CINXE.COM

Search results for: coarsening

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: coarsening</title> <meta name="description" content="Search results for: coarsening"> <meta name="keywords" content="coarsening"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="coarsening" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="coarsening"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 26</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: coarsening</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> 3D Mesh Coarsening via Uniform Clustering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuhua%20Lai">Shuhua Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Kairui%20Chen"> Kairui Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarsening" title="coarsening">coarsening</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20clustering" title=" mesh clustering"> mesh clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20approximation" title=" shape approximation"> shape approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20simplification" title=" mesh simplification"> mesh simplification</a> </p> <a href="https://publications.waset.org/abstracts/48919/3d-mesh-coarsening-via-uniform-clustering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Grain Growth Behavior of High Carbon Microalloyed Steels Containing Very Low Amounts of Niobium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Zengin">Huseyin Zengin</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20Emre%20Turan"> Muhammet Emre Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunus%20Turen"> Yunus Turen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayrettin%20Ahlatci"> Hayrettin Ahlatci</a>, <a href="https://publications.waset.org/abstracts/search?q=Yavuz%20Sun"> Yavuz Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed for understanding the effects of dilute Nb additions on the austenite microstructure of microalloyed steels at five different reheating temperatures from 950 °C to 1300 °C. Four microalloyed high-carbon steels having 0.8 %wt C were examined in which three of them had varying Nb concentrations from 0.005 wt% to 0.02 wt% and one of them had no Nb concentration. The quantitative metallographic techniques were used to measure the average prior austenite grain size in order to compare the grain growth pinning effects of Nb precipitates as a function of reheating temperature. Due to the higher stability of the precipitates with increasing Nb concentrations, the grain coarsening temperature that resulted in inefficient grain growth impediment and a bimodal grain distribution in the microstructure, showed an increase with increasing Nb concentration. The respective grain coarsening temperatures (T_GC) in an ascending order for the steels having 0.005 wt% Nb, 0.01 wt% Nb and 0.02 wt% Nb were 950 °C, 1050 °C and 1150 °C. According to these observed grain coarsening temperatures, an approximation was made considering the complete dissolution temperature (T_DISS) of second phase particles as T_GC=T_DISS-300. On the other hand, the plain carbon steel did not show abnormal grain growth behaviour due to the absence of second phase particles. It was also observed that the higher the Nb concentration, the smaller the average prior austenite grain size although the small increments in Nb concenration did not change the average grain size considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalloyed%20steels" title="microalloyed steels">microalloyed steels</a>, <a href="https://publications.waset.org/abstracts/search?q=prior%20austenite%20grains" title=" prior austenite grains"> prior austenite grains</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20phase%20particles" title=" second phase particles"> second phase particles</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20coarsening%20temperature" title=" grain coarsening temperature"> grain coarsening temperature</a> </p> <a href="https://publications.waset.org/abstracts/50132/grain-growth-behavior-of-high-carbon-microalloyed-steels-containing-very-low-amounts-of-niobium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Influence of Thermal Ageing on Microstructural Features and Mechanical Properties of Reduced Activation Ferritic/Martensitic Grades </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athina%20Puype">Athina Puype</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Malerba"> Lorenzo Malerba</a>, <a href="https://publications.waset.org/abstracts/search?q=Nico%20De%20Wispelaere"> Nico De Wispelaere</a>, <a href="https://publications.waset.org/abstracts/search?q=Roumen%20Petrov"> Roumen Petrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Jilt%20Sietsma"> Jilt Sietsma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduced Activation Ferritic/Martensitic (FM) steels like EUROFER are of interest for first wall application in the future demonstration (DEMO) fusion reactor. Depending on the final design codes for the DEMO reactor, the first wall material will have to function in low-temperature mode or high-temperature mode, i.e. around 250-300°C of above 550°C respectively. However, the use of RAFM steels is limited up to a temperature of about 550°C. For the low-temperature application, the material suffers from irradiation embrittlement, due to a shift of ductile-to-brittle transition temperature (DBTT) towards higher temperatures upon irradiation. The high-temperature response of the material is equally insufficient for long-term use in fusion reactors, due to the instability of the matrix phase and coarsening of the precipitates at prolonged high-temperature exposure. The objective of this study is to investigate the influence of thermal ageing for 1000 hrs and 4000 hrs on microstructural features and mechanical properties of lab-cast EUROFER. Additionally, the ageing behavior of the lab-cast EUROFER is compared with the ageing behavior of standard EUROFER97-2 and T91. The microstructural features were investigated with light optical microscopy (LOM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the microstructural features and mechanical properties of four different F/M grades, i.e. T91, EUROFER97-2 and two lab-casted EUROFER grades. After ageing for 1000 hrs, the microstructures exhibit similar martensitic block sizes independent on the grain size before ageing. With respect to the initial coarser microstructures, the aged microstructures displayed a dislocation structure which is partially fragmented by polygonization. On the other hand, the initial finer microstructures tend to be more stable up to 1000hrs resulting in similar grain sizes for the four different steels. Increasing the ageing time to 4000 hrs, resulted in an increase of lath thickness and coarsening of M23C6 precipitates leading to a deterioration of tensile properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ageing%20experiments" title="ageing experiments">ageing experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=EUROFER" title=" EUROFER"> EUROFER</a>, <a href="https://publications.waset.org/abstracts/search?q=ferritic%2Fmartensitic%20steels" title=" ferritic/martensitic steels"> ferritic/martensitic steels</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=T91" title=" T91"> T91</a> </p> <a href="https://publications.waset.org/abstracts/65950/influence-of-thermal-ageing-on-microstructural-features-and-mechanical-properties-of-reduced-activation-ferriticmartensitic-grades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Evaluation of Cyclic Steam Injection in Multi-Layered Heterogeneous Reservoir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Worawanna%20Panyakotkaew">Worawanna Panyakotkaew</a>, <a href="https://publications.waset.org/abstracts/search?q=Falan%20Srisuriyachai"> Falan Srisuriyachai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyclic steam injection (CSI) is a thermal recovery technique performed by injecting periodically heated steam into heavy oil reservoir. Oil viscosity is substantially reduced by means of heat transferred from steam. Together with gas pressurization, oil recovery is greatly improved. Nevertheless, prediction of effectiveness of the process is difficult when reservoir contains degree of heterogeneity. Therefore, study of heterogeneity together with interest reservoir properties must be evaluated prior to field implementation. In this study, thermal reservoir simulation program is utilized. Reservoir model is firstly constructed as multi-layered with coarsening upward sequence. The highest permeability is located on top layer with descending of permeability values in lower layers. Steam is injected from two wells located diagonally in quarter five-spot pattern. Heavy oil is produced by adjusting operating parameters including soaking period and steam quality. After selecting the best conditions for both parameters yielding the highest oil recovery, effects of degree of heterogeneity (represented by Lorenz coefficient), vertical permeability and permeability sequence are evaluated. Surprisingly, simulation results show that reservoir heterogeneity yields benefits on CSI technique. Increasing of reservoir heterogeneity impoverishes permeability distribution. High permeability contrast results in steam intruding in upper layers. Once temperature is cool down during back flow period, condense water percolates downward, resulting in high oil saturation on top layers. Gas saturation appears on top after while, causing better propagation of steam in the following cycle due to high compressibility of gas. Large steam chamber therefore covers most of the area in upper zone. Oil recovery reaches approximately 60% which is of about 20% higher than case of heterogeneous reservoir. Vertical permeability