CINXE.COM
MTENSOR
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <meta name="author" content="Bilbao Crystallographic Server" /> <meta name="description" content="provides the most general form of any tensor adapted to the symmetry of a magnetic point group"/> <meta name="keywords" content="tensor magnetic point groups symmetry-adapted form" /> <meta http-equiv="Content-Type" content="text/html;charset=ISO-8859-1" > <title> MTENSOR </title> <link rev="MADE" href="samuel.vidal@ehu.es"> <link href="/html/css/bcs_index.css" rel="stylesheet" title="BCS Style" type="text/css"> <script language="javascript"> function showNonconv() { var obj = document.getElementById('nonconvDiv'); if (document.form1.nonconv.checked) { obj.style.display = "block"; document.form1.input_type.value = "standard"; document.getElementById('byhandDiv').style.display = "none"; } else { obj.style.display = "none"; } block_state(); } function showbyhand() { var obj = document.getElementById('byhandDiv'); obj.style.display = "block"; document.form1.nonconv.checked = false; document.getElementById('nonconvDiv').style.display = "none"; block_state(); } function showbyhandno() { var obj = document.getElementById('byhandDiv'); obj.style.display = "none"; block_state(); } var active = 1; function showHideElem(elemm) { var obj = document.getElementById(elemm); if (obj.style.display == 'block') { obj.style.display = "none"; if ((active < 58 && elemm == "eq_block") || (active > 57 && active < 91 && elemm == "opt_block") || (active > 90 && elemm == "tr_block")) { var namo = 'legend_'+active; document.getElementById(namo).style.display = "none"; } } else { obj.style.display = "block"; if ((active < 58 && elemm == "eq_block") || (active > 57 && active < 91 && elemm == "opt_block") || (active > 90 && elemm == "tr_block")) { var namo = 'legend_'+active; document.getElementById(namo).style.display = "inline"; } } block_state(); //document.getElementById("block1").style.display = 'none'; //document.getElementById("block2").style.display = 'none'; // if (document.getElementById("eq_block").style.display == 'block' && active > 40) { // document.getElementById("block1").style.display = 'block'; // } // if (document.getElementById("opt_block").style.display == 'block' && active > 71) { // document.getElementById("block2").style.display = 'block'; // } // elseif (document.getElementById("eq_block").style.display == 'block' && active > 40) { // // } // else { // document.getElementById("block1").style.display = 'none'; // } // if (document.getElementById("tr_block").style.display == 'block') { // document.getElementById("block2").style.display = 'block'; // } // else { // document.getElementById("block2").style.display = 'none'; // } } function block_state() { document.getElementById("block1").style.display = 'none'; document.getElementById("block2").style.display = 'none'; document.getElementById("block3").style.display = 'none'; document.getElementById("block4").style.display = 'none'; document.getElementById("block5").style.display = 'none'; if (document.getElementById("eq_block").style.display == 'block' && active > 57) { document.getElementById("block1").style.display = 'block'; } if (document.getElementById("opt_block").style.display == 'block' && active > 90) { document.getElementById("block2").style.display = 'block'; } if (document.getElementById("opt_block").style.display == 'block' && document.getElementById("block2").style.display == 'block') { document.getElementById("block3").style.display = 'block'; } if (document.getElementById("nonconvDiv").style.display == "block") { document.getElementById("block4").style.display = 'block'; } if (document.getElementById("byhandDiv").style.display == "block") { document.getElementById("block5").style.display = 'block'; } } function active_legend(active_new) { var namo = 'legend_'+active; document.getElementById(namo).style.display = "none"; namo = 'legend_'+active_new; document.getElementById(namo).style.display = "inline"; active=active_new; document.form1.tensor_type.value = "standard"; block_state(); } function carga() { //var obj = document.getElementById('nonconvDiv'); //obj.style.display = 'none'; showNonconv(); showbyhandno(); var choose_tensor = document.getElementById('choose_tensor'); //choose_tensor.selectedIndex = 0; document.form1.choose_tensor.value = "polarization"; document.form1.input_type.value = "standard"; //document.form1.choose_tensor.selectedIndex = 0; //document.getElementById('choose_order').options[0].onChange(); //document.getElementById('order1').style.display = "inline"; //for (loop = 2; loop < 9; loop++) { //var loopword = 'order' + loop; //document.getElementById(loopword).style.display = "none"; //} document.form1.domain.checked = false; document.form1.tensor_type.value = "standard"; block_state(); } function selectos() { var choose_order = document.getElementById('choose_order'); //var V_options = document.getElementById('V_options'); var index = document.form1.choose_order.selectedIndex; //document.write(index); index++; for (loop = 1; loop < 9; loop++) { var loopword = 'order' + loop; //document.write(loopword); document.getElementById(loopword).style.display = "none"; if (index == loop) { document.getElementById(loopword).style.display = "inline"; document.getElementById(loopword).options[0].selected = true; } } } </script> </head> <body onLoad="carga()"> <table class="signature"> <tr> <td> <small><a class="blue" href="/">Bilbao Crystallographic Server</a> <img alt="arrow" src="/html/gif/a.gif">MTENSOR</small> </td> <td> <small><a class="blue" href="/html/cryst/mtensor_help.html">Help</a></small> </td> </tr> </table> <br/> <center> <h2 class="blue" align="center"> MTENSOR: Tensor calculation for Magnetic Point Groups </h2> </center> <!