CINXE.COM

Search results for: indoor location tracking

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: indoor location tracking</title> <meta name="description" content="Search results for: indoor location tracking"> <meta name="keywords" content="indoor location tracking"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="indoor location tracking" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="indoor location tracking"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3490</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: indoor location tracking</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3490</span> Development of Application Architecture for RFID Based Indoor Tracking Using Passive RFID Tag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumaya%20Ismail">Sumaya Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Aijaz%20Ahmad%20Rehi"> Aijaz Ahmad Rehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract The location tracking and positioning systems have technologically grown exponentially in recent decade. In particular, Global Position system (GPS) has become a universal norm to be a part of almost every software application directly or indirectly for the location based modules. However major drawback of GPS based system is their inability of working in indoor environments. Researchers are thus focused on the alternative technologies which can be used in indoor environments for a vast range of application domains which require indoor location tracking. One of the most popular technology used for indoor tracking is radio frequency identification (RFID). Due to its numerous advantages, including its cost effectiveness, it is considered as a technology of choice in indoor location tracking systems. To contribute to the emerging trend of the research, this paper proposes an application architecture of passive RFID tag based indoor location tracking system. For the proof of concept, a test bed will be developed to in this study. In addition, various indoor location tracking algorithms will be used to assess their appropriateness in the proposed application architecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RFID" title="RFID">RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking" title=" indoor location tracking"> indoor location tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=application%20architecture" title=" application architecture"> application architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20RFID%20tag" title=" passive RFID tag"> passive RFID tag</a> </p> <a href="https://publications.waset.org/abstracts/164777/development-of-application-architecture-for-rfid-based-indoor-tracking-using-passive-rfid-tag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3489</span> Three Tier Indoor Localization System for Digital Forensics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dennis%20L.%20Owuor">Dennis L. Owuor</a>, <a href="https://publications.waset.org/abstracts/search?q=Okuthe%20P.%20Kogeda"> Okuthe P. Kogeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnson%20I.%20Agbinya"> Johnson I. Agbinya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mobile localization has attracted a great deal of attention recently due to the introduction of wireless networks. Although several localization algorithms and systems have been implemented and discussed in the literature, very few researchers have exploited the gap that exists between indoor localization, tracking, external storage of location information and outdoor localization for the purpose of digital forensics during and after a disaster. The contribution of this paper lies in the implementation of a robust system that is capable of locating, tracking mobile device users and store location information for both indoor and partially outdoor the cloud. The system can be used during disaster to track and locate mobile phone users. The developed system is a mobile application built based on Android, Hypertext Preprocessor (PHP), Cascading Style Sheets (CSS), JavaScript and MATLAB for the Android mobile users. Using Waterfall model of software development, we have implemented a three level system that is able to track, locate and store mobile device information in secure database (cloud) on almost a real time basis. The outcome of the study showed that the developed system is efficient with regard to the tracking and locating mobile devices. The system is also flexible, i.e. can be used in any building with fewer adjustments. Finally, the system is accurate for both indoor and outdoor in terms of locating and tracking mobile devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20localization" title="indoor localization">indoor localization</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title=" digital forensics"> digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprinting" title=" fingerprinting"> fingerprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20and%20cloud" title=" tracking and cloud"> tracking and cloud</a> </p> <a href="https://publications.waset.org/abstracts/65789/three-tier-indoor-localization-system-for-digital-forensics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3488</span> Development of Intelligent Smart Multi Tracking Agent System to Support of Logistics Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umarov%20Jamshid">Umarov Jamshid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju-Su%20Kim"> Ju-Su Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hak-Jun%20Lee"> Hak-Jun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Man-Kyo%20Han"> Man-Kyo Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryum-Duck%20Oh"> Ryum-Duck Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, it becomes convenient to identify the location information of cargos by using GPS and wireless communication technologies. The development of IoT technologies and tracking system allows us to confirm site situation on an ad hoc basis in all the industries and social environments. Moreover, it allows us to apply IT technologies to a manageable extent. However, there have been many limitations for using the system due to the difficulty of identifying location information in real time and also due to the simple features. To globalize the logistics related tracking system, it is required to conduct a study to resolve the aforementioned problem. On that account, this paper designed and developed the IoT and RTLS based intelligent multi tracking agent system for more secure, accurate and reliable transportation in relation to logistics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS" title="GPS">GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20agent%20system" title=" tracking agent system"> tracking agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=RTLS" title=" RTLS"> RTLS</a>, <a href="https://publications.waset.org/abstracts/search?q=Logistics" title=" Logistics"> Logistics</a> </p> <a href="https://publications.waset.org/abstracts/29324/development-of-intelligent-smart-multi-tracking-agent-system-to-support-of-logistics-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">646</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3487</span> A