s fuel spray and combustion processes is necessary to enable chemical kinetic studies. As a first step, n-heptane was studied because numerous reduced chemical mechanisms are available in the literature as it is a common diesel fuel surrogate, as well as a calibration fuel for the IQT. A modified version...","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2298,"name":"Computational Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics"},{"id":6263,"name":"Combustion","url":"https://www.academia.edu/Documents/in/Combustion"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":295751,"name":"Diesel Fuel","url":"https://www.academia.edu/Documents/in/Diesel_Fuel"},{"id":826396,"name":"Energy and Fuels","url":"https://www.academia.edu/Documents/in/Energy_and_Fuels"},{"id":2138756,"name":"Homogeneous Charge Compression Ignition (hcci)","url":"https://www.academia.edu/Documents/in/Homogeneous_Charge_Compression_Ignition_hcci_"},{"id":2522651,"name":"Shock Tube","url":"https://www.academia.edu/Documents/in/Shock_Tube"},{"id":3854449,"name":"Ignition System","url":"https://www.academia.edu/Documents/in/Ignition_System"}],"urls":[{"id":36994876,"url":"https://pubs.acs.org/doi/pdf/10.1021/ef201079g"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="106796327"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/106796327/Numerical_and_empirical_simulation_of_fluid_flow_in_a_spiral_plate_heat_exchanger_with_Nusselt_number_correlation_development"><img alt="Research paper thumbnail of Numerical and empirical simulation of fluid flow in a spiral plate heat exchanger with Nusselt number correlation development" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/106796327/Numerical_and_empirical_simulation_of_fluid_flow_in_a_spiral_plate_heat_exchanger_with_Nusselt_number_correlation_development">Numerical and empirical simulation of fluid flow in a spiral plate heat exchanger with Nusselt number correlation development</a></div><div class="wp-workCard_item"><span>International Journal on Interactive Design and Manufacturing (IJIDeM)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="106796327"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="106796327"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 106796327; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=106796327]").text(description); $(".js-view-count[data-work-id=106796327]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 106796327; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='106796327']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 106796327, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=106796327]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":106796327,"title":"Numerical and empirical simulation of fluid flow in a spiral plate heat exchanger with Nusselt number correlation development","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"International Journal on Interactive Design and Manufacturing (IJIDeM)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/106796327/Numerical_and_empirical_simulation_of_fluid_flow_in_a_spiral_plate_heat_exchanger_with_Nusselt_number_correlation_development","translated_internal_url":"","created_at":"2023-09-18T05:27:34.839-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Numerical_and_empirical_simulation_of_fluid_flow_in_a_spiral_plate_heat_exchanger_with_Nusselt_number_correlation_development","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[],"urls":[{"id":33969774,"url":"https://link.springer.com/content/pdf/10.1007/s12008-023-01454-x.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="97191491"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/97191491/Analytical_prediction_of_forced_convective_heat_transfer_of_fluids_embedded_with_nanostructured_materials_nanofluids_"><img alt="Research paper thumbnail of Analytical prediction of forced convective heat transfer of fluids embedded with nanostructured materials (nanofluids)" class="work-thumbnail" src="https://attachments.academia-assets.com/98881397/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/97191491/Analytical_prediction_of_forced_convective_heat_transfer_of_fluids_embedded_with_nanostructured_materials_nanofluids_">Analytical prediction of forced convective heat transfer of fluids embedded with nanostructured materials (nanofluids)</a></div><div class="wp-workCard_item"><span>Pramana</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nanofluids are a new class of heat transfer fluids developed by suspending nanosized solid partic...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nanofluids are a new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil etc. significantly enhances their thermal properties. Several phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents a systematic literature survey to exploit the characteristics of nanofluids, viz., thermal conductivity, specific heat and other thermal properties. An empirical correlation for the thermal conductivity of Al 2O3 + water and Cu + water nanofluids, considering the effects of temperature, volume fraction and size of the nanoparticle is developed and presented. A correlation for the evaluation of Nusselt number is also developed and presented and compared in graphical form. This enhanced thermophysical and heat transfer characteristics make fluids embedded with nanomaterials as excellent candidates for future applications.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f61dece3adaa309376201528a5675180" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98881397,&quot;asset_id&quot;:97191491,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98881397/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97191491"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97191491"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97191491; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97191491]").text(description); $(".js-view-count[data-work-id=97191491]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97191491; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97191491']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 97191491, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f61dece3adaa309376201528a5675180" } } $('.js-work-strip[data-work-id=97191491]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97191491,"title":"Analytical prediction of forced convective heat transfer of fluids embedded with nanostructured materials (nanofluids)","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"Nanofluids are a new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil etc. significantly enhances their thermal properties. Several phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents a systematic literature survey to exploit the characteristics of nanofluids, viz., thermal conductivity, specific heat and other thermal properties. An empirical correlation for the thermal conductivity of Al 2O3 + water and Cu + water nanofluids, considering the effects of temperature, volume fraction and size of the nanoparticle is developed and presented. A correlation for the evaluation of Nusselt number is also developed and presented and compared in graphical form. This enhanced thermophysical and heat transfer characteristics make fluids embedded with nanomaterials as excellent candidates for future applications.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Pramana","grobid_abstract_attachment_id":98881397},"translated_abstract":null,"internal_url":"https://www.academia.edu/97191491/Analytical_prediction_of_forced_convective_heat_transfer_of_fluids_embedded_with_nanostructured_materials_nanofluids_","translated_internal_url":"","created_at":"2023-02-19T20:34:47.498-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98881397,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98881397/thumbnails/1.jpg","file_name":"0411-0421.pdf","download_url":"https://www.academia.edu/attachments/98881397/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analytical_prediction_of_forced_convecti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98881397/0411-0421-libre.pdf?1676868309=\u0026response-content-disposition=attachment%3B+filename%3DAnalytical_prediction_of_forced_convecti.pdf\u0026Expires=1734146055\u0026Signature=SDCNk4KaY8CloNnRDwTOUYyKrtSz9mrkaRdKu2-RciWk~75SAfcV6YkYGNLv8cy4GW0A0IeVvCVjpL1gftQoI1ATAz6a7ugz-PVQ2GPIan29CsLZ5u~-9EOMPN-s6Z-ZekuD-AvTPZ~ywWdpra1LTcBXyhNoq9Aq5c0FkGKu4xf72Xi1exZ-nondvVJkwzbSQ~yxdRsv6uoIm45hGTSk3lkTcR2GyDxMuqV~WZtXK0RyXFN9Km7r9t8ttGa3ssnNqq9fGJsbfFVLTppeZuPTZNd4fo1sF1Al2-Y0V1G47Zhexci1KRsNJ2L7SrBRDUkxfcUeUyZHdz4BaGoV~psqdA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Analytical_prediction_of_forced_convective_heat_transfer_of_fluids_embedded_with_nanostructured_materials_nanofluids_","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Nanofluids are a new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil etc. significantly enhances their thermal properties. Several phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents a systematic literature survey to exploit the characteristics of nanofluids, viz., thermal conductivity, specific heat and other thermal properties. An empirical correlation for the thermal conductivity of Al 2O3 + water and Cu + water nanofluids, considering the effects of temperature, volume fraction and size of the nanoparticle is developed and presented. A correlation for the evaluation of Nusselt number is also developed and presented and compared in graphical form. This enhanced thermophysical and heat transfer characteristics make fluids embedded with nanomaterials as excellent candidates for future applications.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":98881397,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98881397/thumbnails/1.jpg","file_name":"0411-0421.pdf","download_url":"https://www.academia.edu/attachments/98881397/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analytical_prediction_of_forced_convecti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98881397/0411-0421-libre.pdf?1676868309=\u0026response-content-disposition=attachment%3B+filename%3DAnalytical_prediction_of_forced_convecti.pdf\u0026Expires=1734146055\u0026Signature=SDCNk4KaY8CloNnRDwTOUYyKrtSz9mrkaRdKu2-RciWk~75SAfcV6YkYGNLv8cy4GW0A0IeVvCVjpL1gftQoI1ATAz6a7ugz-PVQ2GPIan29CsLZ5u~-9EOMPN-s6Z-ZekuD-AvTPZ~ywWdpra1LTcBXyhNoq9Aq5c0FkGKu4xf72Xi1exZ-nondvVJkwzbSQ~yxdRsv6uoIm45hGTSk3lkTcR2GyDxMuqV~WZtXK0RyXFN9Km7r9t8ttGa3ssnNqq9fGJsbfFVLTppeZuPTZNd4fo1sF1Al2-Y0V1G47Zhexci1KRsNJ2L7SrBRDUkxfcUeUyZHdz4BaGoV~psqdA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":1327,"name":"Convection","url":"https://www.academia.edu/Documents/in/Convection"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":359085,"name":"Heat transfer enhancement","url":"https://www.academia.edu/Documents/in/Heat_transfer_enhancement"},{"id":661889,"name":"Convective Heat Transfer","url":"https://www.academia.edu/Documents/in/Convective_Heat_Transfer"},{"id":698667,"name":"Nusselt Number","url":"https://www.academia.edu/Documents/in/Nusselt_Number"},{"id":738257,"name":"Pramana","url":"https://www.academia.edu/Documents/in/Pramana"},{"id":818143,"name":"Nanostructured Material","url":"https://www.academia.edu/Documents/in/Nanostructured_Material"},{"id":827572,"name":"Specific Heat","url":"https://www.academia.edu/Documents/in/Specific_Heat"},{"id":854553,"name":"Thermal Properties","url":"https://www.academia.edu/Documents/in/Thermal_Properties"},{"id":890685,"name":"Forced Convection","url":"https://www.academia.edu/Documents/in/Forced_Convection"},{"id":1506149,"name":"Literature survey","url":"https://www.academia.edu/Documents/in/Literature_survey"},{"id":1650162,"name":"Ethylene Glycol","url":"https://www.academia.edu/Documents/in/Ethylene_Glycol"},{"id":1926798,"name":"PHENOMENOLOGICAL MODEL","url":"https://www.academia.edu/Documents/in/PHENOMENOLOGICAL_MODEL"},{"id":2295024,"name":"Volume Fraction","url":"https://www.academia.edu/Documents/in/Volume_Fraction"}],"urls":[{"id":29122606,"url":"http://link.springer.com/content/pdf/10.1007/s12043-007-0142-1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="97191490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/97191490/Heat_transfer_with_nanofluids_for_electronic_cooling"><img alt="Research paper thumbnail of Heat transfer with nanofluids for electronic cooling" class="work-thumbnail" src="https://attachments.academia-assets.com/98881392/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/97191490/Heat_transfer_with_nanofluids_for_electronic_cooling">Heat transfer with nanofluids for electronic cooling</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/RamakrishnaKonijeti">Ramakrishna Konijeti</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/RamaKrishna1278">Rama Krishna</a></span></div><div class="wp-workCard_item"><span>International Journal of Materials and Product Technology</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In response to the ever increasing demand for smaller and lighter high performance cooling device...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In response to the ever increasing demand for smaller and lighter high performance cooling devices a new heat transfer liquids come into picture, called Nanofluids. Nanofluids are new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil, etc. significantly enhances its thermal properties. Numbers of phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents systematic literature survey observed to exploit several characteristic behaviours of nanofluids viz. increase in thermal conductivity, specific heat and other thermal properties. An empirical correlation for Al 2 O 3 + water nanofluid and effects of temperature, volume fraction and size of nanoparticle is studied. The effect of temperature on nanofluid thermal conductivity is also brought out. This behaviour combined with better mechanical properties makes fluids embedded with nanomaterials are excellent candidates for future applications.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="28a9c931834fc731e31d323119cc407a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98881392,&quot;asset_id&quot;:97191490,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98881392/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97191490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97191490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97191490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97191490]").text(description); $(".js-view-count[data-work-id=97191490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97191490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97191490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 97191490, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "28a9c931834fc731e31d323119cc407a" } } $('.js-work-strip[data-work-id=97191490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97191490,"title":"Heat transfer with nanofluids for electronic cooling","translated_title":"","metadata":{"publisher":"Inderscience Publishers","grobid_abstract":"In response to the ever increasing demand for smaller and lighter high performance cooling devices a new heat transfer liquids come into picture, called Nanofluids. Nanofluids are new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil, etc. significantly enhances its thermal properties. Numbers of phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents systematic literature survey observed to exploit several characteristic behaviours of nanofluids viz. increase in thermal conductivity, specific heat and other thermal properties. An empirical correlation for Al 2 O 3 + water nanofluid and effects of temperature, volume fraction and size of nanoparticle is studied. The effect of temperature on nanofluid thermal conductivity is also brought out. This behaviour combined with better mechanical properties makes fluids embedded with nanomaterials are excellent candidates for future applications.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"International Journal of Materials and Product Technology","grobid_abstract_attachment_id":98881392},"translated_abstract":null,"internal_url":"https://www.academia.edu/97191490/Heat_transfer_with_nanofluids_for_electronic_cooling","translated_internal_url":"","created_at":"2023-02-19T20:34:46.729-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":40748292,"work_id":97191490,"tagging_user_id":26265402,"tagged_user_id":297527311,"co_author_invite_id":7996601,"email":"d***k@kluniversity.in","display_order":0,"name":"Rama Krishna","title":"Heat transfer with nanofluids for electronic cooling"},{"id":40748293,"work_id":97191490,"tagging_user_id":26265402,"tagged_user_id":null,"co_author_invite_id":4727880,"email":"a***r@yahoo.com","display_order":1073741824,"name":"A. Kumar","title":"Heat transfer with nanofluids for electronic cooling"},{"id":40748294,"work_id":97191490,"tagging_user_id":26265402,"tagged_user_id":5757066,"co_author_invite_id":null,"email":"v***u@rediffmail.com","display_order":1610612736,"name":"Velagapudi Vasu","title":"Heat transfer with nanofluids for electronic cooling"}],"downloadable_attachments":[{"id":98881392,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98881392/thumbnails/1.jpg","file_name":"ijmpt.2009.02241020230220-1-caod51.pdf","download_url":"https://www.academia.edu/attachments/98881392/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Heat_transfer_with_nanofluids_for_electr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98881392/ijmpt.2009.02241020230220-1-caod51-libre.pdf?1676868312=\u0026response-content-disposition=attachment%3B+filename%3DHeat_transfer_with_nanofluids_for_electr.pdf\u0026Expires=1734146055\u0026Signature=Yam9MMKi2C0svSXZaA2aQVfPKKKuiSH-Pc2TcCRtlK6LeG4X1MggQn05UXABrvKuG2LzOeGB1qL5YRWNZ~PaN1QGCELPCnHkpmrMQHIPSRlaXQtCOcH5XQNa7RYdW9ow1q081YmtNqvW-Pbwr~TJ2z7azA6EeJLDI9Vr5AzhLTaqbmd7O5gZx4FX7bxiVmR73oIUADqZ6Uc5A95llVGwiQ5X7zErnp4NLGz5Hz-9kVcu9jBC8FvpYvdWhijhqzP0751EIuy3505eZQki0TtBZddHgpP43S6CVNLkD5sa2pJnGgaybMThfxvqRIn4EDTntRGhe10NTvCoGh5kYughpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Heat_transfer_with_nanofluids_for_electronic_cooling","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"In response to the ever increasing demand for smaller and lighter high performance cooling devices a new heat transfer liquids come into picture, called Nanofluids. Nanofluids are new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil, etc. significantly enhances its thermal properties. Numbers of phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents systematic literature survey observed to exploit several characteristic behaviours of nanofluids viz. increase in thermal conductivity, specific heat and other thermal properties. An empirical correlation for Al 2 O 3 + water nanofluid and effects of temperature, volume fraction and size of nanoparticle is studied. The effect of temperature on nanofluid thermal conductivity is also brought out. This behaviour combined with better mechanical properties makes fluids embedded with nanomaterials are excellent candidates for future applications.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":98881392,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98881392/thumbnails/1.jpg","file_name":"ijmpt.2009.02241020230220-1-caod51.pdf","download_url":"https://www.academia.edu/attachments/98881392/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Heat_transfer_with_nanofluids_for_electr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98881392/ijmpt.2009.02241020230220-1-caod51-libre.pdf?1676868312=\u0026response-content-disposition=attachment%3B+filename%3DHeat_transfer_with_nanofluids_for_electr.pdf\u0026Expires=1734146055\u0026Signature=Yam9MMKi2C0svSXZaA2aQVfPKKKuiSH-Pc2TcCRtlK6LeG4X1MggQn05UXABrvKuG2LzOeGB1qL5YRWNZ~PaN1QGCELPCnHkpmrMQHIPSRlaXQtCOcH5XQNa7RYdW9ow1q081YmtNqvW-Pbwr~TJ2z7azA6EeJLDI9Vr5AzhLTaqbmd7O5gZx4FX7bxiVmR73oIUADqZ6Uc5A95llVGwiQ5X7zErnp4NLGz5Hz-9kVcu9jBC8FvpYvdWhijhqzP0751EIuy3505eZQki0TtBZddHgpP43S6CVNLkD5sa2pJnGgaybMThfxvqRIn4EDTntRGhe10NTvCoGh5kYughpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":96825,"name":"Manufacturing Engineering","url":"https://www.academia.edu/Documents/in/Manufacturing_Engineering"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="97191486"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/97191486/Radiation_and_mass_transfer_effects_on_unsteady_MHD_free_convection_flow_of_an_incompressible_viscous_fluid_past_a_moving_vertical_cylinder"><img alt="Research paper thumbnail of Radiation and mass transfer effects on unsteady MHD free convection flow of an incompressible viscous fluid past a moving vertical cylinder" class="work-thumbnail" src="https://attachments.academia-assets.com/98881390/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/97191486/Radiation_and_mass_transfer_effects_on_unsteady_MHD_free_convection_flow_of_an_incompressible_viscous_fluid_past_a_moving_vertical_cylinder">Radiation and mass transfer effects on unsteady MHD free convection flow of an incompressible viscous fluid past a moving vertical cylinder</a></div><div class="wp-workCard_item"><span>Theoretical and Applied Mechanics</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The interaction of free convection with thermal radiation of a viscous incompressible unsteady MH...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The interaction of free convection with thermal radiation of a viscous incompressible unsteady MHD flow past a moving vertical cylinder with heat and mass transfer is analyzed. The fluid is a gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing equations are solved using an implicit finite-difference scheme of Crank-Nicolson type. Numerical results for the transient velocity, the temperature, the concentration, the local as well as average skin-friction, the rate of heat and mass transfer for various parameters such as thermal Grashof number, mass Grashof number, magnetic parameter, radiation parameter and Schmidt number are shown graphically. It is observed that, when the radiation parameter increases the velocity and temperature decrease in the boundary layer. Also, it is found that as increase in the magnetic field leads to decrease in the velocity field and rise in the...