CINXE.COM
Search results for: digital image correlation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: digital image correlation</title> <meta name="description" content="Search results for: digital image correlation"> <meta name="keywords" content="digital image correlation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="digital image correlation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="digital image correlation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8886</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: digital image correlation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8886</span> Investigation of the Speckle Pattern Effect for Displacement Assessments by Digital Image Correlation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salim%20%C3%87al%C4%B1%C5%9Fkan">Salim Çalışkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Aky%C3%BCz"> Hakan Akyüz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital image correlation has been accustomed as a versatile and efficient method for measuring displacements on the article surfaces by comparing reference subsets in undeformed images with the define target subset in the distorted image. The theoretical model points out that the accuracy of the digital image correlation displacement data can be exactly anticipated based on the divergence of the image noise and the sum of the squares of the subset intensity gradients. The digital image correlation procedure locates each subset of the original image in the distorted image. The software then determines the displacement values of the centers of the subassemblies, providing the complete displacement measures. In this paper, the effect of the speckle distribution and its effect on displacements measured out plane displacement data as a function of the size of the subset was investigated. Nine groups of speckle patterns were used in this study: samples are sprayed randomly by pre-manufactured patterns of three different hole diameters, each with three coverage ratios, on a computer numerical control punch press. The resulting displacement values, referenced at the center of the subset, are evaluated based on the average of the displacements of the pixel’s interior the subset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title="digital image correlation">digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=speckle%20pattern" title=" speckle pattern"> speckle pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20mechanics" title=" experimental mechanics"> experimental mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title=" aluminum alloy"> aluminum alloy</a> </p> <a href="https://publications.waset.org/abstracts/171900/investigation-of-the-speckle-pattern-effect-for-displacement-assessments-by-digital-image-correlation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8885</span> Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20U.%20Eze">Peter U. Eze</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Udaya"> P. Udaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20J.%20Evans"> Robin J. Evans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, <em>p.</em> The constant correlation <em>p</em>, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from <em>p</em>. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Constant%20Correlation" title="Constant Correlation">Constant Correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=Medical%20Image" title=" Medical Image"> Medical Image</a>, <a href="https://publications.waset.org/abstracts/search?q=Spread%20Spectrum" title=" Spread Spectrum"> Spread Spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamper%20Detection" title=" Tamper Detection"> Tamper Detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Watermarking" title=" Watermarking"> Watermarking</a> </p> <a href="https://publications.waset.org/abstracts/84629/medical-image-watermark-and-tamper-detection-using-constant-correlation-spread-spectrum-watermarking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8884</span> Digital Image Forensics: Discovering the History of Digital Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurinder%20Singh">Gurinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulbir%20Singh"> Kulbir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital multimedia contents such as image, video, and audio can be tampered easily due to the availability of powerful editing softwares. Multimedia forensics is devoted to analyze these contents by using various digital forensic techniques in order to validate their authenticity. Digital image forensics is dedicated to investigate the reliability of digital images by analyzing the integrity of data and by reconstructing the historical information of an image related to its acquisition phase. In this paper, a survey is carried out on the forgery detection by considering the most recent and promising digital image forensic techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Computer%20Forensics" title="Computer Forensics">Computer Forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=Multimedia%20Forensics" title=" Multimedia Forensics"> Multimedia Forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=Image%20Ballistics" title=" Image Ballistics"> Image Ballistics</a>, <a href="https://publications.waset.org/abstracts/search?q=Camera%20Source%20Identification" title=" Camera Source Identification"> Camera Source Identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Forgery%20Detection" title=" Forgery Detection"> Forgery Detection</a> </p> <a href="https://publications.waset.org/abstracts/76669/digital-image-forensics-discovering-the-history-of-digital-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8883</span> Radial Distortion Correction Based on the Concept of Verifying the Planarity of a Specimen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shih-Heng%20Tung">Shih-Heng Tung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Hsiang%20Shih"> Ming-Hsiang Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Pei%20Sung"> Wen-Pei Sung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of the rapid development of digital camera and computer, digital image correlation method has drawn lots of attention recently and has been applied to a variety of fields. However, the image distortion is inevitable when the image is captured through a lens. This image distortion problem can result in an innegligible error while using digital image correlation method. There are already many different ways to correct the image distortion, and most of them require specific image patterns or precise control points. A new distortion correction method is proposed in this study. The proposed method is based on the fact that a flat surface should keep flat when it is measured using three-dimensional (3D) digital image measurement technique. Lens distortion can be divided into radial distortion, decentering distortion and thin prism distortion. Because radial distortion has a more noticeable influence than the other types of distortions, this method deals only with radial distortion. The simplified 3D digital image measurement technique is adopted to measure the surface coordinates of a flat specimen. Then the gradient method is applied to find the best correction parameters. A few experiments are carried out in this study to verify the correctness of this method. The results show that this method can achieve a good accuracy and it is suitable for both large and small distortion conditions. The most important advantage is that it requires neither mark with specific pattern nor precise control points. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20DIC" title="3D DIC">3D DIC</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20distortion" title=" radial distortion"> radial distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=distortion%20correction" title=" distortion correction"> distortion correction</a>, <a href="https://publications.waset.org/abstracts/search?q=planarity" title=" planarity"> planarity</a> </p> <a href="https://publications.waset.org/abstracts/26168/radial-distortion-correction-based-on-the-concept-of-verifying-the-planarity-of-a-specimen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8882</span> Fracture Crack Monitoring Using Digital Image Correlation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Patel">B. G. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Desai"> A. K. Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Shah"> S. G. Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main of objective of this paper is to develop new measurement technique without touching the object. DIC is advance measurement technique use to measure displacement of particle with very high accuracy. This powerful innovative technique which is used to correlate two image segments to determine the similarity between them. For this study, nine geometrically similar beam specimens of different sizes with (steel fibers and glass fibers) and without fibers were tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control with a rate of opening of 0.0005 mm/sec. Digital images were captured before loading (unreformed state) and at different instances of loading and were analyzed using correlation techniques to compute the surface displacements, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It was seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Digital%20Image%20Correlation" title="Digital Image Correlation">Digital Image Correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=fibres" title=" fibres"> fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20compacting%20concrete" title=" self compacting concrete"> self compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20effect" title=" size effect"> size effect</a> </p> <a href="https://publications.waset.org/abstracts/41107/fracture-crack-monitoring-using-digital-image-correlation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8881</span> Experimental Characterization of Composite Material with Non Contacting Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Papadakis">Nikolaos Papadakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Constantinos%20Condaxakis"> Constantinos Condaxakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Savvakis"> Konstantinos Savvakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to determine the elastic properties (elastic modulus and Poisson ratio) of a composite material based on noncontacting imaging methods. More specifically, the significantly reduced cost of digital cameras has given the opportunity of the high reliability of low-cost strain measurement. The open source platform Ncorr is used in this paper which utilizes the method of digital image correlation (DIC). The use of digital image correlation in measuring strain uses random speckle preparation on the surface of the gauge area, image acquisition, and postprocessing the image correlation to obtain displacement and strain field on surface under study. This study discusses technical issues relating to the quality of results to be obtained are discussed. [0]8 fabric glass/epoxy composites specimens were prepared and tested at different orientations 0[o], 30[o], 45[o], 60[o], 90[o]. Each test was recorded with the camera at a constant frame rate and constant lighting conditions. The recorded images were processed through the use of the image processing software. The parameters of the test are reported. The strain map output which is obtained through strain measurement using Ncorr is validated by a) comparing the elastic properties with expected values from Classical laminate theory, b) through finite element analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites" title="composites">composites</a>, <a href="https://publications.waset.org/abstracts/search?q=Ncorr" title=" Ncorr"> Ncorr</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20map" title=" strain map"> strain map</a>, <a href="https://publications.waset.org/abstracts/search?q=videoextensometry" title=" videoextensometry"> videoextensometry</a> </p> <a href="https://publications.waset.org/abstracts/104425/experimental-characterization-of-composite-material-with-non-contacting-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8880</span> Digital Image Steganography with Multilayer Security</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20Partap%20Singh%20Pharwaha">Amar Partap Singh Pharwaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Balkrishan%20Jindal"> Balkrishan Jindal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new method is developed for hiding image in a digital image with multilayer security. In the proposed method, the secret image is encrypted in the first instance using a flexible matrix based symmetric key to add first layer of security. Then another layer of security is added to the secret data by encrypting the ciphered data using Pythagorean Theorem method. The ciphered data bits (4 bits) produced after double encryption are then embedded within digital image in the spatial domain using Least Significant Bits (LSBs) substitution. To improve the image quality of the stego-image, an improved form of pixel adjustment process is proposed. To evaluate the effectiveness of the proposed method, image quality metrics including Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), entropy, correlation, mean value and Universal Image Quality Index (UIQI) are measured. It has been found experimentally that the proposed method provides higher security as well as robustness. In fact, the results of this study are quite promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pythagorean%20theorem" title="Pythagorean theorem">Pythagorean theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel%20adjustment" title=" pixel adjustment"> pixel adjustment</a>, <a href="https://publications.waset.org/abstracts/search?q=ciphered%20data" title=" ciphered data"> ciphered data</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20hiding" title=" image hiding"> image hiding</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20significant%20bit" title=" least