Fast Calculation Approach for Position Identification in a Distance Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Cai">Dawei Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuya%20Tokuda"> Yuya Tokuda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The market of localization based service (LBS) is expanding. The acquisition of physical location is the fundamental basis for LBS. GPS, the de facto standard for outdoor localization, does not work well in indoor environment due to the blocking of signals by walls and ceiling. To acquire high accurate localization in an indoor environment, many techniques have been developed. Triangulation approach is often used for identifying the location, but a heavy and complex computation is necessary to calculate the location of the distances between the object and several source points. This computation is also time and power consumption, and not favorable to a mobile device that needs a long action life with battery. To provide a low power consumption approach for a mobile device, this paper presents a fast calculation approach to identify the location of the object without online solving solutions to simultaneous quadratic equations. In our approach, we divide the location identification into two parts, one is offline, and other is online. In offline mode, we make a mapping process that maps the location area to distance space and find a simple formula that can be used to identify the location of the object online with very light computation. The characteristic of the approach is a good tradeoff between the accuracy and computational amount. Therefore, this approach can be used in smartphone and other mobile devices that need a long work time. To show the performance, some simulation experimental results are provided also in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20localization" title="indoor localization">indoor localization</a>, <a href="https://publications.waset.org/abstracts/search?q=location%20based%20service" title=" location based service"> location based service</a>, <a href="https://publications.waset.org/abstracts/search?q=triangulation" title=" triangulation"> triangulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20calculation" title=" fast calculation"> fast calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20device" title=" mobile device"> mobile device</a> </p> <a href="https://publications.waset.org/abstracts/86046/a-fast-calculation-approach-for-position-identification-in-a-distance-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3486</span> Tape-Shaped Multiscale Fiducial Marker: A Design Prototype for Indoor Localization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcell%20Serra%20de%20Almeida%20Martins">Marcell Serra de Almeida Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Benedito%20de%20Souza%20Ribeiro%20Neto"> Benedito de Souza Ribeiro Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerson%20Lima%20Serejo"> Gerson Lima Serejo</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Gustavo%20Resque%20Dos%20Santos"> Carlos Gustavo Resque Dos Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indoor positioning systems use sensors such as Bluetooth, ZigBee, and Wi-Fi, as well as cameras for image capture, which can be fixed or mobile. These computer vision-based positioning approaches are low-cost to implement, mainly when it uses a mobile camera. The present study aims to create a design of a fiducial marker for a low-cost indoor localization system. The marker is tape-shaped to perform a continuous reading employing two detection algorithms, one for greater distances and another for smaller distances. Therefore, the location service is always operational, even with variations in capture distance. A minimal localization and reading algorithm were implemented for the proposed marker design, aiming to validate it. The accuracy tests consider readings varying the capture distance between [0.5, 10] meters, comparing the proposed marker with others. The tests showed that the proposed marker has a broader capture range than the ArUco and QRCode, maintaining the same size. Therefore, reducing the visual pollution and maximizing the tracking since the ambient can be covered entirely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiscale%20recognition" title="multiscale recognition">multiscale recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20localization" title=" indoor localization"> indoor localization</a>, <a href="https://publications.waset.org/abstracts/search?q=tape-shaped%20marker" title=" tape-shaped marker"> tape-shaped marker</a>, <a href="https://publications.waset.org/abstracts/search?q=fiducial%20marker" title=" fiducial marker"> fiducial marker</a> </p> <a href="https://publications.waset.org/abstracts/163542/tape-shaped-multiscale-fiducial-marker-a-design-prototype-for-indoor-localization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3485</span> Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phornpat%20Chewasoonthorn">Phornpat Chewasoonthorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Surat%20Kwanmuang"> Surat Kwanmuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. This study developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, This study purposes an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20positioning" title="indoor positioning">indoor positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-wideband" title=" ultra-wideband"> ultra-wideband</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20correction" title=" error correction"> error correction</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/138120/error-correction-method-for-2d-ultra-wideband-indoor-wireless-positioning-system-using-logarithmic-error-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3484</span> Context-Aware Alert Method in Hajj Pilgrim Location-Based Tracking System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syarif%20Hidayat">Syarif Hidayat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As millions of people with different backgrounds perform hajj every year in Saudi Arabia, it brings out several problems. Missing people is among many crucial problems need to be encountered. Some people might have had insufficient knowledge of using tracking system equipment. Other might become a victim of an accident, lose consciousness, or even died, prohibiting them to perform certain activity. For those reasons, people could not send proper SOS message. The major contribution of this paper is the application of the diverse alert method in pilgrims tracking system. It offers a simple yet robust solution to send SOS message by pilgrims during Hajj. Knowledge of context aware computing is assumed herein. This study presents four methods that could be utilized by pilgrims to send SOS. The first method is simple mobile application contains only a button. The second method is based on behavior analysis based off GPS location movement anomaly. The third method is by introducing