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="439da5e2e76f7a4a419f2a1612515477" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98881390,&quot;asset_id&quot;:97191486,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98881390/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97191486"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97191486"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97191486; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97191486]").text(description); $(".js-view-count[data-work-id=97191486]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97191486; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97191486']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 97191486, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "439da5e2e76f7a4a419f2a1612515477" } } $('.js-work-strip[data-work-id=97191486]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97191486,"title":"Radiation and mass transfer effects on unsteady MHD free convection flow of an incompressible viscous fluid past a moving vertical cylinder","translated_title":"","metadata":{"abstract":"The interaction of free convection with thermal radiation of a viscous incompressible unsteady MHD flow past a moving vertical cylinder with heat and mass transfer is analyzed. The fluid is a gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing equations are solved using an implicit finite-difference scheme of Crank-Nicolson type. Numerical results for the transient velocity, the temperature, the concentration, the local as well as average skin-friction, the rate of heat and mass transfer for various parameters such as thermal Grashof number, mass Grashof number, magnetic parameter, radiation parameter and Schmidt number are shown graphically. It is observed that, when the radiation parameter increases the velocity and temperature decrease in the boundary layer. Also, it is found that as increase in the magnetic field leads to decrease in the velocity field and rise in the...","publisher":"National Library of Serbia","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Theoretical and Applied Mechanics"},"translated_abstract":"The interaction of free convection with thermal radiation of a viscous incompressible unsteady MHD flow past a moving vertical cylinder with heat and mass transfer is analyzed. The fluid is a gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing equations are solved using an implicit finite-difference scheme of Crank-Nicolson type. Numerical results for the transient velocity, the temperature, the concentration, the local as well as average skin-friction, the rate of heat and mass transfer for various parameters such as thermal Grashof number, mass Grashof number, magnetic parameter, radiation parameter and Schmidt number are shown graphically. It is observed that, when the radiation parameter increases the velocity and temperature decrease in the boundary layer. Also, it is found that as increase in the magnetic field leads to decrease in the velocity field and rise in the...","internal_url":"https://www.academia.edu/97191486/Radiation_and_mass_transfer_effects_on_unsteady_MHD_free_convection_flow_of_an_incompressible_viscous_fluid_past_a_moving_vertical_cylinder","translated_internal_url":"","created_at":"2023-02-19T20:34:28.111-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98881390,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98881390/thumbnails/1.jpg","file_name":"a8081411adb14b1073291223a7952234556e.pdf","download_url":"https://www.academia.edu/attachments/98881390/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Radiation_and_mass_transfer_effects_on_u.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98881390/a8081411adb14b1073291223a7952234556e-libre.pdf?1676868316=\u0026response-content-disposition=attachment%3B+filename%3DRadiation_and_mass_transfer_effects_on_u.pdf\u0026Expires=1734146055\u0026Signature=DjtT1iIOdmnGK5SpI5mXnrVVkSw5JkAetYb-BgYHhjQy8lHc4WdTVG~6cP2au3A6DZDlbHANic5XZ-PrrbyPMKqGAUbQjQA0Wni0D1PAsOjsqF4fc6ePYwqUXEOhD23ANt-uOzNXwHUpqesyp0mG91lrJHga6swELYClHW87IGjVG6BRWB2rd42C7k9C1mjvA9T-WIy-iJMUPZJuBtiRpmy6f8lSVFf4IO-bqsfaapwnUJl14ouoLdUNut5~P0vY4GYvWnks8cwsxy2VAtsET5mnEpECVzjB58IIUq0MdzUPj9DhR~rOMcaNb5EPqTkiZbHf~DVz~5NAI3afQkVNmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Radiation_and_mass_transfer_effects_on_unsteady_MHD_free_convection_flow_of_an_incompressible_viscous_fluid_past_a_moving_vertical_cylinder","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"The interaction of free convection with thermal radiation of a viscous incompressible unsteady MHD flow past a moving vertical cylinder with heat and mass transfer is analyzed. The fluid is a gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing equations are solved using an implicit finite-difference scheme of Crank-Nicolson type. Numerical results for the transient velocity, the temperature, the concentration, the local as well as average skin-friction, the rate of heat and mass transfer for various parameters such as thermal Grashof number, mass Grashof number, magnetic parameter, radiation parameter and Schmidt number are shown graphically. It is observed that, when the radiation parameter increases the velocity and temperature decrease in the boundary layer. Also, it is found that as increase in the magnetic field leads to decrease in the velocity field and rise in the...","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":98881390,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98881390/thumbnails/1.jpg","file_name":"a8081411adb14b1073291223a7952234556e.pdf","download_url":"https://www.academia.edu/attachments/98881390/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Radiation_and_mass_transfer_effects_on_u.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98881390/a8081411adb14b1073291223a7952234556e-libre.pdf?1676868316=\u0026response-content-disposition=attachment%3B+filename%3DRadiation_and_mass_transfer_effects_on_u.pdf\u0026Expires=1734146055\u0026Signature=DjtT1iIOdmnGK5SpI5mXnrVVkSw5JkAetYb-BgYHhjQy8lHc4WdTVG~6cP2au3A6DZDlbHANic5XZ-PrrbyPMKqGAUbQjQA0Wni0D1PAsOjsqF4fc6ePYwqUXEOhD23ANt-uOzNXwHUpqesyp0mG91lrJHga6swELYClHW87IGjVG6BRWB2rd42C7k9C1mjvA9T-WIy-iJMUPZJuBtiRpmy6f8lSVFf4IO-bqsfaapwnUJl14ouoLdUNut5~P0vY4GYvWnks8cwsxy2VAtsET5mnEpECVzjB58IIUq0MdzUPj9DhR~rOMcaNb5EPqTkiZbHf~DVz~5NAI3afQkVNmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":721,"name":"Magnetohydrodynamics","url":"https://www.academia.edu/Documents/in/Magnetohydrodynamics"},{"id":111985,"name":"Theoretical and Applied Mechanics","url":"https://www.academia.edu/Documents/in/Theoretical_and_Applied_Mechanics"},{"id":486072,"name":"Thermal Radiation","url":"https://www.academia.edu/Documents/in/Thermal_Radiation"},{"id":524631,"name":"Theoretical and applied linguistics","url":"https://www.academia.edu/Documents/in/Theoretical_and_applied_linguistics"},{"id":685326,"name":"Boundary Layer","url":"https://www.academia.edu/Documents/in/Boundary_Layer"},{"id":2264045,"name":"Grashof number","url":"https://www.academia.edu/Documents/in/Grashof_number"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="89581388"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/89581388/Performance_Improvement_and_Exergy_Analysis_of_Gas_Turbine_Power_Plant_with_Alternative_Regenerator_and_Intake_Air_Cooling"><img alt="Research paper thumbnail of Performance Improvement and Exergy Analysis of Gas Turbine Power Plant with Alternative Regenerator and Intake Air Cooling" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/89581388/Performance_Improvement_and_Exergy_Analysis_of_Gas_Turbine_Power_Plant_with_Alternative_Regenerator_and_Intake_Air_Cooling">Performance Improvement and Exergy Analysis of Gas Turbine Power Plant with Alternative Regenerator and Intake Air Cooling</a></div><div class="wp-workCard_item"><span>Energy Engineering</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... Dr. AV Sita Rama Raju, Professor Department of Mechanical Engineering JNTU College of Enginee...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... Dr. AV Sita Rama Raju, Professor Department of Mechanical Engineering JNTU College of Engineering Kakinada, AP, INDIA ABSTRACT ... Ganesan [1] has suggested different cyclic arrangements to improve the net output and performance of a system. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="89581388"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="89581388"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 89581388; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=89581388]").text(description); $(".js-view-count[data-work-id=89581388]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 89581388; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='89581388']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 89581388, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=89581388]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":89581388,"title":"Performance Improvement and Exergy Analysis of Gas Turbine Power Plant with Alternative Regenerator and Intake Air Cooling","translated_title":"","metadata":{"abstract":"... Dr. AV Sita Rama Raju, Professor Department of Mechanical Engineering JNTU College of Engineering Kakinada, AP, INDIA ABSTRACT ... Ganesan [1] has suggested different cyclic arrangements to improve the net output and performance of a system. ...","publisher":"Computers, Materials and Continua (Tech Science Press)","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Energy Engineering"},"translated_abstract":"... Dr. AV Sita Rama Raju, Professor Department of Mechanical Engineering JNTU College of Engineering Kakinada, AP, INDIA ABSTRACT ... Ganesan [1] has suggested different cyclic arrangements to improve the net output and performance of a system. ...","internal_url":"https://www.academia.edu/89581388/Performance_Improvement_and_Exergy_Analysis_of_Gas_Turbine_Power_Plant_with_Alternative_Regenerator_and_Intake_Air_Cooling","translated_internal_url":"","created_at":"2022-10-30T23:46:46.076-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Performance_Improvement_and_Exergy_Analysis_of_Gas_Turbine_Power_Plant_with_Alternative_Regenerator_and_Intake_Air_Cooling","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... Dr. AV Sita Rama Raju, Professor Department of Mechanical Engineering JNTU College of Engineering Kakinada, AP, INDIA ABSTRACT ... Ganesan [1] has suggested different cyclic arrangements to improve the net output and performance of a system. ...","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"},{"id":3682,"name":"Energy Engineering","url":"https://www.academia.edu/Documents/in/Energy_Engineering"},{"id":4107,"name":"High Pressure","url":"https://www.academia.edu/Documents/in/High_Pressure"},{"id":17196,"name":"GAS TURBINE","url":"https://www.academia.edu/Documents/in/GAS_TURBINE"},{"id":34388,"name":"Power Plant","url":"https://www.academia.edu/Documents/in/Power_Plant"},{"id":62729,"name":"Air flow","url":"https://www.academia.edu/Documents/in/Air_flow"},{"id":103356,"name":"Exergy","url":"https://www.academia.edu/Documents/in/Exergy"},{"id":134767,"name":"Exergy Analysis","url":"https://www.academia.edu/Documents/in/Exergy_Analysis"},{"id":137957,"name":"Performance Improvement","url":"https://www.academia.edu/Documents/in/Performance_Improvement"},{"id":230744,"name":"Relative Humidity","url":"https://www.academia.edu/Documents/in/Relative_Humidity"},{"id":397530,"name":"Gas Turbines","url":"https://www.academia.edu/Documents/in/Gas_Turbines"},{"id":444096,"name":"Air Temperature","url":"https://www.academia.edu/Documents/in/Air_Temperature"},{"id":477062,"name":"Ambient Temperature","url":"https://www.academia.edu/Documents/in/Ambient_Temperature"},{"id":1181678,"name":"High Efficiency","url":"https://www.academia.edu/Documents/in/High_Efficiency"},{"id":2183216,"name":"Power Output","url":"https://www.academia.edu/Documents/in/Power_Output"},{"id":2523294,"name":"Energy Loss","url":"https://www.academia.edu/Documents/in/Energy_Loss"},{"id":3617396,"name":"Climatic condition","url":"https://www.academia.edu/Documents/in/Climatic_condition"}],"urls":[{"id":25336998,"url":"https://www.tandfonline.com/doi/pdf/10.1080/01998590709509498"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84084692"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/84084692/Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger"><img alt="Research paper thumbnail of Application of Nanofluids in Thermal Design of Compact Heat Exchanger" class="work-thumbnail" src="https://attachments.academia-assets.com/89226720/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/84084692/Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger">Application of Nanofluids in Thermal Design of Compact Heat Exchanger</a></div><div class="wp-workCard_item"><span>International Journal of Nanotechnology and …</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Compact heat exchangers have been widely used in various applications in thermal fluid systems in...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Compact heat exchangers have been widely used in various applications in thermal fluid systems including automotive thermal fluid systems. Radiators for engine cooling systems, evaporators and condensers for HVAC systems, oil coolers and inter coolers are typical examples that can be found in ground vehicles. Recent development of Nanotechnology brings out a new heat transfer coolant called &#39;Nanofluids&#39; these fluids exhibit larger thermal properties than conventional coolants (water, Ethylene glycol, Engine oil etc.) due to the presence of suspended nanosized particles in then such as Al 2 O 3 , Cu,CuO,TiO 2 etc. In this paper a theoretical analysis was carried with ε-NTU rating method by using Al 2 O 3 + H 2 O Nanofluid as coolant on automobile flat tube plain fin compact heat exchanger and different characteristics are graphically presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3d49725deab11a0f2ec25d87cd9787db" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:89226720,&quot;asset_id&quot;:84084692,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/89226720/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84084692"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84084692"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84084692; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84084692]").text(description); $(".js-view-count[data-work-id=84084692]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84084692; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84084692']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 84084692, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3d49725deab11a0f2ec25d87cd9787db" } } $('.js-work-strip[data-work-id=84084692]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84084692,"title":"Application of Nanofluids in Thermal Design of Compact Heat Exchanger","translated_title":"","metadata":{"ai_title_tag":"Nanofluids in Heat Exchanger Design and Analysis","grobid_abstract":"Compact heat exchangers have been widely used in various applications in thermal fluid systems including automotive thermal fluid systems. Radiators for engine cooling systems, evaporators and condensers for HVAC systems, oil coolers and inter coolers are typical examples that can be found in ground vehicles. Recent development of Nanotechnology brings out a new heat transfer coolant called 'Nanofluids' these fluids exhibit larger thermal properties than conventional coolants (water, Ethylene glycol, Engine oil etc.) due to the presence of suspended nanosized particles in then such as Al 2 O 3 , Cu,CuO,TiO 2 etc. In this paper a theoretical analysis was carried with ε-NTU rating method by using Al 2 O 3 + H 2 O Nanofluid as coolant on automobile flat tube plain fin compact heat exchanger and different characteristics are graphically presented.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"International Journal of Nanotechnology and …","grobid_abstract_attachment_id":89226720},"translated_abstract":null,"internal_url":"https://www.academia.edu/84084692/Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger","translated_internal_url":"","created_at":"2022-08-03T00:25:08.822-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89226720,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89226720/thumbnails/1.jpg","file_name":"Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger.pdf","download_url":"https://www.academia.edu/attachments/89226720/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Application_of_Nanofluids_in_Thermal_Des.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89226720/Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger-libre.pdf?1659512223=\u0026response-content-disposition=attachment%3B+filename%3DApplication_of_Nanofluids_in_Thermal_Des.pdf\u0026Expires=1734146055\u0026Signature=ZM3YhTSSPN4jnWg-rvPQf7ZfEWJ66sffAhB1hKPjDFCLv-L0TGCVS~RHge69LU6C67jMPit9pP72rCjHLRFPxOKmtAU4y7qeFini~W-RhmesR4j55CrG7r2MAPVW2mU5IdmJTBlmIs8s2v6H5P134eckG~z8HkuAhq-uKCoeBNqdiBBhvnCbl0Z2n2w~TkWvrTY4cpJwX29S8IbSzMEf7Bh2rcCzIuX4Ozw06Ugp~qaApgvgDPnebEYNdzCA-OdWYO4jhZvnRu9zRMum~s0DzwFCate0zL6gyAcpburr6zkbx16-RBYouqaDe9SwBXDlybTN7RC9FehW-G8Xu7Bt4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Compact heat exchangers have been widely used in various applications in thermal fluid systems including automotive thermal fluid systems. Radiators for engine cooling systems, evaporators and condensers for HVAC systems, oil coolers and inter coolers are typical examples that can be found in ground vehicles. Recent development of Nanotechnology brings out a new heat transfer coolant called 'Nanofluids' these fluids exhibit larger thermal properties than conventional coolants (water, Ethylene glycol, Engine oil etc.) due to the presence of suspended nanosized particles in then such as Al 2 O 3 , Cu,CuO,TiO 2 etc. In this paper a theoretical analysis was carried with ε-NTU rating method by using Al 2 O 3 + H 2 O Nanofluid as coolant on automobile flat tube plain fin compact heat exchanger and different characteristics are graphically presented.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":89226720,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89226720/thumbnails/1.jpg","file_name":"Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger.pdf","download_url":"https://www.academia.edu/attachments/89226720/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Application_of_Nanofluids_in_Thermal_Des.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89226720/Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger-libre.pdf?1659512223=\u0026response-content-disposition=attachment%3B+filename%3DApplication_of_Nanofluids_in_Thermal_Des.pdf\u0026Expires=1734146055\u0026Signature=ZM3YhTSSPN4jnWg-rvPQf7ZfEWJ66sffAhB1hKPjDFCLv-L0TGCVS~RHge69LU6C67jMPit9pP72rCjHLRFPxOKmtAU4y7qeFini~W-RhmesR4j55CrG7r2MAPVW2mU5IdmJTBlmIs8s2v6H5P134eckG~z8HkuAhq-uKCoeBNqdiBBhvnCbl0Z2n2w~TkWvrTY4cpJwX29S8IbSzMEf7Bh2rcCzIuX4Ozw06Ugp~qaApgvgDPnebEYNdzCA-OdWYO4jhZvnRu9zRMum~s0DzwFCate0zL6gyAcpburr6zkbx16-RBYouqaDe9SwBXDlybTN7RC9FehW-G8Xu7Bt4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":19517,"name":"Heat Exchanger","url":"https://www.academia.edu/Documents/in/Heat_Exchanger"},{"id":184965,"name":"Theoretical Analysis","url":"https://www.academia.edu/Documents/in/Theoretical_Analysis"},{"id":319473,"name":"Hvac System","url":"https://www.academia.edu/Documents/in/Hvac_System"},{"id":479234,"name":"Thermal design","url":"https://www.academia.edu/Documents/in/Thermal_design-1"},{"id":854553,"name":"Thermal Properties","url":"https://www.academia.edu/Documents/in/Thermal_Properties"},{"id":1650162,"name":"Ethylene Glycol","url":"https://www.academia.edu/Documents/in/Ethylene_Glycol"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79350128"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79350128/Evaluation_of_Heat_and_Mass_Transfer_Coefficients_at_Beetroot_Air_Interface_During_Convective_Drying"><img alt="Research paper thumbnail of Evaluation of Heat and Mass Transfer Coefficients at Beetroot-Air Interface During Convective Drying" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79350128/Evaluation_of_Heat_and_Mass_Transfer_Coefficients_at_Beetroot_Air_Interface_During_Convective_Drying">Evaluation of Heat and Mass Transfer Coefficients at Beetroot-Air Interface During Convective Drying</a></div><div class="wp-workCard_item"><span>Interfacial Phenomena and Heat Transfer</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79350128"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79350128"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79350128; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79350128]").text(description); $(".js-view-count[data-work-id=79350128]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79350128; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79350128']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79350128, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=79350128]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79350128,"title":"Evaluation of Heat and Mass Transfer Coefficients at Beetroot-Air Interface During Convective Drying","translated_title":"","metadata":{"publisher":"Begell House","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Interfacial Phenomena and Heat Transfer"},"translated_abstract":null,"internal_url":"https://www.academia.edu/79350128/Evaluation_of_Heat_and_Mass_Transfer_Coefficients_at_Beetroot_Air_Interface_During_Convective_Drying","translated_internal_url":"","created_at":"2022-05-17T22:52:33.134-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evaluation_of_Heat_and_Mass_Transfer_Coefficients_at_Beetroot_Air_Interface_During_Convective_Drying","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":20548152,"url":"http://www.dl.begellhouse.com/download/article/69c8a4b922620a60/IPHT0804(3)-36455.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79350126"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79350126/Convective_Hot_Air_Drying_Kinetics_of_Red_Beetroot_in_Thin_Layers"><img alt="Research paper thumbnail of Convective Hot Air Drying Kinetics of Red Beetroot in Thin Layers" class="work-thumbnail" src="https://attachments.academia-assets.com/86094787/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79350126/Convective_Hot_Air_Drying_Kinetics_of_Red_Beetroot_in_Thin_Layers">Convective Hot Air Drying Kinetics of Red Beetroot in Thin Layers</a></div><div class="wp-workCard_item"><span>Frontiers in Heat and Mass Transfer</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The effect of air temperature on drying kinetics of red beetroot slices was investigated experime...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The effect of air temperature on drying kinetics of red beetroot slices was investigated experimentally in a cabinet tray dryer. Drying was carried out at 70, 75, 80, and 85 ° with an air velocity 2 m/s and relative humidity 30 %. The drying data thus obtained were analyzed to get effective diffusivity values by applying the Fick&#39;s diffusion model. Effective diffusivity increased with increasing temperature. An Arrhenius relation with an activation energy value of 35.59 kJ/mol expressed the effect of temperature on the diffusivity. Also, within the given operating range, the average heat transfer coefficient at the air-product interface is estimated. Experimental data were fitted to ten mathematical models available in the literature. The Midilli et al. and Wang &amp; Singh models are given better prediction than the other models and satisfactorily described drying characteristics of red beetroot slices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2200739f71607bf06f67945bb09fb68e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86094787,&quot;asset_id&quot;:79350126,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86094787/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79350126"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79350126"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79350126; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79350126]").text(description); $(".js-view-count[data-work-id=79350126]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79350126; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79350126']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79350126, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2200739f71607bf06f67945bb09fb68e" } } $('.js-work-strip[data-work-id=79350126]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79350126,"title":"Convective Hot Air Drying Kinetics of Red Beetroot in Thin Layers","translated_title":"","metadata":{"publisher":"Global Digital Central","ai_title_tag":"Drying Kinetics of Red Beetroot: Temperature Effects and Modeling","grobid_abstract":"The effect of air temperature on drying kinetics of red beetroot slices was investigated experimentally in a cabinet tray dryer. Drying was carried out at 70, 75, 80, and 85 ° with an air velocity 2 m/s and relative humidity 30 %. The drying data thus obtained were analyzed to get effective diffusivity values by applying the Fick's diffusion model. Effective diffusivity increased with increasing temperature. An Arrhenius relation with an activation energy value of 35.59 kJ/mol expressed the effect of temperature on the diffusivity. Also, within the given operating range, the average heat transfer coefficient at the air-product interface is estimated. Experimental data were fitted to ten mathematical models available in the literature. The Midilli et al. and Wang \u0026 Singh models are given better prediction than the other models and satisfactorily described drying characteristics of red beetroot slices.