--<form method="post" action="/cgi-bin/cryst/programs/nph-mtensor" name="form2">--> <input type="hidden" name="type" value="user"> <br/> <center><h4><i>For the symmetry-adapted form of non-magnetic crystal tensors see <a href="/cgi-bin/cryst/programs/tensor.pl" target="_blank">TENSOR</a></i></h4></center> <table width="100%"> <tr valign="top"> <td class="blue" width="35%"> <table class="darkblue" width="100%"> <tr> <td> <b>Tensor calculation for Magnetic Point Groups</b> </td> </tr> </table> <table width="100%"> <tr> <td> <!-- MTENSOR provides the symmetry-adapted form of a list of material tensors for any magnetic point or space group. The tensors are taken from an internal database for standard magnetic point and space groups, and are calculated live if a non-standard point or space group is given (this may take too long for high-rank tensors). The provided tensors are expressed always in an orthogonal basis, following the conventions defined at <i>Physical Properties of Crystals</i> (Nye, 1957) Appendix B 282, and <i><a href="http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1697927&tag=1">Standards on Piezoelectric Crystals</a></i> (1949). These conventions establish that, for any group expressed in a non-orthogonal basis, the orthogonal basis (<b>a'</b>, <b>b'</b>, <b>c'</b>) required to express tensors can be obtained from the non-orthogonal basis (<b>a</b>, <b>b</b>, <b>c</b>) according to the formula:<br> <center><b>a'</b> || <b>a</b> <b>c'</b> || <b>c*</b> <b>b'</b> = <b>c</b> ⨯ <b>a</b></center> <br><br><small><i><b>Intrinsic symmetry symbols: Legend</b></i><br></small> <p> <small>V: polar vector<br> e: pseudoscalar (axial tensor)<br> a: inversion under time-reversal<br> []: symmetrized indexes<br> {}: antisymmetrized indexes<br> []*: symmetrized indexes under symmetry operations with associated time-reversal<br> {}*: antisymmetrized indexes under symmetry operations with associated time-reversal<br> *: invariant under symmetry operations with associated time-reversal</small></p>--> MTENSOR provides the symmetry-adapted form of tensor properties for any magnetic point (or space) group. On the one hand, a point or space group must be selected. On the other hand, a tensor must be defined by the user or selected from the lists of known equilibrium, optical, nonlinear optical susceptibility and transport tensors, gathered from scientific literature. If a magnetic point or space group is defined and a known tensor is selected from the lists the program will obtain the required tensor from an internal database; otherwise, the tensor is calculated live. Live calculation of tensors may take too much time and even exceed the time limit, giving an empty result, if high-rank tensors, and/or a lot of symmetry elements are introduced.<br><br> <hr> Tutorial of MTENSOR: <a href="/html/cryst/tutorials/Tutorial_magnetic_section_BCS_1.pdf">download</a> <hr> Further information can be found <a class="blue" href="/html/cryst/mtensor_help.html" target="_blank">here</a> <br><br> If you are using this program in the preparation of an article, please cite this reference:<br><br> <a class="blue" href="http://scripts.iucr.org/cgi-bin/paper?S2053273319001748"><small> Gallego <i>et al.</i> "Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: a new tool of the Bilbao Crystallographic Server" <i>Acta Cryst. A</i> (2019) <b>75</b>, 438-447.</small></a><br><br> <br> If you are interested in other publications related to Bilbao Crystallographic Server, click <a class="blue" href="http://www.cryst.ehu.es/wiki/index.php/Articles">here</a> <br><table cellpading="0" cellspacing="0" style="height: 0px"><tr><td><div id='block1' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p></div><div id='block2' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p></div><div id='block3' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br></p></div><div id='block4' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br></p></div><div id='block5' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br></p></div><div id='legend_1' style="display:none"><p style="font-size:25px"><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Electric polarization vector P<sub>i</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Intrinsic symmetry symbol: <b>V</b><br></td></tr></table></center><br><br></div> <div id='legend_2' style="display:none"><p style="font-size:25px"><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Electrocaloric effect tensor p<sub>i</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ΔS=p<sub>i</sub>E<sub>i</sub></b><br> • Relates Electric field <b>E</b> with Entropy variation ΔS <br> • Intrinsic symmetry symbol: <b>V</b><br></td></tr></table></center><br><br></div> <div id='legend_3' style="display:none"><p style="font-size:25px"><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Electrothermal effect tensor t<sub>i</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=-t<sub>i</sub>ΔT</b><br> • Relates temperature variation ΔT with Electric field <b>E</b> <br> • Intrinsic symmetry symbol: <b>V</b><br></td></tr></table></center><br><br></div> <div id='legend_4' style="display:none"><p style="font-size:25px"><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Heat of polarization tensor t<sub>i</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ΔS=t<sub>i</sub>ΔP<sub>i</sub></b><br> • Relates Polarization vector <b>P</b> variation with Entropy variation ΔS <br> • Intrinsic symmetry symbol: <b>V</b><br></td></tr></table></center><br><br></div> <div id='legend_5' style="display:none"><p style="font-size:25px"><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Piezoelectric polarization tensor under hydrostatic pressure d<sub>ijj</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>=-d<sub>ijj</sub>p</b><br> • Relates Hydrostatic pressure p with Polarization vector <b>P</b>.