pressing pattern to smartwatch physical button as a panic button. The fourth method is by identifying certain accelerometer pattern recognition as a sign of emergency situations. Presented method in this paper would be an important part of pilgrims tracking system. The discussion provided here includes easy to use design whilst maintaining tracking accuracy, privacy, and security of its users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=context%20aware%20computing" title="context aware computing">context aware computing</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20alert%20system" title=" emergency alert system"> emergency alert system</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=hajj%20pilgrim%20tracking" title=" hajj pilgrim tracking"> hajj pilgrim tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=location-based%20services" title=" location-based services"> location-based services</a> </p> <a href="https://publications.waset.org/abstracts/61684/context-aware-alert-method-in-hajj-pilgrim-location-based-tracking-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3483</span> Real-Time Online Tracking Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denis%20Obrul">Denis Obrul</a>, <a href="https://publications.waset.org/abstracts/search?q=Borut%20%C5%BDalik"> Borut Žalik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present an extendable online real-time tracking platform that can be used to track a wide variety of location-aware devices. These can range from GPS devices mounted inside a vehicle, closed and secure systems such as Teltonika and to mobile phones running multiple platforms. Special consideration is given to decentralized approach, security and flexibility. A number of different use cases are presented as a proof of concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=real-time" title="real-time">real-time</a>, <a href="https://publications.waset.org/abstracts/search?q=online" title=" online"> online</a>, <a href="https://publications.waset.org/abstracts/search?q=gps" title=" gps"> gps</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20application" title=" web application"> web application</a> </p> <a href="https://publications.waset.org/abstracts/17532/real-time-online-tracking-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3482</span> Localization Mobile Beacon Using RSSI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sallama%20Resen">Sallama Resen</a>, <a href="https://publications.waset.org/abstracts/search?q=Celal%20%C3%96zt%C3%BCrk"> Celal Öztürk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distance estimation between tow nodes has wide scope of surveillance and tracking applications. This paper suggests a Bluetooth Low Energy (BLE) technology as a media for transceiver and receiver signal in small indoor areas. As an example, BLE communication technologies used in child safety domains. Local network is designed to detect child position in indoor school area consisting Mobile Beacons (MB), Access Points (AP) and Smart Phones (SP) where MBs stuck in children’s shoes as wearable sensors. This paper presents a technique that can detect mobile beacons’ position and help finding children’s location within dynamic environment. By means of bluetooth beacons that are attached to child’s shoes, the distance between the MB and teachers SP is estimated with an accuracy of less than one meter. From the simulation results, it is shown that high accuracy of position coordinates are achieved for multi-mobile beacons in different environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bluetooth%20low%20energy" title="bluetooth low energy">bluetooth low energy</a>, <a href="https://publications.waset.org/abstracts/search?q=child%20safety" title=" child safety"> child safety</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20beacons" title=" mobile beacons"> mobile beacons</a>, <a href="https://publications.waset.org/abstracts/search?q=received%20signal%20strength" title=" received signal strength"> received signal strength</a> </p> <a href="https://publications.waset.org/abstracts/40610/localization-mobile-beacon-using-rssi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3481</span> Indoor and Outdoor Concentration of PM₁₀, PM₂.₅ and PM₁ in Residential Building and Evaluation of Negative Air Ions (NAIs) in Indoor PM Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Arfaeinia">Hossein Arfaeinia</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Nadali"> Azam Nadali</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Asadgol"> Zahra Asadgol</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Fahiminia"> Mohammad Fahiminia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indoor and outdoor particulate matters (PM) were monitored in 20 residential buildings in a two-part study. In part I, the levels of indoor and outdoor PM₁₀, PM₂.₅ and PM₁ was measured using real time GRIMM dust monitors. In part II, the effect of negative air ions (NAIs) method was investigated on the reduction of indoor concentration of PM in these residential buildings. Hourly average concentration and standard deviation (SD) of PM₁₀ in indoor and outdoor at residential buildings were 90.1 ± 33.5 and 63.5 ± 27.4 µg/ m3, respectively. Indoor and outdoor concentrations of PM₂.₅ in residential buildings were 49.5 ± 18.2 and 39.4± 18.1 µg/ m3 and for PM₁ the concentrations were 6.5 ± 10.1and 4.3 ± 7.7 µg/ m3, respectively. Indoor/outdoor (I/O) ratios and concentrations of all size fractions of PM were strongly correlated with wind speed and temperature whereas a good relationship was not observed between humidity and I/O ratios of PM. We estimated that nearly 71.47 % of PM₁₀, 79.86 % of PM₂.₅ and of 61.25 % of PM₁ in indoor of residential buildings can be removed by negative air ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20matter%20%28PM%29" title="particle matter (PM)">particle matter (PM)</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air" title=" indoor air"> indoor air</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20air%20ions%20%28NAIs%29" title=" negative air ions (NAIs)"> negative air ions (NAIs)</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20building" title=" residential building"> residential building</a> </p> <a href="https://publications.waset.org/abstracts/76064/indoor-and-outdoor-concentration-of-pm10-pm25-and-pm1-in-residential-building-and-evaluation-of-negative-air-ions-nais-in-indoor-pm-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3480</span> Optimizing Resource Allocation and Indoor Location Using Bluetooth Low Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N%C3%A9stor%20%C3%81lvarez-D%C3%ADaz">Néstor Álvarez-Díaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Pino%20Caballero-Gil"> Pino Caballero-Gil</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9ctor%20Reboso-Morales"> Héctor Reboso-Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Mart%C3%ADn-Fern%C3%A1ndez"> Francisco Martín-Fernández</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent tendency of "Internet of Things" (IoT) has developed