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Frontiers in Heat and Mass Transfer","grobid_abstract_attachment_id":86094787},"translated_abstract":null,"internal_url":"https://www.academia.edu/79350126/Convective_Hot_Air_Drying_Kinetics_of_Red_Beetroot_in_Thin_Layers","translated_internal_url":"","created_at":"2022-05-17T22:52:32.280-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86094787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86094787/thumbnails/1.jpg","file_name":"769.pdf","download_url":"https://www.academia.edu/attachments/86094787/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Convective_Hot_Air_Drying_Kinetics_of_Re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86094787/769-libre.pdf?1652855022=\u0026response-content-disposition=attachment%3B+filename%3DConvective_Hot_Air_Drying_Kinetics_of_Re.pdf\u0026Expires=1734146055\u0026Signature=G89Z~nZcJQSHZRxmvhkPTxOLjfFZCPLo2s-PRmRXtowYQaCL7KvLLrqIQOoLWSbjaAXao9gTCjvc4exGRhFTtyeHqUe4quXPOnlH5qBtpkdlXsXg7MTiiEKvB8~431gx19rCqyZDB4jqyDA7LN7Lenk8ruI-PxJU8EqyPely0cqkUn66KEfSa24bG6k3EfcZmeD14~NdLqwf8-WJ7o5wSeXcpwassa~6goAKWzELJ7rVfq2E0MCoSMbMHKZTlcOWFCRGOQfryF811fe0AKqQxZ9pNFXLviln0FuihOfMQkJtRKICAG9mS5mkvrZG9kv2sTQNvUjN31uvPqV69wMxgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Convective_Hot_Air_Drying_Kinetics_of_Red_Beetroot_in_Thin_Layers","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"The effect of air temperature on drying kinetics of red beetroot slices was investigated experimentally in a cabinet tray dryer. Drying was carried out at 70, 75, 80, and 85 ° with an air velocity 2 m/s and relative humidity 30 %. The drying data thus obtained were analyzed to get effective diffusivity values by applying the Fick's diffusion model. Effective diffusivity increased with increasing temperature. An Arrhenius relation with an activation energy value of 35.59 kJ/mol expressed the effect of temperature on the diffusivity. Also, within the given operating range, the average heat transfer coefficient at the air-product interface is estimated. Experimental data were fitted to ten mathematical models available in the literature. The Midilli et al. and Wang \u0026 Singh models are given better prediction than the other models and satisfactorily described drying characteristics of red beetroot slices.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":86094787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86094787/thumbnails/1.jpg","file_name":"769.pdf","download_url":"https://www.academia.edu/attachments/86094787/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Convective_Hot_Air_Drying_Kinetics_of_Re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86094787/769-libre.pdf?1652855022=\u0026response-content-disposition=attachment%3B+filename%3DConvective_Hot_Air_Drying_Kinetics_of_Re.pdf\u0026Expires=1734146055\u0026Signature=G89Z~nZcJQSHZRxmvhkPTxOLjfFZCPLo2s-PRmRXtowYQaCL7KvLLrqIQOoLWSbjaAXao9gTCjvc4exGRhFTtyeHqUe4quXPOnlH5qBtpkdlXsXg7MTiiEKvB8~431gx19rCqyZDB4jqyDA7LN7Lenk8ruI-PxJU8EqyPely0cqkUn66KEfSa24bG6k3EfcZmeD14~NdLqwf8-WJ7o5wSeXcpwassa~6goAKWzELJ7rVfq2E0MCoSMbMHKZTlcOWFCRGOQfryF811fe0AKqQxZ9pNFXLviln0FuihOfMQkJtRKICAG9mS5mkvrZG9kv2sTQNvUjN31uvPqV69wMxgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2024,"name":"Mass Transfer","url":"https://www.academia.edu/Documents/in/Mass_Transfer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79350102"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79350102/Fouling_and_its_effect_on_the_thermal_performance_of_heat_exchanger_tubes"><img alt="Research paper thumbnail of Fouling and its effect on the thermal performance of heat exchanger tubes" class="work-thumbnail" src="https://attachments.academia-assets.com/86094745/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79350102/Fouling_and_its_effect_on_the_thermal_performance_of_heat_exchanger_tubes">Fouling and its effect on the thermal performance of heat exchanger tubes</a></div><div class="wp-workCard_item"><span>International Journal of Heat and Technology</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The phenomena of fouling and corrosion in heat exchanger tubes commonly encountered in industrial...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The phenomena of fouling and corrosion in heat exchanger tubes commonly encountered in industrial practice are reviewed in two phases. In the first phase, the influence of physical and chemical properties of petroleum crude on scaling and fouling are reviewed. Further, in the second phase a generalized hypothesis is provided for unsteady analysis as function of time with the aid of logarithmic, exponential and Power law variation of fouling factors with time. The time dependent thermal characteristics of typical parallel and counter flow heat exchangers are established with the aid of time dependent fouling factors. The approach presented is in good agreement with the reported values of a petroleum refinery. Thus, a method to estimate the critical period for maintenance of the heat exchanger is established treating fouling as a time variable occurrence.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ccab89f6881c6fc6e845707f5206c106" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86094745,&quot;asset_id&quot;:79350102,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86094745/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79350102"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79350102"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79350102; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79350102]").text(description); $(".js-view-count[data-work-id=79350102]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79350102; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79350102']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79350102, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ccab89f6881c6fc6e845707f5206c106" } } $('.js-work-strip[data-work-id=79350102]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79350102,"title":"Fouling and its effect on the thermal performance of heat exchanger tubes","translated_title":"","metadata":{"publisher":"International Information and Engineering Technology Association","grobid_abstract":"The phenomena of fouling and corrosion in heat exchanger tubes commonly encountered in industrial practice are reviewed in two phases. In the first phase, the influence of physical and chemical properties of petroleum crude on scaling and fouling are reviewed. Further, in the second phase a generalized hypothesis is provided for unsteady analysis as function of time with the aid of logarithmic, exponential and Power law variation of fouling factors with time. The time dependent thermal characteristics of typical parallel and counter flow heat exchangers are established with the aid of time dependent fouling factors. The approach presented is in good agreement with the reported values of a petroleum refinery. Thus, a method to estimate the critical period for maintenance of the heat exchanger is established treating fouling as a time variable occurrence.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"International Journal of Heat and Technology","grobid_abstract_attachment_id":86094745},"translated_abstract":null,"internal_url":"https://www.academia.edu/79350102/Fouling_and_its_effect_on_the_thermal_performance_of_heat_exchanger_tubes","translated_internal_url":"","created_at":"2022-05-17T22:52:01.851-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86094745,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86094745/thumbnails/1.jpg","file_name":"35.03_07.pdf","download_url":"https://www.academia.edu/attachments/86094745/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fouling_and_its_effect_on_the_thermal_pe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86094745/35.03_07-libre.pdf?1652855034=\u0026response-content-disposition=attachment%3B+filename%3DFouling_and_its_effect_on_the_thermal_pe.pdf\u0026Expires=1734146055\u0026Signature=f9dout3emVKB8KfV4J-Sewe02dk0bhxWn6YsVW85ND6DBRv67V8HYi3stiS15COE9DHZ-dnIPMRUk92bpKxfcavsk0cTufbF4iUMCXT46trxQyAB31BV2nbOdlzmLLZmag4b7parBPR6isyLqwTigkabVvdzG4SB8XtJPpnj-UQF-u4~ZVDzOrlEYOELxBRqaitafFkQLKRy2OfIxiRCiH52jqGCoYXygd1cQnDSde50DNlwLI8OnwQqg6NP8XDJG14d-opVNoX9sBdrpKNz33Lh0TckR3yRe-nZzQpnd9GZ5ARVc19CLmpY32Kd8tJ27t0x2CU4tkn15oceL-HYyg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fouling_and_its_effect_on_the_thermal_performance_of_heat_exchanger_tubes","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"The phenomena of fouling and corrosion in heat exchanger tubes commonly encountered in industrial practice are reviewed in two phases. In the first phase, the influence of physical and chemical properties of petroleum crude on scaling and fouling are reviewed. Further, in the second phase a generalized hypothesis is provided for unsteady analysis as function of time with the aid of logarithmic, exponential and Power law variation of fouling factors with time. The time dependent thermal characteristics of typical parallel and counter flow heat exchangers are established with the aid of time dependent fouling factors. The approach presented is in good agreement with the reported values of a petroleum refinery. Thus, a method to estimate the critical period for maintenance of the heat exchanger is established treating fouling as a time variable occurrence.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":86094745,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86094745/thumbnails/1.jpg","file_name":"35.03_07.pdf","download_url":"https://www.academia.edu/attachments/86094745/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fouling_and_its_effect_on_the_thermal_pe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86094745/35.03_07-libre.pdf?1652855034=\u0026response-content-disposition=attachment%3B+filename%3DFouling_and_its_effect_on_the_thermal_pe.pdf\u0026Expires=1734146055\u0026Signature=f9dout3emVKB8KfV4J-Sewe02dk0bhxWn6YsVW85ND6DBRv67V8HYi3stiS15COE9DHZ-dnIPMRUk92bpKxfcavsk0cTufbF4iUMCXT46trxQyAB31BV2nbOdlzmLLZmag4b7parBPR6isyLqwTigkabVvdzG4SB8XtJPpnj-UQF-u4~ZVDzOrlEYOELxBRqaitafFkQLKRy2OfIxiRCiH52jqGCoYXygd1cQnDSde50DNlwLI8OnwQqg6NP8XDJG14d-opVNoX9sBdrpKNz33Lh0TckR3yRe-nZzQpnd9GZ5ARVc19CLmpY32Kd8tJ27t0x2CU4tkn15oceL-HYyg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":86094744,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86094744/thumbnails/1.jpg","file_name":"35.03_07.pdf","download_url":"https://www.academia.edu/attachments/86094744/download_file","bulk_download_file_name":"Fouling_and_its_effect_on_the_thermal_pe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86094744/35.03_07-libre.pdf?1652855034=\u0026response-content-disposition=attachment%3B+filename%3DFouling_and_its_effect_on_the_thermal_pe.pdf\u0026Expires=1734146055\u0026Signature=MxlXRoHOpxq8UR83Dn2SU2y~6vABvaxHkOs7LUazHopjfTxVAaQzl0ZzqWWF1WVrmPUTDLDHRjl49CzAZYmbe8h~JiVJNm~QBukXjdY-Edwj1Lmn2cnzd1qMW8SrYJt30xuDq-RJJQ0T9Hy0vuiCJmE8fRhzdbRgviftMeVlm2DmAZpDQ~0cMe~mMrCcQBp2~3~dJPqForPtJiPVl3HrDFBn3JK4b~w8tdWpjkeZvCU6tgLw8wiYvauXY5Vjc8bIyMXtkOB~XX6-GwTstqHhkfIuVrEZJJknRxbcrBBuFFQPFmiWRUGJdOTOIJFSEhwXDpwXsDJRRTT9mn~OAOJiXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":19517,"name":"Heat Exchanger","url":"https://www.academia.edu/Documents/in/Heat_Exchanger"},{"id":63142,"name":"Fouling","url":"https://www.academia.edu/Documents/in/Fouling"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":432657,"name":"Shell and Tube Heat Exchanger","url":"https://www.academia.edu/Documents/in/Shell_and_Tube_Heat_Exchanger"},{"id":4102086,"name":"heat technology","url":"https://www.academia.edu/Documents/in/heat_technology"}],"urls":[{"id":20548140,"url":"http://iieta.org/sites/default/files/Journals/IJHT/35.03_07.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79284086"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79284086/Effect_of_non_uniform_heat_source_sink_on_MHD_boundary_layer_flow_and_melting_heat_transfer_of_Williamson_nanofluid_in_porous_medium"><img alt="Research paper thumbnail of Effect of non-uniform heat source/sink on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79284086/Effect_of_non_uniform_heat_source_sink_on_MHD_boundary_layer_flow_and_melting_heat_transfer_of_Williamson_nanofluid_in_porous_medium">Effect of non-uniform heat source/sink on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium</a></div><div class="wp-workCard_item"><span>Multidiscipline Modeling in Materials and Structures</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">PurposeThe purpose of this paper is to examine the influence of magnetic field on Williamson nano...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">PurposeThe purpose of this paper is to examine the influence of magnetic field on Williamson nanofluid embedded in a porous medium in the presence of non-uniform heat source/sink, chemical reaction and thermal radiation effects.Design/methodology/approachThe governing physical problem is presented using the traditional Navier–Stokes theory. Consequential system of equations is transformed into a set of non-linear ordinary differential equations by means of scaling group of transformation, which are solved using the Runge–Kutta–Fehlberg method.FindingsThe working fluid is examined for several sundry parameters graphically and in a tabular form. It is noticed that with an increase in Eckert number, there is an increase in velocity and temperature along with a decrease in shear stress and heat transfer rate.Originality/valueA good agreement of the present results has been observed by comparing with the existing literature results.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79284086"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79284086"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79284086; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79284086]").text(description); $(".js-view-count[data-work-id=79284086]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79284086; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79284086']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79284086, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=79284086]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79284086,"title":"Effect of non-uniform heat source/sink on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium","translated_title":"","metadata":{"abstract":"PurposeThe purpose of this paper is to examine the influence of magnetic field on Williamson nanofluid embedded in a porous medium in the presence of non-uniform heat source/sink, chemical reaction and thermal radiation effects.Design/methodology/approachThe governing physical problem is presented using the traditional Navier–Stokes theory. Consequential system of equations is transformed into a set of non-linear ordinary differential equations by means of scaling group of transformation, which are solved using the Runge–Kutta–Fehlberg method.FindingsThe working fluid is examined for several sundry parameters graphically and in a tabular form. It is noticed that with an increase in Eckert number, there is an increase in velocity and temperature along with a decrease in shear stress and heat transfer rate.Originality/valueA good agreement of the present results has been observed by comparing with the existing literature results.","publisher":"Emerald","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Multidiscipline Modeling in Materials and Structures"},"translated_abstract":"PurposeThe purpose of this paper is to examine the influence of magnetic field on Williamson nanofluid embedded in a porous medium in the presence of non-uniform heat source/sink, chemical reaction and thermal radiation effects.Design/methodology/approachThe governing physical problem is presented using the traditional Navier–Stokes theory. Consequential system of equations is transformed into a set of non-linear ordinary differential equations by means of scaling group of transformation, which are solved using the Runge–Kutta–Fehlberg method.FindingsThe working fluid is examined for several sundry parameters graphically and in a tabular form. It is noticed that with an increase in Eckert number, there is an increase in velocity and temperature along with a decrease in shear stress and heat transfer rate.Originality/valueA good agreement of the present results has been observed by comparing with the existing literature results.","internal_url":"https://www.academia.edu/79284086/Effect_of_non_uniform_heat_source_sink_on_MHD_boundary_layer_flow_and_melting_heat_transfer_of_Williamson_nanofluid_in_porous_medium","translated_internal_url":"","created_at":"2022-05-17T00:20:06.193-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effect_of_non_uniform_heat_source_sink_on_MHD_boundary_layer_flow_and_melting_heat_transfer_of_Williamson_nanofluid_in_porous_medium","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"PurposeThe purpose of this paper is to examine the influence of magnetic field on Williamson nanofluid embedded in a porous medium in the presence of non-uniform heat source/sink, chemical reaction and thermal radiation effects.Design/methodology/approachThe governing physical problem is presented using the traditional Navier–Stokes theory. Consequential system of equations is transformed into a set of non-linear ordinary differential equations by means of scaling group of transformation, which are solved using the Runge–Kutta–Fehlberg method.FindingsThe working fluid is examined for several sundry parameters graphically and in a tabular form. It is noticed that with an increase in Eckert number, there is an increase in velocity and temperature along with a decrease in shear stress and heat transfer rate.Originality/valueA good agreement of the present results has been observed by comparing with the existing literature results.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":20522462,"url":"https://www.emeraldinsight.com/doi/full-xml/10.1108/MMMS-01-2018-0011"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71692817"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71692817/Performance_and_emission_characteristics_assessment_of_compression_ignition_engine_fuelled_with_the_blends_of_novel_antioxidant_catechol_daok_biodiesel"><img alt="Research paper thumbnail of Performance and emission characteristics assessment of compression ignition engine fuelled with the blends of novel antioxidant catechol-daok biodiesel" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71692817/Performance_and_emission_characteristics_assessment_of_compression_ignition_engine_fuelled_with_the_blends_of_novel_antioxidant_catechol_daok_biodiesel">Performance and emission characteristics assessment of compression ignition engine fuelled with the blends of novel antioxidant catechol-daok biodiesel</a></div><div class="wp-workCard_item"><span>Energy</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71692817"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71692817"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71692817; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71692817]").text(description); $(".js-view-count[data-work-id=71692817]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71692817; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71692817']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71692817, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=71692817]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71692817,"title":"Performance and emission characteristics assessment of compression ignition engine fuelled with the blends of novel antioxidant catechol-daok biodiesel","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Energy"},"translated_abstract":null,"internal_url":"https://www.academia.edu/71692817/Performance_and_emission_characteristics_assessment_of_compression_ignition_engine_fuelled_with_the_blends_of_novel_antioxidant_catechol_daok_biodiesel","translated_internal_url":"","created_at":"2022-02-16T08:54:01.516-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Performance_and_emission_characteristics_assessment_of_compression_ignition_engine_fuelled_with_the_blends_of_novel_antioxidant_catechol_daok_biodiesel","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":5412,"name":"Energy","url":"https://www.academia.edu/Documents/in/Energy"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"}],"urls":[{"id":17746503,"url":"https://api.elsevier.com/content/article/PII:S0360544222002079?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71692776"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71692776/Thermo_Economic_Optimization_of_Spiral_Plate_HX_by_Means_of_Gradient_and_Gradient_Free_Algorithm"><img alt="Research paper thumbnail of Thermo-Economic Optimization of Spiral Plate HX by Means of Gradient and Gradient-Free Algorithm" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71692776/Thermo_Economic_Optimization_of_Spiral_Plate_HX_by_Means_of_Gradient_and_Gradient_Free_Algorithm">Thermo-Economic Optimization of Spiral Plate HX by Means of Gradient and Gradient-Free Algorithm</a></div><div class="wp-workCard_item"><span>Lecture Notes in Mechanical Engineering</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71692776"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71692776"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71692776; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71692776]").text(description); $(".js-view-count[data-work-id=71692776]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71692776; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71692776']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71692776, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=71692776]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71692776,"title":"Thermo-Economic Optimization of Spiral Plate HX by Means of Gradient and Gradient-Free Algorithm","translated_title":"","metadata":{"publisher":"Springer Singapore","publication_name":"Lecture Notes in Mechanical Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/71692776/Thermo_Economic_Optimization_of_Spiral_Plate_HX_by_Means_of_Gradient_and_Gradient_Free_Algorithm","translated_internal_url":"","created_at":"2022-02-16T08:53:25.198-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Thermo_Economic_Optimization_of_Spiral_Plate_HX_by_Means_of_Gradient_and_Gradient_Free_Algorithm","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[],"urls":[{"id":17746492,"url":"https://link.springer.com/content/pdf/10.1007/978-981-16-8341-1_48"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="66156368"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/66156368/A_Novel_Empirical_Model_For_Drying_Of_Root_Vegetables_In_Thin_Layers"><img alt="Research paper thumbnail of A Novel Empirical Model For Drying Of Root Vegetables In Thin-Layers" class="work-thumbnail" src="https://attachments.academia-assets.com/77459703/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/66156368/A_Novel_Empirical_Model_For_Drying_Of_Root_Vegetables_In_Thin_Layers">A Novel Empirical Model For Drying Of Root Vegetables In Thin-Layers</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present work, a new empirical thin layer model for modeling the hot-air drying of root veg...