exhibits benefits on CSI. Expansion of steam chamber occurs within shorter time from upper to lower zone. For fining upward permeability sequence where permeability values are reversed from the previous case, steam does not override to top layers due to low permeability. Propagation of steam chamber occurs in middle of reservoir where permeability is high enough. Rate of oil recovery is slower compared to coarsening upward case due to lower permeability at the location where propagation of steam chamber occurs. Even CSI technique produces oil quite slowly in early cycles, once steam chamber is formed deep in the reservoir, heat is delivered to formation quickly in latter cycles. Since reservoir heterogeneity is unavoidable, a thorough understanding of its effect must be considered. This study shows that CSI technique might be one of the compatible solutions for highly heterogeneous reservoir. This competitive technique also shows benefit in terms of heat consumption as steam is injected periodically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20steam%20injection" title="cyclic steam injection">cyclic steam injection</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20simulation" title=" reservoir simulation"> reservoir simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20recovery" title=" thermal recovery"> thermal recovery</a> </p> <a href="https://publications.waset.org/abstracts/30576/evaluation-of-cyclic-steam-injection-in-multi-layered-heterogeneous-reservoir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Mechanical and Tribological Characterization of Squeeze Cast Al 6061 Alloy Reinforced with SiC and Al₂O₃ Particulates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurcan%20A.%20B.">Gurcan A. B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Baker%20T.%20N."> Baker T. N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to economic and environmental requirements, it is becoming increasingly important to reduce vehicle weight. The first approach consisted in using light materials with high thermal conductivity, such as aluminium alloys. This choice allowed significant mass reduction and lower temperature but required recourse to ventilated discs. Among aluminium alloys, Al 6xxx series alloys enjoy the highest strength-to-weight ratio and, therefore, have found wide applications in the automobile and aerospace industries. However, these alloys lose their high strength rapidly when they are exposed to elevated temperatures. This rapid decline in the strength is directly related to the coarsening of very fine precipitates which are then not as effective in obstructing the dislocations. The incorporation of micro-scale and nano-scale particulates in aluminium systems can greatly enhance their mechanical characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20and%20tribological%20behaviour" title="mechanical and tribological behaviour">mechanical and tribological behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20test" title=" optical test"> optical test</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20test" title=" mechanical properties test"> mechanical properties test</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20test" title=" experimental test"> experimental test</a> </p> <a href="https://publications.waset.org/abstracts/185439/mechanical-and-tribological-characterization-of-squeeze-cast-al-6061-alloy-reinforced-with-sic-and-al2o3-particulates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Recrystallization Microstructure Studies of Cold-Rolled Ta0.5Nb0.5Hf0.5ZrTi1.5 Non-Equiatomic Refractory High Entropy Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veeresham%20Mokali">Veeresham Mokali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recrystallization microstructure and grain growth studies of Ta₀.₅Nb₀.₅Hf₀.₅ZrTi₁.₅ refractory high entropy alloy have been explored in the present work. The as-cast Ta₀.₅Nb₀.₅Hf₀.₅ZrTi₁.₅ alloy was cold-rolled to 90% in several passes at room temperature and further subjected to annealing treatment for recrystallization at 800°C, 1000°C, 1250°C, and 1400°C temperatures for one hour. However, the characterization of heavily cold-rolled and annealed condition specimens was done using scanning electron microscopy (SEM-EBSD). The cold-rolled specimens showed the development of an inhomogeneous microstructure. Upon annealing, recrystallized microstructures were achieved; in addition to that, the coarsening of microstructure with raising annealing temperature noticed in the range of 800°C – 1400°C annealed temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refractory%20high%20entropy%20alloys" title="refractory high entropy alloys">refractory high entropy alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-rolling" title=" cold-rolling"> cold-rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=recrystallization" title=" recrystallization"> recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/138947/recrystallization-microstructure-studies-of-cold-rolled-ta05nb05hf05zrti15-non-equiatomic-refractory-high-entropy-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> The High Temperature Damage of DV–2 Turbine Blade Made from Ni–Base Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Belan">Juraj Belan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Hurtalov%C3%A1"> Lenka Hurtalová</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Tillov%C3%A1"> Eva Tillová</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Va%C5%A1ko"> Alan Vaško</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Uhr%C3%AD%C4%8Dik"> Milan Uhríčik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-pressure turbine (HPT) blades of DV–2 jet engines are made from Ni–base superalloy, a former Soviet Union production, specified as ŽS6K. For improving its high-temperature resistance are blades covered with Al–Si diffusion layer. A regular operation temperature of HPT blades vary from 705°C to 750°C depending on jet engine regime. An over-crossing working temperature range causes degradation of protective alitize layer as well as base material–gamma matrix and gamma prime particles what decreases turbine blade lifetime. High-temperature degradation has mainly diffusion mechanism and causes coarsening of strengthening phase gamma prime and protective alitize layer thickness growing. All changes have a significant influence on high-temperature properties of base material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alitize%20layer" title="alitize layer">alitize layer</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20prime%20phase" title=" gamma prime phase"> gamma prime phase</a>, <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20degradation" title=" high-temperature degradation"> high-temperature degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%E2%80%93base%20superalloy%20%C5%BDS6K" title=" Ni–base superalloy ŽS6K"> Ni–base superalloy ŽS6K</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blade" title=" turbine blade"> turbine blade</a> </p> <a href="https://publications.waset.org/abstracts/20085/the-high-temperature-damage-of-dv-2-turbine-blade-made-from-ni-base-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Effect of Aging on Hardness and Corrosion Resistance of WE43 Magnesium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziya%20Esen">Ziya Esen</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Duygulu"> Özgür Duygulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazl%C4%B1%20S.%20B%C3%BCy%C3%BCkatak"> Nazlı S. Büyükatak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effects of aging heat treatment on corrosion resistance and mechanical properties of WE43 Magnesium alloy. The heat treatment of alloys was conducted by solutionizing at 525oC for 16 h, followed by aging at 190, 210 and 230oC for up to 48 h. The type and the size of precipitates formed upon aging have influenced both the mechanical properties and corrosion behavior of the alloy. Solutionized alloy displayed the worst corrosion resistance in simulated body fluid, while peak hardness and the best corrosion resistance were observed in the alloy aged at 210oC for 24 h as a result of β’ precipitate formation. Longer aging duration at 210oC decreased the corrosion rate due to the coarsening of the precipitates and formation of precipitate-free zones. The increased corrosion resistance of the peak aged samples was attributed to the slowing down effect of the Mg(OH)₂/MgO corrosion layer by the pinning effect of β’-precipitates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WE43%20magnesium%20alloy" title="WE43 magnesium alloy">WE43 magnesium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20body%20fluid" title=" simulated body fluid"> simulated body fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/186918/effect-of-aging-on-hardness-and-corrosion-resistance-of-we43-magnesium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Thermo-Mechanical Treatments of Cu-Ti Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Morgham">M. M. Morgham</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Hameda"> A. A. Hameda</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Zriba"> N. A. Zriba</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Jawan"> H. A. Jawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to study the effect of cold work condition on the microstructure of Cu-1.5wt%Ti, and Cu-3.5wt%Ti and hence mechanical properties. The samples under investigation were machined and solution heat treated. X-ray diffraction technique is used to identify the different phases present after cold deformation by compression and also different heat treatment and also measuring the relative quantities of phases present. Metallographic examination is used to study the microstructure of the samples. The hardness measurements were used to indicate the change in mechanical properties. The results are compared with the mechanical properties obtained by previous workers. Experiments on cold compression followed by aging of Cu-Ti alloys have indicated that the most effective hardening of the material results from continuous precipitation of very fine particles within the matrix. These particles were reported to be β`-type, Cu4Ti phase. The β`-β transformation and particles coarsening within the matrix as well as a long grain boundaries were responsible for the averaging of Cu-1.5wt%Ti and Cu-3.5wt%Ti alloys. It is well know that plate like particles are β – type, Cu3Ti phase. Discontinuous precipitation was found to start at the grain boundaries and expand into grain interior. At the higher aging temperature a classic widmanstätten morphology forms giving rise to a coarse microstructure comprised of α and the equilibrium phase β. Those results were confirmed by X-ray analysis, which found that a few percent of Cu3Ti, β precipitates are formed during aging at high temperature for long time for both Cu- Ti alloys (i.e. Cu-1.5wt%Ti and Cu-3.5wt%Ti). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metallographic" title="metallographic">metallographic</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a> </p> <a href="https://publications.waset.org/abstracts/4385/thermo-mechanical-treatments-of-cu-ti-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Comparative Analysis of Residual Shear Depiction and Grain Distribution Characteristics of Slide Soil Profile Sections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ephrem%20Getahun">Ephrem Getahun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shengwen%20Qi"> Shengwen Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Songfeng%20Guo"> Songfeng Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zou"> Yu Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Melesse%20Alemayehu"> Melesse Alemayehu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residual shear characteristics of slide soil profile sections (SSPS) were examined using ring shear tests to know the relative residual shear behaviors among the sections of slide soil. The multistage-multiphase shearing techniques were employed to perform the experiment for each soil specimen continuously towards large displacements. The grain distribution analysis of SSPS samples was characterized by coarsening upward from bottom slip to the top sections; however, the slip surface was considered as a sheared zone that endorses their low shear resistance for failure. There is an average range of 1-2.5 mm axial displacement on each stage of loadings and phases of shearing that depicts the significant effect of dilation and compression of soil specimen. The middle section has the largest consolidation percentage (10-29%), and vertical displacement compared to other sections and showed high shear strengthening behavior having maximum shear stress of 189kPa at 240kPa loading compared to basal and top sections. It is found that the middle section of SSPS has relatively high shear resistance behavior for large displacement shearing. The residual shear assessment indicates that there is a significant influence of large displacement and rate on the friction coefficient behaviors; it resulted in shear weakening effect to attain their residual condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparison" title="comparison">comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=displacements" title=" displacements"> displacements</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20shear%20stress" title=" residual shear stress"> residual shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20behavior" title=" shear behavior"> shear behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=slide%20soils" title=" slide soils"> slide soils</a> </p> <a href="https://publications.waset.org/abstracts/102831/comparative-analysis-of-residual-shear-depiction-and-grain-distribution-characteristics-of-slide-soil-profile-sections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirvat%20Shamseddine">Mirvat Shamseddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Issam%20Lakkis"> Issam Lakkis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSMC" title="DSMC">DSMC</a>, <a href="https://publications.waset.org/abstracts/search?q=oct-tree%20hierarchical%20grid" title=" oct-tree hierarchical grid"> oct-tree hierarchical grid</a>, <a href="https://publications.waset.org/abstracts/search?q=ray%20tracing" title=" ray tracing"> ray tracing</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial-temporal%20adaptivity%20scheme" title=" spatial-temporal adaptivity scheme"> spatial-temporal adaptivity scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20rarefied%20gas%20flows" title=" unsteady rarefied gas flows"> unsteady rarefied gas flows</a> </p> <a href="https://publications.waset.org/abstracts/96192/unsteady-three-dimensional-adaptive-spatial-temporal-multi-scale-direct-simulation-monte-carlo-solver-to-simulate-rarefied-gas-flows-in-micronano-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Effect of Variation of Temperature Distribution on Mechanical Properties of Shield Metal Arc Welded Duplex Stainless Steel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Mittal">Arvind Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Gupta"> Rajesh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Influence of heat input on the micro structure and mechanical properties of shield metal arc welded of duplex stainless steel UNSNO.S-31803 has been investigated. Three heat input combinations designated as low heat (0.675 KJ/mm), medium heat (0.860 KJ/mm) and high heat (1.094 KJ/mm) and weld joints made using these combinations were subjected to micro structural evaluations and tensile and impact testing so as to analyze the effect of thermal arc energy on the micro structure and mechanical properties of these joints. The result of this investigation shows that the joints made using low heat input exhibited higher tensile strength than those welded with medium and high heat input. Heat affected zone of welded joint made with medium heat input has austenitic ferritic grain structure with some patchy austenite provide high toughness. Significant grain coarsening was observed in the heat affected zone (HAZ) of medium and high heat input welded joints, whereas low heat input welded joint shows the fine grain structure in the heat affected zone with small amount of dendritic formation and equiaxed grain structure where inner zone indicates slowly cooled grains in the direction of heat dissipation. This is the main reason for the observable changes of tensile properties of weld joints welded with different arc energy inputs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstructure" title="microstructure">microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=shield%20metal%20arc%20welded" title=" shield metal arc welded"> shield metal arc welded</a>, <a href="https://publications.waset.org/abstracts/search?q=duplex%20stainless%20steel" title=" duplex stainless steel"> duplex stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/3527/effect-of-variation-of-temperature-distribution-on-mechanical-properties-of-shield-metal-arc-welded-duplex-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Exceptionally Glauconite-Rich Strata from the Miocene Bejaoua Facies of Northern Tunisia: Origin, Composition, and Depositional Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelbasset%20Tounekti">Abdelbasset Tounekti</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Boukhalfa"> Kamel Boukhalfa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tathagata%20Roy%20Choudhury"> Tathagata Roy Choudhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Soussi"> Mohamed Soussi</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Banerjee"> Santanu Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exceptionally glauconite-rich Miocene strata are superbly exposed throughout the front of the nappes zone of northern Tunisia. Each of the glauconitic fine-grained intervals coincide with the peak rise of third order sea-level cycles during the Burdigalian-Langhiantime. These deposits show coarsening- and thickening-upward glauconitic shale and sandstone, recording a shallowing upward progression across offshore-shoreface settings. Petrographic investigation reveals that the glauconite was originated from the alteration of fecal pellets, and lithoclast including feldspar, volcanic particle, and quartz and infillings with intraparticle pores. Mineralogical analysis of both randomly oriented and air-dried, ethylene-glycolate, and heated glauconite pellets show the low intensity of (002) reflection peaks, indicating high iron substitution for aluminum in octahedral sites. Geochemical characterization of the Miocene glauconite reveals a high K2O and variable Fe2O3 (total) content. A combination of layer lattice and divertissement theories explains the origin of glauconite. The formation of glauconite was facilitated by the abundant supply of Fe through contemporaneous volcanism in Algeria and surrounding areas, which accompanied the African-European plate convergence. Therefore, the occurrence of glauconite in the Miocene succession of Tunisia is influenced by the combination of eustacy and volcanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glauconite" title="glauconite">glauconite</a>, <a href="https://publications.waset.org/abstracts/search?q=autogenic" title=" autogenic"> autogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanism" title=" volcanism"> volcanism</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=chamosite" title=" chamosite"> chamosite</a>, <a