CINXE.COM
Search results for: mechanical alloying
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mechanical alloying</title> <meta name="description" content="Search results for: mechanical alloying"> <meta name="keywords" content="mechanical alloying"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mechanical alloying" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mechanical alloying"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3754</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mechanical alloying</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3754</span> Study of the Nanostructured Fe₅₀Cr₃₅Ni₁₅ Powder Alloy Developed by Mechanical Alloying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salim%20Triaa">Salim Triaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fella%20Kali-Ali"> Fella Kali-Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanostructured Fe₅₀Cr3₃₅Ni₁₅ alloys were prepared from pure elemental powders using high energy mechanical alloying. The mixture powders obtained are characterized by several techniques. X-ray diffraction analysis revelated the formation of the Fe₁Cr₁ compound with BBC structure after one hour of milling. A second compound Fe₃Ni₂ with FCC structure was observed after 12 hours of milling. The size of crystallite determined by Williamson Hall method was about 5.1 nm after 48h of mill. SEM observations confirmed the growth of crushed particles as a function of milling time, while the homogenization of our powders into different constituent elements was verified by the EDX analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe-Cr-Ni%20alloy" title="Fe-Cr-Ni alloy">Fe-Cr-Ni alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/101771/study-of-the-nanostructured-fe50cr35ni15-powder-alloy-developed-by-mechanical-alloying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3753</span> Effects of Al on Microstructure and Magnetic Properties of (Nd,Pr)-(Fe,Co)-B Alloys Prepared by Mechanical Alloying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahim%20Sabbaghizadeh">Rahim Sabbaghizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansor%20Hashim"> Mansor Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nooshin%20Shourcheh"> Nooshin Shourcheh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocrystalline Nd8Pr2Fe79-xCo5B6Alx (x=0, 1, 2, 3) magnets were prepared by mechanical alloying and respective heat treatment, and the effects of the addition of Al on the microstructure and magnetic properties of Nd-Fe-Co-B alloy were studied. The changes in the nanostructure and magnetic properties were examined by X-Ray diffraction, combined with Field Emission Scanning electron microscopy (FeSEM) and vibrating sample magnetometer (VSM). Addition of Al was found to be effective for improving the coercivity and the hysteresis squareness in Nd–Fe–Co–B magnets without decreasing much the remanent magnetization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title="mechanical alloying">mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline" title=" nanocrystalline"> nanocrystalline</a>, <a href="https://publications.waset.org/abstracts/search?q=Nd-Fe-B" title=" Nd-Fe-B"> Nd-Fe-B</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrating%20sample%20magnetomete" title=" vibrating sample magnetomete"> vibrating sample magnetomete</a> </p> <a href="https://publications.waset.org/abstracts/18997/effects-of-al-on-microstructure-and-magnetic-properties-of-ndpr-feco-b-alloys-prepared-by-mechanical-alloying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3752</span> Using Mechanical Alloying for Verification of Predicted Glass Forming Composition Range</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Saadi">F. Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fatahi"> M. Fatahi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Heidari"> M. Heidari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim of this work was to determine the approximate glass forming composition range of Ni-Sn system for the alloys produced by mechanical alloying. It was predicted by Miedema semi-empirical model that the composition had to be in the range of 30-60 wt. % tin, while Ni-40Sn had the most susceptibility to produce amorphous alloy. In the next stage, some different compositions of Ni-Sn were mechanically alloyed, where one of them had the proper predicted composition. Products were characterized by XRD analysis. There was a good agreement between calculation and experiments, in which Ni-40Sn alloy had the most amorphization degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ni-Sn%20system" title="Ni-Sn system">Ni-Sn system</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=Amorphous%20alloy" title=" Amorphous alloy"> Amorphous alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=Miedema%20model" title=" Miedema model"> Miedema model</a> </p> <a href="https://publications.waset.org/abstracts/33000/using-mechanical-alloying-for-verification-of-predicted-glass-forming-composition-range" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3751</span> Sintering Properties of Mechanically Alloyed Ti-5Al-2.5Fe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridvan%20Yamanoglu">Ridvan Yamanoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdinc%20Efendi"> Erdinc Efendi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Daoud"> Ismail Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Ti-5Al-2.5Fe alloy was prepared by powder metallurgy. The elemental titanium, aluminum, and iron powders were mechanically alloyed for 10 h in a vacuum atmosphere. A stainless steel jar and stainless steel balls were used for mechanical alloying. The alloyed powders were then sintered by vacuum hot pressing at 950 °C for a soaking time of 30 minutes. Pure titanium was also sintered at the same conditions for comparison of mechanical properties and microstructural behavior. The samples were investigated by scanning electron microscopy, XRD analysis, and optical microscopy. Results showed that, after mechanical alloying, a homogeneous distribution of the elements was obtained, and desired a-b structure was determined. Ti-5Al-2.5Fe alloy was successfully produced, and the alloy showed enhanced mechanical properties compared to the commercial pure titanium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ti5Al-2.5Fe" title="Ti5Al-2.5Fe">Ti5Al-2.5Fe</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20pressing" title=" hot pressing"> hot pressing</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a> </p> <a href="https://publications.waset.org/abstracts/68753/sintering-properties-of-mechanically-alloyed-ti-5al-25fe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3750</span> Phase Stability and Grain Growth Kinetics of Oxide Dispersed CoCrFeMnNi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prangya%20P.%20Sahoo">Prangya P. Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Murty"> B. S. Murty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study deals with phase evolution of oxide dispersed CoCrFeMnNi high entropy alloy as a function of amount of added Y2O3 during mechanical alloying and analysis of grain growth kinetics of CoCrFeMnNi high entropy alloy without and with oxide dispersion. Mechanical alloying of CoCrFeMnNi resulted in a single FCC phase. However, evolution of chromium carbide was observed after heat treatment between 1073 and 1473 K. Comparison of grain growth time exponents and activation energy barrier is also reported. Micro structural investigations, using electron microscopy and EBSD techniques, were carried out to confirm the enhanced grain growth resistance which is attributed to the presence oxide dispersoids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grain%20growth%20kinetics" title="grain growth kinetics">grain growth kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20dispersion" title=" oxide dispersion"> oxide dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20evolution" title=" phase evolution"> phase evolution</a> </p> <a href="https://publications.waset.org/abstracts/58015/phase-stability-and-grain-growth-kinetics-of-oxide-dispersed-cocrfemnni" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3749</span> Microstructure Characterization of the Ball Milled Fe50Al30Ni20 (%.wt) Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Nakib">C. Nakib</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ammouchi"> N. Ammouchi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Otmani"> A. Otmani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Djekoun"> A. Djekoun</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Gren%C3%A8che"> J. M. Grenèche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> B2-structured FeAl was synthesized by an abrupt reaction during mechanical alloying (MA) of the elemental powders of Fe, Al and Ni. The structural, microstructural and morphological changes occurring in the studied material during MA were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Two crystalline phases were found, the major one corresponding to FeAl bcc phase with a crystallite size less than 10 nm, a lattice strain up to 1.6% and a dislocation density of about 2.3 1016m-2. The other phase in low proportion was corresponding to Fe (Al,Ni) solid solution. SEM images showed an irregular morphology of powder particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title="mechanical alloying">mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20composition" title=" ternary composition"> ternary composition</a>, <a href="https://publications.waset.org/abstracts/search?q=dislocation%20density" title=" dislocation density"> dislocation density</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20properties" title=" structural properties"> structural properties</a> </p> <a href="https://publications.waset.org/abstracts/16694/microstructure-characterization-of-the-ball-milled-fe50al30ni20-wt-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3748</span> Wear and Mechanical Properties of Nodular Iron Modified with Copper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Ramos">J. Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Gil"> V. Gil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Torres"> A. F. Torres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nodular iron is a material that has shown great advantages respect to other materials (steel and gray iron) in the production of machine elements. The engineering industry, especially automobile, are potential users of this material. As it is known, the alloying elements modify the properties of steels and castings. Copper has been investigated as a structural modifier of nodular iron, but studies of its mechanical and tribological implications still need to be addressed for industrial use. With the aim of improving the mechanical properties of nodular iron, alloying elements (Mn, Si, and Cu) are added in order to increase their pearlite (or ferrite) structure according to the percentage of the alloying element. In this research (using induction furnace process) nodular iron with three different percentages of copper (residual, 0,5% and 1,2%) was obtained. Chemical analysis was performed by optical emission spectrometry and microstructures were characterized by Optical Microscopy (ASTM E3) and Scanning Electron Microscopy (SEM). The study of mechanical behavior was carried out in a mechanical test machine (ASTM E8) and a Pin on disk tribometer (ASTM G99) was used to assess wear resistance. It is observed that copper increases the pearlite structure improving the wear behavior; tension behavior. This improvement is observed in higher proportion with 0,5% due to the fact that too much increase of pearlite leads to ductility loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=nodular%20iron" title=" nodular iron"> nodular iron</a>, <a href="https://publications.waset.org/abstracts/search?q=pearlite%20structure" title=" pearlite structure"> pearlite structure</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/17527/wear-and-mechanical-properties-of-nodular-iron-modified-with-copper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3747</span> Effect of Alloying Elements and Hot Forging/Rolling Reduction Ratio on Hardness and Impact Toughness of Heat Treated Low Alloy Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Tash">Mahmoud M. Tash </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried out to investigate the effect of alloying elements and thermo-mechanical treatment (TMT) i.e. hot rolling and forging with different reduction ratios on the hardness (HV) and impact toughness (J) of heat-treated low alloy steels. An understanding of the combined effect of TMT and alloying elements and by measuring hardness, impact toughness, resulting from different heat treatment following TMT of the low alloy steels, it is possible to determine which conditions yielded optimum mechanical properties and high strength to weight ratio. Experimental Correlations between hot work reduction ratio, hardness and impact toughness for thermo-mechanically heat treated low alloy steels are analyzed quantitatively, and both regression and mathematical hardness and impact toughness models are developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20forging" title="hot forging">hot forging</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling" title=" hot rolling"> hot rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20%28HV%29" title=" hardness (HV)"> hardness (HV)</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20toughness%20%28J%29" title=" impact toughness (J)"> impact toughness (J)</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20alloy%20steels" title=" low alloy steels"> low alloy steels</a> </p> <a href="https://publications.waset.org/abstracts/24168/effect-of-alloying-elements-and-hot-forgingrolling-reduction-ratio-on-hardness-and-impact-toughness-of-heat-treated-low-alloy-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3746</span> Effect of Milling Parameters on the Characteristics of Nanocrystalline TiAl Alloys Synthesized by Mechanical Alloying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinan%20B.%20Al-Dabbagh">Jinan B. Al-Dabbagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozman%20Mohd%20Tahar"> Rozman Mohd Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahadzir%20Ishak"> Mahadzir Ishak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TiAl alloy nano-powder was successfully produced by a mechanical alloying (MA) technique in a planetary ball mill. The influence of milling parameters, such as the milling duration, rotation speed, and balls-to-powder mass ratio, on the characteristics of the Ti50%Al powder, including the microstructure, crystallite size refinement, and phase formation, were investigated. It was found that MA of elemental Ti and Al powders promotes the formation of TiAl alloys, as Ti (Al) solid solution was formed after 5h of milling. Milling without the addition of process control agents led to a dramatic decrease in the crystallite size to 17.8 nm after 2h of milling. Higher rotation energy and a higher ball-to-powder weight ratio also accelerated the reduction in crystallite size. Subsequent heating up to 850°C resulted in the formation of a new intermetallic phase with a dominant TiAl3 phase plus minor γ-TiAl or α2-Ti3Al phase or both. A longer milling duration also exhibited a better effect on the micro-hardness of Ti50%Al powders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TiAl%20alloys" title="TiAl alloys">TiAl alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline%20materials" title=" nanocrystalline materials"> nanocrystalline materials</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20science" title=" materials science"> materials science</a> </p> <a href="https://publications.waset.org/abstracts/4295/effect-of-milling-parameters-on-the-characteristics-of-nanocrystalline-tial-alloys-synthesized-by-mechanical-alloying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3745</span> Effect of the Alloying Elements on Mechanical Properties of TWIP Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuksel%20Akinay">Yuksel Akinay</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Hayat"> Fatih Hayat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of the alloying element on mechanical properties and micro structures of the Fe-22Mn-0.6C-0,6Si twinning induced plasticity (TWIP) steel were investigated at different temperatures. This composition was fabricated by a vacuum induction melting method. This steel was homogenized at 1200◦C for 8h. After heat treatment it was hot-rolled at 1100◦C to 6 mm thickness. The hot rolled plates were cold rolled to 3 mm and annealed at 700 800 and 900 °C for 60 and 150 minute and then air-cooled. X-ray diffractometry (XRD), optic microscope and field emission scanning electron microscope (FESEM), hardness and tensile