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present work, a new empirical thin layer model for modeling the hot-air drying of root vegetables was developed. Drying characteristics of root vegetables viz., red beetroot and radish are determined at various temperatures. A novel approach is compared with two well-known thin-layer drying models. The proposed model has given the highest determination coefficient (R 2 ). Statistical estimation of the moisture ratio (MR) from experiments and calculated shown that the proposed equation reliably gave the lowest root mean square error (RMSE) and sum of squares due to error (SSE). The results indicate that the proposed model has the best curve fitting ability for root vegetables.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="93d34db180ba9b2d38fbeb2a8d2e2a53" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77459703,&quot;asset_id&quot;:66156368,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77459703/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="66156368"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="66156368"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66156368; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66156368]").text(description); $(".js-view-count[data-work-id=66156368]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66156368; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='66156368']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 66156368, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "93d34db180ba9b2d38fbeb2a8d2e2a53" } } $('.js-work-strip[data-work-id=66156368]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":66156368,"title":"A Novel Empirical Model For Drying Of Root Vegetables In Thin-Layers","translated_title":"","metadata":{"abstract":"In the present work, a new empirical thin layer model for modeling the hot-air drying of root vegetables was developed. Drying characteristics of root vegetables viz., red beetroot and radish are determined at various temperatures. A novel approach is compared with two well-known thin-layer drying models. The proposed model has given the highest determination coefficient (R 2 ). Statistical estimation of the moisture ratio (MR) from experiments and calculated shown that the proposed equation reliably gave the lowest root mean square error (RMSE) and sum of squares due to error (SSE). The results indicate that the proposed model has the best curve fitting ability for root vegetables.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"In the present work, a new empirical thin layer model for modeling the hot-air drying of root vegetables was developed. Drying characteristics of root vegetables viz., red beetroot and radish are determined at various temperatures. A novel approach is compared with two well-known thin-layer drying models. The proposed model has given the highest determination coefficient (R 2 ). Statistical estimation of the moisture ratio (MR) from experiments and calculated shown that the proposed equation reliably gave the lowest root mean square error (RMSE) and sum of squares due to error (SSE). The results indicate that the proposed model has the best curve fitting ability for root vegetables.","internal_url":"https://www.academia.edu/66156368/A_Novel_Empirical_Model_For_Drying_Of_Root_Vegetables_In_Thin_Layers","translated_internal_url":"","created_at":"2021-12-27T20:28:48.189-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77459703,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77459703/thumbnails/1.jpg","file_name":"A-Novel-Empirical-Model-For-Drying-Of-Root-Vegetables-In-Thin-layers.pdf","download_url":"https://www.academia.edu/attachments/77459703/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Novel_Empirical_Model_For_Drying_Of_Ro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77459703/A-Novel-Empirical-Model-For-Drying-Of-Root-Vegetables-In-Thin-layers-libre.pdf?1640667022=\u0026response-content-disposition=attachment%3B+filename%3DA_Novel_Empirical_Model_For_Drying_Of_Ro.pdf\u0026Expires=1734146055\u0026Signature=Kut432cSOQDVxJfjEbx9y5Gq059zQsrZueTDYWJ57Cobn4UEsLB~27Dt8Rq1EEeuYGnOFqy03O21S0npSez-oeUn7uwzNAHppVUKFdGodmCljaTs~Efn9bgBc0DbEdOXQAunfGjgHZ1eKi5H~4Fe045STIkhlZtZo~7CglLUu3bfvh1M9v0E3n1AlVk76ts89LVMUKMpvzJsnpnzehJs~hqGsN3tXcfsLnvtMIk~pPhwDFh2vOvknEFpC8sP~LDg9ZGjLYfxx2Ho67Psg9ULyKQGAjviTnDrsXbYmeT6xZII9Juk-uXMOqwIso454hzi51v6vLyXUxRJNdnT5tQfZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Novel_Empirical_Model_For_Drying_Of_Root_Vegetables_In_Thin_Layers","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"In the present work, a new empirical thin layer model for modeling the hot-air drying of root vegetables was developed. Drying characteristics of root vegetables viz., red beetroot and radish are determined at various temperatures. A novel approach is compared with two well-known thin-layer drying models. The proposed model has given the highest determination coefficient (R 2 ). Statistical estimation of the moisture ratio (MR) from experiments and calculated shown that the proposed equation reliably gave the lowest root mean square error (RMSE) and sum of squares due to error (SSE). The results indicate that the proposed model has the best curve fitting ability for root vegetables.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":77459703,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77459703/thumbnails/1.jpg","file_name":"A-Novel-Empirical-Model-For-Drying-Of-Root-Vegetables-In-Thin-layers.pdf","download_url":"https://www.academia.edu/attachments/77459703/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Novel_Empirical_Model_For_Drying_Of_Ro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77459703/A-Novel-Empirical-Model-For-Drying-Of-Root-Vegetables-In-Thin-layers-libre.pdf?1640667022=\u0026response-content-disposition=attachment%3B+filename%3DA_Novel_Empirical_Model_For_Drying_Of_Ro.pdf\u0026Expires=1734146055\u0026Signature=Kut432cSOQDVxJfjEbx9y5Gq059zQsrZueTDYWJ57Cobn4UEsLB~27Dt8Rq1EEeuYGnOFqy03O21S0npSez-oeUn7uwzNAHppVUKFdGodmCljaTs~Efn9bgBc0DbEdOXQAunfGjgHZ1eKi5H~4Fe045STIkhlZtZo~7CglLUu3bfvh1M9v0E3n1AlVk76ts89LVMUKMpvzJsnpnzehJs~hqGsN3tXcfsLnvtMIk~pPhwDFh2vOvknEFpC8sP~LDg9ZGjLYfxx2Ho67Psg9ULyKQGAjviTnDrsXbYmeT6xZII9Juk-uXMOqwIso454hzi51v6vLyXUxRJNdnT5tQfZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":15751276,"url":"http://www.ijstr.org/final-print/jan2020/A-Novel-Empirical-Model-For-Drying-Of-Root-Vegetables-In-Thin-layers.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="66156367"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/66156367/Comparative_numerical_investigation_of_rectangular_and_elliptical_fins_for_air_cooled_IC_engines"><img alt="Research paper thumbnail of Comparative numerical investigation of rectangular and elliptical fins for air cooled IC engines" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/66156367/Comparative_numerical_investigation_of_rectangular_and_elliptical_fins_for_air_cooled_IC_engines">Comparative numerical investigation of rectangular and elliptical fins for air cooled IC engines</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="66156367"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="66156367"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66156367; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66156367]").text(description); $(".js-view-count[data-work-id=66156367]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66156367; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='66156367']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 66156367, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=66156367]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":66156367,"title":"Comparative numerical investigation of rectangular and elliptical fins for air cooled IC engines","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/66156367/Comparative_numerical_investigation_of_rectangular_and_elliptical_fins_for_air_cooled_IC_engines","translated_internal_url":"","created_at":"2021-12-27T20:28:48.046-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparative_numerical_investigation_of_rectangular_and_elliptical_fins_for_air_cooled_IC_engines","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="66156366"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/66156366/Positive_impact_of_vibration_on_heat_transfer_in_twisted_tape_inserted_heat_exchanger"><img alt="Research paper thumbnail of Positive impact of vibration on heat transfer in twisted tape inserted heat exchanger" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/66156366/Positive_impact_of_vibration_on_heat_transfer_in_twisted_tape_inserted_heat_exchanger">Positive impact of vibration on heat transfer in twisted tape inserted heat exchanger</a></div><div class="wp-workCard_item"><span>Journal of Thermal Engineering</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="66156366"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="66156366"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66156366; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66156366]").text(description); $(".js-view-count[data-work-id=66156366]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66156366; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='66156366']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 66156366, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=66156366]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":66156366,"title":"Positive impact of vibration on heat transfer in twisted tape inserted heat exchanger","translated_title":"","metadata":{"publisher":"Journal of Thermal Engineering","publication_name":"Journal of Thermal Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/66156366/Positive_impact_of_vibration_on_heat_transfer_in_twisted_tape_inserted_heat_exchanger","translated_internal_url":"","created_at":"2021-12-27T20:28:47.915-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Positive_impact_of_vibration_on_heat_transfer_in_twisted_tape_inserted_heat_exchanger","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[{"id":62,"name":"Thermal Engineering","url":"https://www.academia.edu/Documents/in/Thermal_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="12147144" id="papers"><div class="js-work-strip profile--work_container" data-work-id="116650983"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116650983/Effect_of_magnetic_field_on_mixed_convection_in_superposed_Nanofluid_and_porous_layers_inside_lid_driven_cavity"><img alt="Research paper thumbnail of Effect of magnetic field on mixed convection in superposed Nanofluid and porous layers inside lid-driven cavity" class="work-thumbnail" src="https://attachments.academia-assets.com/112721195/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116650983/Effect_of_magnetic_field_on_mixed_convection_in_superposed_Nanofluid_and_porous_layers_inside_lid_driven_cavity">Effect of magnetic field on mixed convection in superposed Nanofluid and porous layers inside lid-driven cavity</a></div><div class="wp-workCard_item"><span>AL-Rafdain Engineering Journal (AREJ)</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="932f0e10c41c5e56ba9d057e4600b216" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112721195,&quot;asset_id&quot;:116650983,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112721195/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116650983"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116650983"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116650983; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116650983]").text(description); $(".js-view-count[data-work-id=116650983]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116650983; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116650983']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116650983, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "932f0e10c41c5e56ba9d057e4600b216" } } $('.js-work-strip[data-work-id=116650983]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116650983,"title":"Effect of magnetic field on mixed convection in superposed Nanofluid and porous layers inside lid-driven cavity","translated_title":"","metadata":{"publisher":"University of Mosul","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"AL-Rafdain Engineering Journal (AREJ)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/116650983/Effect_of_magnetic_field_on_mixed_convection_in_superposed_Nanofluid_and_porous_layers_inside_lid_driven_cavity","translated_internal_url":"","created_at":"2024-03-24T20:40:44.288-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112721195,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112721195/thumbnails/1.jpg","file_name":"article_164323_c61d3bb540f217d7f5799851dd47d43c.pdf","download_url":"https://www.academia.edu/attachments/112721195/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effect_of_magnetic_field_on_mixed_convec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112721195/article_164323_c61d3bb540f217d7f5799851dd47d43c-libre.pdf?1711338535=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_magnetic_field_on_mixed_convec.pdf\u0026Expires=1734146055\u0026Signature=fcXTz3z3yg2Y6~Qc-gsH7jOxw6W9rf5coFHr5E8vPrWkGHKj8NU~eFq1SVOH1y0GLoouHeSEzM8twHUTC4g8m06-IwUsM-LDimoafCtWagx30xYdOZXtWaz-QykhtCYxd4USsVF89kW2y7kJMSiQf4C7hrTBUFtirnUik2qsrTK9kGWvf1L7~XYXFxHh6~JiRpEPmKVRb99aoSkKHNiBJLedmHPrgNvFoK1oV9hqajGhcuETQ4He3GbYMswr7srEQcqd1i5FU8LODO9MUB8b0XqadEGxKrysdc4LIHyqDqAJIZOs7WAKzTSnbBN-N38DlcD0xITuiVjK3v3~h7UB6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Effect_of_magnetic_field_on_mixed_convection_in_superposed_Nanofluid_and_porous_layers_inside_lid_driven_cavity","translated_slug":"","page_count":11,"language":"ar","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":112721195,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112721195/thumbnails/1.jpg","file_name":"article_164323_c61d3bb540f217d7f5799851dd47d43c.pdf","download_url":"https://www.academia.edu/attachments/112721195/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effect_of_magnetic_field_on_mixed_convec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112721195/article_164323_c61d3bb540f217d7f5799851dd47d43c-libre.pdf?1711338535=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_magnetic_field_on_mixed_convec.pdf\u0026Expires=1734146055\u0026Signature=fcXTz3z3yg2Y6~Qc-gsH7jOxw6W9rf5coFHr5E8vPrWkGHKj8NU~eFq1SVOH1y0GLoouHeSEzM8twHUTC4g8m06-IwUsM-LDimoafCtWagx30xYdOZXtWaz-QykhtCYxd4USsVF89kW2y7kJMSiQf4C7hrTBUFtirnUik2qsrTK9kGWvf1L7~XYXFxHh6~JiRpEPmKVRb99aoSkKHNiBJLedmHPrgNvFoK1oV9hqajGhcuETQ4He3GbYMswr7srEQcqd1i5FU8LODO9MUB8b0XqadEGxKrysdc4LIHyqDqAJIZOs7WAKzTSnbBN-N38DlcD0xITuiVjK3v3~h7UB6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":112721194,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112721194/thumbnails/1.jpg","file_name":"article_164323_c61d3bb540f217d7f5799851dd47d43c.pdf","download_url":"https://www.academia.edu/attachments/112721194/download_file","bulk_download_file_name":"Effect_of_magnetic_field_on_mixed_convec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112721194/article_164323_c61d3bb540f217d7f5799851dd47d43c-libre.pdf?1711338544=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_magnetic_field_on_mixed_convec.pdf\u0026Expires=1734146055\u0026Signature=Rdc0BHj8yMceW7OE~ROCKvNxTcRIfIuaphNLtBy7b1Ssz2lBLaYqyPfYQhsnyhx7Vmj39uYGNv0wcCxrR5hT33mc7uT6cRdYaU9hJ5M2q5GIjt25AIHPXXl90AeTfjdAG2dWJkdndrXtonoMWJJFVZ5pRcNd9wn1E1RGXtQBQNltvHYoQYQZJiXfhKrw7GZxYPeoIP0ifC5nLvImmNjv1yBtfKx5rb7~-tIIjSPEK4tCJHF2O3NbiIOxk2vSTvM8VrPYMm-exm8LOF2TLuECNaQqClrEPQfNxb~eCY3~N5gbJmlbNIuDXwEtm8XmPgROSMPw~gsn2WxxRvAM6lz71w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":34754,"name":"Magnetic field","url":"https://www.academia.edu/Documents/in/Magnetic_field"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"}],"urls":[{"id":40584237,"url":"https://rengj.mosuljournals.com/article_164323_c61d3bb540f217d7f5799851dd47d43c.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111296424"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111296424/Empirical_correlations_to_predict_thermophysical_and_heat_transfer_characteristics_of_nanofluids"><img alt="Research paper thumbnail of Empirical correlations to predict thermophysical and heat transfer characteristics of nanofluids" class="work-thumbnail" src="https://attachments.academia-assets.com/108873707/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111296424/Empirical_correlations_to_predict_thermophysical_and_heat_transfer_characteristics_of_nanofluids">Empirical correlations to predict thermophysical and heat transfer characteristics of nanofluids</a></div><div class="wp-workCard_item"><span>Thermal Science</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nanofluids ex hib its larger ther mal con duc tiv ity due to the pres ence of sus pended nanosize...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nanofluids ex hib its larger ther mal con duc tiv ity due to the pres ence of sus pended nanosized solid par ti cles in them such as Al 2 O 3 , Cu, CuO,TiO 2 , etc. Va ri et ies of mod els have been pro posed by sev eral au thors to ex plain the heat trans fer en hancement of flu ids such as wa ter, eth yl ene gly col, en gine oil con tain ing these par ti cles. This pa per pres ents a sys tem atic lit er a ture sur vey to ex ploit the thermophysical char ac ter is tics of nanofluids. Based on the ex per i men tal data avail able in the lit era ture em pir i cal cor re la tion to pre dict the ther mal con duc tiv ity of Al 2 O 3 , Cu, CuO, and TiO 2 nanoparticles with wa ter and eth yl ene gly col as basefluid is de vel oped and pre sented. Sim i larly the cor re la tions to pre dict the Nusselt num ber un der lam inar and tur bu lent flow con di tions is also de vel oped and pre sented. These cor re lations are use ful to pre dict the heat trans fer abil ity of nanofluids and takes care of vari a tions in vol ume frac tion, nanoparticle size and fluid tem per a ture. The improved thermophysical char ac ter is tics of a nanofluid make it ex cel lently suit able for fu ture heat ex change ap pli ca tions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3fdfb8fc390820b77d8b43e4a78546a0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108873707,&quot;asset_id&quot;:111296424,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108873707/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111296424"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111296424"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111296424; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111296424]").text(description); $(".js-view-count[data-work-id=111296424]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111296424; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111296424']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111296424, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3fdfb8fc390820b77d8b43e4a78546a0" } } $('.js-work-strip[data-work-id=111296424]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111296424,"title":"Empirical correlations to predict thermophysical and heat transfer characteristics of nanofluids","translated_title":"","metadata":{"publisher":"Vinča Institute of Nuclear Sciences","grobid_abstract":"Nanofluids ex hib its larger ther mal con duc tiv ity due to the pres ence of sus pended nanosized solid par ti cles in them such as Al 2 O 3 , Cu, CuO,TiO 2 , etc. Va ri et ies of mod els have been pro posed by sev eral au thors to ex plain the heat trans fer en hancement of flu ids such as wa ter, eth yl ene gly col, en gine oil con tain ing these par ti cles. This pa per pres ents a sys tem atic lit er a ture sur vey to ex ploit the thermophysical char ac ter is tics of nanofluids. Based on the ex per i men tal data avail able in the lit era ture em pir i cal cor re la tion to pre dict the ther mal con duc tiv ity of Al 2 O 3 , Cu, CuO, and TiO 2 nanoparticles with wa ter and eth yl ene gly col as basefluid is de vel oped and pre sented. Sim i larly the cor re la tions to pre dict the Nusselt num ber un der lam inar and tur bu lent flow con di tions is also de vel oped and pre sented. These cor re lations are use ful to pre dict the heat trans fer abil ity of nanofluids and takes care of vari a tions in vol ume frac tion, nanoparticle size and fluid tem per a ture. The improved thermophysical char ac ter is tics of a nanofluid make it ex cel lently suit able for fu ture heat ex change ap pli ca tions.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Thermal Science","grobid_abstract_attachment_id":108873707},"translated_abstract":null,"internal_url":"https://www.academia.edu/111296424/Empirical_correlations_to_predict_thermophysical_and_heat_transfer_characteristics_of_nanofluids","translated_internal_url":"","created_at":"2023-12-12T23:38:08.523-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108873707,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108873707/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108873707/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Empirical_correlations_to_predict_thermo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108873707/ft-libre.pdf?1702456130=\u0026response-content-disposition=attachment%3B+filename%3DEmpirical_correlations_to_predict_thermo.pdf\u0026Expires=1734146055\u0026Signature=bvtqzD35XacNxbhggcZCIS-1ha-Vu6LM7hyhUah-aX~yp62MvtZPNH9V3E2LLTWBSlFA7i4aZ~gBNDo1ke61zrSGC05pndLAQpW8LxYVYV8RzFeRVtLQNQTVryqkITIuwRhEN1Bm04hpbhKEKRBf9jQ4RI-xloAMr-k23c098DTs4FhBjziVRqWVQKV1xYJVSBsoykPv06tRR9Ewl88apwnx-9uLtBfifJgyfwDO3kY8IsXmvBhT82wd4IJfmVc4-CqwaWXD~oPcAhZ--DtfI9GBSiTcoDZB3-RaWGLIeNucY0sH9SWO6agTalNx-VZmeL~99BY7OlTjSyXE3quX1w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Empirical_correlations_to_predict_thermophysical_and_heat_transfer_characteristics_of_nanofluids","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Nanofluids ex hib its larger ther mal con duc tiv ity due to the pres ence of sus pended nanosized solid par ti cles in them such as Al 2 O 3 , Cu, CuO,TiO 2 , etc. Va ri et ies of mod els have been pro posed by sev eral au thors to ex plain the heat trans fer en hancement of flu ids such as wa ter, eth yl ene gly col, en gine oil con tain ing these par ti cles. This pa per pres ents a sys tem atic lit er a ture sur vey to ex ploit the thermophysical char ac ter is tics of nanofluids. Based on the ex per i men tal data avail able in the lit era ture em pir i cal cor re la tion to pre dict the ther mal con duc tiv ity of Al 2 O 3 , Cu, CuO, and TiO 2 nanoparticles with wa ter and eth yl ene gly col as basefluid is de vel oped and pre sented. Sim i larly the cor re la tions to pre dict the Nusselt num ber un der lam inar and tur bu lent flow con di tions is also de vel oped and pre sented. These cor re lations are use ful to pre dict the heat trans fer abil ity of nanofluids and takes care of vari a tions in vol ume frac tion, nanoparticle size and fluid tem per a ture. The improved thermophysical char ac ter is tics of a nanofluid make it ex cel lently suit able for fu ture heat ex change ap pli ca tions.