href="https://publications.waset.org/abstracts/search?q=northern%20Tunisia" title=" northern Tunisia"> northern Tunisia</a>, <a href="https://publications.waset.org/abstracts/search?q=miocene" title=" miocene"> miocene</a> </p> <a href="https://publications.waset.org/abstracts/142848/exceptionally-glauconite-rich-strata-from-the-miocene-bejaoua-facies-of-northern-tunisia-origin-composition-and-depositional-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> High Temperature Deformation Behavior of Al0.2CoCrFeNiMo0.5 High Entropy alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasam%20Palguna">Yasam Palguna</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Korla"> Rajesh Korla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of thermally operated systems can be improved by increasing the operating temperature, thereby decreasing the fuel consumption and carbon footprint. Hence, there is a continuous need for replacing the existing materials with new alloys with higher temperature working capabilities. During the last decade, multi principal element alloys, commonly known as high entropy alloys are getting more attention because of their superior high temperature strength along with good high temperature corrosion and oxidation resistance, The present work focused on the microstructure and high temperature tensile behavior of Al0.2CoCrFeNiMo0.5 high entropy alloy (HEA). Wrought Al0.2CoCrFeNiMo0.5 high entropy alloy, produced by vacuum induction melting followed by thermomechanical processing, is tested in the temperature range of 200 to 900oC. It is exhibiting very good resistance to softening with increasing temperature up to 700oC, and thereafter there is a rapid decrease in the strength, especially beyond 800oC, which may be due to simultaneous occurrence of recrystallization and precipitate coarsening. Further, it is exhibiting superplastic kind of behavior with a uniform elongation of ~ 275 % at 900 oC temperature and 1 x 10-3 s-1 strain rate, which may be due to the presence of fine stable equi-axed grains. Strain rate sensitivity of 0.3 was observed, suggesting that solute drag dislocation glide might be the active mechanism during superplastic kind of deformation. Post deformation microstructure suggesting that cavitation at the sigma phase-matrix interface is the failure mechanism during high temperature deformation. Finally, high temperature properties of the present alloy will be compared with the contemporary high temperature materials such as ferritic, austenitic steels, and superalloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20entropy%20alloy" title="high entropy alloy">high entropy alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20deformation" title=" high temperature deformation"> high temperature deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20plasticity" title=" super plasticity"> super plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=post-deformation%20microstructures" title=" post-deformation microstructures"> post-deformation microstructures</a> </p> <a href="https://publications.waset.org/abstracts/145479/high-temperature-deformation-behavior-of-al02cocrfenimo05-high-entropy-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> The Effect of Addition of Some Rare Earth Materials to Zinc Aluminum Alloy ZA-22</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20I.%20O.%20Zaid">Adnan I. O. Zaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc aluminum alloys are versatile materials which are widely used in manufacturing several parts in the automobile and aircraft industries. The effect of grain refinement of these alloys by rare earth elements on their mechanical characteristics is scarce. The equal channel angular pressing is relatively recent method for producing severe plastic deformation in materials subjected to it resulting in refinement of their structure and enhancement of their mechanical characteristics. The phase diagram of these alloys indicates that large dendrites of large grain size can be formed during their solidification of the cast which tends to deteriorate their mechanical strength and surface quality. To overcome this problem they are normally grain refined by either titanium or titanium + boron to their melt prior to solidification. In this paper, comparison between the effect of adding either titanium, (Ti), titanium+boron, (Ti+B), or Molybdenum, Mo, to zinc-aluminum22, alloy, (ZA22) on its metallurgical and mechanical characteristics in the cast condition and after pressing by the ECAP process is investigated. It was found that addition of either Ti, Ti+B, or Mo to the ZA22 alloy in the cast condition resulted in refining of their structure being more refined by the addition of Mo, then .Ti+B and less refining by Ti addition. Furthermore, the ECAP process resulted in further refinement of the alloy micro structure except in case of Ti+B addition where poisoning i.e. coarsening of the grains has occurred. Regarding the addition of these element on the mechanical behavior; it was found that addition of Ti Or Ti+B resulted in little enhancement of the alloy strength factor and its flow stress at 20% true strain; whereas, the addition of resulted in deteriorating of its mechanical behavior as % decrease in the strength factor and % in its flow stress of 20%. As for the strain hardening index; addition of any of these elements resulted in decreasing the strain hardening index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=addition" title="addition">addition</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20refinement" title=" grain refinement"> grain refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characteristics" title=" mechanical characteristics"> mechanical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title=" rare earth elements"> rare earth elements</a>, <a href="https://publications.waset.org/abstracts/search?q=ZA-22" title=" ZA-22"> ZA-22</a>, <a href="https://publications.waset.org/abstracts/search?q=Zinc-%20aluminum%20alloy" title=" Zinc- aluminum alloy "> Zinc- aluminum alloy </a> </p> <a href="https://publications.waset.org/abstracts/34046/the-effect-of-addition-of-some-rare-earth-materials-to-zinc-aluminum-alloy-za-22" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Enhancement of Critical Current Density of Liquid Infiltration Processed Y-Ba-Cu-O Bulk Superconductors Used for Flywheel Energy Storage System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asif%20Mahmood">Asif Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Alzeghayer"> Yousef Alzeghayer </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The size effects of a precursor Y2BaCuO5 (Y211) powder on the microstructure and critical current density (Jc) of liquid infiltration growth (LIG)-processed YBa2Cu3O7-y (Y123) bulk superconductors were investigated in terms of milling time (t). YBCO bulk samples having high Jc values have been selected for the flywheel energy storage system. Y211 powders were attrition-milled for 0-10 h in 2 h increments at a fixed rotation speed of 400 RPM. Y211 pre-forms were made by pelletizing the milled Y211 powders followed by subsequent sintering, after which an LIG process with top seeding was applied to the Y211/Ba3Cu5O8 (Y035) pre-forms. Spherical pores were observed in all LIG-processed Y123 samples, and the pore density gradually decreased as t increased from 0 h to 8 h. In addition to the reduced pore density, the Y211 particle size in the final Y123 products also decreased with increasing t. As t increased further to 10 h, unexpected Y211 coarsening and large pore evolutions were observed. The magnetic susceptibility-temperature curves showed that the onset superconducting transition temperature (Tc, onset) of all samples was the same (91.5 K), but the transition width became greater as t increased. The Jc of the Y123 bulk superconductors fabricated in this study was observed to correlate well with t of the Y211 precursor powder. The maximum Jc of 1.0×105 A cm-2 (at 77 K, 0 T) was achieved at t = 8 h, which is attributed to the reduction in pore density and Y211 particle size. The prolonged milling time of t = 10 h decreased the Jc of the LIG-processed Y123 superconductor owing to the evolution of large pores and exaggerated Y211 growth. YBCO bulk samples having high Jc (samples prepared using 8 h milled powders) have been used for the energy storage system in flywheel energy storage system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20current" title="critical current">critical current</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20superconductor" title=" bulk superconductor"> bulk superconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20infiltration" title=" liquid infiltration"> liquid infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a> </p> <a href="https://publications.waset.org/abstracts/3564/enhancement-of-critical-current-density-of-liquid-infiltration-processed-y-ba-cu-o-bulk-superconductors-used-for-flywheel-energy-storage-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> 3d Property Modelling of the Lower Acacus Reservoir, Ghadames Basin, Libya </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aimen%20Saleh">Aimen Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Silurian Lower Acacus sandstone is one of the main reservoirs in North West Libya. Our aim in this study is to grasp a robust understanding of the hydrocarbon potential and distribution in the area. To date, the depositional environment of the Lower Acacus reservoir still open to discussion and contradiction. Henceforth, building three dimensional (3D) property modelling is one way to support the analysis and description of the reservoir, its