significant bit"> least significant bit</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20matrix" title=" flexible matrix"> flexible matrix</a> </p> <a href="https://publications.waset.org/abstracts/31493/digital-image-steganography-with-multilayer-security" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8879</span> Application of a Universal Distortion Correction Method in Stereo-Based Digital Image Correlation Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hu%20Zhenxing">Hu Zhenxing</a>, <a href="https://publications.waset.org/abstracts/search?q=Gao%20Jianxin"> Gao Jianxin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stereo-based digital image correlation (also referred to as three-dimensional (3D) digital image correlation (DIC)) is a technique for both 3D shape and surface deformation measurement of a component, which has found increasing applications in academia and industries. The accuracy of the reconstructed coordinate depends on many factors such as configuration of the setup, stereo-matching, distortion, etc. Most of these factors have been investigated in literature. For instance, the configuration of a binocular vision system determines the systematic errors. The stereo-matching errors depend on the speckle quality and the matching algorithm, which can only be controlled in a limited range. And the distortion is non-linear particularly in a complex imaging acquisition system. Thus, the distortion correction should be carefully considered. Moreover, the distortion function is difficult to formulate in a complex imaging acquisition system using conventional models in such cases where microscopes and other complex lenses are involved. The errors of the distortion correction will propagate to the reconstructed 3D coordinates. To address the problem, an accurate mapping method based on 2D B-spline functions is proposed in this study. The mapping functions are used to convert the distorted coordinates into an ideal plane without distortions. This approach is suitable for any image acquisition distortion models. It is used as a prior process to convert the distorted coordinate to an ideal position, which enables the camera to conform to the pin-hole model. A procedure of this approach is presented for stereo-based DIC. Using 3D speckle image generation, numerical simulations were carried out to compare the accuracy of both the conventional method and the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distortion" title="distortion">distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=stereo-based%20digital%20image%20correlation" title=" stereo-based digital image correlation"> stereo-based digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=b-spline" title=" b-spline"> b-spline</a>, <a href="https://publications.waset.org/abstracts/search?q=3D" title=" 3D"> 3D</a>, <a href="https://publications.waset.org/abstracts/search?q=2D" title=" 2D "> 2D </a> </p> <a href="https://publications.waset.org/abstracts/20547/application-of-a-universal-distortion-correction-method-in-stereo-based-digital-image-correlation-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8878</span> Application of Digital Image Correlation Technique on Vacuum Assisted Resin Transfer Molding Process and Performance Evaluation of the Produced Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dingding%20Chen">Dingding Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuo%20Arakawa"> Kazuo Arakawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Masakazu%20Uchino"> Masakazu Uchino</a>, <a href="https://publications.waset.org/abstracts/search?q=Changheng%20Xu"> Changheng Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum assisted resin transfer moulding (VARTM) is a promising manufacture process for making large and complex fiber reinforced composite structures. However, the complexity of the flow of the resin in the infusion stage usually leads to nonuniform property distribution of the produced composite part. In order to control the flow of the resin, the situation of flow should be mastered. For the safety of the usage of the produced composite in practice, the understanding of the property distribution is essential. In this paper, we did some trials on monitoring the resin infusion stage and evaluation for the fiber volume fraction distribution of the VARTM produced composite using the digital image correlation methods. The results show that 3D-DIC is valid on monitoring the resin infusion stage and it is possible to use 2D-DIC to estimate the distribution of the fiber volume fraction on a FRP plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title="digital image correlation">digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=VARTM" title=" VARTM"> VARTM</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP" title=" FRP"> FRP</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20volume%20fraction" title=" fiber volume fraction"> fiber volume fraction</a> </p> <a href="https://publications.waset.org/abstracts/1886/application-of-digital-image-correlation-technique-on-vacuum-assisted-resin-transfer-molding-process-and-performance-evaluation-of-the-produced-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8877</span> Influence of the Paint Coating Thickness in Digital Image Correlation Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jes%C3%BAs%20A.%20P%C3%A9rez">Jesús A. Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=Sam%20Coppieters"> Sam Coppieters</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitri%20Debruyne"> Dimitri Debruyne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past decade, the use of digital image correlation (DIC) techniques has increased significantly in the area of experimental mechanics, especially for materials behavior characterization. This non-contact tool enables full field displacement and strain measurements over a complete region of interest. The DIC algorithm requires a random contrast pattern on the surface of the specimen in order to perform properly. To create this pattern, the specimen is usually first coated using a white matt paint. Next, a black random speckle pattern is applied using any suitable method. If the applied paint coating is too thick, its top surface may not be able to exactly follow the deformation of the specimen, and consequently, the strain measurement might be underestimated. In the present article, a study of the influence of the paint thickness on the strain underestimation is performed for different strain levels. The results are then compared to typical paint coating thicknesses applied by experienced DIC users. A slight strain underestimation was observed for paint coatings thicker than about 30μm. On the other hand, this value was found to be uncommonly high compared to coating thicknesses applied by DIC users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title="digital image correlation">digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=paint%20coating%20thickness" title=" paint coating thickness"> paint coating thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a> </p> <a href="https://publications.waset.org/abstracts/26162/influence-of-the-paint-coating-thickness-in-digital-image-correlation-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8876</span> Study of Natural Patterns on Digital Image Correlation Using Simulation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gang%20Li">Gang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Mubashar%20Hassan"> Ghulam Mubashar Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Dyskin"> Arcady Dyskin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cara%20MacNish"> Cara MacNish </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital image correlation (DIC) is a contactless full-field displacement and strain reconstruction technique commonly used in the field of experimental mechanics. Comparing with physical measuring devices, such as strain gauges, which only provide very restricted coverage and are expensive to deploy widely, the DIC technique provides the result with full-field coverage and relative high accuracy using an inexpensive and simple experimental setup. It is very important to study the natural patterns effect on the DIC technique because the preparation of the artificial patterns is time consuming and hectic process. The objective of this research is to study the effect of using images having natural pattern on the performance of DIC. A systematical simulation method is used to build simulated deformed images used in DIC. A parameter (subset size) used in DIC can have an effect on the processing and accuracy of DIC and even cause DIC to failure. Regarding to the picture parameters (correlation coefficient), the higher similarity of two subset can lead the DIC process to fail and make the result more inaccurate. The pictures with good and bad quality for DIC methods have been presented and more importantly, it is a systematic way to evaluate the quality of the picture with natural patterns before they install the measurement devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Digital%20Image%20Correlation%20%28DIC%29" title="Digital Image Correlation (DIC)">Digital Image Correlation (DIC)</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20simulation" title=" deformation simulation"> deformation simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20pattern" title=" natural pattern"> natural pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=subset%20size" title=" subset size"> subset size</a> </p> <a href="https://publications.waset.org/abstracts/18727/study-of-natural-patterns-on-digital-image-correlation-using-simulation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8875</span> An Experimental Study of Bolt Inclination in a Composite Single Bolted Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youcef%20Faci">Youcef Faci</a>, <a href="https://publications.waset.org/abstracts/search?q=Djillali%20Allou"> Djillali Allou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mebtouche"> Ahmed Mebtouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Badredine%20Maalem"> Badredine Maalem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during load. Digital image correlation techniques permit to obtain the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title=" digital image correlation"> digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=bolt%20inclination%20angle" title=" bolt inclination angle"> bolt inclination angle</a>, <a href="https://publications.waset.org/abstracts/search?q=joint" title=" joint"> joint</a> </p> <a href="https://publications.waset.org/abstracts/182322/an-experimental-study-of-bolt-inclination-in-a-composite-single-bolted-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8874</span> Damage Analysis in Open Hole Composite Specimens by Digital Image Correlation: Experimental Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faci%20Youcef">Faci Youcef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, an experimental study is carried out using the digital image correlation (DIC) technique to analyze the damage and behavior of woven composite carbon/epoxy under tensile loading. The tension mechanisms associated with failure modes of bolted joints in advanced composites are studied, as well as displacement distribution and strain distribution. The evolution value of bolt angle inclination during tensile tests was studied. In order to compare the distribution of displacements and strains along the surface, figures of image mapping are made. Several factors that are responsible for the failure of fiber-reinforced polymer composite materials are observed. It was found that strain concentrations observed in the specimens can be used to identify full-field damage onset and to monitor damage progression during loading. Moreover, there is an interaction between laminate pattern, laminate thickness, fastener size and type, surface strain concentrations, and out-of-plane displacement. Conclusions include a failure analysis associated with bolt angle inclinations and supported by microscopic visualizations of the composite specimen. The DIC results can be used to develop and accurately validate numerical models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carbone" title="Carbone">Carbone</a>, <a href="https://publications.waset.org/abstracts/search?q=woven" title=" woven"> woven</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image" title=" digital image"> digital image</a>, <a href="https://publications.waset.org/abstracts/search?q=bolted%20joint" title=" bolted joint"> bolted joint</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20inclination%20of%20angle" title=" the inclination of angle"> the inclination of angle</a> </p> <a href="https://publications.waset.org/abstracts/169812/damage-analysis-in-open-hole-composite-specimens-by-digital-image-correlation-experimental-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8873</span> Investigation of Interlayer Shear Effects in Asphalt Overlay on Existing Rigid Airfield Pavement Using Digital Image Correlation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuechao%20Lei">Yuechao Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Zhang"> Lei Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interface shear between asphalt overlay and existing rigid airport pavements occurs due to differences in the mechanical properties of materials subjected to aircraft loading. Interlayer contact influences the mechanical characteristics of the asphalt overlay directly. However, the effective interlayer relative displacement obtained accurately using existing displacement sensors of the loading apparatus remains challenging. This study aims to utilize digital image correlation technology to enhance the accuracy of interfacial contact parameters by obtaining effective interlayer relative displacements. Composite structure specimens were prepared, and fixtures for interlayer shear tests were designed and fabricated. Subsequently, a digital image recognition scheme for required markers was designed and optimized. Effective