in the last years, causing the emergence of innovative communication methods among multiple devices. The appearance of Bluetooth Low Energy (BLE) has allowed a push to IoT in relation to smartphones. In this moment, a set of new applications related to several topics like entertainment and advertisement has begun to be developed but not much has been done till now to take advantage of the potential that these technologies can offer on many business areas and in everyday tasks. In the present work, the application of BLE technology and smartphones is proposed on some business areas related to the optimization of resource allocation in huge facilities like airports. An indoor location system has been developed through triangulation methods with the use of BLE beacons. The described system can be used to locate all employees inside the building in such a way that any task can be automatically assigned to a group of employees. It should be noted that this system cannot only be used to link needs with employees according to distances, but it also takes into account other factors like occupation level or category. In addition, it has been endowed with a security system to manage business and personnel sensitive data. The efficiency of communications is another essential characteristic that has been taken into account in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bluetooth%20low%20energy" title="bluetooth low energy">bluetooth low energy</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20location" title=" indoor location"> indoor location</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20assignment" title=" resource assignment"> resource assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphones" title=" smartphones"> smartphones</a> </p> <a href="https://publications.waset.org/abstracts/42890/optimizing-resource-allocation-and-indoor-location-using-bluetooth-low-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3479</span> Deep Learning Based Fall Detection Using Simplified Human Posture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kripesh%20Adhikari">Kripesh Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Bouchachia"> Hamid Bouchachia</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammadi%20Nait-Charif"> Hammadi Nait-Charif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fall%20detection" title="fall detection">fall detection</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=pose%20estimation" title=" pose estimation"> pose estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a> </p> <a href="https://publications.waset.org/abstracts/104451/deep-learning-based-fall-detection-using-simplified-human-posture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3478</span> Enhanced Weighted Centroid Localization Algorithm for Indoor Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Ni%C5%BEeti%C4%87%20Kosovi%C4%87">I. Nižetić Kosović</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Jagu%C5%A1t"> T. Jagušt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lately, with the increasing number of location-based applications, demand for highly accurate and reliable indoor localization became urgent. This is a challenging problem, due to the measurement variance which is the consequence of various factors like obstacles, equipment properties and environmental changes in complex nature of indoor environments. In this paper we propose low-cost custom-setup infrastructure solution and localization algorithm based on the Weighted Centroid Localization (WCL) method. Localization accuracy is increased by several enhancements: calibration of RSSI values gained from wireless nodes, repetitive measurements of RSSI to exclude deviating values from the position estimation, and by considering orientation of the device according to the wireless nodes. We conducted several experiments to evaluate the proposed algorithm. High accuracy of ~1m was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20environment" title="indoor environment">indoor environment</a>, <a href="https://publications.waset.org/abstracts/search?q=received%20signal%20strength%20indicator" title=" received signal strength indicator"> received signal strength indicator</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20centroid%20localization" title=" weighted centroid localization"> weighted centroid localization</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20localization" title=" wireless localization"> wireless localization</a> </p> <a href="https://publications.waset.org/abstracts/11878/enhanced-weighted-centroid-localization-algorithm-for-indoor-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3477</span> Patient Tracking Challenges During Disasters and Emergencies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Yarmohammadian">Mohammad H. Yarmohammadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Safdari"> Reza Safdari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Keyvanara"> Mahmoud Keyvanara</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Tavakoli"> Nahid Tavakoli </a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the greatest challenges in disaster and emergencies is patient tracking. The concept of tracking has different denotations. One of the meanings refers to tracking patients’ physical locations and the other meaning refers to tracking patients ‘medical needs during emergency services. The main goal of patient tracking is to provide patient safety during disaster and emergencies and manage the flow of patient and information in different locations. In most of cases, there are not sufficient and accurate data regarding the number of injuries, medical conditions and their accommodation and transference. The objective of the present study is to survey on patient tracking issue in natural disaster and emergencies. Methods: This was a narrative study in which the population was E-Journals and the electronic database such as PubMed, Proquest, Science direct, Elsevier, etc. Data was gathered by Extraction Form. All data were analyzed via content analysis. Results: In many countries there is no appropriate and rapid method for tracking patients and transferring victims after the occurrence of incidents. The absence of reliable data of patients’ transference and accommodation, even in the initial hours and days after the occurrence of disasters, and coordination for appropriate resource allocation, have faced challenges for evaluating needs and services challenges. Currently, most of emergency services are based on paper systems, while these systems do not act appropriately in great disasters and incidents and this issue causes information loss. Conclusion: Patient tracking system should update the location of patients or evacuees and information related to their states. Patients’ information should be accessible for authorized users to continue their treatment, accommodation and transference. Also it should include timely information of patients’ location as soon as they arrive somewhere and leave therein such a way that health care professionals can be able to provide patients’ proper medical treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patient%20tracking" title="patient tracking">patient tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges" title=" challenges"> challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster" title=" disaster"> disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency" title=" emergency "> emergency </a> </p> <a href="https://publications.waset.org/abstracts/38363/patient-tracking-challenges-during-disasters-and-emergencies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3476</span> Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Fang">Cheng Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingwei%20Quan"> Lingwei Quan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cunyue%20Lu"> Cunyue Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title="computer vision">computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=pose%20estimation" title=" pose estimation"> pose estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=pose%20tracking" title=" pose tracking"> pose tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamese%20network" title=" Siamese network"> Siamese network</a> </p> <a href="https://publications.waset.org/abstracts/112839/online-pose-estimation-and-tracking-approach-with-siamese-region-proposal-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3475</span> Monocular 3D Person Tracking AIA Demographic Classification and Projective Image Processing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=McClain%20Thiel">McClain Thiel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Object detection and localization has historically required two or more sensors due to the loss of information from 3D to 2D space, however, most surveillance systems currently in use in the real world only have one sensor per location. Generally, this consists of a single low-resolution camera positioned above the area under observation (mall, jewelry store, traffic camera). This is not sufficient for robust 3D tracking for applications such as security or more recent relevance, contract tracing. This paper proposes a lightweight system for 3D person tracking that requires no additional hardware, based on compressed object detection convolutional-nets, facial landmark detection, and projective geometry. This approach involves classifying the target into a demographic category and then making assumptions about the relative locations of facial landmarks from the demographic information, and from there using simple projective geometry and known constants to find the target's location in 3D space. Preliminary testing, although severely lacking, suggests reasonable success in 3D tracking under ideal conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monocular%20distancing" title="monocular distancing">monocular distancing</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20analysis" title=" facial analysis"> facial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20localization" title=" 3D localization "> 3D localization </a> </p> <a href="https://publications.waset.org/abstracts/129037/monocular-3d-person-tracking-aia-demographic-classification-and-projective-image-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3474</span> An Indoor Guidance System Combining Near Field Communication and Bluetooth Low Energy Beacon Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rung-Shiang%20Cheng">Rung-Shiang Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Jun%20Hong"> Wei-Jun Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jheng-Syun%20Wang"> Jheng-Syun Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kawuu%20W.%20Lin"> Kawuu W. Lin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Users rely increasingly on Location-Based Services (LBS) and automated navigation/guidance systems nowadays. However, while such services are easily implemented in outdoor environments using Global Positioning System (GPS) technology, a requirement still exists for accurate localization and guidance schemes in indoor settings. Accordingly, the present study presents a methodology based on GPS, Bluetooth Low Energy (BLE) beacons, and Near Field Communication (NFC) technology. Through establishing graphic information and the design of algorithm, this study develops a guidance system for indoor and outdoor on smartphones, with aim to provide users a smart life through this system. The presented system is implemented on a smartphone and evaluated on a student campus environment. The experimental results confirm the ability of the presented app to switch automatically from an outdoor mode to an indoor mode and to guide the user to the requested target destination via the shortest possible route. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beacon" title="beacon">beacon</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor" title=" indoor"> indoor</a>, <a href="https://publications.waset.org/abstracts/search?q=BLE" title=" BLE"> BLE</a>, <a href="https://publications.waset.org/abstracts/search?q=Dijkstra%20algorithm" title=" Dijkstra algorithm"> Dijkstra algorithm</a> </p> <a href="https://publications.waset.org/abstracts/49106/an-indoor-guidance-system-combining-near-field-communication-and-bluetooth-low-energy-beacon-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3473</span> Test and Evaluation of Patient Tracking Platform in an Earthquake Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Tavakoli">Nahid Tavakoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Yarmohammadian"> Mohammad H. Yarmohammadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Samimi"> Ali Samimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In earthquake situation, medical response communities such as field and referral hospitals are challenged with injured victims’ identification and tracking. In our project, it was developed a patient tracking platform (PTP) where first responders triage the patients with an electronic tag which report the location and some information of each patient during his/her movement. This platform includes: 1) near field communication (NFC) tags (ISO 14443), 2) smart mobile phones (Android-base version 4.2.2), 3) Base station laptops (Windows), 4) server software, 5) Android software to use by first responders, 5) disaster command software, and 6) system architecture. Our model has been completed through literature review, Delphi technique, focus group, design the platform, and implement in an earthquake exercise. This paper presents consideration for content, function, and technologies that must apply for patient tracking in medical emergencies situations. It is demonstrated the robustness of the patient tracking platform (PTP) in tracking 6 patients in a simulated earthquake situation in the yard of the relief and rescue department of Isfahan’s Red Crescent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=test%20and%20evaluation" title="test and evaluation">test and evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20tracking%20platform" title=" patient tracking platform"> patient tracking