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":108873707,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108873707/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108873707/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Empirical_correlations_to_predict_thermo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108873707/ft-libre.pdf?1702456130=\u0026response-content-disposition=attachment%3B+filename%3DEmpirical_correlations_to_predict_thermo.pdf\u0026Expires=1734146055\u0026Signature=bvtqzD35XacNxbhggcZCIS-1ha-Vu6LM7hyhUah-aX~yp62MvtZPNH9V3E2LLTWBSlFA7i4aZ~gBNDo1ke61zrSGC05pndLAQpW8LxYVYV8RzFeRVtLQNQTVryqkITIuwRhEN1Bm04hpbhKEKRBf9jQ4RI-xloAMr-k23c098DTs4FhBjziVRqWVQKV1xYJVSBsoykPv06tRR9Ewl88apwnx-9uLtBfifJgyfwDO3kY8IsXmvBhT82wd4IJfmVc4-CqwaWXD~oPcAhZ--DtfI9GBSiTcoDZB3-RaWGLIeNucY0sH9SWO6agTalNx-VZmeL~99BY7OlTjSyXE3quX1w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108873706,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108873706/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108873706/download_file","bulk_download_file_name":"Empirical_correlations_to_predict_thermo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108873706/ft-libre.pdf?1702456132=\u0026response-content-disposition=attachment%3B+filename%3DEmpirical_correlations_to_predict_thermo.pdf\u0026Expires=1734146055\u0026Signature=gVVU7qs6o05KfulIc4mndgSidXwQmW2ufVfFtWV4dzNS8XHkletYhfyr2ziEo9mhP34jSr7LA2RQ~aEW6VskZ66UZzlLBe8r27TOdxKIf7JL6u1lluK~y3Fh~y~miboQYGkRiFK~R5dQTJhOLM-jyEeViIS6NHjOPpydRNT44q4Gviku1qnJDeoVFKUP-mCmelqp7ohsmWUeIzl~WPpWN0YsLK4kLQVjsgiTB9N0ZGTGzJWw73Mtx9TXlWVKADFqaQWcwXuPebRNV1WBif8flnx5IKTGdY3x--O4yurYe69~uAx4birSjQbITtCyNXViJyOH2hqAHsl6Xe95NQVYQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":460900,"name":"Thermal Science","url":"https://www.academia.edu/Documents/in/Thermal_Science"},{"id":698667,"name":"Nusselt Number","url":"https://www.academia.edu/Documents/in/Nusselt_Number"},{"id":1650162,"name":"Ethylene Glycol","url":"https://www.academia.edu/Documents/in/Ethylene_Glycol"},{"id":2295024,"name":"Volume Fraction","url":"https://www.academia.edu/Documents/in/Volume_Fraction"}],"urls":[{"id":36994923,"url":"http://www.doiserbia.nb.rs/ft.aspx?id=0354-98360802027V"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111296414"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111296414/CFD_analysis_of_heat_transfer_by_free_convection_over_a_vertical_cylinder_with_circular_fins_of_triangular_cross_section"><img alt="Research paper thumbnail of CFD analysis of heat transfer by free convection over a vertical cylinder with circular fins of triangular cross-section" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111296414/CFD_analysis_of_heat_transfer_by_free_convection_over_a_vertical_cylinder_with_circular_fins_of_triangular_cross_section">CFD analysis of heat transfer by free convection over a vertical cylinder with circular fins of triangular cross-section</a></div><div class="wp-workCard_item"><span>Multiscale and Multidisciplinary Modeling, Experiments and Design</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111296414"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111296414"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111296414; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111296414]").text(description); $(".js-view-count[data-work-id=111296414]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111296414; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111296414']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111296414, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111296414]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111296414,"title":"CFD analysis of heat transfer by free convection over a vertical cylinder with circular fins of triangular cross-section","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"Multiscale and Multidisciplinary Modeling, Experiments and Design"},"translated_abstract":null,"internal_url":"https://www.academia.edu/111296414/CFD_analysis_of_heat_transfer_by_free_convection_over_a_vertical_cylinder_with_circular_fins_of_triangular_cross_section","translated_internal_url":"","created_at":"2023-12-12T23:38:07.237-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"CFD_analysis_of_heat_transfer_by_free_convection_over_a_vertical_cylinder_with_circular_fins_of_triangular_cross_section","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[],"urls":[{"id":36994913,"url":"https://link.springer.com/content/pdf/10.1007/s41939-023-00237-x.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111296409"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111296409/Design_and_investigating_the_inlet_parameters_on_the_performance_of_the_Ranque_Hilsch_vortex_tube"><img alt="Research paper thumbnail of Design and investigating the inlet parameters on the performance of the Ranque-Hilsch vortex tube" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111296409/Design_and_investigating_the_inlet_parameters_on_the_performance_of_the_Ranque_Hilsch_vortex_tube">Design and investigating the inlet parameters on the performance of the Ranque-Hilsch vortex tube</a></div><div class="wp-workCard_item"><span>International Journal on Interactive Design and Manufacturing (IJIDeM)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111296409"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111296409"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111296409; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111296409]").text(description); $(".js-view-count[data-work-id=111296409]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111296409; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111296409']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111296409, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111296409]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111296409,"title":"Design and investigating the inlet parameters on the performance of the Ranque-Hilsch vortex tube","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"International Journal on Interactive Design and Manufacturing (IJIDeM)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/111296409/Design_and_investigating_the_inlet_parameters_on_the_performance_of_the_Ranque_Hilsch_vortex_tube","translated_internal_url":"","created_at":"2023-12-12T23:38:06.351-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Design_and_investigating_the_inlet_parameters_on_the_performance_of_the_Ranque_Hilsch_vortex_tube","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2802,"name":"Turbulence","url":"https://www.academia.edu/Documents/in/Turbulence"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"},{"id":308253,"name":"Vortex Tube","url":"https://www.academia.edu/Documents/in/Vortex_Tube"},{"id":1191327,"name":"Mass Flow Rate","url":"https://www.academia.edu/Documents/in/Mass_Flow_Rate"},{"id":1505264,"name":"Nozzle","url":"https://www.academia.edu/Documents/in/Nozzle"}],"urls":[{"id":36994906,"url":"https://link.springer.com/content/pdf/10.1007/s12008-023-01374-w.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111296360"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111296360/Numerical_and_Experimental_Investigation_of_n_Heptane_Autoignition_in_the_Ignition_Quality_Tester_IQT_"><img alt="Research paper thumbnail of Numerical and Experimental Investigation of n-Heptane Autoignition in the Ignition Quality Tester (IQT)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111296360/Numerical_and_Experimental_Investigation_of_n_Heptane_Autoignition_in_the_Ignition_Quality_Tester_IQT_">Numerical and Experimental Investigation of n-Heptane Autoignition in the Ignition Quality Tester (IQT)</a></div><div class="wp-workCard_item"><span>Energy &amp;amp; Fuels</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Development of advanced compression ignition and low-temperature combustion engines is increasing...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Development of advanced compression ignition and low-temperature combustion engines is increasingly dependent on chemical kinetic ignition models. However, rigorous experimental validation of kinetic models has been limited under engine-like conditions. For example, shock tubes and rapid compression machines are usually restricted to premixed gas-phase studies, precluding the study of heterogeneous combustion and the use of low-volatility surrogates for commercial diesel fuels. The Ignition Quality Tester (IQT) is a constant-volume spray combustion system designed to measure ignition delay of low-volatility fuels, having the potential to validate ignition models. However, a better understanding of the IQT’s fuel spray and combustion processes is necessary to enable chemical kinetic studies. As a first step, n-heptane was studied because numerous reduced chemical mechanisms are available in the literature as it is a common diesel fuel surrogate, as well as a calibration fuel for the IQT. A modified version...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111296360"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111296360"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111296360; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111296360]").text(description); $(".js-view-count[data-work-id=111296360]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111296360; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111296360']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111296360, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111296360]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111296360,"title":"Numerical and Experimental Investigation of n-Heptane Autoignition in the Ignition Quality Tester (IQT)","translated_title":"","metadata":{"abstract":"Development of advanced compression ignition and low-temperature combustion engines is increasingly dependent on chemical kinetic ignition models. However, rigorous experimental validation of kinetic models has been limited under engine-like conditions. For example, shock tubes and rapid compression machines are usually restricted to premixed gas-phase studies, precluding the study of heterogeneous combustion and the use of low-volatility surrogates for commercial diesel fuels. The Ignition Quality Tester (IQT) is a constant-volume spray combustion system designed to measure ignition delay of low-volatility fuels, having the potential to validate ignition models. However, a better understanding of the IQT’s fuel spray and combustion processes is necessary to enable chemical kinetic studies. As a first step, n-heptane was studied because numerous reduced chemical mechanisms are available in the literature as it is a common diesel fuel surrogate, as well as a calibration fuel for the IQT. A modified version...","publisher":"American Chemical Society (ACS)","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Energy \u0026amp; Fuels"},"translated_abstract":"Development of advanced compression ignition and low-temperature combustion engines is increasingly dependent on chemical kinetic ignition models. However, rigorous experimental validation of kinetic models has been limited under engine-like conditions. For example, shock tubes and rapid compression machines are usually restricted to premixed gas-phase studies, precluding the study of heterogeneous combustion and the use of low-volatility surrogates for commercial diesel fuels. The Ignition Quality Tester (IQT) is a constant-volume spray combustion system designed to measure ignition delay of low-volatility fuels, having the potential to validate ignition models. However, a better understanding of the IQT’s fuel spray and combustion processes is necessary to enable chemical kinetic studies. As a first step, n-heptane was studied because numerous reduced chemical mechanisms are available in the literature as it is a common diesel fuel surrogate, as well as a calibration fuel for the IQT. A modified version...","internal_url":"https://www.academia.edu/111296360/Numerical_and_Experimental_Investigation_of_n_Heptane_Autoignition_in_the_Ignition_Quality_Tester_IQT_","translated_internal_url":"","created_at":"2023-12-12T23:37:32.824-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Numerical_and_Experimental_Investigation_of_n_Heptane_Autoignition_in_the_Ignition_Quality_Tester_IQT_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Development of advanced compression ignition and low-temperature combustion engines is increasingly dependent on chemical kinetic ignition models. However, rigorous experimental validation of kinetic models has been limited under engine-like conditions. For example, shock tubes and rapid compression machines are usually restricted to premixed gas-phase studies, precluding the study of heterogeneous combustion and the use of low-volatility surrogates for commercial diesel fuels. The Ignition Quality Tester (IQT) is a constant-volume spray combustion system designed to measure ignition delay of low-volatility fuels, having the potential to validate ignition models. However, a better understanding of the IQT’s fuel spray and combustion processes is necessary to enable chemical kinetic studies. As a first step, n-heptane was studied because numerous reduced chemical mechanisms are available in the literature as it is a common diesel fuel surrogate, as well as a calibration fuel for the IQT. A modified version...","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2298,"name":"Computational Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics"},{"id":6263,"name":"Combustion","url":"https://www.academia.edu/Documents/in/Combustion"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":295751,"name":"Diesel Fuel","url":"https://www.academia.edu/Documents/in/Diesel_Fuel"},{"id":826396,"name":"Energy and Fuels","url":"https://www.academia.edu/Documents/in/Energy_and_Fuels"},{"id":2138756,"name":"Homogeneous Charge Compression Ignition (hcci)","url":"https://www.academia.edu/Documents/in/Homogeneous_Charge_Compression_Ignition_hcci_"},{"id":2522651,"name":"Shock Tube","url":"https://www.academia.edu/Documents/in/Shock_Tube"},{"id":3854449,"name":"Ignition System","url":"https://www.academia.edu/Documents/in/Ignition_System"}],"urls":[{"id":36994876,"url":"https://pubs.acs.org/doi/pdf/10.1021/ef201079g"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="106796327"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/106796327/Numerical_and_empirical_simulation_of_fluid_flow_in_a_spiral_plate_heat_exchanger_with_Nusselt_number_correlation_development"><img alt="Research paper thumbnail of Numerical and empirical simulation of fluid flow in a spiral plate heat exchanger with Nusselt number correlation development" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/106796327/Numerical_and_empirical_simulation_of_fluid_flow_in_a_spiral_plate_heat_exchanger_with_Nusselt_number_correlation_development">Numerical and empirical simulation of fluid flow in a spiral plate heat exchanger with Nusselt number correlation development</a></div><div class="wp-workCard_item"><span>International Journal on Interactive Design and Manufacturing (IJIDeM)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="106796327"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="106796327"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 106796327; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=106796327]").text(description); $(".js-view-count[data-work-id=106796327]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 106796327; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='106796327']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 106796327, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=106796327]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":106796327,"title":"Numerical and empirical simulation of fluid flow in a spiral plate heat exchanger with Nusselt number correlation development","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"International Journal on Interactive Design and Manufacturing (IJIDeM)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/106796327/Numerical_and_empirical_simulation_of_fluid_flow_in_a_spiral_plate_heat_exchanger_with_Nusselt_number_correlation_development","translated_internal_url":"","created_at":"2023-09-18T05:27:34.839-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Numerical_and_empirical_simulation_of_fluid_flow_in_a_spiral_plate_heat_exchanger_with_Nusselt_number_correlation_development","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[],"urls":[{"id":33969774,"url":"https://link.springer.com/content/pdf/10.1007/s12008-023-01454-x.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="97191491"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/97191491/Analytical_prediction_of_forced_convective_heat_transfer_of_fluids_embedded_with_nanostructured_materials_nanofluids_"><img alt="Research paper thumbnail of Analytical prediction of forced convective heat transfer of fluids embedded with nanostructured materials (nanofluids)" class="work-thumbnail" src="https://attachments.academia-assets.com/98881397/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/97191491/Analytical_prediction_of_forced_convective_heat_transfer_of_fluids_embedded_with_nanostructured_materials_nanofluids_">Analytical prediction of forced convective heat transfer of fluids embedded with nanostructured materials (nanofluids)</a></div><div class="wp-workCard_item"><span>Pramana</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nanofluids are a new class of heat transfer fluids developed by suspending nanosized solid partic...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nanofluids are a new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil etc. significantly enhances their thermal properties. Several phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents a systematic literature survey to exploit the characteristics of nanofluids, viz., thermal conductivity, specific heat and other thermal properties. An empirical correlation for the thermal conductivity of Al 2O3 + water and Cu + water nanofluids, considering the effects of temperature, volume fraction and size of the nanoparticle is developed and presented. A correlation for the evaluation of Nusselt number is also developed and presented and compared in graphical form. This enhanced thermophysical and heat transfer characteristics make fluids embedded with nanomaterials as excellent candidates for future applications.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f61dece3adaa309376201528a5675180" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98881397,&quot;asset_id&quot;:97191491,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98881397/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97191491"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97191491"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97191491; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97191491]").text(description); $(".js-view-count[data-work-id=97191491]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97191491; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97191491']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 97191491, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f61dece3adaa309376201528a5675180" } } $('.js-work-strip[data-work-id=97191491]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97191491,"title":"Analytical prediction of forced convective heat transfer of fluids embedded with nanostructured materials (nanofluids)","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"Nanofluids are a new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil etc. significantly enhances their thermal properties. Several phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents a systematic literature survey to exploit the characteristics of nanofluids, viz., thermal conductivity, specific heat and other thermal properties. An empirical correlation for the thermal conductivity of Al 2O3 + water and Cu + water nanofluids, considering the effects of temperature, volume fraction and size of the nanoparticle is developed and presented. A correlation for the evaluation of Nusselt number is also developed and presented and compared in graphical form. This enhanced thermophysical and heat transfer characteristics make fluids embedded with nanomaterials as excellent candidates for future applications.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Pramana","grobid_abstract_attachment_id":98881397},"translated_abstract":null,"internal_url":"https://www.academia.edu/97191491/Analytical_prediction_of_forced_convective_heat_transfer_of_fluids_embedded_with_nanostructured_materials_nanofluids_","translated_internal_url":"","created_at":"2023-02-19T20:34:47.498-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98881397,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98881397/thumbnails/1.jpg","file_name":"0411-0421.pdf","download_url":"https://www.academia.edu/attachments/98881397/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analytical_prediction_of_forced_convecti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98881397/0411-0421-libre.pdf?1676868309=\u0026response-content-disposition=attachment%3B+filename%3DAnalytical_prediction_of_forced_convecti.pdf\u0026Expires=1734146055\u0026Signature=SDCNk4KaY8CloNnRDwTOUYyKrtSz9mrkaRdKu2-RciWk~75SAfcV6YkYGNLv8cy4GW0A0IeVvCVjpL1gftQoI1ATAz6a7ugz-PVQ2GPIan29CsLZ5u~-9EOMPN-s6Z-ZekuD-AvTPZ~ywWdpra1LTcBXyhNoq9Aq5c0FkGKu4xf72Xi1exZ-nondvVJkwzbSQ~yxdRsv6uoIm45hGTSk3lkTcR2GyDxMuqV~WZtXK0RyXFN9Km7r9t8ttGa3ssnNqq9fGJsbfFVLTppeZuPTZNd4fo1sF1Al2-Y0V1G47Zhexci1KRsNJ2L7SrBRDUkxfcUeUyZHdz4BaGoV~psqdA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Analytical_prediction_of_forced_convective_heat_transfer_of_fluids_embedded_with_nanostructured_materials_nanofluids_","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Nanofluids are a new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil etc. significantly enhances their thermal properties. Several phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents a systematic literature survey to exploit the characteristics of nanofluids, viz., thermal conductivity, specific heat and other thermal properties. An empirical correlation for the thermal conductivity of Al 2O3 + water and Cu + water nanofluids, considering the effects of temperature, volume fraction and size of the nanoparticle is developed and presented. A correlation for the evaluation of Nusselt number is also developed and presented and compared in graphical form. This enhanced thermophysical and heat transfer characteristics make fluids embedded with nanomaterials as excellent candidates for future applications.