tests were used to analyse the relationship between mechanical properties and micro structure after annealing process. The results show that, the excellent mechanical properties were obtained after heat treatment process. The tensile strength of material was decreased and the ductility of material was improved with increasing annealing temperature. Ni element were increased the mechanical resistance of specimens and because of carbide precipitation the hardness of specimen annealed at 700 C is higher than others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20manganese" title="high manganese">high manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-rolling" title=" cold-rolling"> cold-rolling</a> </p> <a href="https://publications.waset.org/abstracts/15070/effect-of-the-alloying-elements-on-mechanical-properties-of-twip-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3744</span> X-Ray Diffraction and Mӧssbauer Studies of Nanostructured Ni45Al45Fe10 Powders Elaborated by Mechanical Alloying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ammouchi">N. Ammouchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied the effect of milling time on the structural and hyperfine properties of Ni45Al45Fe10 compound elaborated by mechanical alloying. The elaboration was performed by using the planetary ball mill at different milling times. The as milled powders were characterized by X-ray diffraction (XRD) and Mӧssbauer spectroscopy. From XRD diffraction spectra, we show that the β NiAl(Fe) was completely formed after 24 h of milling time. When the milling time increases, the lattice parameter increases, whereas the grain size decreases to a few nanometres and the mean level of microstrains increases. The analysis of Mӧssbauer spectra indicates that, in addition to a ferromagnetic phase, α-Fe, a paramagnetic disordered phase Ni Al (Fe) solid solution is observed after 2h and only this phase is present after 12h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NiAlFe" title="NiAlFe">NiAlFe</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20powders" title=" nanostructured powders"> nanostructured powders</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=M%D3%A7ssbauer%20spectroscopy" title=" Mӧssbauer spectroscopy"> Mӧssbauer spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/17005/x-ray-diffraction-and-mssbauer-studies-of-nanostructured-ni45al45fe10-powders-elaborated-by-mechanical-alloying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3743</span> Thermally Stable Nanocrystalline Aluminum Alloys Processed by Mechanical Alloying and High Frequency Induction Heat Sintering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hany%20R.%20Ammar">Hany R. Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalil%20A.%20Khalil"> Khalil A. Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Sayed%20M.%20Sherif"> El-Sayed M. Sherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The as-received metal powders were used to synthesis bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys using mechanical alloying and high frequency induction heat sintering (HFIHS). The current study investigated the influence of milling time and ball-to-powder (BPR) weight ratio on the microstructural constituents and mechanical properties of the processed materials. Powder consolidation was carried out using a high frequency induction heat sintering where the processed metal powders were sintered into a dense and strong bulk material. The sintering conditions applied in this process were as follow: heating rate of 350°C/min; sintering time of 4 minutes; sintering temperature of 400°C; applied pressure of 750 Kgf/cm2 (100 MPa); cooling rate of 400°C/min and the process was carried out under vacuum of 10-3 Torr. The powders and the bulk samples were characterized using XRD and FEGSEM techniques. The mechanical properties were evaluated at various temperatures of 25°C, 100°C, 200°C, 300°C and 400°C to study the thermal stability of the processed alloys. The bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys displayed extremely high hardness values even at elevated temperatures. The Al-10%Cu-5%Ti alloy displayed the highest hardness values at room and elevated temperatures which are related to the presence of Ti-containing phases such as Al3Ti and AlCu2Ti, these phases are thermally stable and retain the high hardness values at elevated temperatures up to 400ºC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline%20aluminum%20alloys" title="nanocrystalline aluminum alloys">nanocrystalline aluminum alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=elevated%20temperatures" title=" elevated temperatures"> elevated temperatures</a> </p> <a href="https://publications.waset.org/abstracts/14022/thermally-stable-nanocrystalline-aluminum-alloys-processed-by-mechanical-alloying-and-high-frequency-induction-heat-sintering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3742</span> Making of Alloy Steel by Direct Alloying with Mineral Oxides during Electro-Slag Remelting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishwas%20Goel">Vishwas Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=Kapil%20Surve"> Kapil Surve</a>, <a href="https://publications.waset.org/abstracts/search?q=Somnath%20Basu"> Somnath Basu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In-situ alloying in steel during the electro-slag remelting (ESR) process has already been achieved by the addition of necessary ferroalloys into the electro-slag remelting mold. However, the use of commercially available ferroalloys during ESR processing is often found to be financially less favorable, in comparison with the conventional alloying techniques. However, a process of alloying steel with elements like chromium and manganese using the electro-slag remelting route is under development without any ferrochrome addition. The process utilizes in-situ reduction of refined mineral chromite (Cr₂O₃) and resultant enrichment of chromium in the steel ingot produced. It was established in course of this work that this process can become more advantageous over conventional alloying techniques, both economically and environmentally, for applications which inherently demand the use of the electro-slag remelting process, such as manufacturing of superalloys. A key advantage is the lower overall CO₂ footprint of this process relative to the conventional route of production, storage, and the addition of ferrochrome. In addition to experimentally validating the feasibility of the envisaged reactions, a mathematical model to simulate the reduction of chromium (III) oxide and transfer to chromium to the molten steel droplets was also developed as part of the current work. The developed model helps to correlate the amount of chromite input and the magnitude of chromium alloying that can be achieved through this process. Experiments are in progress to validate the predictions made by this model and to fine-tune its parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alloying%20element" title="alloying element">alloying element</a>, <a href="https://publications.waset.org/abstracts/search?q=chromite" title=" chromite"> chromite</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-slag%20remelting" title=" electro-slag remelting"> electro-slag remelting</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrochrome" title=" ferrochrome"> ferrochrome</a> </p> <a href="https://publications.waset.org/abstracts/92699/making-of-alloy-steel-by-direct-alloying-with-mineral-oxides-during-electro-slag-remelting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3741</span> Microstructure and Tribological Properties of AlSi5Cu2/SiC Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Su%C5%9Bniak">Magdalena Suśniak</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Karwan-Baczewska"> Joanna Karwan-Baczewska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructure and tribological properties of AlSi5Cu2 matrix composite reinforced with SiC have been studied by microscopic examination and basic tribological properties. Composite material was produced by the mechanical alloying and spark plasma sintering (SPS) technique. The mixture of AlSi5Cu2 chips with 0, 10, 15 wt. % of SiC powder were placed in 250 ml mixing jar and milled 40 hours. To prevent the extreme cold welding the 1 wt. % of stearic acid was added to the powder mixture as a process control agent. Mechanical alloying provide to obtain composites powder