interlayer relative displacement values were obtained through image recognition and calculation of surface markers on specimens. Finite element simulations validated the mechanical response of composite specimens with interlayer shearing. Results indicated that an optimized marking approach using the wall mending agent for surface application and color coding enhanced the image recognition quality of marking points on the specimen surface. Further image extraction provided effective interlayer relative displacement values during interlayer shear, thereby improving the accuracy of interface contact parameters. For composite structure specimens utilizing Styrene-Butadiene-Styrene (SBS) modified asphalt as the tack coat, the corresponding maximum interlayer shear stress strength was 0.6 MPa, and fracture energy was 2917 J/m2. This research provides valuable insights for investigating the impact of interlayer contact in composite pavement structures on the mechanical characteristics of asphalt overlay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interlayer%20contact" title="interlayer contact">interlayer contact</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20relative%20displacement" title=" effective relative displacement"> effective relative displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation%20technology" title=" digital image correlation technology"> digital image correlation technology</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20pavement%20structure" title=" composite pavement structure"> composite pavement structure</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20overlay" title=" asphalt overlay"> asphalt overlay</a> </p> <a href="https://publications.waset.org/abstracts/184003/investigation-of-interlayer-shear-effects-in-asphalt-overlay-on-existing-rigid-airfield-pavement-using-digital-image-correlation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8872</span> Micro-Scale Digital Image Correlation-Driven Finite Element Simulations of Deformation and Damage Initiation in Advanced High Strength Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asim%20Alsharif">Asim Alsharif</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Pinna"> Christophe Pinna</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Ghadbeigi"> Hassan Ghadbeigi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of next-generation advanced high strength steels (AHSS) used in the automotive industry requires a better understanding of local deformation and damage development at the scale of their microstructures. This work is focused on dual-phase DP1000 steels and involves micro-mechanical tensile testing inside a scanning electron microscope (SEM) combined with digital image correlation (DIC) to quantify the heterogeneity of deformation in both ferrite and martensite and its evolution up to fracture. Natural features of the microstructure are used for the correlation carried out using Davis LaVision software. Strain localization is observed in both phases with tensile strain values up to 130% and 110% recorded in ferrite and martensite respectively just before final fracture. Damage initiation sites have been observed during deformation in martensite but could not be correlated to local strain values. A finite element (FE) model of the microstructure has then been developed using Abaqus to map stress distributions over representative areas of the microstructure by forcing the model to deform as in the experiment using DIC-measured displacement maps as boundary conditions. A MATLAB code has been developed to automatically mesh the microstructure from SEM images and to map displacement vectors from DIC onto the FE mesh. Results show a correlation of damage initiation at the interface between ferrite and martensite with local principal stress values of about 1700MPa in the martensite phase. Damage in ferrite is now being investigated, and results are expected to bring new insight into damage development in DP steels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20high%20strength%20steels" title="advanced high strength steels">advanced high strength steels</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title=" digital image correlation"> digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modelling" title=" finite element modelling"> finite element modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-mechanical%20testing" title=" micro-mechanical testing"> micro-mechanical testing</a> </p> <a href="https://publications.waset.org/abstracts/107221/micro-scale-digital-image-correlation-driven-finite-element-simulations-of-deformation-and-damage-initiation-in-advanced-high-strength-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8871</span> Digital Image Correlation: Metrological Characterization in Mechanical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Signore">D. Signore</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ferraiuolo"> M. Ferraiuolo</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Caramuta"> P. Caramuta</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Petrella"> O. Petrella</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Toscano"> C. Toscano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy" title="accuracy">accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20correlation" title=" image correlation"> image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20analysis" title=" mechanical analysis"> mechanical analysis</a> </p> <a href="https://publications.waset.org/abstracts/57251/digital-image-correlation-metrological-characterization-in-mechanical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8870</span> A Hybrid Digital Watermarking Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazish%20Saleem%20Abbas">Nazish Saleem Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Haris%20Jamil"> Muhammad Haris Jamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Sharif"> Hamid Sharif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital watermarking is a technique that allows an individual to add and hide secret information, copyright notice, or other verification message inside a digital audio, video, or image. Today, with the advancement of technology, modern healthcare systems manage patients’ diagnostic information in a digital way in many countries. When transmitted between hospitals through the internet, the medical data becomes vulnerable to attacks and requires security and confidentiality. Digital watermarking techniques are used in order to ensure the authenticity, security and management of medical images and related information. This paper proposes a watermarking technique that embeds a watermark in medical images imperceptibly and securely. In this work, digital watermarking on medical images is carried out using the Least Significant Bit (LSB) with the Discrete Cosine Transform (DCT). The proposed methods of embedding and extraction of a watermark in a watermarked image are performed in the frequency domain using LSB by XOR operation. The quality of the watermarked medical image is measured by the Peak signal-to-noise ratio (PSNR). It was observed that the watermarked medical image obtained performing XOR operation between DCT and LSB survived compression attack having a PSNR up to 38.98. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=watermarking" title="watermarking">watermarking</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=DCT" title=" DCT"> DCT</a>, <a href="https://publications.waset.org/abstracts/search?q=LSB" title=" LSB"> LSB</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR" title=" PSNR"> PSNR</a> </p> <a href="https://publications.waset.org/abstracts/185946/a-hybrid-digital-watermarking-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8869</span> A Survey on Types of Noises and De-Noising Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amandeep%20Kaur">Amandeep Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital Image processing is a fundamental tool to perform various operations on the digital images for pattern recognition, noise removal and feature extraction. In this paper noise removal technique has been described for various types of noises. This paper comprises discussion about various noises available in the image due to different environmental, accidental factors. In this paper, various de-noising approaches have been discussed that utilize different wavelets and filters for de-noising. By analyzing various papers on image de-noising we extract that wavelet based de-noise approaches are much effective as compared to others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=de-noising%20techniques" title="de-noising techniques">de-noising techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=edges" title=" edges"> edges</a>, <a href="https://publications.waset.org/abstracts/search?q=image" title=" image"> image</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/54155/a-survey-on-types-of-noises-and-de-noising-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8868</span> Damage Micromechanisms of Coconut Fibers and Chopped Strand Mats of Coconut Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rios%20A.%20S.">Rios A. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hild%20F."> Hild F.</a>, <a href="https://publications.waset.org/abstracts/search?q=Deus%20E.%20P."> Deus E. P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Aimedieu%20P."> Aimedieu P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Benallal%20A."> Benallal A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The damage micromechanisms of chopped strand mats manufactured by compression of Brazilian coconut fiber and coconut fibers in different external conditions (chemical treatment) were used in this study. Mechanical analysis testing uniaxial traction were used with Digital Image Correlation (DIC). The images captured during the tensile test in the coconut fibers and coconut fiber mats showed an uncertainty of measurement in order centipixels. The initial modulus (modulus of elasticity) and tensile strength decreased with increasing diameter for the four conditions of coconut fibers. The DIC showed heterogeneous deformation fields for coconut fibers and mats and the displacement fields showed the rupture process of coconut fiber. The determination of poisson’s ratio of the mat was performed through of transverse and longitudinal deformations found in the elastic region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20fiber" title="coconut fiber">coconut fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title=" digital image correlation"> digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=micromechanism" title=" micromechanism"> micromechanism</a> </p> <a href="https://publications.waset.org/abstracts/20660/damage-micromechanisms-of-coconut-fibers-and-chopped-strand-mats-of-coconut-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8867</span> Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Hsiang%20Shih">Ming-Hsiang Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Pei%20Sung"> Wen-Pei Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Heng%20Tung"> Shih-Heng Tung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=welded%20steel%20plate" title="welded steel plate">welded steel plate</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20variation" title=" crack variation"> crack variation</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20digital%20image%20correlation%20%28DIC%29" title=" three-dimensional digital image correlation (DIC)"> three-dimensional digital image correlation (DIC)</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20stel%20plate" title=" crack stel plate"> crack stel plate</a> </p> <a href="https://publications.waset.org/abstracts/31727/developing-three-dimensional-digital-image-correlation-method-to-detect-the-crack-variation-at-the-joint-of-weld-steel-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8866</span> Gray Level Image Encryption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roza%20Afarin">Roza Afarin</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Mozaffari"> Saeed Mozaffari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is image encryption using Genetic Algorithm (GA). The proposed encryption method consists of two phases. In modification phase, pixels locations are altered to reduce correlation among adjacent pixels. Then, pixels values are changed in the diffusion phase to encrypt the input image. Both phases are performed by GA with binary chromosomes. For modification phase, these binary patterns are generated by Local Binary Pattern (LBP) operator while for diffusion phase binary chromosomes are obtained by Bit Plane Slicing (BPS). Initial population in GA includes rows and columns of the input image. Instead of subjective selection of parents from this initial population, a random generator with predefined key is utilized. It is necessary to decrypt the coded image and reconstruct the initial input image. Fitness function is defined as average of transition from 0 to 1 in LBP image and histogram uniformity in modification and diffusion phases, respectively. Randomness of the encrypted image is measured by entropy, correlation coefficients and histogram analysis. Experimental results show that the proposed method is fast enough and can be used effectively for image encryption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation%20coefficients" title="correlation coefficients">correlation coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20encryption" title=" image encryption"> image encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20entropy" title=" image entropy"> image entropy</a> </p> <a href="https://publications.waset.org/abstracts/10723/gray-level-image-encryption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8865</span> Data Hiding by Vector Quantization in Color Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yung%20Gi%20Wu">Yung Gi Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20hiding" title="data hiding">data hiding</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20quantization" title=" vector