properties and characterizations, so this will be of great value in this project. The 3D model integrates different data set, these incorporates well logs data, petrophysical reservoir properties and seismic data as well. The finalized depositional environment model of the Lower Acacus concludes that the area is located in a deltaic transitional depositional setting, which ranges from a wave dominated delta into tide dominated delta type. This interpretation carried out through a series of steps of model generation, core description and Formation Microresistivity Image tool (FMI) interpretation. After the analysis of the core data, the Lower Acacus layers shows a strong effect of tidal energy. Whereas these traces found imprinted in different types of sedimentary structures, for examples; presence of some crossbedding, such as herringbones structures, wavy and flaser cross beddings. In spite of recognition of some minor marine transgression events in the area, on the contrary, the coarsening upward cycles of sand and shale layers in the Lower Acacus demonstrate presence of a major regressive phase of the sea level. However, consequently, we produced a final package of this model in a complemented set of facies distribution, porosity and oil presence. And also it shows the record of the petroleum system, and the procedure of Hydrocarbon migration and accumulation. Finally, this model suggests that the area can be outlined into three main segments of hydrocarbon potential, which can be a textbook guide for future exploration and production strategies in the area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acacus" title="Acacus">Acacus</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghadames" title=" Ghadames "> Ghadames </a>, <a href="https://publications.waset.org/abstracts/search?q=Libya" title=" Libya"> Libya</a>, <a href="https://publications.waset.org/abstracts/search?q=Silurian" title=" Silurian"> Silurian</a> </p> <a href="https://publications.waset.org/abstracts/126166/3d-property-modelling-of-the-lower-acacus-reservoir-ghadames-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Process Optimization for 2205 Duplex Stainless Steel by Laser Metal Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siri%20Marthe%20Arbo">Siri Marthe Arbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Afaf%20Saai"> Afaf Saai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sture%20S%C3%B8rli"> Sture Sørli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mette%20Nedreberg"> Mette Nedreberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to establish a reliable approach for optimizing a Laser Metal Deposition (LMD) process for a critical maritime component, based on the material properties and structural performance required by the maritime industry. The component of interest is a water jet impeller, for which specific requirements for material properties are defined. The developed approach is based on the assessment of the effects of LMD process parameters on microstructure and material performance of standard AM 2205 duplex stainless steel powder. Duplex stainless steel offers attractive properties for maritime applications, combining high strength, enhanced ductility and excellent corrosion resistance due to the specific amounts of ferrite and austenite. These properties are strongly affected by the microstructural characteristics in addition to microstructural defects such as porosity and welding defects, all strongly influenced by the chosen LMD process parameters. In this study, the influence of deposition speed and heat input was evaluated. First, the influences of deposition speed and heat input on the microstructure characteristics, including ferrite/austenite fraction, amount of porosity and welding defects, were evaluated. Then, the achieved mechanical properties were evaluated by standard testing methods, measuring the hardness, tensile strength and elongation, bending force and impact energy. The measured properties were compared to the requirements of the water jet impeller. The results show that the required amounts of ferrite and austenite can be achieved directly by the LMD process without post-weld heat treatments. No intermetallic phases were observed in the material produced by the investigated process parameters. A high deposition speed was found to reduce the ductility due to the formation of welding defects. An increased heat input was associated with reduced strength due to the coarsening of the ferrite/austenite microstructure. The microstructure characterizations and measured mechanical performance demonstrate the great potential of the LMD process and generate a valuable database for the optimization of the LMD process for duplex stainless steels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=duplex%20stainless%20steel" title="duplex stainless steel">duplex stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition" title=" laser metal deposition"> laser metal deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20optimization" title=" process optimization"> process optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/140052/process-optimization-for-2205-duplex-stainless-steel-by-laser-metal-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Microstructural Interactions of Ag and Sc Alloying Additions during Casting and Artificial Ageing to a T6 Temper in a A356 Aluminium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Bakavos">Dimitrios Bakavos</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Tsivoulas"> Dimitrios Tsivoulas</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaowalit%20Limmaneevichitr"> Chaowalit Limmaneevichitr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminium cast alloys, of the Al-Si system, are widely used for shape castings. Their microstructures can be further improved on one hand, by alloying modification and on the other, by optimised artificial ageing. In this project four hypoeutectic Al-alloys, the A356, A356+ Ag, A356+Sc, and A356+Ag+Sc have been studied. The interactions of Ag and Sc during solidification and artificial ageing at 170°C to a T6 temper have been investigated in details. The evolution of the eutectic microstructure is studied by thermal analysis and interrupted solidification. The ageing kinetics of the alloys has been identified by hardness measurements. The precipitate phases, number density, and chemical composition has been analysed by means of transmission electron microscopy (TEM) and EDS analysis. Furthermore, the SHT effect onto the Si eutectic particles for the four alloys has been investigated by means of optical microscopy, image analysis, and the UTS strength has been compared with the UTS of the alloys after casting. The results suggest that the Ag additions, significantly enhance the ageing kinetics of the A356 alloy. The formation of β” precipitates were kinetically accelerated and an increase of 8% and 5% in peak hardness strength has been observed compared to the base A356 and A356-Sc alloy. The EDS analysis demonstrates that Ag is present on the β” precipitate composition. After prolonged ageing 100 hours at 170°C, the A356-Ag exhibits 17% higher hardness strength compared to the other three alloys. During solidification, Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction. In contrast, Ag has no significance effect on the solidification mode revealing a macroscopic eutectic growth similar to A356 base alloy. However, the mechanical strength of the as cast A356-Ag, A356-Sc, and A356+Ag+Sc additions has increased by 5, 30, and 35 MPa, respectively. The outcome is a tribute to the refining of the eutectic Si that takes place which it is strong in the A356-Sc alloy and more profound when silver and scandium has been combined. Moreover after SHT the Al alloy with the highest mechanical strength, is the one with Ag additions, in contrast to the as-cast condition where the Sc and Sc+Ag alloy was the strongest. The increase of strength is mainly attributed to the dissolution of grain boundary precipitates the increase of the solute content into the matrix, the spherodisation, and coarsening of the eutectic Si. Therefore, we could safely conclude for an A356 hypoeutectic alloy additions of: Ag exhibits a refining effect on the Si eutectic which is improved when is combined with Sc. In addition Ag enhance, the ageing kinetics increases the hardness and retains its strength at prolonged artificial ageing in a Al-7Si 0.3Mg hypoeutectic alloy. Finally the addition of Sc is beneficial due to the refinement of the α-Al grain and modification-refinement of the eutectic Si increasing the strength of the as-cast product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ageing" title="ageing">ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=casting" title=" casting"> casting</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitates" title=" precipitates"> precipitates</a> </p> <a href="https://publications.waset.org/abstracts/34561/microstructural-interactions-of-ag-and-sc-alloying-additions-during-casting-and-artificial-ageing-to-a-t6-temper-in-a-a356-aluminium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Recognition of a Thinly Bedded Distal Turbidite: A Case Study from a Proterozoic Delta System, Chaossa Formation, Simla Group, Western Lesser Himalaya, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Mazumdar">Priyanka Mazumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Mukhopadhyay"> Ananya Mukhopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A lot of progress has been achieved in the research of turbidites during the last decades. However, their relationship to delta systems still deserves further attention. This paper addresses example of fine grained turbidite from a pro-deltaic deposit