with uniform distribution of SiC in matrix. Composite powders were poured into a graphite and a pulsed electric current was passed through powder under vacuum to consolidate material. Processing conditions were: sintering temperature 450°C, uniaxial pressure 32MPa, time of sintering 5 minutes. After SPS process composite samples indicate higher hardness values, lower weight loss, and lower coefficient of friction as compared with the unreinforced alloy. Light microscope micrograph of the worn surfaces and wear debris revealed that in the unreinforced alloy the prominent wear mechanism was the adhesive wear. In the AlSi5Cu2/SiC composites, by increasing of SiC the wear mechanism changed from adhesive and micro-cutting to abrasive and delamination for composite with 20 SiC wt. %. In all the AlSi5Cu2/SiC composites, abrasive wear was the main wear mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20matrix%20composite" title="aluminum matrix composite">aluminum matrix composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=AlSi5Cu2%2FSiC%20composite" title=" AlSi5Cu2/SiC composite"> AlSi5Cu2/SiC composite</a> </p> <a href="https://publications.waset.org/abstracts/14111/microstructure-and-tribological-properties-of-alsi5cu2sic-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3740</span> Development of High Strength Filler Consumables by Means of Calculations and Microstructural Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Holly">S. Holly</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Schnitzer"> R. Schnitzer</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Haslberger"> P. Haslberger</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Z%C3%BCgner"> D. Zügner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of new filler consumables necessitates a high effort regarding samples and experiments to achieve the required mechanical properties and chemistry. In the scope of the development of a metal-cored wire with the target tensile strength of 1150 MPa and acceptable impact toughness, thermodynamic and kinetic calculations via MatCalc were used to reduce the experimental work and the resources required. Micro alloying elements were used to reach the high strength as an alternative approach compared to the conventional solid solution hardening. In order to understand the influence of different micro alloying elements in more detail, the influence of different elements on the precipitation behavior in the weld metal was evaluated. Investigations of the microstructure were made via atom probe and EBSD to understand the effect of micro alloying elements. The calculated results are in accordance with the results obtained by experiments and can be explained by the microstructural investigations. On the example of aluminium, the approach is exemplified and clarifies the efficient way of development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alloy%20development" title="alloy development">alloy development</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20steel" title=" high strength steel"> high strength steel</a>, <a href="https://publications.waset.org/abstracts/search?q=MatCalc" title=" MatCalc"> MatCalc</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-cored%20wire" title=" metal-cored wire"> metal-cored wire</a> </p> <a href="https://publications.waset.org/abstracts/58448/development-of-high-strength-filler-consumables-by-means-of-calculations-and-microstructural-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3739</span> X-Ray Diffraction, Microstructure, and Mössbauer Studies of Nanostructured Materials Obtained by High-Energy Ball Milling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Boudinar">N. Boudinar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Djekoun"> A. Djekoun</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Otmani"> A. Otmani</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouzabata"> B. Bouzabata</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Greneche"> J. M. Greneche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-energy ball milling is a solid-state powder processing technique that allows synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from elemental powders. The advantage of this process technology is that the powder can be produced in large quantities and the processing parameters can be easily controlled, thus it is a suitable method for commercial applications. It can also be used to produce amorphous and nanocrystalline materials in commercially relevant amounts and is also amenable to the production of a variety of alloy compositions. Mechanical alloying (high-energy ball milling) provides an inter-dispersion of elements through a repeated cold welding and fracture of free powder particles; the grain size decreases to nano metric scale and the element mix together. Progressively, the concentration gradients disappear and eventually the elements are mixed at the atomic scale. The end products depend on many parameters such as the milling conditions and the thermodynamic properties of the milled system. Here, the mechanical alloying technique has been used to prepare nano crystalline Fe_50 and Fe_64 wt.% Ni alloys from powder mixtures. Scanning electron microscopy (SEM) with energy-dispersive, X-ray analyses and Mössbauer spectroscopy were used to study the mixing at nanometric scale. The Mössbauer Spectroscopy confirmed the ferromagnetic ordering and was use to calculate the distribution of hyperfin field. The Mössbauer spectrum for both alloys shows the existence of a ferromagnetic phase attributed to γ-Fe-Ni solid solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline" title="nanocrystalline">nanocrystalline</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%B6ssbauer%20spectroscopy" title=" Mössbauer spectroscopy"> Mössbauer spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transformations" title=" phase transformations"> phase transformations</a> </p> <a href="https://publications.waset.org/abstracts/21823/x-ray-diffraction-microstructure-and-mossbauer-studies-of-nanostructured-materials-obtained-by-high-energy-ball-milling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3738</span> Synthesis by Mechanical Alloying and Characterization of FeNi₃ Nanoalloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ece%20A.%20Irmak">Ece A. Irmak</a>, <a href="https://publications.waset.org/abstracts/search?q=Amdulla%20O.%20Mekhrabov"> Amdulla O. Mekhrabov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vedat%20Akdeniz"> M. Vedat Akdeniz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a growing interest on the synthesis and characterization of nanoalloys since the unique chemical, and physical properties of nanoalloys can be tuned and, consequently, new structural motifs can be created by varying the type of constituent elements, atomic and magnetic ordering, as well as size and shape of the nanoparticles. Due to the fine size effects, magnetic nanoalloys have considerable attention with their enhanced mechanical, electrical, optical and magnetic behavior. As an important magnetic nanoalloy, the novel application area of Fe-Ni based nanoalloys is expected to be widened in the chemical, aerospace industry and magnetic biomedical applications. Noble metals have been using in biomedical applications for several years because of their surface plasmon properties. In this respect, iron-nickel nanoalloys are promising materials for magnetic biomedical applications because they show novel properties such as superparamagnetism and surface plasmon resonance property. Also, there is great attention for the usage Fe-Ni based nanoalloys as radar absorbing materials in aerospace and stealth industry due to having high Curie temperature, high permeability and high saturation magnetization with good thermal stability. In this study, FeNi₃ bimetallic nanoalloys were synthesized by mechanical alloying in a planetary high energy ball mill. In mechanical alloying, micron size powders are placed into the mill with milling media. The powders are repeatedly deformed, fractured and alloyed by high energy collision under the impact of balls until the desired composition and particle size is achieved. The experimental studies were carried out in two parts. Firstly, dry mechanical alloying with high energy dry planetary ball milling was applied to obtain FeNi₃ nanoparticles. Secondly, dry milling was followed by surfactant-assisted ball milling to observe the surfactant and