quantization"> vector quantization</a>, <a href="https://publications.waset.org/abstracts/search?q=watermark" title=" watermark"> watermark</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20image" title=" color image"> color image</a> </p> <a href="https://publications.waset.org/abstracts/28889/data-hiding-by-vector-quantization-in-color-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8864</span> Performance Evaluation of Content Based Image Retrieval Using Indexed Views </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Iqbal">Tahir Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mumtaz%20Ali"> Mumtaz Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Wajahat%20Kareem"> Syed Wajahat Kareem</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Harris"> Muhammad Harris </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital information is expanding in exponential order in our life. Information that is residing online and offline are stored in huge repositories relating to every aspect of our lives. Getting the required information is a task of retrieval systems. Content based image retrieval (CBIR) is a retrieval system that retrieves the required information from repositories on the basis of the contents of the image. Time is a critical factor in retrieval system and using indexed views with CBIR system improves the time efficiency of retrieved results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=content%20based%20image%20retrieval%20%28CBIR%29" title="content based image retrieval (CBIR)">content based image retrieval (CBIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=indexed%20view" title=" indexed view"> indexed view</a>, <a href="https://publications.waset.org/abstracts/search?q=color" title=" color"> color</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20retrieval" title=" image retrieval"> image retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20correlation" title=" cross correlation"> cross correlation</a> </p> <a href="https://publications.waset.org/abstracts/11165/performance-evaluation-of-content-based-image-retrieval-using-indexed-views" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8863</span> A Robust Hybrid Blind Digital Image Watermarking System Using Discrete Wavelet Transform and Contourlet Transform </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nidal%20F.%20Shilbayeh">Nidal F. Shilbayeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Belal%20AbuHaija"> Belal AbuHaija</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainab%20N.%20Al-Qudsy"> Zainab N. Al-Qudsy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a hybrid blind digital watermarking system using Discrete Wavelet Transform (DWT) and Contourlet Transform (CT) has been implemented and tested. The implemented combined digital watermarking system has been tested against five common types of image attacks. The performance evaluation shows improved results in terms of imperceptibility, robustness, and high tolerance against these attacks; accordingly, the system is very effective and applicable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transform%20%28DWT%29" title="discrete wavelet transform (DWT)">discrete wavelet transform (DWT)</a>, <a href="https://publications.waset.org/abstracts/search?q=contourlet%20transform%20%28CT%29" title=" contourlet transform (CT)"> contourlet transform (CT)</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20watermarking" title=" digital image watermarking"> digital image watermarking</a>, <a href="https://publications.waset.org/abstracts/search?q=copyright%20protection" title=" copyright protection"> copyright protection</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20attack" title=" geometric attack"> geometric attack</a> </p> <a href="https://publications.waset.org/abstracts/69379/a-robust-hybrid-blind-digital-image-watermarking-system-using-discrete-wavelet-transform-and-contourlet-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8862</span> Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grishma%20D.%20Solanki">Grishma D. Solanki</a>, <a href="https://publications.waset.org/abstracts/search?q=Karshan%20Kandoriya"> Karshan Kandoriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copy-move%20image%20forgery" title="copy-move image forgery">copy-move image forgery</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title=" digital forensics"> digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20forensics" title=" image forensics"> image forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20forgery" title=" image forgery"> image forgery</a> </p> <a href="https://publications.waset.org/abstracts/49539/analysis-of-various-copy-move-image-forgery-techniques-for-better-detection-accuracy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8861</span> Optimization of the Dental Direct Digital Imaging by Applying the Self-Recognition Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Dabirinezhad">Mina Dabirinezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Bayat%20Pour"> Mohsen Bayat Pour</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Dabirinejad"> Amin Dabirinejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is intended to introduce the technology to solve some of the deficiencies of the direct digital radiology. Nowadays, digital radiology is the latest progression in dental imaging, which has become an essential part of dentistry. There are two main parts of the direct digital radiology comprised of an intraoral X-ray machine and a sensor (digital image receptor). The dentists and the dental nurses experience afflictions during the taking image process by the direct digital X-ray machine. For instance, sometimes they need to readjust the sensor in the mouth of the patient to take the X-ray image again due to the low quality of that. Another problem is, the position of the sensor may move in the mouth of the patient and it triggers off an inappropriate image for the dentists. It means that it is a time-consuming process for dentists or dental nurses. On the other hand, taking several the X-ray images brings some problems for the patient such as being harmful to their health and feeling pain in their mouth due to the pressure of the sensor to the jaw. The author provides a technology to solve the above-mentioned issues that is called “Self-Recognition Direct Digital Radiology” (SDDR). This technology is based on the principle that the intraoral X-ray machine is capable to diagnose the location of the sensor in the mouth of the patient automatically. In addition, to solve the aforementioned problems, SDDR technology brings out fewer environmental impacts in comparison to the previous version. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dental%20direct%20digital%20imaging" title="Dental direct digital imaging">Dental direct digital imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20receptor" title=" digital image receptor"> digital image receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20x-ray%20machine" title=" digital x-ray machine"> digital x-ray machine</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20environmental%20impacts" title=" and environmental impacts"> and environmental impacts</a> </p> <a href="https://publications.waset.org/abstracts/126748/optimization-of-the-dental-direct-digital-imaging-by-applying-the-self-recognition-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8860</span> Effect of Installation Method on the Ratio of Tensile to Compressive Shaft Capacity of Piles in Dense Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Galvis-Castro">A. C. Galvis-Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20D.%20Tovar"> R. D. Tovar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Salgado"> R. Salgado</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Prezzi"> M. Prezzi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is generally accepted that the shaft capacity of piles in the sand is lower for tensile loading that for compressive loading. So far, very little attention has been paid to the role of the influence of the installation method on the tensile to compressive shaft capacity ratio. The objective of this paper is to analyze the effect of installation method on the tensile to compressive shaft capacity of piles in dense sand as observed in tests on half-circular model pile tests in a half-circular calibration chamber with digital image correlation (DIC) capability. Model piles are either monotonically jacked, jacked with multiple strokes or pre-installed into the dense sand samples. Digital images of the model pile and sand are taken during both the installation and loading stages of each test and processed using the DIC technique to obtain the soil displacement and strain fields. The study provides key insights into the mobilization of shaft resistance in tensile and compressive loading for both displacement and non-displacement piles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title="digital image correlation">digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=piles" title=" piles"> piles</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20resistance" title=" shaft resistance"> shaft resistance</a> </p> <a href="https://publications.waset.org/abstracts/73964/effect-of-installation-method-on-the-ratio-of-tensile-to-compressive-shaft-capacity-of-piles-in-dense-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8859</span> Damage Analysis in Open Hole Composite Specimens by Acoustic Emission: Experimental Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youcef%20Faci">Youcef Faci</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mebtouche"> Ahmed Mebtouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Badredine%20Maalem"> Badredine Maalem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> n the present work, an experimental study is carried out using acoustic emission and DIC techniques to analyze the damage of open hole woven composite carbon/epoxy under solicitations. Damage mechanisms were identified based on acoustic emission parameters such as amplitude, energy, and cumulative account. The findings of the AE measurement were successfully identified by digital image correlation (DIC) measurements. The evolution value of bolt angle inclination during tensile tests was studied and analyzed. Consequently, the relationship between the bolt inclination angles during tensile tests associated with failure modes of fastened joints of composite materials is determined. Moreover, there is an interaction between laminate pattern, laminate thickness, fastener size and type, surface strain concentrations, and out-of-plane displacement. Conclusions are supported by microscopic visualizations of the composite specimen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title="tensile test">tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission" title=" acoustic emission"> acoustic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title=" digital image correlation"> digital image correlation</a> </p> <a href="https://publications.waset.org/abstracts/170900/damage-analysis-in-open-hole-composite-specimens-by-acoustic-emission-experimental-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8858</span> Prosperous Digital Image Watermarking Approach by Using DCT-DWT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prabhakar%20C.%20Dhavale">Prabhakar C. Dhavale</a>, <a href="https://publications.waset.org/abstracts/search?q=Meenakshi%20M.%20Pawar"> Meenakshi M. Pawar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, everyday tons of data is embedded on digital media or distributed over the internet. The data is so distributed that it can easily be replicated without error, putting the rights of their owners at risk. Even when encrypted for distribution, data can easily be decrypted and copied. One way to discourage illegal duplication is to insert information known as watermark, into potentially valuable data in such a way that it is impossible to separate the watermark from the data. These challenges motivated researchers to carry out intense research in the field of watermarking. A watermark is a form, image or text that is impressed onto paper, which provides evidence of its authenticity. Digital watermarking is an extension of the same concept. There are two types of watermarks visible watermark and invisible watermark. In this project, we have concentrated on implementing watermark in image. The main consideration for any watermarking scheme is its robustness to various attacks <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=watermarking" title="watermarking">watermarking</a>, <a href="https://publications.waset.org/abstracts/search?q=digital" title=" digital"> digital</a>, <a href="https://publications.waset.org/abstracts/search?q=DCT-DWT" title=" DCT-DWT"> DCT-DWT</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a> </p> <a href="https://publications.waset.org/abstracts/3228/prosperous-digital-image-watermarking-approach-by-using-dct-dwt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8857</span> An Efficient Clustering Technique for Copy-Paste Attack Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Chaitawittanun">N. Chaitawittanun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Munlin"> M. Munlin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20detection" title="image detection">image detection</a>, <a href="https://publications.waset.org/abstracts/search?q=forgery%20image" title=" forgery image"> forgery image</a>, <a href="https://publications.waset.org/abstracts/search?q=copy-paste" title=" copy-paste"> copy-paste</a>, <a href="https://publications.waset.org/abstracts/search?q=attack%20detection" title=" attack detection"> attack detection</a> </p> <a href="https://publications.waset.org/abstracts/1346/an-efficient-clustering-technique-for-copy-paste-attack-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation&page=296">296</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation&page=297">297</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>