of a Proterozoic mixed energy delta system exposed along Chaossa-Baliana river section of the Chaossa Formation of the Simla Basin. Lithostratigraphic analysis of the Chaossa Formation reveals three major facies associations (prodelta deposit-FA1, delta slope deposit-FA2 and delta front deposit-FA3) based on lithofacies types, petrography and sedimentary structures. Detailed process-based facies and paleoenvironmental analysis of the study area have led to identification of more than150 m thick coarsening-upwards deltaic successions composed of fine grained turbidites overlain by delta slope deposits. Erosional features are locally common at the base of turbidite beds and still more widespread at the top. The complete sequence has eight sub-divisions that are here termed T1 to T8. The basal subdivision (T1) comprises a massive graded unit with a sharp, scoured base, internal parallel-lamination and cross-lamination. The overlying sequence shows textural and compositional grading through alternating silt and mud laminae (T2). T2 is overlying by T3 which is characterized by climbing ripple and cross lamination. Parallel laminae are the predominant facies attributes of T4 which caps the T3 unit. T5 has a loaded scour base and is mainly characterized laminated silt. The topmost three divisions, graded mud (T6), ungraded mud (T7) and laminated mud (T8). The proposed sequence is analogous to the Bouma (1962) structural scheme for sandy turbidites. Repetition of partial sequences represents deposition from different stages of evolution of a large, muddy, turbidity flow. Detailed facies analysis of the study area reveals that the sediments of the turbidites developed during normal regression at the stage of stable or marginally rising sea level. Thin-bedded turbidites were deposited predominantly by turbidity currents in the relatively shallower part of the Simla basin. The fine-grained turbidites are developed by resedimentation of delta-front sands and slumping of upper pro-delta muds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbidites" title="turbidites">turbidites</a>, <a href="https://publications.waset.org/abstracts/search?q=prodelta" title=" prodelta"> prodelta</a>, <a href="https://publications.waset.org/abstracts/search?q=proterozoic" title=" proterozoic"> proterozoic</a>, <a href="https://publications.waset.org/abstracts/search?q=Simla%20Basin" title=" Simla Basin"> Simla Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouma%20sequence" title=" Bouma sequence"> Bouma sequence</a> </p> <a href="https://publications.waset.org/abstracts/57273/recognition-of-a-thinly-bedded-distal-turbidite-a-case-study-from-a-proterozoic-delta-system-chaossa-formation-simla-group-western-lesser-himalaya-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Clastic Sequence Stratigraphy of Late Jurassic to Early Cretaceous Formations of Jaisalmer Basin, Rajasthan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Kumar%20Gupta">Himanshu Kumar Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Jaisalmer Basin is one of the parts of the Rajasthan basin in northwestern India. The presence of five major unconformities/hiatuses of varying span i.e. at the top of Archean basement, Cambrian, Jurassic, Cretaceous, and Eocene have created the foundation for constructing a sequence stratigraphic framework. Based on basin formative tectonic events and their impact on sedimentation processes three first-order sequences have been identified in Rajasthan Basin. These are Proterozoic-Early Cambrian rift sequence, Permian to Middle-Late Eocene shelf sequence and Pleistocene - Recent sequence related to Himalayan Orogeny. The Permian to Middle Eocene I order sequence is further subdivided into three-second order sequences i.e. Permian to Late Jurassic II order sequence, Early to Late Cretaceous II order sequence and Paleocene to Middle-Late Eocene II order sequence. In this study, Late Jurassic to Early Cretaceous sequence was identified and log-based interpretation of smaller order T-R cycles have been carried out. A log profile from eastern margin to western margin (up to Shahgarh depression) has been taken. The depositional environment penetrated by the wells interpreted from log signatures gave three major facies association. The blocky and coarsening upward (funnel shape), the blocky and fining upward (bell shape) and the erratic (zig-zag) facies representing distributary mouth bar, distributary channel and marine mud facies respectively. Late Jurassic Formation (Baisakhi-Bhadasar) and Early Cretaceous Formation (Pariwar) shows a lesser number of T-R cycles in shallower and higher number of T-R cycles in deeper bathymetry. Shallowest well has 3 T-R cycles in Baisakhi-Bhadasar and 2 T-R cycles in Pariwar, whereas deeper well has 4 T-R cycles in Baisakhi-Bhadasar and 8 T-R cycles in Pariwar Formation. The Maximum Flooding surfaces observed from the stratigraphy analysis indicate major shale break (high shale content). The study area is dominated by the alternation of shale and sand lithologies, which occurs in an approximate ratio of 70:30. A seismo-geological cross section has been prepared to understand the stratigraphic thickness variation and structural disposition of the strata. The formations are quite thick to the west, the thickness of which reduces as we traverse towards the east. The folded and the faulted strata indicated the compressional tectonics followed by the extensional tectonics. Our interpretation is supported with seismic up to second order sequence indicates - Late Jurassic sequence is a Highstand Systems Tract (Baisakhi - Bhadasar formations), and the Early Cretaceous sequence is Regressive to Lowstand System Tract (Pariwar Formation). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaisalmer%20Basin" title="Jaisalmer Basin">Jaisalmer Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20stratigraphy" title=" sequence stratigraphy"> sequence stratigraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20tract" title=" system tract"> system tract</a>, <a href="https://publications.waset.org/abstracts/search?q=T-R%20cycle" title=" T-R cycle"> T-R cycle</a> </p> <a href="https://publications.waset.org/abstracts/98724/clastic-sequence-stratigraphy-of-late-jurassic-to-early-cretaceous-formations-of-jaisalmer-basin-rajasthan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Pentosan Polysulfate Sodium: A Potential Treatment to Improve Bone and Joint Manifestations of Mucopolysaccharidosis I</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Drago%20Bratkovic">Drago Bratkovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Curtis%20Gravance"> Curtis Gravance</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Ketteridge"> David Ketteridge</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Krishnan"> Ravi Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Imperiale"> Michael Imperiale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mucopolysaccharidoses (MPSs) are a group of lysosomal storage diseases that have a common defect in the catabolism of glycosaminoglycans (GAGs). MPS I is the most common of the MPS diseases. Manifestations of MPS I include coarsening of facial features, corneal clouding, developmental delay, short stature, skeletal manifestations, hearing loss, cardiac valve disease, hepatosplenomegaly, and umbilical and inguinal hernias. Treatments for MPS I restore or activate the missing or deficient enzyme in the case of enzyme replacement therapy (ERT) and haematopoietic stem cell transplantation (HSCT). Pentosan polysulfate sodium (PPS) is a potential treatment to improve bone and joint manifestations of MPS I. The mechanisms of action of PPS that are relevant to the treatment of MPS I are the ability to: (i) Reduce systemic and accumulated GAG, (ii) Reduce inflammatory effects via the inhibition of NF-kB, resulting in the reduction in pro-inflammatory mediators. (iii) Reduce the expression of the pain mediator nerve growth factor in osteocytes from degenerating joints. (iv) Inhibit the cartilage degrading enzymes related to joint dysfunction in MPS I. PPS is being evaluated as an adjunctive therapy to ERT and/or HSCT in an open-label, single-centre, phase 2 study. Patients are ≥ 5 years of age with a diagnosis of MPS I and previously received HSCT and/or ERT. Three white, female, patients with MPS I-Hurler, ages 14, 15, and 19 years, and one, white male patient aged 15 years are enrolled. All were diagnosed at ≤2 years of age. All patients received HSCT ≤ 6 months after diagnosis. Two of the patients were treated with ERT prior to HSCT, and 1 patient received ERT commencing 3 months prior to HSCT. Two patients received 0.75mg/kg and 2 patients received 1.5mg/kg of PPS. PPS was well tolerated at doses of 0.75 and 1.5 mg/kg to 47 weeks of continuous dosing. Of the 19 adverse events (AEs), 2 were related to PPS. One AE was moderate (pre-syncope) and 1 was mild (injection site bruising), experienced in the same patient. All AEs were reported as mild or moderate. There have been no SAEs. One subject experienced a COVID-19 infection and PPS was interrupted. The MPS I signature GAG fragments, sulfated disaccharide and UA-HNAc S, tended to decrease in 3 patients from baseline through Week 25. Week 25 GAG data are pending for the 4th patient. Overall, most biomarkers (inflammatory, cartilage degeneration, and bone turnover) evaluated in the 3 patients with 25-week assessments have indicated either no change or a reduction in levels compared to baseline. In 3 patients, there was a trend toward improvement in the 2MWT from baseline to Week 48 with > 100% increase in 1 patient (01-201). In the 3 patients that had Week 48 assessments, patients and proxies reported improvement in PGIC, including “worthwhile difference” (n=1), or “made all the difference” (n=2). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MPS%20I" title="MPS I">MPS I</a>, <a href="https://publications.waset.org/abstracts/search?q=pentosan%20polysulfate%20sodium" title=" pentosan polysulfate sodium"> pentosan polysulfate sodium</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20study" title=" clinical study"> clinical study</a>, <a href="https://publications.waset.org/abstracts/search?q=2MWT" title=" 2MWT"> 2MWT</a>, <a href="https://publications.waset.org/abstracts/search?q=QoL" title=" QoL"> QoL</a> </p> <a href="https://publications.waset.org/abstracts/150844/pentosan-polysulfate-sodium-a-potential-treatment-to-improve-bone-and-joint-manifestations-of-mucopolysaccharidosis-i" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Thermo-Mechanical Processing Scheme to Obtain Micro-Duplex Structure Favoring Superplasticity in an As-Cast and Homogenized Medium Alloyed Nickel Base Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Sahithya">K. Sahithya</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Balasundar"> I. Balasundar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pritapant"> Pritapant</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Raghua"> T. Raghua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ni-based superalloy with a nominal composition Ni-14% Cr-11% Co-5.8% Mo-2.4% Ti-2.4% Nb-2.8% Al-0.26 % Fe-0.032% Si-0.069% C (all in wt %) is used as turbine discs in a variety of aero engines. Like any other superalloy, the primary processing of the as-cast superalloy poses a major challenge due to its complex alloy chemistry. The challenge was circumvented by characterizing the different phases present in the material, optimizing the homogenization treatment, identifying a suitable thermomechanical processing window using dynamic materials modeling. The as-cast material was subjected to homogenization at 1200°C for a soaking period of 8 hours and quenched using different media. Water quenching (WQ) after homogenization resulted in very fine spherical γꞌ precipitates of sizes 30-50 nm, whereas furnace cooling (FC) after homogenization resulted in bimodal distribution of precipitates (primary gamma prime of size 300nm and secondary gamma prime of size 5-10 nm). MC type primary carbides that are stable till the melting point of the material were found in both WQ and FC samples. Deformation behaviour of both the materials below (1000-1100°C) and above gamma prime solvus (1100-1175°C) was evaluated by subjecting the material to series of compression tests at different constant true strain rates (0.0001/sec-1/sec). An in-detail examination of the precipitate dislocation interaction mechanisms carried out using TEM revealed precipitate shearing and Orowan looping as the mechanisms governing deformation in WQ and FC, respectively. Incoherent/semi coherent gamma prime precipitates in the case of FC material facilitates better workability of the material, whereas the coherent precipitates in WQ material contributed to higher resistance to deformation of the material. Both the materials exhibited discontinuous dynamic recrystallization (DDRX) above gamma prime solvus temperature. The recrystallization kinetics was slower in the case of WQ material. Very fine grain boundary carbides ( ≤ 300 nm) retarded the recrystallisation kinetics in WQ. Coarse carbides (1-5 µm) facilitate particle stimulated nucleation in FC material. The FC material was cogged (primary hot working) 1120˚C, 0.03/sec resulting in significant grain refinement, i.e., from 3000 μm to 100 μm. The primary processed material was subjected to intensive thermomechanical deformation subsequently by reducing the temperature by 50˚C in each processing step with intermittent heterogenization treatment at selected temperatures aimed at simultaneous coarsening of the gamma prime precipitates and refinement of the gamma matrix grains. The heterogeneous annealing treatment carried out, resulted in gamma grains of 10 μm and gamma prime precipitates of 1-2 μm. Further thermo mechanical processing of the material was carried out at 1025˚C to increase the homogeneity of the obtained micro-duplex structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superalloys" title="superalloys">superalloys</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20material%20modeling" title=" dynamic material modeling"> dynamic material modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20alloys" title=" nickel alloys"> nickel alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20recrystallization" title=" dynamic recrystallization"> dynamic recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=superplasticity" title=" superplasticity"> superplasticity</a> </p> <a href="https://publications.waset.org/abstracts/121172/thermo-mechanical-processing-scheme-to-obtain-micro-duplex-structure-favoring-superplasticity-in-an-as-cast-and-homogenized-medium-alloyed-nickel-base-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Effect of Thermal Treatment on Mechanical Properties of Reduced Activation Ferritic/Martensitic Eurofer Steel Grade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athina%20Puype">Athina Puype</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Malerba"> Lorenzo Malerba</a>, <a href="https://publications.waset.org/abstracts/search?q=Nico%20De%20Wispelaere"> Nico De Wispelaere</a>, <a href="https://publications.waset.org/abstracts/search?q=Roumen%20Petrov"> Roumen Petrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Jilt%20Sietsma"> Jilt Sietsma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduced activation ferritic/martensitic (RAFM) steels like EUROFER97 are primary candidate structural materials for first wall application in the future demonstration (DEMO) fusion reactor. Existing steels of this type obtain their functional properties by a two-stage heat treatment, which consists of an annealing stage at 980°C for thirty minutes followed by quenching and an additional tempering stage at 750°C for two hours. This thermal quench and temper (Q&T) treatment creates a microstructure of tempered martensite with, as main precipitates, M23C6 carbides, with M = Fe, Cr and carbonitrides of MX type, e.g. TaC and VN. The resulting microstructure determines the mechanical properties of the steel. The ductility is largely determined by the tempered martensite matrix, while the resistance to mechanical degradation, determined by the spatial and size distribution of precipitates and the martensite crystals, plays a key role in the high temperature properties of the steel. Unfortunately, the high temperature response of EUROFER97 is currently insufficient for long term use in fusion reactors, due to instability of the matrix phase and coarsening of the precipitates at prolonged high temperature exposure. The objective of this study is to induce grain refinement by appropriate modifications of the processing route in order to increase the high temperature strength of a lab-cast EUROFER RAFM steel grade. The goal of the work is to obtain improved mechanical behavior at elevated temperatures with respect to conventionally heat treated EUROFER97. A dilatometric study was conducted to study the effect of the annealing temperature on the mechanical properties after a Q&T treatment. The microstructural features were investigated with scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the mechanical properties of the furnace-heated lab-cast EUROFER RAFM steel grade. A significant prior austenite grain (PAG) refinement was obtained by lowering the annealing temperature of the conventionally used Q&T treatment for EUROFER97. The reduction of the PAG results in finer martensitic constituents upon quenching, which offers more nucleation sites for carbide and carbonitride formation upon tempering. The ductile-to-brittle transition temperature (DBTT) was found to decrease with decreasing martensitic block size. Additionally, an increased resistance against high temperature degradation was accomplished in the fine grained martensitic materials with smallest precipitates obtained by tailoring the annealing temperature of the Q&T treatment. It is concluded that the microstructural refinement has a pronounced effect on the DBTT without significant loss of strength and ductility. Further investigation into the optimization of the processing route is recommended to improve the mechanical behavior of RAFM steels at elevated temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductile-to-brittle%20transition%20temperature%20%28DBTT%29" title="ductile-to-brittle transition temperature (DBTT)">ductile-to-brittle transition temperature (DBTT)</a>, <a href="https://publications.waset.org/abstracts/search?q=EUROFER" title=" EUROFER"> EUROFER</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20activation%20ferritic%2Fmartensitic%20%28RAFM%29%20steels" title=" reduced activation ferritic/martensitic (RAFM) steels"> reduced activation ferritic/martensitic (RAFM) steels</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatments" title=" thermal treatments"> thermal treatments</a> </p> <a href="https://publications.waset.org/abstracts/59346/effect-of-thermal-treatment-on-mechanical-properties-of-reduced-activation-ferriticmartensitic-eurofer-steel-grade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Facies, Diagenetic Analysis and Sequence Stratigraphy of Habib Rahi Formation Dwelling in the Vicinity of Jacobabad Khairpur High, Southern Indus Basin, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Haris">Muhammad Haris</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Kamran%20Ali"> Syed Kamran Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubeen%20Islam"> Mubeen Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Mehmood"> Tariq Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Shah"> Faisal Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jacobabad