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":98881397,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98881397/thumbnails/1.jpg","file_name":"0411-0421.pdf","download_url":"https://www.academia.edu/attachments/98881397/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analytical_prediction_of_forced_convecti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98881397/0411-0421-libre.pdf?1676868309=\u0026response-content-disposition=attachment%3B+filename%3DAnalytical_prediction_of_forced_convecti.pdf\u0026Expires=1734146055\u0026Signature=SDCNk4KaY8CloNnRDwTOUYyKrtSz9mrkaRdKu2-RciWk~75SAfcV6YkYGNLv8cy4GW0A0IeVvCVjpL1gftQoI1ATAz6a7ugz-PVQ2GPIan29CsLZ5u~-9EOMPN-s6Z-ZekuD-AvTPZ~ywWdpra1LTcBXyhNoq9Aq5c0FkGKu4xf72Xi1exZ-nondvVJkwzbSQ~yxdRsv6uoIm45hGTSk3lkTcR2GyDxMuqV~WZtXK0RyXFN9Km7r9t8ttGa3ssnNqq9fGJsbfFVLTppeZuPTZNd4fo1sF1Al2-Y0V1G47Zhexci1KRsNJ2L7SrBRDUkxfcUeUyZHdz4BaGoV~psqdA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":1327,"name":"Convection","url":"https://www.academia.edu/Documents/in/Convection"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":359085,"name":"Heat transfer enhancement","url":"https://www.academia.edu/Documents/in/Heat_transfer_enhancement"},{"id":661889,"name":"Convective Heat Transfer","url":"https://www.academia.edu/Documents/in/Convective_Heat_Transfer"},{"id":698667,"name":"Nusselt Number","url":"https://www.academia.edu/Documents/in/Nusselt_Number"},{"id":738257,"name":"Pramana","url":"https://www.academia.edu/Documents/in/Pramana"},{"id":818143,"name":"Nanostructured Material","url":"https://www.academia.edu/Documents/in/Nanostructured_Material"},{"id":827572,"name":"Specific Heat","url":"https://www.academia.edu/Documents/in/Specific_Heat"},{"id":854553,"name":"Thermal Properties","url":"https://www.academia.edu/Documents/in/Thermal_Properties"},{"id":890685,"name":"Forced Convection","url":"https://www.academia.edu/Documents/in/Forced_Convection"},{"id":1506149,"name":"Literature survey","url":"https://www.academia.edu/Documents/in/Literature_survey"},{"id":1650162,"name":"Ethylene Glycol","url":"https://www.academia.edu/Documents/in/Ethylene_Glycol"},{"id":1926798,"name":"PHENOMENOLOGICAL MODEL","url":"https://www.academia.edu/Documents/in/PHENOMENOLOGICAL_MODEL"},{"id":2295024,"name":"Volume Fraction","url":"https://www.academia.edu/Documents/in/Volume_Fraction"}],"urls":[{"id":29122606,"url":"http://link.springer.com/content/pdf/10.1007/s12043-007-0142-1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="97191490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/97191490/Heat_transfer_with_nanofluids_for_electronic_cooling"><img alt="Research paper thumbnail of Heat transfer with nanofluids for electronic cooling" class="work-thumbnail" src="https://attachments.academia-assets.com/98881392/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/97191490/Heat_transfer_with_nanofluids_for_electronic_cooling">Heat transfer with nanofluids for electronic cooling</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/RamakrishnaKonijeti">Ramakrishna Konijeti</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/RamaKrishna1278">Rama Krishna</a></span></div><div class="wp-workCard_item"><span>International Journal of Materials and Product Technology</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In response to the ever increasing demand for smaller and lighter high performance cooling device...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In response to the ever increasing demand for smaller and lighter high performance cooling devices a new heat transfer liquids come into picture, called Nanofluids. Nanofluids are new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil, etc. significantly enhances its thermal properties. Numbers of phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents systematic literature survey observed to exploit several characteristic behaviours of nanofluids viz. increase in thermal conductivity, specific heat and other thermal properties. An empirical correlation for Al 2 O 3 + water nanofluid and effects of temperature, volume fraction and size of nanoparticle is studied. The effect of temperature on nanofluid thermal conductivity is also brought out. This behaviour combined with better mechanical properties makes fluids embedded with nanomaterials are excellent candidates for future applications.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="28a9c931834fc731e31d323119cc407a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98881392,&quot;asset_id&quot;:97191490,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98881392/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97191490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97191490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97191490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97191490]").text(description); $(".js-view-count[data-work-id=97191490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97191490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97191490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 97191490, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "28a9c931834fc731e31d323119cc407a" } } $('.js-work-strip[data-work-id=97191490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97191490,"title":"Heat transfer with nanofluids for electronic cooling","translated_title":"","metadata":{"publisher":"Inderscience Publishers","grobid_abstract":"In response to the ever increasing demand for smaller and lighter high performance cooling devices a new heat transfer liquids come into picture, called Nanofluids. Nanofluids are new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil, etc. significantly enhances its thermal properties. Numbers of phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents systematic literature survey observed to exploit several characteristic behaviours of nanofluids viz. increase in thermal conductivity, specific heat and other thermal properties. An empirical correlation for Al 2 O 3 + water nanofluid and effects of temperature, volume fraction and size of nanoparticle is studied. The effect of temperature on nanofluid thermal conductivity is also brought out. This behaviour combined with better mechanical properties makes fluids embedded with nanomaterials are excellent candidates for future applications.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"International Journal of Materials and Product Technology","grobid_abstract_attachment_id":98881392},"translated_abstract":null,"internal_url":"https://www.academia.edu/97191490/Heat_transfer_with_nanofluids_for_electronic_cooling","translated_internal_url":"","created_at":"2023-02-19T20:34:46.729-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":40748292,"work_id":97191490,"tagging_user_id":26265402,"tagged_user_id":297527311,"co_author_invite_id":7996601,"email":"d***k@kluniversity.in","display_order":0,"name":"Rama Krishna","title":"Heat transfer with nanofluids for electronic cooling"},{"id":40748293,"work_id":97191490,"tagging_user_id":26265402,"tagged_user_id":null,"co_author_invite_id":4727880,"email":"a***r@yahoo.com","display_order":1073741824,"name":"A. Kumar","title":"Heat transfer with nanofluids for electronic cooling"},{"id":40748294,"work_id":97191490,"tagging_user_id":26265402,"tagged_user_id":5757066,"co_author_invite_id":null,"email":"v***u@rediffmail.com","display_order":1610612736,"name":"Velagapudi Vasu","title":"Heat transfer with nanofluids for electronic cooling"}],"downloadable_attachments":[{"id":98881392,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98881392/thumbnails/1.jpg","file_name":"ijmpt.2009.02241020230220-1-caod51.pdf","download_url":"https://www.academia.edu/attachments/98881392/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Heat_transfer_with_nanofluids_for_electr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98881392/ijmpt.2009.02241020230220-1-caod51-libre.pdf?1676868312=\u0026response-content-disposition=attachment%3B+filename%3DHeat_transfer_with_nanofluids_for_electr.pdf\u0026Expires=1734146055\u0026Signature=Yam9MMKi2C0svSXZaA2aQVfPKKKuiSH-Pc2TcCRtlK6LeG4X1MggQn05UXABrvKuG2LzOeGB1qL5YRWNZ~PaN1QGCELPCnHkpmrMQHIPSRlaXQtCOcH5XQNa7RYdW9ow1q081YmtNqvW-Pbwr~TJ2z7azA6EeJLDI9Vr5AzhLTaqbmd7O5gZx4FX7bxiVmR73oIUADqZ6Uc5A95llVGwiQ5X7zErnp4NLGz5Hz-9kVcu9jBC8FvpYvdWhijhqzP0751EIuy3505eZQki0TtBZddHgpP43S6CVNLkD5sa2pJnGgaybMThfxvqRIn4EDTntRGhe10NTvCoGh5kYughpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Heat_transfer_with_nanofluids_for_electronic_cooling","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"In response to the ever increasing demand for smaller and lighter high performance cooling devices a new heat transfer liquids come into picture, called Nanofluids. Nanofluids are new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil, etc. significantly enhances its thermal properties. Numbers of phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents systematic literature survey observed to exploit several characteristic behaviours of nanofluids viz. increase in thermal conductivity, specific heat and other thermal properties. An empirical correlation for Al 2 O 3 + water nanofluid and effects of temperature, volume fraction and size of nanoparticle is studied. The effect of temperature on nanofluid thermal conductivity is also brought out. This behaviour combined with better mechanical properties makes fluids embedded with nanomaterials are excellent candidates for future applications.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":98881392,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98881392/thumbnails/1.jpg","file_name":"ijmpt.2009.02241020230220-1-caod51.pdf","download_url":"https://www.academia.edu/attachments/98881392/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Heat_transfer_with_nanofluids_for_electr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98881392/ijmpt.2009.02241020230220-1-caod51-libre.pdf?1676868312=\u0026response-content-disposition=attachment%3B+filename%3DHeat_transfer_with_nanofluids_for_electr.pdf\u0026Expires=1734146055\u0026Signature=Yam9MMKi2C0svSXZaA2aQVfPKKKuiSH-Pc2TcCRtlK6LeG4X1MggQn05UXABrvKuG2LzOeGB1qL5YRWNZ~PaN1QGCELPCnHkpmrMQHIPSRlaXQtCOcH5XQNa7RYdW9ow1q081YmtNqvW-Pbwr~TJ2z7azA6EeJLDI9Vr5AzhLTaqbmd7O5gZx4FX7bxiVmR73oIUADqZ6Uc5A95llVGwiQ5X7zErnp4NLGz5Hz-9kVcu9jBC8FvpYvdWhijhqzP0751EIuy3505eZQki0TtBZddHgpP43S6CVNLkD5sa2pJnGgaybMThfxvqRIn4EDTntRGhe10NTvCoGh5kYughpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":96825,"name":"Manufacturing Engineering","url":"https://www.academia.edu/Documents/in/Manufacturing_Engineering"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="97191486"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/97191486/Radiation_and_mass_transfer_effects_on_unsteady_MHD_free_convection_flow_of_an_incompressible_viscous_fluid_past_a_moving_vertical_cylinder"><img alt="Research paper thumbnail of Radiation and mass transfer effects on unsteady MHD free convection flow of an incompressible viscous fluid past a moving vertical cylinder" class="work-thumbnail" src="https://attachments.academia-assets.com/98881390/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/97191486/Radiation_and_mass_transfer_effects_on_unsteady_MHD_free_convection_flow_of_an_incompressible_viscous_fluid_past_a_moving_vertical_cylinder">Radiation and mass transfer effects on unsteady MHD free convection flow of an incompressible viscous fluid past a moving vertical cylinder</a></div><div class="wp-workCard_item"><span>Theoretical and Applied Mechanics</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The interaction of free convection with thermal radiation of a viscous incompressible unsteady MH...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The interaction of free convection with thermal radiation of a viscous incompressible unsteady MHD flow past a moving vertical cylinder with heat and mass transfer is analyzed. The fluid is a gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing equations are solved using an implicit finite-difference scheme of Crank-Nicolson type. Numerical results for the transient velocity, the temperature, the concentration, the local as well as average skin-friction, the rate of heat and mass transfer for various parameters such as thermal Grashof number, mass Grashof number, magnetic parameter, radiation parameter and Schmidt number are shown graphically. It is observed that, when the radiation parameter increases the velocity and temperature decrease in the boundary layer. Also, it is found that as increase in the magnetic field leads to decrease in the velocity field and rise in the...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="439da5e2e76f7a4a419f2a1612515477" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98881390,&quot;asset_id&quot;:97191486,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98881390/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97191486"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97191486"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97191486; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97191486]").text(description); $(".js-view-count[data-work-id=97191486]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97191486; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97191486']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 97191486, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "439da5e2e76f7a4a419f2a1612515477" } } $('.js-work-strip[data-work-id=97191486]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97191486,"title":"Radiation and mass transfer effects on unsteady MHD free convection flow of an incompressible viscous fluid past a moving vertical cylinder","translated_title":"","metadata":{"abstract":"The interaction of free convection with thermal radiation of a viscous incompressible unsteady MHD flow past a moving vertical cylinder with heat and mass transfer is analyzed. The fluid is a gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing equations are solved using an implicit finite-difference scheme of Crank-Nicolson type. Numerical results for the transient velocity, the temperature, the concentration, the local as well as average skin-friction, the rate of heat and mass transfer for various parameters such as thermal Grashof number, mass Grashof number, magnetic parameter, radiation parameter and Schmidt number are shown graphically. It is observed that, when the radiation parameter increases the velocity and temperature decrease in the boundary layer. Also, it is found that as increase in the magnetic field leads to decrease in the velocity field and rise in the...","publisher":"National Library of Serbia","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Theoretical and Applied Mechanics"},"translated_abstract":"The interaction of free convection with thermal radiation of a viscous incompressible unsteady MHD flow past a moving vertical cylinder with heat and mass transfer is analyzed. The fluid is a gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing equations are solved using an implicit finite-difference scheme of Crank-Nicolson type. Numerical results for the transient velocity, the temperature, the concentration, the local as well as average skin-friction, the rate of heat and mass transfer for various parameters such as thermal Grashof number, mass Grashof number, magnetic parameter, radiation parameter and Schmidt number are shown graphically. It is observed that, when the radiation parameter increases the velocity and temperature decrease in the boundary layer. Also, it is found that as increase in the magnetic field leads to decrease in the velocity field and rise in the...","internal_url":"https://www.academia.edu/97191486/Radiation_and_mass_transfer_effects_on_unsteady_MHD_free_convection_flow_of_an_incompressible_viscous_fluid_past_a_moving_vertical_cylinder","translated_internal_url":"","created_at":"2023-02-19T20:34:28.111-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98881390,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98881390/thumbnails/1.jpg","file_name":"a8081411adb14b1073291223a7952234556e.pdf","download_url":"https://www.academia.edu/attachments/98881390/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Radiation_and_mass_transfer_effects_on_u.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98881390/a8081411adb14b1073291223a7952234556e-libre.pdf?1676868316=\u0026response-content-disposition=attachment%3B+filename%3DRadiation_and_mass_transfer_effects_on_u.pdf\u0026Expires=1734146055\u0026Signature=DjtT1iIOdmnGK5SpI5mXnrVVkSw5JkAetYb-BgYHhjQy8lHc4WdTVG~6cP2au3A6DZDlbHANic5XZ-PrrbyPMKqGAUbQjQA0Wni0D1PAsOjsqF4fc6ePYwqUXEOhD23ANt-uOzNXwHUpqesyp0mG91lrJHga6swELYClHW87IGjVG6BRWB2rd42C7k9C1mjvA9T-WIy-iJMUPZJuBtiRpmy6f8lSVFf4IO-bqsfaapwnUJl14ouoLdUNut5~P0vY4GYvWnks8cwsxy2VAtsET5mnEpECVzjB58IIUq0MdzUPj9DhR~rOMcaNb5EPqTkiZbHf~DVz~5NAI3afQkVNmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Radiation_and_mass_transfer_effects_on_unsteady_MHD_free_convection_flow_of_an_incompressible_viscous_fluid_past_a_moving_vertical_cylinder","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"The interaction of free convection with thermal radiation of a viscous incompressible unsteady MHD flow past a moving vertical cylinder with heat and mass transfer is analyzed. The fluid is a gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing equations are solved using an implicit finite-difference scheme of Crank-Nicolson type. Numerical results for the transient velocity, the temperature, the concentration, the local as well as average skin-friction, the rate of heat and mass transfer for various parameters such as thermal Grashof number, mass Grashof number, magnetic parameter, radiation parameter and Schmidt number are shown graphically. It is observed that, when the radiation parameter increases the velocity and temperature decrease in the boundary layer. Also, it is found that as increase in the magnetic field leads to decrease in the velocity field and rise in the...","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":98881390,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98881390/thumbnails/1.jpg","file_name":"a8081411adb14b1073291223a7952234556e.pdf","download_url":"https://www.academia.edu/attachments/98881390/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Radiation_and_mass_transfer_effects_on_u.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98881390/a8081411adb14b1073291223a7952234556e-libre.pdf?1676868316=\u0026response-content-disposition=attachment%3B+filename%3DRadiation_and_mass_transfer_effects_on_u.pdf\u0026Expires=1734146055\u0026Signature=DjtT1iIOdmnGK5SpI5mXnrVVkSw5JkAetYb-BgYHhjQy8lHc4WdTVG~6cP2au3A6DZDlbHANic5XZ-PrrbyPMKqGAUbQjQA0Wni0D1PAsOjsqF4fc6ePYwqUXEOhD23ANt-uOzNXwHUpqesyp0mG91lrJHga6swELYClHW87IGjVG6BRWB2rd42C7k9C1mjvA9T-WIy-iJMUPZJuBtiRpmy6f8lSVFf4IO-bqsfaapwnUJl14ouoLdUNut5~P0vY4GYvWnks8cwsxy2VAtsET5mnEpECVzjB58IIUq0MdzUPj9DhR~rOMcaNb5EPqTkiZbHf~DVz~5NAI3afQkVNmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":721,"name":"Magnetohydrodynamics","url":"https://www.academia.edu/Documents/in/Magnetohydrodynamics"},{"id":111985,"name":"Theoretical and Applied Mechanics","url":"https://www.academia.edu/Documents/in/Theoretical_and_Applied_Mechanics"},{"id":486072,"name":"Thermal Radiation","url":"https://www.academia.edu/Documents/in/Thermal_Radiation"},{"id":524631,"name":"Theoretical and applied linguistics","url":"https://www.academia.edu/Documents/in/Theoretical_and_applied_linguistics"},{"id":685326,"name":"Boundary Layer","url":"https://www.academia.edu/Documents/in/Boundary_Layer"},{"id":2264045,"name":"Grashof number","url":"https://www.academia.edu/Documents/in/Grashof_number"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="89581388"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/89581388/Performance_Improvement_and_Exergy_Analysis_of_Gas_Turbine_Power_Plant_with_Alternative_Regenerator_and_Intake_Air_Cooling"><img alt="Research paper thumbnail of Performance Improvement and Exergy Analysis of Gas Turbine Power Plant with Alternative Regenerator and Intake Air Cooling" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/89581388/Performance_Improvement_and_Exergy_Analysis_of_Gas_Turbine_Power_Plant_with_Alternative_Regenerator_and_Intake_Air_Cooling">Performance Improvement and Exergy Analysis of Gas Turbine Power Plant with Alternative Regenerator and Intake Air Cooling</a></div><div class="wp-workCard_item"><span>Energy Engineering</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... Dr. AV Sita Rama Raju, Professor Department of Mechanical Engineering JNTU College of Enginee...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... Dr. AV Sita Rama Raju, Professor Department of Mechanical Engineering JNTU College of Engineering Kakinada, AP, INDIA ABSTRACT ... Ganesan [1] has suggested different cyclic arrangements to improve the net output and performance of a system. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="89581388"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="89581388"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 89581388; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=89581388]").text(description); $(".js-view-count[data-work-id=89581388]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 89581388; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='89581388']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 89581388, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=89581388]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":89581388,"title":"Performance Improvement and Exergy Analysis of Gas Turbine Power Plant with Alternative Regenerator and Intake Air Cooling","translated_title":"","metadata":{"abstract":"... Dr. AV Sita Rama Raju, Professor Department of Mechanical Engineering JNTU College of Engineering Kakinada, AP, INDIA ABSTRACT ... Ganesan [1] has suggested different cyclic arrangements to improve the net output and performance of a system. ...","publisher":"Computers, Materials and Continua (Tech Science Press)","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Energy Engineering"},"translated_abstract":"... Dr. AV Sita Rama Raju, Professor Department of Mechanical Engineering JNTU College of Engineering Kakinada, AP, INDIA ABSTRACT ... Ganesan [1] has suggested different cyclic arrangements to improve the net output and performance of a system. ...","internal_url":"https://www.academia.edu/89581388/Performance_Improvement_and_Exergy_Analysis_of_Gas_Turbine_Power_Plant_with_Alternative_Regenerator_and_Intake_Air_Cooling","translated_internal_url":"","created_at":"2022-10-30T23:46:46.076-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Performance_Improvement_and_Exergy_Analysis_of_Gas_Turbine_Power_Plant_with_Alternative_Regenerator_and_Intake_Air_Cooling","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... Dr. AV Sita Rama Raju, Professor Department of Mechanical Engineering JNTU College of Engineering Kakinada, AP, INDIA ABSTRACT ... Ganesan [1] has suggested different cyclic arrangements to improve the net output and performance of a system. ...","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"},{"id":3682,"name":"Energy Engineering","url":"https://www.academia.edu/Documents/in/Energy_Engineering"},{"id":4107,"name":"High Pressure","url":"https://www.academia.edu/Documents/in/High_Pressure"},{"id":17196,"name":"GAS TURBINE","url":"https://www.academia.edu/Documents/in/GAS_TURBINE"},{"id":34388,"name":"Power Plant","url":"https://www.academia.edu/Documents/in/Power_Plant"},{"id":62729,"name":"Air flow","url":"https://www.academia.edu/Documents/in/Air_flow"},{"id":103356,"name":"Exergy","url":"https://www.academia.edu/Documents/in/Exergy"},{"id":134767,"name":"Exergy Analysis","url":"https://www.academia.edu/Documents/in/Exergy_Analysis"},{"id":137957,"name":"Performance Improvement","url":"https://www.academia.edu/Documents/in/Performance_Improvement"},{"id":230744,"name":"Relative Humidity","url":"https://www.academia.edu/Documents/in/Relative_Humidity"},{"id":397530,"name":"Gas Turbines","url":"https://www.academia.edu/Documents/in/Gas_Turbines"},{"id":444096,"name":"Air Temperature","url":"https://www.academia.edu/Documents/in/Air_Temperature"},{"id":477062,"name":"Ambient Temperature","url":"https://www.academia.edu/Documents/in/Ambient_Temperature"},{"id":1181678,"name":"High Efficiency","url":"https://www.academia.edu/Documents/in/High_Efficiency"},{"id":2183216,"name":"Power Output","url":"https://www.academia.edu/Documents/in/Power_Output"},{"id":2523294,"name":"Energy Loss","url":"https://www.academia.edu/Documents/in/Energy_Loss"},{"id":3617396,"name":"Climatic condition","url":"https://www.academia.edu/Documents/in/Climatic_condition"}],"urls":[{"id":25336998,"url":"https://www.tandfonline.com/doi/pdf/10.1080/01998590709509498"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="84084692"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/84084692/Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger"><img alt="Research paper thumbnail of Application of Nanofluids in Thermal Design of Compact Heat Exchanger" class="work-thumbnail" src="https://attachments.academia-assets.com/89226720/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/84084692/Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger">Application of Nanofluids in Thermal Design of Compact Heat Exchanger</a></div><div class="wp-workCard_item"><span>International Journal of Nanotechnology and …</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Compact heat exchangers have been widely used in various applications in thermal fluid systems in...