solvent effect on the structure, size, and properties of the FeNi₃ nanoalloys. In the first part, the powder sample of iron-nickel was prepared according to the 1:3 iron to nickel ratio to produce FeNi₃ nanoparticles and the 1:10 powder to ball weight ratio. To avoid oxidation during milling, the vials had been filled with Ar inert gas before milling started. The powders were milled for 80 hours in total and the synthesis of the FeNi₃ intermetallic nanoparticles was succeeded by mechanical alloying in 40 hours. Also, regarding the particle size, it was found that the amount of nano-sized particles raised with increasing milling time. In the second part of the study, dry milling of the Fe and Ni powders with the same stoichiometric ratio was repeated. Then, to prevent agglomeration and to obtain smaller sized nanoparticles with superparamagnetic behavior, surfactants and solvent are added to the system, after 40-hour milling time, with the completion of the mechanical alloying. During surfactant-assisted ball milling, heptane was used as milling medium, and as surfactants, oleic acid and oleylamine were used in the high energy ball milling processes. The characterization of the alloyed particles in terms of microstructure, morphology, particle size, thermal and magnetic properties with respect to milling time was done by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, vibrating-sample magnetometer, and differential scanning calorimetry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iron-nickel%20systems" title="iron-nickel systems">iron-nickel systems</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoalloys" title=" magnetic nanoalloys"> magnetic nanoalloys</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoalloy%20characterization" title=" nanoalloy characterization"> nanoalloy characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant-assisted%20ball%20milling" title=" surfactant-assisted ball milling"> surfactant-assisted ball milling</a> </p> <a href="https://publications.waset.org/abstracts/89100/synthesis-by-mechanical-alloying-and-characterization-of-feni3-nanoalloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3737</span> Effect of Carbon Additions on FeCrNiMnTi High Entropy Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20D.%20Gomez-Esparza">C. D. Gomez-Esparza</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20V.%20Hernandez-Castro"> Z. V. Hernandez-Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Rodriguez-Gonzalez"> C. A. Rodriguez-Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Martinez-Sanchez"> R. Martinez-Sanchez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Duarte-Moller"> A. Duarte-Moller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the high entropy alloys (HEA) are the focus of attention in metallurgical and materials science due to their desirable and superior properties in comparison to conventional alloys. The HEA field has promoted the exploration of several compositions including the addition of non-metallic elements like carbon, which in traditional metallurgy is mainly used in the steel industry. The aim of this work was the synthesis of equiatomic FeCrNiMnTi high entropy alloys, with minor carbon content, by mechanical alloying and sintering. The effect of the addition of carbon nanotubes and graphite were evaluated by X-ray diffraction, scanning electron microscopy, and microhardness test. The structural and microstructural characteristics of the equiatomic alloys, as well as their hardness were compared with those of an austenitic AISI 321 stainless steel processed under the same conditions. The results showed that porosity in bulk samples decreases with carbon nanotubes addition, while the equiatomic composition favors the formation of titanium carbide and increased the AISI 321 hardness more than three times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20entropy%20alloys" title=" high entropy alloys"> high entropy alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a> </p> <a href="https://publications.waset.org/abstracts/87464/effect-of-carbon-additions-on-fecrnimnti-high-entropy-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3736</span> Experimental Study on Thermomechanical Properties of New-Generation ODS Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Khalaj">O. Khalaj</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ma%C5%A1ek"> B. Mašek</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jirkov%C3%A1"> H. Jirková</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Svoboda"> J. Svoboda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By using a combination of new technologies together with an unconventional use of different types of materials, specific mechanical properties and structures of the material can be achieved. Some possibilities are enabled by a combination of powder metallurgy in the preparation of a metal matrix with dispersed stable particles achieved by mechanical alloying and hot consolidation. This paper explains the thermomechanical properties of new generation of Oxide Dispersion Strengthened alloys (ODS) within three ranges of temperature with specified deformation profiles. The results show that the mechanical properties of new ODS alloys are significantly affected by the thermomechanical treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20forming" title="hot forming">hot forming</a>, <a href="https://publications.waset.org/abstracts/search?q=ODS" title=" ODS"> ODS</a>, <a href="https://publications.waset.org/abstracts/search?q=alloys" title=" alloys"> alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical" title=" thermomechanical"> thermomechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-Al" title=" Fe-Al"> Fe-Al</a>, <a href="https://publications.waset.org/abstracts/search?q=Al2O3" title=" Al2O3"> Al2O3</a> </p> <a href="https://publications.waset.org/abstracts/74378/experimental-study-on-thermomechanical-properties-of-new-generation-ods-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3735</span> The Effect of Si Content on the Physical Properties of Nanostructured (Ni75Fe25)100-xSix Alloy Elaborated by Mechanical Alloying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kaibi">A. Kaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guittoum"> A. Guittoum</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hemmous"> M. Hemmous</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mart%C3%ADnez-Blanco"> D. Martínez-Blanco</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Gorria"> P. Gorria</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Blanco"> J. A. Blanco</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kechouane"> M. Kechouane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with the effect of Si content on the physical properties of nanostructured (Ni75Fe25)100-x Six (x=0, 3.5, 6.5, 9, 12, and 15 at %) powders elaborated by mechanical alloying for a milling time of 96 h. The microstructure, hyperfine, and magnetic properties of the powders were investigated as a function of Si content by means of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Mössbauer Spectroscopy, and Vibrating Sample magnetometry (VSM). From XRD spectra, the formation of FCC disordered Ni (Fe,Si) solid solution was evidenced after 96 h. As Si content increases, the lattice parameter and the grain size decrease (from ~28 to 15 nm), while the microstrain level decreases from 0.98% to 0.65%. From SEM micrographs, we showed that powder particles become round in shape and decrease in size with increasing Si content. For all Si content, the adjustment of Mössbauer spectra confirmed the formation of a disordered ferromagnetic NiFeSi phase. From hysteresis curves, we have extracted the values of saturation magnetization and coercive field for all powders. The evolution of Ms and Hc as a function of Si content will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20powders" title="nanostructured powders">nanostructured powders</a>, <a href="https://publications.waset.org/abstracts/search?q=%28Ni75Fe25%29100-xSix%20alloy" title=" (Ni75Fe25)100-xSix alloy"> (Ni75Fe25)100-xSix alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/192107/the-effect-of-si-content-on-the-physical-properties-of-nanostructured-ni75fe25100-xsix-alloy-elaborated-by-mechanical-alloying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3734</span> Effect of Hot Extrusion on the Mechanical and Corrosion Properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn Alloys for Medical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20E.