Khairpur High, part of a Sukkur rift zone, is the separating boundary between Central and Southern Indus Basin, formed as a result of Post-Jurassic uplift after the deposition of Middle Jurassic Chiltan Formation. Habib Rahi Formation of Middle to Late Eocene outcrops in the vicinity of Jacobabad Khairpur High, a section at Rohri near Sukkur is measured in detail for lithofacies, microfacies, diagenetic analysis and sequence stratigraphy. Habib Rahi Formation is richly fossiliferous and consists of mostly limestone with subordinate clays and marl. The total thickness of the formation in this section is 28.8m. The bottom of the formation is not exposed, while the upper contact with the Sirki Shale of the Middle Eocene age is unconformable in some places. A section is measured using Jacob’s Staff method, and traverses were made perpendicular to the strike. Four different lithofacies were identified based on outcrop geology which includes coarse-grained limestone facies (HR-1 to HR-5), massive bedded limestone facies (HR-6 HR-7), and micritic limestone facies (HR-8 to HR-13) and algal dolomitic limestone facie (HR-14). Total 14 rock samples were collected from outcrop for detailed petrographic studies, and thin sections of respective samples were prepared and analyzed under the microscope. On the basis of Dunham’s (1962) classification systems after studying textures, grain size, and fossil content and using Folk’s (1959) classification system after reviewing Allochems type, four microfacies were identified. These microfacies include HR-MF 1: Benthonic Foraminiferal Wackstone/Biomicrite Microfacies, HR-MF 2: Foramineral Nummulites Wackstone-Packstone/Biomicrite Microfacies HR-MF 3: Benthonic Foraminiferal Packstone/Biomicrite Microfacies, HR-MF 4: Bioclasts Carbonate Mudstone/Micrite Microfacies. The abundance of larger benthic Foraminifera’s (LBF), including Assilina sp., A. spiral abrade, A. granulosa, A. dandotica, A. laminosa, Nummulite sp., N. fabiani, N. stratus, N. globulus, Textularia, Bioclasts, and Red algae indicates shallow marine (Tidal Flat) environment of deposition. Based on variations in rock types, grain size, and marina fauna Habib Rahi Formation shows progradational stacking patterns, which indicates coarsening upward cycles. The second order of sea-level rise is identified (spanning from Y-Persian to Bartonian age) that represents the Transgressive System Tract (TST) and a third-order Regressive System Tract (RST) (spanning from Bartonian to Priabonian age). Diagenetic processes include fossils replacement by mud, dolomitization, pressure dissolution associated stylolites features and filling with dark organic matter. The presence of the microfossils includes Nummulite. striatus, N. fabiani, and Assilina. dandotica, signify Bartonian to Priabonian age of Habib Rahi Formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacobabad%20Khairpur%20High" title="Jacobabad Khairpur High">Jacobabad Khairpur High</a>, <a href="https://publications.waset.org/abstracts/search?q=Habib%20Rahi%20Formation" title=" Habib Rahi Formation"> Habib Rahi Formation</a>, <a href="https://publications.waset.org/abstracts/search?q=lithofacies" title=" lithofacies"> lithofacies</a>, <a href="https://publications.waset.org/abstracts/search?q=microfacies" title=" microfacies"> microfacies</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20stratigraphy" title=" sequence stratigraphy"> sequence stratigraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=diagenetic%20history" title=" diagenetic history"> diagenetic history</a> </p> <a href="https://publications.waset.org/abstracts/152352/facies-diagenetic-analysis-and-sequence-stratigraphy-of-habib-rahi-formation-dwelling-in-the-vicinity-of-jacobabad-khairpur-high-southern-indus-basin-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Detailed Degradation-Based Model for Solid Oxide Fuel Cells Long-Term Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Naeini">Mina Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20A.%20Adams%20II"> Thomas A. Adams II</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid Oxide Fuel Cells (SOFCs) feature high electrical efficiency and generate substantial amounts of waste heat that make them suitable for integrated community energy systems (ICEs). By harvesting and distributing the waste heat through hot water pipelines, SOFCs can meet thermal demand of the communities. Therefore, they can replace traditional gas boilers and reduce greenhouse gas (GHG) emissions. Despite these advantages of SOFCs over competing power generation units, this technology has not been successfully commercialized in large-scale to replace traditional generators in ICEs. One reason is that SOFC performance deteriorates over long-term operation, which makes it difficult to find the proper sizing of the cells for a particular ICE system. In order to find the optimal sizing and operating conditions of SOFCs in a community, a proper knowledge of degradation mechanisms and effects of operating conditions on SOFCs long-time performance is required. The simplified SOFC models that exist in the current literature usually do not provide realistic results since they usually underestimate rate of performance drop by making too many assumptions or generalizations. In addition, some of these models have been obtained from experimental data by curve-fitting methods. Although these models are valid for the range of operating conditions in which experiments were conducted, they cannot be generalized to other conditions and so have limited use for most ICEs. In the present study, a general, detailed degradation-based model is proposed that predicts the performance of conventional SOFCs over a long period of time at different operating conditions. Conventional SOFCs are composed of Yttria Stabilized Zirconia (YSZ) as electrolyte, Ni-cermet anodes, and LaSr₁₋ₓMnₓO₃ (LSM) cathodes. The following degradation processes are considered in this model: oxidation and coarsening of nickel particles in the Ni-cermet anodes, changes in the pore radius in anode, electrolyte, and anode electrical conductivity degradation, and sulfur poisoning of the anode compartment. This model helps decision makers discover the optimal sizing and operation of the cells for a stable, efficient performance with the fewest assumptions. It is suitable for a wide variety of applications. Sulfur contamination of the anode compartment is an important cause of performance drop in cells supplied with hydrocarbon-based fuel sources. H₂S, which is often added to hydrocarbon fuels as an odorant, can diminish catalytic behavior of Ni-based anodes by lowering their electrochemical activity and hydrocarbon conversion properties. Therefore, the existing models in the literature for H₂-supplied SOFCs cannot be applied to hydrocarbon-fueled SOFCs as they only account for the electrochemical activity reduction. A regression model is developed in the current work for sulfur contamination of the SOFCs fed with hydrocarbon fuel sources. The model is developed as a function of current density and H₂S concentration in the fuel. To the best of authors' knowledge, it is the first model that accounts for impact of current density on sulfur poisoning of cells supplied with hydrocarbon-based fuels. Proposed model has wide validity over a range of parameters and is consistent across multiple studies by different independent groups. Simulations using the degradation-based model illustrated that SOFCs voltage drops significantly in the first 1500 hours of operation. After that, cells exhibit a slower degradation rate. The present analysis allowed us to discover the reason for various degradation rate values reported in literature for conventional SOFCs. In fact, the reason why literature reports very different degradation rates, is that literature is inconsistent in definition of how degradation rate is calculated. In the literature, the degradation rate has been calculated as the slope of voltage versus time plot with the unit of voltage drop percentage per 1000 hours operation. Due to the nonlinear profile of voltage over time, degradation rate magnitude depends on the magnitude of time steps selected to calculate the curve's slope. To avoid this issue, instantaneous rate of performance drop is used in the present work. According to a sensitivity analysis, the current density has the highest impact on degradation rate compared to other operating factors, while temperature and hydrogen partial pressure affect SOFCs performance less. The findings demonstrated that a cell running at lower current density performs better in long-term in terms of total average energy delivered per year, even though initially it generates less power than if it had a higher current density. This is because of the dominant and devastating impact of large current densities on the long-term performance of SOFCs, as explained by the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation%20rate" title="degradation rate">degradation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term%20performance" title=" long-term performance"> long-term performance</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20operation" title=" optimal operation"> optimal operation</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20oxide%20fuel%20cells" title=" solid oxide fuel cells"> solid oxide fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=SOFCs" title=" SOFCs"> SOFCs</a> </p> <a href="https://publications.waset.org/abstracts/126902/detailed-degradation-based-model-for-solid-oxide-fuel-cells-long-term-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10