platform</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/112288/test-and-evaluation-of-patient-tracking-platform-in-an-earthquake-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3472</span> Absorption Control of Organic Solar Cells under LED Light for High Efficiency Indoor Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Premkumar%20Vincent">Premkumar Vincent</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeok%20Kim"> Hyeok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hyuk%20Bae"> Jin-Hyuk Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic solar cells have high potential which enables these to absorb much weaker light than 1-sun in indoor environment. They also have several practical advantages, such as flexibility, cost-advantage, and semi-transparency that can have superiority in indoor solar energy harvesting. We investigate organic solar cells based on poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) for indoor application while Finite Difference Time Domain (FDTD) simulations were run to find the optimized structure. This may provide the highest short-circuit current density to acquire high efficiency under indoor illumination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20solar%20cells" title="indoor solar cells">indoor solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20light%20harvesting" title=" indoor light harvesting"> indoor light harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solar%20cells" title=" organic solar cells"> organic solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=P3HT%3AICBA" title=" P3HT:ICBA"> P3HT:ICBA</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/75834/absorption-control-of-organic-solar-cells-under-led-light-for-high-efficiency-indoor-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3471</span> An Android Geofencing App for Autonomous Remote Switch Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamie%20Wong">Jamie Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Daisy%20Sang"> Daisy Sang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Shyh%20Peng"> Chang-Shyh Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geofence is a virtual fence defined by a preset physical radius around a target location. Geofencing App provides location-based services which define the actionable operations upon the crossing of a geofence. Geofencing requires continual location tracking, which can consume noticeable amount of battery power. Additionally, location updates need to be frequent and accurate or order so that actions can be triggered within an expected time window after the mobile user navigate through the geofence. In this paper, we build an Android mobile geofencing Application to remotely and autonomously control a power switch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=location%20based%20service" title="location based service">location based service</a>, <a href="https://publications.waset.org/abstracts/search?q=geofence" title=" geofence"> geofence</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous" title=" autonomous"> autonomous</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20switch" title=" remote switch"> remote switch</a> </p> <a href="https://publications.waset.org/abstracts/56664/an-android-geofencing-app-for-autonomous-remote-switch-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3470</span> Fast and Scale-Adaptive Target Tracking via PCA-SIFT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yawen%20Wang">Yawen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongchang%20Chen"> Hongchang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaomei%20Li"> Shaomei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Gao"> Chao Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiangpeng%20Zhang"> Jiangpeng Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the main challenge for target tracking is accounting for target scale change and real-time, we combine Mean-Shift and PCA-SIFT algorithm together to solve the problem. We introduce similarity comparison method to determine how the target scale changes, and taking different strategies according to different situation. For target scale getting larger will cause location error, we employ backward tracking to reduce the error. Mean-Shift algorithm has poor performance when tracking scale-changing target due to the fixed bandwidth of its kernel function. In order to overcome this problem, we introduce PCA-SIFT matching. Through key point matching between target and template, that adjusting the scale of tracking window adaptively can be achieved. Because this algorithm is sensitive to wrong match, we introduce RANSAC to reduce mismatch as far as possible. Furthermore target relocating will trigger when number of match is too small. In addition we take comprehensive consideration about target deformation and error accumulation to put forward a new template update method. Experiments on five image sequences and comparison with 6 kinds of other algorithm demonstrate favorable performance of the proposed tracking algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=target%20tracking" title="target tracking">target tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA-SIFT" title=" PCA-SIFT"> PCA-SIFT</a>, <a href="https://publications.waset.org/abstracts/search?q=mean-shift" title=" mean-shift"> mean-shift</a>, <a href="https://publications.waset.org/abstracts/search?q=scale-adaptive" title=" scale-adaptive"> scale-adaptive</a> </p> <a href="https://publications.waset.org/abstracts/19009/fast-and-scale-adaptive-target-tracking-via-pca-sift" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3469</span> LEDs Based Indoor Positioning by Distances Derivation from Lambertian Illumination Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan-Ren%20Chen">Yan-Ren Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenn-Kaie%20Lain"> Jenn-Kaie Lain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a novel indoor positioning algorithm based on visible light communications, implemented by light-emitting diode fixtures. In the proposed positioning algorithm, distances between light-emitting diode fixtures and mobile terminal are derived from the assumption of ideal Lambertian optic radiation model, and Trilateration positioning method is proceeded immediately to get the coordinates of mobile terminal. The proposed positioning algorithm directly obtains distance information from the optical signal modeling, and therefore, statistical distribution of received signal strength at different positions in interior space has no need to be pre-established. Numerically, simulation results have shown that the proposed indoor positioning algorithm can provide accurate location coordinates estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20positioning" title="indoor positioning">indoor positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=received%20signal%20strength" title=" received signal strength"> received signal strength</a>, <a href="https://publications.waset.org/abstracts/search?q=trilateration" title=" trilateration"> trilateration</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20communications" title=" visible