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Compact heat exchangers have been widely used in various applications in thermal fluid systems including automotive thermal fluid systems. Radiators for engine cooling systems, evaporators and condensers for HVAC systems, oil coolers and inter coolers are typical examples that can be found in ground vehicles. Recent development of Nanotechnology brings out a new heat transfer coolant called &#39;Nanofluids&#39; these fluids exhibit larger thermal properties than conventional coolants (water, Ethylene glycol, Engine oil etc.) due to the presence of suspended nanosized particles in then such as Al 2 O 3 , Cu,CuO,TiO 2 etc. In this paper a theoretical analysis was carried with ε-NTU rating method by using Al 2 O 3 + H 2 O Nanofluid as coolant on automobile flat tube plain fin compact heat exchanger and different characteristics are graphically presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3d49725deab11a0f2ec25d87cd9787db" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:89226720,&quot;asset_id&quot;:84084692,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/89226720/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="84084692"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="84084692"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 84084692; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=84084692]").text(description); $(".js-view-count[data-work-id=84084692]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 84084692; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='84084692']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 84084692, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3d49725deab11a0f2ec25d87cd9787db" } } $('.js-work-strip[data-work-id=84084692]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":84084692,"title":"Application of Nanofluids in Thermal Design of Compact Heat Exchanger","translated_title":"","metadata":{"ai_title_tag":"Nanofluids in Heat Exchanger Design and Analysis","grobid_abstract":"Compact heat exchangers have been widely used in various applications in thermal fluid systems including automotive thermal fluid systems. Radiators for engine cooling systems, evaporators and condensers for HVAC systems, oil coolers and inter coolers are typical examples that can be found in ground vehicles. Recent development of Nanotechnology brings out a new heat transfer coolant called 'Nanofluids' these fluids exhibit larger thermal properties than conventional coolants (water, Ethylene glycol, Engine oil etc.) due to the presence of suspended nanosized particles in then such as Al 2 O 3 , Cu,CuO,TiO 2 etc. In this paper a theoretical analysis was carried with ε-NTU rating method by using Al 2 O 3 + H 2 O Nanofluid as coolant on automobile flat tube plain fin compact heat exchanger and different characteristics are graphically presented.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"International Journal of Nanotechnology and …","grobid_abstract_attachment_id":89226720},"translated_abstract":null,"internal_url":"https://www.academia.edu/84084692/Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger","translated_internal_url":"","created_at":"2022-08-03T00:25:08.822-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89226720,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89226720/thumbnails/1.jpg","file_name":"Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger.pdf","download_url":"https://www.academia.edu/attachments/89226720/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Application_of_Nanofluids_in_Thermal_Des.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89226720/Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger-libre.pdf?1659512223=\u0026response-content-disposition=attachment%3B+filename%3DApplication_of_Nanofluids_in_Thermal_Des.pdf\u0026Expires=1734146055\u0026Signature=ZM3YhTSSPN4jnWg-rvPQf7ZfEWJ66sffAhB1hKPjDFCLv-L0TGCVS~RHge69LU6C67jMPit9pP72rCjHLRFPxOKmtAU4y7qeFini~W-RhmesR4j55CrG7r2MAPVW2mU5IdmJTBlmIs8s2v6H5P134eckG~z8HkuAhq-uKCoeBNqdiBBhvnCbl0Z2n2w~TkWvrTY4cpJwX29S8IbSzMEf7Bh2rcCzIuX4Ozw06Ugp~qaApgvgDPnebEYNdzCA-OdWYO4jhZvnRu9zRMum~s0DzwFCate0zL6gyAcpburr6zkbx16-RBYouqaDe9SwBXDlybTN7RC9FehW-G8Xu7Bt4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Compact heat exchangers have been widely used in various applications in thermal fluid systems including automotive thermal fluid systems. Radiators for engine cooling systems, evaporators and condensers for HVAC systems, oil coolers and inter coolers are typical examples that can be found in ground vehicles. Recent development of Nanotechnology brings out a new heat transfer coolant called 'Nanofluids' these fluids exhibit larger thermal properties than conventional coolants (water, Ethylene glycol, Engine oil etc.) due to the presence of suspended nanosized particles in then such as Al 2 O 3 , Cu,CuO,TiO 2 etc. In this paper a theoretical analysis was carried with ε-NTU rating method by using Al 2 O 3 + H 2 O Nanofluid as coolant on automobile flat tube plain fin compact heat exchanger and different characteristics are graphically presented.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":89226720,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89226720/thumbnails/1.jpg","file_name":"Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger.pdf","download_url":"https://www.academia.edu/attachments/89226720/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Application_of_Nanofluids_in_Thermal_Des.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89226720/Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger-libre.pdf?1659512223=\u0026response-content-disposition=attachment%3B+filename%3DApplication_of_Nanofluids_in_Thermal_Des.pdf\u0026Expires=1734146055\u0026Signature=ZM3YhTSSPN4jnWg-rvPQf7ZfEWJ66sffAhB1hKPjDFCLv-L0TGCVS~RHge69LU6C67jMPit9pP72rCjHLRFPxOKmtAU4y7qeFini~W-RhmesR4j55CrG7r2MAPVW2mU5IdmJTBlmIs8s2v6H5P134eckG~z8HkuAhq-uKCoeBNqdiBBhvnCbl0Z2n2w~TkWvrTY4cpJwX29S8IbSzMEf7Bh2rcCzIuX4Ozw06Ugp~qaApgvgDPnebEYNdzCA-OdWYO4jhZvnRu9zRMum~s0DzwFCate0zL6gyAcpburr6zkbx16-RBYouqaDe9SwBXDlybTN7RC9FehW-G8Xu7Bt4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":19517,"name":"Heat Exchanger","url":"https://www.academia.edu/Documents/in/Heat_Exchanger"},{"id":184965,"name":"Theoretical Analysis","url":"https://www.academia.edu/Documents/in/Theoretical_Analysis"},{"id":319473,"name":"Hvac System","url":"https://www.academia.edu/Documents/in/Hvac_System"},{"id":479234,"name":"Thermal design","url":"https://www.academia.edu/Documents/in/Thermal_design-1"},{"id":854553,"name":"Thermal Properties","url":"https://www.academia.edu/Documents/in/Thermal_Properties"},{"id":1650162,"name":"Ethylene Glycol","url":"https://www.academia.edu/Documents/in/Ethylene_Glycol"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79350128"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79350128/Evaluation_of_Heat_and_Mass_Transfer_Coefficients_at_Beetroot_Air_Interface_During_Convective_Drying"><img alt="Research paper thumbnail of Evaluation of Heat and Mass Transfer Coefficients at Beetroot-Air Interface During Convective Drying" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79350128/Evaluation_of_Heat_and_Mass_Transfer_Coefficients_at_Beetroot_Air_Interface_During_Convective_Drying">Evaluation of Heat and Mass Transfer Coefficients at Beetroot-Air Interface During Convective Drying</a></div><div class="wp-workCard_item"><span>Interfacial Phenomena and Heat Transfer</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79350128"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79350128"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79350128; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79350128]").text(description); $(".js-view-count[data-work-id=79350128]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79350128; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79350128']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79350128, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=79350128]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79350128,"title":"Evaluation of Heat and Mass Transfer Coefficients at Beetroot-Air Interface During Convective Drying","translated_title":"","metadata":{"publisher":"Begell House","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Interfacial Phenomena and Heat Transfer"},"translated_abstract":null,"internal_url":"https://www.academia.edu/79350128/Evaluation_of_Heat_and_Mass_Transfer_Coefficients_at_Beetroot_Air_Interface_During_Convective_Drying","translated_internal_url":"","created_at":"2022-05-17T22:52:33.134-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evaluation_of_Heat_and_Mass_Transfer_Coefficients_at_Beetroot_Air_Interface_During_Convective_Drying","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":20548152,"url":"http://www.dl.begellhouse.com/download/article/69c8a4b922620a60/IPHT0804(3)-36455.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79350126"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79350126/Convective_Hot_Air_Drying_Kinetics_of_Red_Beetroot_in_Thin_Layers"><img alt="Research paper thumbnail of Convective Hot Air Drying Kinetics of Red Beetroot in Thin Layers" class="work-thumbnail" src="https://attachments.academia-assets.com/86094787/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79350126/Convective_Hot_Air_Drying_Kinetics_of_Red_Beetroot_in_Thin_Layers">Convective Hot Air Drying Kinetics of Red Beetroot in Thin Layers</a></div><div class="wp-workCard_item"><span>Frontiers in Heat and Mass Transfer</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The effect of air temperature on drying kinetics of red beetroot slices was investigated experime...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The effect of air temperature on drying kinetics of red beetroot slices was investigated experimentally in a cabinet tray dryer. Drying was carried out at 70, 75, 80, and 85 ° with an air velocity 2 m/s and relative humidity 30 %. The drying data thus obtained were analyzed to get effective diffusivity values by applying the Fick&#39;s diffusion model. Effective diffusivity increased with increasing temperature. An Arrhenius relation with an activation energy value of 35.59 kJ/mol expressed the effect of temperature on the diffusivity. Also, within the given operating range, the average heat transfer coefficient at the air-product interface is estimated. Experimental data were fitted to ten mathematical models available in the literature. The Midilli et al. and Wang &amp; Singh models are given better prediction than the other models and satisfactorily described drying characteristics of red beetroot slices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2200739f71607bf06f67945bb09fb68e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86094787,&quot;asset_id&quot;:79350126,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86094787/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79350126"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79350126"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79350126; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79350126]").text(description); $(".js-view-count[data-work-id=79350126]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79350126; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79350126']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79350126, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2200739f71607bf06f67945bb09fb68e" } } $('.js-work-strip[data-work-id=79350126]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79350126,"title":"Convective Hot Air Drying Kinetics of Red Beetroot in Thin Layers","translated_title":"","metadata":{"publisher":"Global Digital Central","ai_title_tag":"Drying Kinetics of Red Beetroot: Temperature Effects and Modeling","grobid_abstract":"The effect of air temperature on drying kinetics of red beetroot slices was investigated experimentally in a cabinet tray dryer. Drying was carried out at 70, 75, 80, and 85 ° with an air velocity 2 m/s and relative humidity 30 %. The drying data thus obtained were analyzed to get effective diffusivity values by applying the Fick's diffusion model. Effective diffusivity increased with increasing temperature. An Arrhenius relation with an activation energy value of 35.59 kJ/mol expressed the effect of temperature on the diffusivity. Also, within the given operating range, the average heat transfer coefficient at the air-product interface is estimated. Experimental data were fitted to ten mathematical models available in the literature. The Midilli et al. and Wang \u0026 Singh models are given better prediction than the other models and satisfactorily described drying characteristics of red beetroot slices.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Frontiers in Heat and Mass Transfer","grobid_abstract_attachment_id":86094787},"translated_abstract":null,"internal_url":"https://www.academia.edu/79350126/Convective_Hot_Air_Drying_Kinetics_of_Red_Beetroot_in_Thin_Layers","translated_internal_url":"","created_at":"2022-05-17T22:52:32.280-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86094787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86094787/thumbnails/1.jpg","file_name":"769.pdf","download_url":"https://www.academia.edu/attachments/86094787/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Convective_Hot_Air_Drying_Kinetics_of_Re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86094787/769-libre.pdf?1652855022=\u0026response-content-disposition=attachment%3B+filename%3DConvective_Hot_Air_Drying_Kinetics_of_Re.pdf\u0026Expires=1734146055\u0026Signature=G89Z~nZcJQSHZRxmvhkPTxOLjfFZCPLo2s-PRmRXtowYQaCL7KvLLrqIQOoLWSbjaAXao9gTCjvc4exGRhFTtyeHqUe4quXPOnlH5qBtpkdlXsXg7MTiiEKvB8~431gx19rCqyZDB4jqyDA7LN7Lenk8ruI-PxJU8EqyPely0cqkUn66KEfSa24bG6k3EfcZmeD14~NdLqwf8-WJ7o5wSeXcpwassa~6goAKWzELJ7rVfq2E0MCoSMbMHKZTlcOWFCRGOQfryF811fe0AKqQxZ9pNFXLviln0FuihOfMQkJtRKICAG9mS5mkvrZG9kv2sTQNvUjN31uvPqV69wMxgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Convective_Hot_Air_Drying_Kinetics_of_Red_Beetroot_in_Thin_Layers","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"The effect of air temperature on drying kinetics of red beetroot slices was investigated experimentally in a cabinet tray dryer. Drying was carried out at 70, 75, 80, and 85 ° with an air velocity 2 m/s and relative humidity 30 %. The drying data thus obtained were analyzed to get effective diffusivity values by applying the Fick's diffusion model. Effective diffusivity increased with increasing temperature. An Arrhenius relation with an activation energy value of 35.59 kJ/mol expressed the effect of temperature on the diffusivity. Also, within the given operating range, the average heat transfer coefficient at the air-product interface is estimated. Experimental data were fitted to ten mathematical models available in the literature. The Midilli et al. and Wang \u0026 Singh models are given better prediction than the other models and satisfactorily described drying characteristics of red beetroot slices.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":86094787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86094787/thumbnails/1.jpg","file_name":"769.pdf","download_url":"https://www.academia.edu/attachments/86094787/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Convective_Hot_Air_Drying_Kinetics_of_Re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86094787/769-libre.pdf?1652855022=\u0026response-content-disposition=attachment%3B+filename%3DConvective_Hot_Air_Drying_Kinetics_of_Re.pdf\u0026Expires=1734146055\u0026Signature=G89Z~nZcJQSHZRxmvhkPTxOLjfFZCPLo2s-PRmRXtowYQaCL7KvLLrqIQOoLWSbjaAXao9gTCjvc4exGRhFTtyeHqUe4quXPOnlH5qBtpkdlXsXg7MTiiEKvB8~431gx19rCqyZDB4jqyDA7LN7Lenk8ruI-PxJU8EqyPely0cqkUn66KEfSa24bG6k3EfcZmeD14~NdLqwf8-WJ7o5wSeXcpwassa~6goAKWzELJ7rVfq2E0MCoSMbMHKZTlcOWFCRGOQfryF811fe0AKqQxZ9pNFXLviln0FuihOfMQkJtRKICAG9mS5mkvrZG9kv2sTQNvUjN31uvPqV69wMxgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2024,"name":"Mass Transfer","url":"https://www.academia.edu/Documents/in/Mass_Transfer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79350102"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79350102/Fouling_and_its_effect_on_the_thermal_performance_of_heat_exchanger_tubes"><img alt="Research paper thumbnail of Fouling and its effect on the thermal performance of heat exchanger tubes" class="work-thumbnail" src="https://attachments.academia-assets.com/86094745/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79350102/Fouling_and_its_effect_on_the_thermal_performance_of_heat_exchanger_tubes">Fouling and its effect on the thermal performance of heat exchanger tubes</a></div><div class="wp-workCard_item"><span>International Journal of Heat and Technology</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The phenomena of fouling and corrosion in heat exchanger tubes commonly encountered in industrial...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The phenomena of fouling and corrosion in heat exchanger tubes commonly encountered in industrial practice are reviewed in two phases. In the first phase, the influence of physical and chemical properties of petroleum crude on scaling and fouling are reviewed. Further, in the second phase a generalized hypothesis is provided for unsteady analysis as function of time with the aid of logarithmic, exponential and Power law variation of fouling factors with time. The time dependent thermal characteristics of typical parallel and counter flow heat exchangers are established with the aid of time dependent fouling factors. The approach presented is in good agreement with the reported values of a petroleum refinery. Thus, a method to estimate the critical period for maintenance of the heat exchanger is established treating fouling as a time variable occurrence.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ccab89f6881c6fc6e845707f5206c106" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86094745,&quot;asset_id&quot;:79350102,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86094745/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79350102"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79350102"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79350102; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79350102]").text(description); $(".js-view-count[data-work-id=79350102]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79350102; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79350102']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79350102, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ccab89f6881c6fc6e845707f5206c106" } } $('.js-work-strip[data-work-id=79350102]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79350102,"title":"Fouling and its effect on the thermal performance of heat exchanger tubes","translated_title":"","metadata":{"publisher":"International Information and Engineering Technology Association","grobid_abstract":"The phenomena of fouling and corrosion in heat exchanger tubes commonly encountered in industrial practice are reviewed in two phases. In the first phase, the influence of physical and chemical properties of petroleum crude on scaling and fouling are reviewed. Further, in the second phase a generalized hypothesis is provided for unsteady analysis as function of time with the aid of logarithmic, exponential and Power law variation of fouling factors with time. The time dependent thermal characteristics of typical parallel and counter flow heat exchangers are established with the aid of time dependent fouling factors. The approach presented is in good agreement with the reported values of a petroleum refinery. Thus, a method to estimate the critical period for maintenance of the heat exchanger is established treating fouling as a time variable occurrence.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"International Journal of Heat and Technology","grobid_abstract_attachment_id":86094745},"translated_abstract":null,"internal_url":"https://www.academia.edu/79350102/Fouling_and_its_effect_on_the_thermal_performance_of_heat_exchanger_tubes","translated_internal_url":"","created_at":"2022-05-17T22:52:01.851-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86094745,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86094745/thumbnails/1.jpg","file_name":"35.03_07.pdf","download_url":"https://www.academia.edu/attachments/86094745/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fouling_and_its_effect_on_the_thermal_pe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86094745/35.03_07-libre.pdf?1652855034=\u0026response-content-disposition=attachment%3B+filename%3DFouling_and_its_effect_on_the_thermal_pe.pdf\u0026Expires=1734146055\u0026Signature=f9dout3emVKB8KfV4J-Sewe02dk0bhxWn6YsVW85ND6DBRv67V8HYi3stiS15COE9DHZ-dnIPMRUk92bpKxfcavsk0cTufbF4iUMCXT46trxQyAB31BV2nbOdlzmLLZmag4b7parBPR6isyLqwTigkabVvdzG4SB8XtJPpnj-UQF-u4~ZVDzOrlEYOELxBRqaitafFkQLKRy2OfIxiRCiH52jqGCoYXygd1cQnDSde50DNlwLI8OnwQqg6NP8XDJG14d-opVNoX9sBdrpKNz33Lh0TckR3yRe-nZzQpnd9GZ5ARVc19CLmpY32Kd8tJ27t0x2CU4tkn15oceL-HYyg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fouling_and_its_effect_on_the_thermal_performance_of_heat_exchanger_tubes","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"The phenomena of fouling and corrosion in heat exchanger tubes commonly encountered in industrial practice are reviewed in two phases. In the first phase, the influence of physical and chemical properties of petroleum crude on scaling and fouling are reviewed. Further, in the second phase a generalized hypothesis is provided for unsteady analysis as function of time with the aid of logarithmic, exponential and Power law variation of fouling factors with time. The time dependent thermal characteristics of typical parallel and counter flow heat exchangers are established with the aid of time dependent fouling factors. The approach presented is in good agreement with the reported values of a petroleum refinery. Thus, a method to estimate the critical period for maintenance of the heat exchanger is established treating fouling as a time variable occurrence.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":86094745,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86094745/thumbnails/1.jpg","file_name":"35.03_07.pdf","download_url":"https://www.academia.edu/attachments/86094745/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fouling_and_its_effect_on_the_thermal_pe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86094745/35.03_07-libre.pdf?1652855034=\u0026response-content-disposition=attachment%3B+filename%3DFouling_and_its_effect_on_the_thermal_pe.pdf\u0026Expires=1734146055\u0026Signature=f9dout3emVKB8KfV4J-Sewe02dk0bhxWn6YsVW85ND6DBRv67V8HYi3stiS15COE9DHZ-dnIPMRUk92bpKxfcavsk0cTufbF4iUMCXT46trxQyAB31BV2nbOdlzmLLZmag4b7parBPR6isyLqwTigkabVvdzG4SB8XtJPpnj-UQF-u4~ZVDzOrlEYOELxBRqaitafFkQLKRy2OfIxiRCiH52jqGCoYXygd1cQnDSde50DNlwLI8OnwQqg6NP8XDJG14d-opVNoX9sBdrpKNz33Lh0TckR3yRe-nZzQpnd9GZ5ARVc19CLmpY32Kd8tJ27t0x2CU4tkn15oceL-HYyg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":86094744,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86094744/thumbnails/1.jpg","file_name":"35.03_07.pdf","download_url":"https://www.academia.edu/attachments/86094744/download_file","bulk_download_file_name":"Fouling_and_its_effect_on_the_thermal_pe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86094744/35.03_07-libre.pdf?1652855034=\u0026response-content-disposition=attachment%3B+filename%3DFouling_and_its_effect_on_the_thermal_pe.pdf\u0026Expires=1734146055\u0026Signature=MxlXRoHOpxq8UR83Dn2SU2y~6vABvaxHkOs7LUazHopjfTxVAaQzl0ZzqWWF1WVrmPUTDLDHRjl49CzAZYmbe8h~JiVJNm~QBukXjdY-Edwj1Lmn2cnzd1qMW8SrYJt30xuDq-RJJQ0T9Hy0vuiCJmE8fRhzdbRgviftMeVlm2DmAZpDQ~0cMe~mMrCcQBp2~3~dJPqForPtJiPVl3HrDFBn3JK4b~w8tdWpjkeZvCU6tgLw8wiYvauXY5Vjc8bIyMXtkOB~XX6-GwTstqHhkfIuVrEZJJknRxbcrBBuFFQPFmiWRUGJdOTOIJFSEhwXDpwXsDJRRTT9mn~OAOJiXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":19517,"name":"Heat Exchanger","url":"https://www.academia.edu/Documents/in/Heat_Exchanger"},{"id":63142,"name":"Fouling","url":"https://www.academia.edu/Documents/in/Fouling"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":432657,"name":"Shell and Tube Heat Exchanger","url":"https://www.academia.edu/Documents/in/Shell_and_Tube_Heat_Exchanger"},{"id":4102086,"name":"heat technology","url":"https://www.academia.edu/Documents/in/heat_technology"}],"urls":[{"id":20548140,"url":"http://iieta.org/sites/default/files/Journals/IJHT/35.03_07.