%20Bazhenov">V. E. Bazhenov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Li"> A. V. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Komissarov"> A. A. Komissarov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Koltygin"> A. V. Koltygin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Tavolzhanskii"> S. A. Tavolzhanskii</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Voropaeva"> O. O. Voropaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Mukhametshina"> A. M. Mukhametshina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Tokar"> A. A. Tokar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Bautin"> V. A. Bautin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium-based alloys are considered as effective materials in the development of biodegradable implants. The magnesium alloys containing Mg, Zn, Ca as an alloying element are the subject of the particular interest. These elements are the nutrients for the human body, which provide their high biocompatibility. In this work, we investigated the effect of severe plastic deformation (SPD) on the mechanical and corrosion properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn alloys containing from 2 to 4 wt.% Zn; 0.7 wt.% Ca and up to 1 wt.% Mn. Hot extrusion was used as a method of intensive plastic deformation. The temperature of hot extrusion was set to 220 °C and 300 °C. Metallographic analysis after hot extrusion shows that the grain size in the studied alloys depends on the deformation temperature. The grain size for all of investigated alloys is in the range from 3 to 7 microns, and 3 μm corresponds to the extrusion temperature of 220 °C. Analysis of mechanical properties after extrusion shows that extrusion at a temperature of 220 °C and alloying with Mn increase the strength characteristics and decrease the ductility of studied alloys. A slight anisotropy of properties in the longitudinal and transverse directions was also observed. Measurements of corrosion properties revealed that the addition of Mn to Mg-Zn-Ca alloys reduces the corrosion rate. On the other hand, increasing the Zn content in alloys increases the corrosion rate. The extrusion temperature practically does not affect the corrosion rate. Acknowledgement: The authors gratefully acknowledge the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (No K2-2019-008), implemented by a governmental decree dated 16th of March 2013, N 211. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20extrusion" title=" hot extrusion"> hot extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title=" magnesium alloys"> magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/130867/effect-of-hot-extrusion-on-the-mechanical-and-corrosion-properties-of-mg-zn-ca-and-mg-zn-ca-mn-alloys-for-medical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3733</span> Wetting Properties of Silver Based Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zolt%C3%A1n%20Weltsch">Zoltán Weltsch</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B3zsef%20Hlinka"> József Hlinka</a>, <a href="https://publications.waset.org/abstracts/search?q=Eszter%20K%C3%B3kai"> Eszter Kókai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The temperature dependence of wettability (wetting angle, Θ (T)) for Ag-based melts on graphite and Al2O3 substrates is compared. Typical alloying effects are found, as the Ag host metal is gradually replaced by various metallic elements. The essence of alloying lies in the change of the electron/atom (e/a) ratio. This ratio is also manifested in the shift of wetting angles on the same substrate. Nevertheless, the effects are partially smeared by other (metallurgical) factors, like the interaction between the oxygen-alloying elements and by the graphite substrate-oxygen interaction. In contrast, such effects are not pronounced in the case of Al2O3 substrates. As a consequence, Θ(T) exhibits an opposite trend in the case of two substrates. Crossovers of the Θ(T) curves were often found. The positions of crossovers depend on the chemical character and concentration of solute atoms. Segregation and epitaxial texture formation after solidification were also observed in certain alloy drops, especially in high concentration range. This phenomenon is not yet explained in every detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title="contact angle">contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver"> silver</a>, <a href="https://publications.waset.org/abstracts/search?q=soldering" title=" soldering"> soldering</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20solubility" title=" solid solubility"> solid solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate" title=" substrate"> substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20dependence" title=" temperature dependence"> temperature dependence</a>, <a href="https://publications.waset.org/abstracts/search?q=wetting" title=" wetting"> wetting</a> </p> <a href="https://publications.waset.org/abstracts/25730/wetting-properties-of-silver-based-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3732</span> High Temperature Oxidation of Cr-Steel Interconnects in Solid Oxide Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Ghali">Saeed Ghali</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20Ahmed"> Azza Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Taha%20Mattar"> Taha Mattar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid Oxide Fuel Cell (SOFC) is a promising solution for the energy resources leakage. Ferritic stainless steel becomes a suitable candidate for the SOFCs interconnects due to the recent advancements. Different steel alloys were designed to satisfy the needed characteristics in SOFCs interconnect as conductivity, thermal expansion and corrosion resistance. Refractory elements were used as alloying elements to satisfy the needed properties. The oxidation behaviour of the developed alloys was studied where the samples were heated for long time period at the maximum operating temperature to simulate the real working conditions. The formed scale and oxidized surface were investigated by SEM. Microstructure examination was carried out for some selected steel grades. The effect of alloying elements on the behaviour of the proposed interconnects material and the performance during the working conditions of the cells are explored and discussed. Refractory metals alloying of chromium steel seems to satisfy the needed characteristics in metallic interconnects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SOFCs" title="SOFCs">SOFCs</a>, <a href="https://publications.waset.org/abstracts/search?q=Cr-steel" title=" Cr-steel"> Cr-steel</a>, <a href="https://publications.waset.org/abstracts/search?q=interconnects" title=" interconnects"> interconnects</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a> </p> <a href="https://publications.waset.org/abstracts/67075/high-temperature-oxidation-of-cr-steel-interconnects-in-solid-oxide-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3731</span> Influence of the Substitution of C for Mg and Ni on the Microstructure and Hydrogen Storage Characteristics of Mg2Ni Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajad%20Haghanifar">Sajad Haghanifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed-Farshid%20Kashani%20Bozorg"> Seyed-Farshid Kashani Bozorg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nano-crystalline Mg2Ni-based powder was produced by mechanical alloying technique using binary and ternary powder mixtures with stoichiometric compositions of Mg2Ni, Mg1.9C0.1Ni and Mg2C0.1Ni0.9. The structures and morphologies of the milled products were studied by XRD, SEM and HRTEM. Their electrochemical hydrogen storage characteristics were investigated in 6 M KOH solution. X-Ray diffraction, scanning and transmission electron microscopy of the milled products showed the formation of Mg2Ni-based nano-crystallites after 5, 15 and 30 h of milling using the initial powder mixtures of Mg1.9C0.1Ni, Mg2Ni and Mg2C0.1Ni0.9, respectively. It was found that partial substitution of C for Mg has beneficial effect on the formation kinetic of nano-crystalline Mg2Ni. Contrary to this, partial substitution of C for Ni was resulted in retardation of formation kinetic of nano-crystalline Mg2Ni. In addition, the negative electrode made from Mg1.9C0.1Ni ternary milled product after 