light communications"> visible light communications</a> </p> <a href="https://publications.waset.org/abstracts/10276/leds-based-indoor-positioning-by-distances-derivation-from-lambertian-illumination-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3468</span> Adaptive Online Object Tracking via Positive and Negative Models Matching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaomei%20Li">Shaomei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yawen%20Wang"> Yawen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Gao"> Chao Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as a binary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm cannot only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=object%20tracking" title="object tracking">object tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20drift" title=" tracking drift"> tracking drift</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20least%20squares%20analysis" title=" partial least squares analysis"> partial least squares analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20and%20negative%20models%20matching" title=" positive and negative models matching"> positive and negative models matching</a> </p> <a href="https://publications.waset.org/abstracts/19382/adaptive-online-object-tracking-via-positive-and-negative-models-matching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3467</span> Correlation between Indoor and Outdoor Air</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20A.%20Radaideh">Jamal A. Radaideh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziad%20N.%20Shatnawi"> Ziad N. Shatnawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both indoor and outdoor air quality is investigated throughout residential areas of Al Hofuf city/ Eastern province of Saudi Arabia through a multi‐week multiple sites measurement and sampling survey. Concentration levels of five criteria air pollutants, including carbon dioxide (CO2), carbon monoxide (CO), nitrous dioxide (NO2), sulfur dioxide (SO2) and total volatile organic compounds (TVOC) were measured and analyzed during the study period from January to May 2014. For this survey paper, three different sites, roadside RS, urban UR, and rural RU were selected. Within each site type, six locations were assigned to carryout air quality measurements and to study varying indoor/outdoor air quality for each pollutant. Results indicate that a strong correlation between indoor and outdoor air exists. The I/O ratios for the considered criteria pollutants show that the strongest relationship between indoor and outdoor air is found by analyzing of carbon dioxide, CO2 (0.88), while the lowest is found by both NO2 and SO2 (0.7). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=criteria%20air%20pollutants" title="criteria air pollutants">criteria air pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%2Foutdoor%20air%20pollution" title=" indoor/outdoor air pollution"> indoor/outdoor air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%2Foutdoor%20ratio" title=" indoor/outdoor ratio"> indoor/outdoor ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/21435/correlation-between-indoor-and-outdoor-air" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3466</span> An Application-Based Indoor Environmental Quality (IEQ) Calculator for Residential Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwok%20W.%20Mui">Kwok W. Mui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20T.%20Wong"> Ling T. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20T.%20Cheung"> Chin T. Cheung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho%20C.%20Yu"> Ho C. Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on an indoor environmental quality (IEQ) index established by previous work that indicates the overall IEQ acceptance from the prospect of an occupant in residential buildings in terms of four IEQ factors - thermal comfort, indoor air quality, visual and aural comforts, this study develops a user-friendly IEQ calculator for iOS and Android users to calculate the occupant acceptance and compare the relative performance of IEQ in apartments. The calculator allows the prediction of the best IEQ scenario on a quantitative scale. Any indoor environments under the specific IEQ conditions can be benchmarked against the predicted IEQ acceptance range. This calculator can also suggest how to achieve the best IEQ acceptance among a group of residents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calculator" title="calculator">calculator</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20environmental%20quality%20%28IEQ%29" title=" indoor environmental quality (IEQ)"> indoor environmental quality (IEQ)</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title=" residential buildings"> residential buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=5-star%20benchmarks" title=" 5-star benchmarks "> 5-star benchmarks </a> </p> <a href="https://publications.waset.org/abstracts/24988/an-application-based-indoor-environmental-quality-ieq-calculator-for-residential-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3465</span> Motion-Based Detection and Tracking of Multiple Pedestrians</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Harras">A. Harras</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tsuji"> A. Tsuji</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Terada"> K. Terada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tracking of moving people has gained a matter of great importance due to rapid technological advancements in the field of computer vision. The objective of this study is to design a motion based detection and tracking multiple walking pedestrians randomly in different directions. In our proposed method, Gaussian mixture model (GMM) is used to determine moving persons in image sequences. It reacts to changes that take place in the scene like different illumination; moving objects start and stop often, etc. Background noise in the scene is eliminated through applying morphological operations and the motions of tracked people which is determined by using the Kalman filter. The Kalman filter is applied to predict the tracked location in each frame and to determine the likelihood of each detection. We used a benchmark data set for the evaluation based on a side wall stationary camera. The actual scenes from the data set are taken on a street including up to eight people in front of the camera in different two scenes, the duration is 53 and 35 seconds, respectively. In the case of walking pedestrians in close proximity, the proposed method has achieved the detection ratio of 87%, and the tracking ratio is 77 % successfully. When they are deferred from each other, the detection ratio is increased to 90% and the tracking ratio is also increased to 79%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20detection" title="automatic detection">automatic detection</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrians" title=" pedestrians"> pedestrians</a>, <a