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79284086"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79284086/Effect_of_non_uniform_heat_source_sink_on_MHD_boundary_layer_flow_and_melting_heat_transfer_of_Williamson_nanofluid_in_porous_medium"><img alt="Research paper thumbnail of Effect of non-uniform heat source/sink on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79284086/Effect_of_non_uniform_heat_source_sink_on_MHD_boundary_layer_flow_and_melting_heat_transfer_of_Williamson_nanofluid_in_porous_medium">Effect of non-uniform heat source/sink on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium</a></div><div class="wp-workCard_item"><span>Multidiscipline Modeling in Materials and Structures</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">PurposeThe purpose of this paper is to examine the influence of magnetic field on Williamson nano...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">PurposeThe purpose of this paper is to examine the influence of magnetic field on Williamson nanofluid embedded in a porous medium in the presence of non-uniform heat source/sink, chemical reaction and thermal radiation effects.Design/methodology/approachThe governing physical problem is presented using the traditional Navier–Stokes theory. Consequential system of equations is transformed into a set of non-linear ordinary differential equations by means of scaling group of transformation, which are solved using the Runge–Kutta–Fehlberg method.FindingsThe working fluid is examined for several sundry parameters graphically and in a tabular form. It is noticed that with an increase in Eckert number, there is an increase in velocity and temperature along with a decrease in shear stress and heat transfer rate.Originality/valueA good agreement of the present results has been observed by comparing with the existing literature results.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79284086"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79284086"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79284086; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79284086]").text(description); $(".js-view-count[data-work-id=79284086]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79284086; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79284086']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79284086, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=79284086]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79284086,"title":"Effect of non-uniform heat source/sink on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium","translated_title":"","metadata":{"abstract":"PurposeThe purpose of this paper is to examine the influence of magnetic field on Williamson nanofluid embedded in a porous medium in the presence of non-uniform heat source/sink, chemical reaction and thermal radiation effects.Design/methodology/approachThe governing physical problem is presented using the traditional Navier–Stokes theory. Consequential system of equations is transformed into a set of non-linear ordinary differential equations by means of scaling group of transformation, which are solved using the Runge–Kutta–Fehlberg method.FindingsThe working fluid is examined for several sundry parameters graphically and in a tabular form. It is noticed that with an increase in Eckert number, there is an increase in velocity and temperature along with a decrease in shear stress and heat transfer rate.Originality/valueA good agreement of the present results has been observed by comparing with the existing literature results.","publisher":"Emerald","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Multidiscipline Modeling in Materials and Structures"},"translated_abstract":"PurposeThe purpose of this paper is to examine the influence of magnetic field on Williamson nanofluid embedded in a porous medium in the presence of non-uniform heat source/sink, chemical reaction and thermal radiation effects.Design/methodology/approachThe governing physical problem is presented using the traditional Navier–Stokes theory. Consequential system of equations is transformed into a set of non-linear ordinary differential equations by means of scaling group of transformation, which are solved using the Runge–Kutta–Fehlberg method.FindingsThe working fluid is examined for several sundry parameters graphically and in a tabular form. It is noticed that with an increase in Eckert number, there is an increase in velocity and temperature along with a decrease in shear stress and heat transfer rate.Originality/valueA good agreement of the present results has been observed by comparing with the existing literature results.","internal_url":"https://www.academia.edu/79284086/Effect_of_non_uniform_heat_source_sink_on_MHD_boundary_layer_flow_and_melting_heat_transfer_of_Williamson_nanofluid_in_porous_medium","translated_internal_url":"","created_at":"2022-05-17T00:20:06.193-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effect_of_non_uniform_heat_source_sink_on_MHD_boundary_layer_flow_and_melting_heat_transfer_of_Williamson_nanofluid_in_porous_medium","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"PurposeThe purpose of this paper is to examine the influence of magnetic field on Williamson nanofluid embedded in a porous medium in the presence of non-uniform heat source/sink, chemical reaction and thermal radiation effects.Design/methodology/approachThe governing physical problem is presented using the traditional Navier–Stokes theory. Consequential system of equations is transformed into a set of non-linear ordinary differential equations by means of scaling group of transformation, which are solved using the Runge–Kutta–Fehlberg method.FindingsThe working fluid is examined for several sundry parameters graphically and in a tabular form. It is noticed that with an increase in Eckert number, there is an increase in velocity and temperature along with a decrease in shear stress and heat transfer rate.Originality/valueA good agreement of the present results has been observed by comparing with the existing literature results.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":20522462,"url":"https://www.emeraldinsight.com/doi/full-xml/10.1108/MMMS-01-2018-0011"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71692817"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71692817/Performance_and_emission_characteristics_assessment_of_compression_ignition_engine_fuelled_with_the_blends_of_novel_antioxidant_catechol_daok_biodiesel"><img alt="Research paper thumbnail of Performance and emission characteristics assessment of compression ignition engine fuelled with the blends of novel antioxidant catechol-daok biodiesel" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71692817/Performance_and_emission_characteristics_assessment_of_compression_ignition_engine_fuelled_with_the_blends_of_novel_antioxidant_catechol_daok_biodiesel">Performance and emission characteristics assessment of compression ignition engine fuelled with the blends of novel antioxidant catechol-daok biodiesel</a></div><div class="wp-workCard_item"><span>Energy</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71692817"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71692817"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71692817; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71692817]").text(description); $(".js-view-count[data-work-id=71692817]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71692817; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71692817']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71692817, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=71692817]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71692817,"title":"Performance and emission characteristics assessment of compression ignition engine fuelled with the blends of novel antioxidant catechol-daok biodiesel","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Energy"},"translated_abstract":null,"internal_url":"https://www.academia.edu/71692817/Performance_and_emission_characteristics_assessment_of_compression_ignition_engine_fuelled_with_the_blends_of_novel_antioxidant_catechol_daok_biodiesel","translated_internal_url":"","created_at":"2022-02-16T08:54:01.516-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Performance_and_emission_characteristics_assessment_of_compression_ignition_engine_fuelled_with_the_blends_of_novel_antioxidant_catechol_daok_biodiesel","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":5412,"name":"Energy","url":"https://www.academia.edu/Documents/in/Energy"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"}],"urls":[{"id":17746503,"url":"https://api.elsevier.com/content/article/PII:S0360544222002079?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71692776"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71692776/Thermo_Economic_Optimization_of_Spiral_Plate_HX_by_Means_of_Gradient_and_Gradient_Free_Algorithm"><img alt="Research paper thumbnail of Thermo-Economic Optimization of Spiral Plate HX by Means of Gradient and Gradient-Free Algorithm" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71692776/Thermo_Economic_Optimization_of_Spiral_Plate_HX_by_Means_of_Gradient_and_Gradient_Free_Algorithm">Thermo-Economic Optimization of Spiral Plate HX by Means of Gradient and Gradient-Free Algorithm</a></div><div class="wp-workCard_item"><span>Lecture Notes in Mechanical Engineering</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71692776"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71692776"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71692776; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71692776]").text(description); $(".js-view-count[data-work-id=71692776]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71692776; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71692776']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71692776, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=71692776]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71692776,"title":"Thermo-Economic Optimization of Spiral Plate HX by Means of Gradient and Gradient-Free Algorithm","translated_title":"","metadata":{"publisher":"Springer Singapore","publication_name":"Lecture Notes in Mechanical Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/71692776/Thermo_Economic_Optimization_of_Spiral_Plate_HX_by_Means_of_Gradient_and_Gradient_Free_Algorithm","translated_internal_url":"","created_at":"2022-02-16T08:53:25.198-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Thermo_Economic_Optimization_of_Spiral_Plate_HX_by_Means_of_Gradient_and_Gradient_Free_Algorithm","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[],"urls":[{"id":17746492,"url":"https://link.springer.com/content/pdf/10.1007/978-981-16-8341-1_48"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="66156368"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/66156368/A_Novel_Empirical_Model_For_Drying_Of_Root_Vegetables_In_Thin_Layers"><img alt="Research paper thumbnail of A Novel Empirical Model For Drying Of Root Vegetables In Thin-Layers" class="work-thumbnail" src="https://attachments.academia-assets.com/77459703/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/66156368/A_Novel_Empirical_Model_For_Drying_Of_Root_Vegetables_In_Thin_Layers">A Novel Empirical Model For Drying Of Root Vegetables In Thin-Layers</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present work, a new empirical thin layer model for modeling the hot-air drying of root veg...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present work, a new empirical thin layer model for modeling the hot-air drying of root vegetables was developed. Drying characteristics of root vegetables viz., red beetroot and radish are determined at various temperatures. A novel approach is compared with two well-known thin-layer drying models. The proposed model has given the highest determination coefficient (R 2 ). Statistical estimation of the moisture ratio (MR) from experiments and calculated shown that the proposed equation reliably gave the lowest root mean square error (RMSE) and sum of squares due to error (SSE). The results indicate that the proposed model has the best curve fitting ability for root vegetables.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="93d34db180ba9b2d38fbeb2a8d2e2a53" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77459703,&quot;asset_id&quot;:66156368,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77459703/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="66156368"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="66156368"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66156368; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66156368]").text(description); $(".js-view-count[data-work-id=66156368]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66156368; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='66156368']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 66156368, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "93d34db180ba9b2d38fbeb2a8d2e2a53" } } $('.js-work-strip[data-work-id=66156368]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":66156368,"title":"A Novel Empirical Model For Drying Of Root Vegetables In Thin-Layers","translated_title":"","metadata":{"abstract":"In the present work, a new empirical thin layer model for modeling the hot-air drying of root vegetables was developed. Drying characteristics of root vegetables viz., red beetroot and radish are determined at various temperatures. A novel approach is compared with two well-known thin-layer drying models. The proposed model has given the highest determination coefficient (R 2 ). Statistical estimation of the moisture ratio (MR) from experiments and calculated shown that the proposed equation reliably gave the lowest root mean square error (RMSE) and sum of squares due to error (SSE). The results indicate that the proposed model has the best curve fitting ability for root vegetables.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"In the present work, a new empirical thin layer model for modeling the hot-air drying of root vegetables was developed. Drying characteristics of root vegetables viz., red beetroot and radish are determined at various temperatures. A novel approach is compared with two well-known thin-layer drying models. The proposed model has given the highest determination coefficient (R 2 ). Statistical estimation of the moisture ratio (MR) from experiments and calculated shown that the proposed equation reliably gave the lowest root mean square error (RMSE) and sum of squares due to error (SSE). The results indicate that the proposed model has the best curve fitting ability for root vegetables.","internal_url":"https://www.academia.edu/66156368/A_Novel_Empirical_Model_For_Drying_Of_Root_Vegetables_In_Thin_Layers","translated_internal_url":"","created_at":"2021-12-27T20:28:48.189-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77459703,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77459703/thumbnails/1.jpg","file_name":"A-Novel-Empirical-Model-For-Drying-Of-Root-Vegetables-In-Thin-layers.pdf","download_url":"https://www.academia.edu/attachments/77459703/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Novel_Empirical_Model_For_Drying_Of_Ro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77459703/A-Novel-Empirical-Model-For-Drying-Of-Root-Vegetables-In-Thin-layers-libre.pdf?1640667022=\u0026response-content-disposition=attachment%3B+filename%3DA_Novel_Empirical_Model_For_Drying_Of_Ro.pdf\u0026Expires=1734146055\u0026Signature=Kut432cSOQDVxJfjEbx9y5Gq059zQsrZueTDYWJ57Cobn4UEsLB~27Dt8Rq1EEeuYGnOFqy03O21S0npSez-oeUn7uwzNAHppVUKFdGodmCljaTs~Efn9bgBc0DbEdOXQAunfGjgHZ1eKi5H~4Fe045STIkhlZtZo~7CglLUu3bfvh1M9v0E3n1AlVk76ts89LVMUKMpvzJsnpnzehJs~hqGsN3tXcfsLnvtMIk~pPhwDFh2vOvknEFpC8sP~LDg9ZGjLYfxx2Ho67Psg9ULyKQGAjviTnDrsXbYmeT6xZII9Juk-uXMOqwIso454hzi51v6vLyXUxRJNdnT5tQfZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Novel_Empirical_Model_For_Drying_Of_Root_Vegetables_In_Thin_Layers","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"In the present work, a new empirical thin layer model for modeling the hot-air drying of root vegetables was developed. Drying characteristics of root vegetables viz., red beetroot and radish are determined at various temperatures. A novel approach is compared with two well-known thin-layer drying models. The proposed model has given the highest determination coefficient (R 2 ). Statistical estimation of the moisture ratio (MR) from experiments and calculated shown that the proposed equation reliably gave the lowest root mean square error (RMSE) and sum of squares due to error (SSE). The results indicate that the proposed model has the best curve fitting ability for root vegetables.","owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[{"id":77459703,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77459703/thumbnails/1.jpg","file_name":"A-Novel-Empirical-Model-For-Drying-Of-Root-Vegetables-In-Thin-layers.pdf","download_url":"https://www.academia.edu/attachments/77459703/download_file?st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&st=MTczNDE0MjQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Novel_Empirical_Model_For_Drying_Of_Ro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77459703/A-Novel-Empirical-Model-For-Drying-Of-Root-Vegetables-In-Thin-layers-libre.pdf?1640667022=\u0026response-content-disposition=attachment%3B+filename%3DA_Novel_Empirical_Model_For_Drying_Of_Ro.pdf\u0026Expires=1734146055\u0026Signature=Kut432cSOQDVxJfjEbx9y5Gq059zQsrZueTDYWJ57Cobn4UEsLB~27Dt8Rq1EEeuYGnOFqy03O21S0npSez-oeUn7uwzNAHppVUKFdGodmCljaTs~Efn9bgBc0DbEdOXQAunfGjgHZ1eKi5H~4Fe045STIkhlZtZo~7CglLUu3bfvh1M9v0E3n1AlVk76ts89LVMUKMpvzJsnpnzehJs~hqGsN3tXcfsLnvtMIk~pPhwDFh2vOvknEFpC8sP~LDg9ZGjLYfxx2Ho67Psg9ULyKQGAjviTnDrsXbYmeT6xZII9Juk-uXMOqwIso454hzi51v6vLyXUxRJNdnT5tQfZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":15751276,"url":"http://www.ijstr.org/final-print/jan2020/A-Novel-Empirical-Model-For-Drying-Of-Root-Vegetables-In-Thin-layers.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="66156367"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/66156367/Comparative_numerical_investigation_of_rectangular_and_elliptical_fins_for_air_cooled_IC_engines"><img alt="Research paper thumbnail of Comparative numerical investigation of rectangular and elliptical fins for air cooled IC engines" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/66156367/Comparative_numerical_investigation_of_rectangular_and_elliptical_fins_for_air_cooled_IC_engines">Comparative numerical investigation of rectangular and elliptical fins for air cooled IC engines</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="66156367"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="66156367"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66156367; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66156367]").text(description); $(".js-view-count[data-work-id=66156367]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66156367; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='66156367']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 66156367, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=66156367]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":66156367,"title":"Comparative numerical investigation of rectangular and elliptical fins for air cooled IC engines","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/66156367/Comparative_numerical_investigation_of_rectangular_and_elliptical_fins_for_air_cooled_IC_engines","translated_internal_url":"","created_at":"2021-12-27T20:28:48.046-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparative_numerical_investigation_of_rectangular_and_elliptical_fins_for_air_cooled_IC_engines","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="66156366"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/66156366/Positive_impact_of_vibration_on_heat_transfer_in_twisted_tape_inserted_heat_exchanger"><img alt="Research paper thumbnail of Positive impact of vibration on heat transfer in twisted tape inserted heat exchanger" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/66156366/Positive_impact_of_vibration_on_heat_transfer_in_twisted_tape_inserted_heat_exchanger">Positive impact of vibration on heat transfer in twisted tape inserted heat exchanger</a></div><div class="wp-workCard_item"><span>Journal of Thermal Engineering</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="66156366"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="66156366"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66156366; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66156366]").text(description); $(".js-view-count[data-work-id=66156366]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66156366; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='66156366']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 66156366, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=66156366]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":66156366,"title":"Positive impact of vibration on heat transfer in twisted tape inserted heat exchanger","translated_title":"","metadata":{"publisher":"Journal of Thermal Engineering","publication_name":"Journal of Thermal Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/66156366/Positive_impact_of_vibration_on_heat_transfer_in_twisted_tape_inserted_heat_exchanger","translated_internal_url":"","created_at":"2021-12-27T20:28:47.915-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26265402,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Positive_impact_of_vibration_on_heat_transfer_in_twisted_tape_inserted_heat_exchanger","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":26265402,"first_name":"Ramakrishna","middle_initials":null,"last_name":"Konijeti","page_name":"RamakrishnaKonijeti","domain_name":"independent","created_at":"2015-02-14T12:11:22.467-08:00","display_name":"Ramakrishna Konijeti","url":"https://independent.academia.edu/RamakrishnaKonijeti"},"attachments":[],"research_interests":[{"id":62,"name":"Thermal Engineering","url":"https://www.academia.edu/Documents/in/Thermal_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "e4cb5880620cdb230296561218b83ff18654851dc3f8377eefacda922a126163", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="0h12qFp0p07Bh2grAkbvCYD0vyWjJ13QXv1yIhgBvMuehzO695/edLiNiB9pkSAHWKaactzDeQXyjD8P7F2plg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/RamakrishnaKonijeti" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="E6a7IFRLe/x+te6ArD/J3KOxOYlIO6rW+TEKhAsKzg9fPP4y+aACxge/DrTH6AbSe+Mc3jffjgNVQEep/1bbUg==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10