30 hour of milling exhibited the highest initial discharge capacity and longest discharge life. Thus, partial substitution of C for Mg is beneficial to electrode properties of the Mg2Ni-based crystallites. The relation between the discharge capacity and cycling number of mechanically alloyed products was proposed on the basis of the fact that the degradation of discharge capacity was mainly caused by the oxidation of magnesium and nickel. The experimental data fitted the deduced equation well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mg2Ni" title="Mg2Ni">Mg2Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20absorbing%20materials" title=" hydrogen absorbing materials"> hydrogen absorbing materials</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties" title=" electrochemical properties"> electrochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-crystalline" title=" nano-crystalline"> nano-crystalline</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous" title=" amorphous"> amorphous</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/30579/influence-of-the-substitution-of-c-for-mg-and-ni-on-the-microstructure-and-hydrogen-storage-characteristics-of-mg2ni-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3730</span> Effect of Zirconium (Zr) Amount on Mechanical and Metallurgical Behavior of ZE41A Magnesium Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Yaliniz">Emrah Yaliniz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kalkanli"> Ali Kalkanli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ZE41A magnesium alloy has been extensively used in aerospace industry, especially for use in rotorcraft transmission casings. Due to the improved mechanical properties, the latest generation of magnesium casting alloy EV31A-T6 (Elektron 21® specified in AMS 4429) is seen as a potential replacement for ZE41A in terms of strength. Therefore, the necessity of enhancement has been arisen for ZE41A in order to avoid fully replacement. The main element affecting the strength of ZE41A is Zirconium (Zr), which acts as a grain refiner. The specified range of Zr element for ZE41A alloy is between 0.4 wt % and 1.0 wt % (unless otherwise stated by weight percentage after this point) as stated in AMS 4439. This paper investigates the effects of Zr amount on tensile and metallurgical properties of ZE41A magnesium alloy. The Zr alloying amount for the research has been chosen as 0.5 % and 1 %, which are standard amounts in a commercial alloy (average of 0.4-0.6%) and maximum percent in the standard, separately. 1 % Zr amount has been achieved via Zirmax (66.7 Mg-33.3 Zr) master alloy addition. The ultimate tensile strength of ZE41A with 1% Zr has been increased up to about 220-225 MPa in comparison to 200 MPa given in AMS 4439. The reason for the increase in strength with the addition of Zirmax is based on the decrease in grain size, which was measured about 30 µm. Optical microscope, scanning electron microscopy (SEM) and X-ray Diffraction (XRD) were used to detect the change in the microstructural futures via alloying. The zirconium rich coring at the center of the grains was observed in addition to the grain boundary intermetallic phases and bulk Mg-rich matrix. The solidification characteristics were also identified by using the cooling curve obtained from the sand casting mold during cooling of the alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace" title="aerospace">aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20refinement" title=" grain refinement"> grain refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20casting" title=" sand casting"> sand casting</a>, <a href="https://publications.waset.org/abstracts/search?q=ZE41A" title=" ZE41A"> ZE41A</a> </p> <a href="https://publications.waset.org/abstracts/90956/effect-of-zirconium-zr-amount-on-mechanical-and-metallurgical-behavior-of-ze41a-magnesium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3729</span> Effect of Alloying Elements on Particle Incorporation of Boron Carbide Reinforced Aluminum Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Steven%20Ploetz">Steven Ploetz</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Lohmueller"> Andreas Lohmueller</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20F.%20Singer"> Robert F. Singer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The outstanding performance of aluminum matrix composites (AMCs) regarding stiffness/weight ratio makes AMCs attractive material for lightweight construction. Low-density boride compounds promise simultaneously an increase in stiffness and decrease in composite density. This is why boron carbide is chosen for composite manufacturing. The composites are fabricated with the stir casting process. To avoid gas entrapment during mixing and ensure nonporous composites, partial vacuum is adapted during particle feeding and stirring. Poor wettability of boron carbide with liquid aluminum hinders particle incorporation, but alloying elements such as magnesium and titanium could improve wettability and thus particle incorporation. Next to alloying elements, adapted stirring parameters and impeller geometries improve particle incorporation and enable homogenous particle distribution and high particle volume fractions of boron carbide. AMCs with up to 15 vol.% of boron carbide particles are produced via melt stirring, resulting in an increase in stiffness and strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20matrix%20composites" title="aluminum matrix composites">aluminum matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20carbide" title=" boron carbide"> boron carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=stir%20casting" title=" stir casting"> stir casting</a> </p> <a href="https://publications.waset.org/abstracts/64924/effect-of-alloying-elements-on-particle-incorporation-of-boron-carbide-reinforced-aluminum-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3728</span> Alloying Effect on Hot Workability of M42 High Speed Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon">Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the effect of Si, Al, Ti, Zr, and Nb addition on the microstructure and hot workability of cast M42 tool steels, basically consisting of 1.0C, 0.2Mn, 3.8Cr, 1.5W, 8.5Co, 9.2Mo, and 1.0V in weight percent has been investigated. Tool steels containing Si of 0.25 and 0.5 wt.%, Al of 0.06 and 0.12 wt.%, Ti of 0.3 wt.%, Zr of 0.3 wt.%, and Nb of 0.3 wt.% were cast into ingots of 140 mm´ 140 mm´ 330 mm by vacuum induction melting. After solution treatment at 1150°C for 1.5 hrs. followed by furnace cooling, hot rolling at 1180 °C was conducted on the ingots. Addition of titanium, zirconium and niobium was found to retard the decomposition of the eutectic carbides and result in the deterioration of hot workability of the tool steels, while addition of aluminium and silicon showed relatively well decomposed carbide structure and resulted in sound hot rolled plates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20steels" title="high speed steels">high speed steels</a>, <a href="https://publications.waset.org/abstracts/search?q=alloying%20elements" title=" alloying elements"> alloying elements</a>, <a href="https://publications.waset.org/abstracts/search?q=eutectic%20carbides" title=" eutectic carbides"> eutectic carbides</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20workability" title=" hot workability"> hot workability</a> </p> <a href="https://publications.waset.org/abstracts/7125/alloying-effect-on-hot-workability-of-m42-high-speed-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3727</span> Corrosion of Concrete Reinforcing Steel Bars Tested and Compared Between Various Protection Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20van%20Tonder">P. van Tonder</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Bagdadi"> U. Bagdadi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20D.%20Lario"> B. M. D. Lario</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Masina"> Z. Masina</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20R.