href="https://publications.waset.org/abstracts/search?q=counting" title=" counting"> counting</a> </p> <a href="https://publications.waset.org/abstracts/82912/motion-based-detection-and-tracking-of-multiple-pedestrians" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3464</span> Visual Search Based Indoor Localization in Low Light via RGB-D Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yali%20Zheng">Yali Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Peipei%20Luo"> Peipei Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinan%20Chen"> Shinan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiasheng%20Hao"> Jiasheng Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Cheng"> Hong Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20navigation" title="indoor navigation">indoor navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20light" title=" low light"> low light</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB-D%20camera" title=" RGB-D camera"> RGB-D camera</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20based" title=" vision based"> vision based</a> </p> <a href="https://publications.waset.org/abstracts/66057/visual-search-based-indoor-localization-in-low-light-via-rgb-d-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3463</span> Location Tracking of Human Using Mobile Robot and Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muazzam%20A.%20Khan">Muazzam A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to avoid dangerous environmental disasters, robots are being recognized as good entrants to step in as human rescuers. Robots has been gaining interest of many researchers in rescue matters especially which are furnished with advanced sensors. In distributed wireless robot system main objective for a rescue system is to track the location of the object continuously. This paper provides a novel idea to track and locate human in disaster area using stereo vision system and ZigBee technology. This system recursively predict and updates 3D coordinates in a robot coordinate camera system of a human which makes the system cost effective. This system is comprised of ZigBee network which has many advantages such as low power consumption, self-healing low data rates and low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stereo%20vision" title="stereo vision">stereo vision</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20tracking" title=" human tracking"> human tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=ZigBee%20module" title=" ZigBee module"> ZigBee module</a> </p> <a href="https://publications.waset.org/abstracts/28116/location-tracking-of-human-using-mobile-robot-and-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3462</span> Room Level Indoor Localization Using Relevant Channel Impulse Response Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raida%20Zouari">Raida Zouari</a>, <a href="https://publications.waset.org/abstracts/search?q=Iness%20Ahriz"> Iness Ahriz</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Zayani"> Rafik Zayani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Dziri"> Ali Dziri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridha%20Bouallegue"> Ridha Bouallegue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a room level indoor localization algorithm based on the use Multi-Layer Neural Network (MLNN) classifiers and one versus one strategy. Seven parameters of the Channel Impulse Response (CIR) were used and Gram-Shmidt Orthogonalization was performed to study the relevance of the extracted parameters. Simulation results show that when relevant CIR parameters are used as position fingerprint and when optimal MLNN architecture is selected good room level localization score can be achieved. The current study showed also that some of the CIR parameters are not correlated to the location and can decrease the localization performance of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20indoor%20localization" title="mobile indoor localization">mobile indoor localization</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20neural%20network%20%28MLNN%29" title=" multi-layer neural network (MLNN)"> multi-layer neural network (MLNN)</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20impulse%20response%20%28CIR%29" title=" channel impulse response (CIR)"> channel impulse response (CIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Gram-Shmidt%20orthogonalization" title=" Gram-Shmidt orthogonalization"> Gram-Shmidt orthogonalization</a> </p> <a href="https://publications.waset.org/abstracts/40068/room-level-indoor-localization-using-relevant-channel-impulse-response-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3461</span> Influence of Roofing Material on Indoor Thermal Comfort of Bamboo House</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thet%20Su%20Hlaing">Thet Su Hlaing</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoichi%20Kojima"> Shoichi Kojima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing desire for better indoor thermal performance with moderate energy consumption is becoming an issue for challenging today’s built environment. Studies related to the effective way of enhancing indoor thermal comfort had been done by approaching in numerous ways. Few studies have been focused on the correlation between building material and indoor thermal comfort of vernacular house. This paper analyzes the thermal comfort conditions of Bamboo House, mostly located in a hot and humid region. Depending on the roofing material, how the indoor environment varies will be observed through monitoring indoor and outdoor comfort measurement of Bamboo house as well as occupants’ preferable comfort condition. The result revealed that the indigenous roofing material mostly influences the indoor thermal environment by performing to have less effect from the outdoor temperature. It can keep the room cool with moderate thermal comfort, especially in the early morning and night, in the summertime without mechanical device assistance. After analyzing the performance of roofing material, which effect on indoor thermal comfort for 24 hours, it can be efficiently managed the time for availing mechanical cooling devices and make it supply only the necessary period of a day, which will lead to a partially reduce energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20house" title="bamboo house">bamboo house</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate" title=" hot and humid climate"> hot and humid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20thermal%20comfort" title=" indoor thermal comfort"> indoor thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20indigenous%20roofing%20material" title=" local indigenous roofing material"> local indigenous roofing material</a> </p> <a href="https://publications.waset.org/abstracts/117485/influence-of-roofing-material-on-indoor-thermal-comfort-of-bamboo-house" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking&amp;page=116">116</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking&amp;page=117">117</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10