%20Motshwari"> T. R. Motshwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyses how concrete reinforcing steel bars corrode and how it can be minimised through the use of various protection methods against corrosion, such as metal-based paint, alloying, cathodic protection and electroplating. Samples of carbon steel bars were protected, using these four methods. Tests performed on the samples included durability, electrical resistivity and bond strength. Durability results indicated relatively low corrosion rates for alloying, cathodic protection, electroplating and metal-based paint. The resistivity results indicate all samples experienced a downward trend, despite erratic fluctuations in the data, indicating an inverse relationship between electrical resistivity and corrosion rate. The results indicated lowered bond strengths when the reinforced concrete was cured in seawater compared to being cured in normal water. It also showed that higher design compressive strengths lead to higher bond strengths which can be used to compensate for the loss of bond strength due to corrosion in a real-world application. In terms of implications, all protection methods have the potential to be effective at resisting corrosion in real-world applications, especially the alloying, cathodic protection and electroplating methods. The metal-based paint underperformed by comparison, most likely due to the nature of paint in general which can fade and chip away, revealing the steel samples and exposing them to corrosion. For alloying, stainless steel is the suggested material of choice, where Y-bars are highly recommended as smooth bars have a much-lowered bond strength. Cathodic protection performed the best of all in protecting the sample from corrosion, however, its real-world application would require significant evaluation into the feasibility of such a method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protection%20methods" title="protection methods">protection methods</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcing%20steel%20bars" title=" reinforcing steel bars"> reinforcing steel bars</a> </p> <a href="https://publications.waset.org/abstracts/142249/corrosion-of-concrete-reinforcing-steel-bars-tested-and-compared-between-various-protection-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3726</span> Nanoindentation Studies of Metallic Cu-CuZr Composites Synthesized by Accumulative Roll Bonding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Alishahi">Ehsan Alishahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuang%20Deng"> Chuang Deng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Materials with microstructural heterogeneity have recently attracted dramatic attention in the materials science community. Although most of the metals are identified as crystalline, the new class of amorphous alloys, sometimes are known as metallic glasses (MGs), exhibited remarkable properties, particularly high mechanical strength and elastic limit. The unique properties of MGs led to the wide range of studies in developing and characterizing of new alloys or composites which met the commercial desires. In spite of applicable properties of MGs, commercializing of metallic glasses was limited due to a major drawback, the lack of ductility and sudden brittle failure mode. Hence, crystalline-amorphous (C-A) composites were introduced almost in 2000s as a toughening strategy to improve the ductility of MGs. Despite the considerable progress reported in previous studies, there are still challenges in both synthesis and characterization of metallic C-A composites. In this study, accumulative roll bonding (ARB) was used to synthesize bulk crystalline-amorphous composites starting from crystalline Cu-Zr multilayers. Due to the severe plastic deformation state, new CuZr phases were formed during the rolling process which was reflected in SEM-EDS analysis. EDS elemental analysis showed the variation in the composition of CuZr phases such as 38-62, 50-50 to 68-32 at Cu-Zr % respectively. Moreover, TEM with electron diffraction analysis indicated the presence of both crystalline and amorphous structures for the new formed CuZr phases. In addition to the microstructural analysis, the mechanical properties of the synthesized composites were studied using the nanoindentation technique. Hysitron Nanoindentation instrument was used to conduct nanoindentation tests with cube corner tip. The maximum load of 5000 µN was applied in load control mode to measure the elastic modulus and hardness of different phases. The trend of results indicated three distinct regimes of hardness and elastic modulus including pure Cu, pure Zr, and new formed CuZr phases. More specifically, pure Cu regions showed the lowest values for both nanoindentation hardness and elastic modulus while the CuZr phases take the highest values. Consequently, pure Zr was placed in the intermediate range which is harder than pure Cu but softer than CuZr phases. In overall, it was found that CuZr phases with higher hardness were nucleated during ARB process as a result of mechanical alloying phenomenon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARB" title="ARB">ARB</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline-amorphous%20composites" title=" crystalline-amorphous composites"> crystalline-amorphous composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoindentation%20hardness" title=" nanoindentation hardness"> nanoindentation hardness</a> </p> <a href="https://publications.waset.org/abstracts/84788/nanoindentation-studies-of-metallic-cu-cuzr-composites-synthesized-by-accumulative-roll-bonding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3725</span> Processing and Characterization of Oxide Dispersion Strengthened (ODS) Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) Ferritic Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farha%20Mizana%20Shamsudin">Farha Mizana Shamsudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahidan%20Radiman"> Shahidan Radiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusof%20Abdullah"> Yusof Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasri%20Abdul%20Hamid"> Nasri Abdul Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxide dispersion strengthened (ODS) ferritic steels are amongst the most promising candidates for large scale structural materials to be applied in next generation fission and fusion nuclear power reactors. This kind of material is relatively stable at high temperature, possess remarkable mechanical properties and comparatively good resistance from neutron radiation damage. The superior performance of ODS ferritic steels over their conventional properties is attributed to the high number density of nano-sized dispersoids that act as nucleation sites and stable sinks for many small helium bubbles resulting from irradiation, and also as pinning points to dislocation movement and grain growth. ODS ferritic steels are usually produced by powder metallurgical routes involving mechanical alloying (MA) process of Y2O3 and pre-alloyed or elemental metallic powders, and then consolidated by hot isostatic pressing (HIP) or hot extrusion (HE) techniques. In this study, Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (designated as 14YWT) was produced by mechanical alloying process and followed by hot isostatic pressing (HIP) technique. Crystal structure and morphology of this sample were identified and characterized by using X-ray Diffraction (XRD) and field emission scanning electron microscope (FESEM) respectively. The magnetic measurement of this sample at room temperature was carried out by using a vibrating sample magnetometer (VSM). FESEM micrograph revealed a homogeneous microstructure constituted by fine grains of less than 650 nm in size. The ultra-fine dispersoids of size between 5 nm to 19 nm were observed homogeneously distributed within the BCC matrix. The EDS mapping reveals that the dispersoids contain Y-Ti-O nanoclusters and from the magnetization curve plotted by VSM, this sample approaches the behavior of soft ferromagnetic materials. In conclusion, ODS Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) ferritic steel was successfully produced by HIP technique in this present study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20isostatic%20pressing" title="hot isostatic pressing">hot isostatic pressing</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=ODS%20ferritic%20steel" title=" ODS ferritic steel"> ODS ferritic steel</a> </p> <a href="https://publications.waset.org/abstracts/67957/processing-and-characterization-of-oxide-dispersion-strengthened-ods-fe-14cr-3w-05ti-03y2o3-14ywt-ferritic-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying&page=125">125</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying&page=126">126</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>