<br> • This tensor of rank 2 is obtained from the contraction of the last two indices of the elastic compliance tensor s<sub>ijkl</sub>. <br> • Intrinsic symmetry symbol: <b>V</b><br></td></tr></table></center><br><br></div> <div id='legend_6' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Pyroelectric tensor p<sub>i</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ΔP<sub>i</sub>=p<sub>i</sub>ΔT</b><br> • Relates Temperature variation ΔT with Polarization vector <b>P</b> variation <br> • Intrinsic symmetry symbol: <b>V</b><br></td></tr></table></center><br><br></div> <div id='legend_7' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Axial toroidal moment A<sub>i</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Intrinsic symmetry symbol: <b>eV</b><br></td></tr></table></center><br><br></div> <div id='legend_8' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Polar Toroidal moment T<sub>i</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Intrinsic symmetry symbol: <b>aV</b><br></td></tr></table></center><br><br></div> <div id='legend_9' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Pyrotoroidic tensor r<sub>i</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>T<sub>i</sub>=r<sub>i</sub>ΔT</b><br> • Relates Temperature variation ΔT with Toroidal moment <b>T</b> <br> • Intrinsic symmetry symbol: <b>aV</b><br></td></tr></table></center><br><br></div> <div id='legend_10' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Toroidalcaloric tensor r<sup>T</sup><sub>i</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>ΔS=r<sup>T</sup><sub>i</sub>S<sub>i</sub></b><br> • Relates Toroidal field <b>S</b> with Entropy variation ΔS <br> • Intrinsic symmetry symbol: <b>aV</b><br></td></tr></table></center><br><br></div> <div id='legend_11' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Heat of Magnetization tensor t<sub>i</sub><br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>ΔS=t<sub>i</sub>M<sub>i</sub></b><br> • Relates Magnetization <b>M</b> with Entropy variation ΔS <br> • Intrinsic symmetry symbol: <b>aeV</b><br></td></tr></table></center><br><br></div> <div id='legend_12' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Magnetization vector M<sub>i</sub><br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Intrinsic symmetry symbol: <b>aeV</b><br></td></tr></table></center><br><br></div> <div id='legend_13' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Magnetocaloric tensor q<sup>T</sup><sub>i</sub><br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>ΔS=q<sup>T</sup><sub>i</sub>H<sub>i</sub></b><br> • Relates Magnetic field <b>H</b> with Entropy variation ΔS <br> • Intrinsic symmetry symbol: <b>aeV</b><br></td></tr></table></center><br><br></div> <div id='legend_14' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Magnetothermal effect tensor t<sub>i</sub><br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>H<sub>i</sub>=-t<sub>i</sub>ΔT</b><br> • Relates Temperature variation ΔT with magnetic field <b>H</b> <br> • Intrinsic symmetry symbol: <b>aeV</b><br></td></tr></table></center><br><br></div> <div id='legend_15' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 1 <sup>st</sup> rank Pyromagnetic tensor q<sub>i</sub> (direct effect)<br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>=q<sub>i</sub>ΔT</b><br> • Relates Temperature variation ΔT with Magnetization <b>M</b> <br> • Intrinsic symmetry symbol: <b>aeV</b><br></td></tr></table></center><br><br></div> <div id='legend_16' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Dielectric impermeability tensor β<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=β<sub>ij</sub>D<sub>j</sub></b><br> • Relates Electric displacement field <b>D</b> with Electric field <b>E</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • β<sub><b>i</b><b>j</b></sub> = β<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_17' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Dielectric permittivity tensor ε<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>D<sub>i</sub>=ε<sub>ij</sub>E<sub>j</sub></b><br> • Relates Electric field <b>E</b> with Electric displacement field <b>D</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • ε<sub><b>i</b><b>j</b></sub> = ε<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_18' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Dielectric susceptibility tensor χ<sup>e</sup><sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>=χ<sup>e</sup><sub>ij</sub>E<sub>j</sub></b><br> • Relates Electric field <b>E</b> with Polarization vector <b>P</b> variation <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ<sup>e</sup><sub><b>i</b><b>j</b></sub> = χ<sup>e</sup><sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_19' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Heat of deformation tensor β<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ΔS=β<sub>ij</sub>ε<sub>ij</sub></b><br> • Relates Strain tensor ε<sub>ij</sub> with Entropy variation ΔS <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • β<sub><b>i</b><b>j</b></sub> = β<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_20' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Magnetic permeability tensor μ<sup>m</sup><sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>B<sub>i</sub>=μ<sup>m</sup><sub>ij</sub>H<sub>j</sub></b><br> • Relates Magnetic field <b>H</b> with Magnetic field <b>B</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • μ<sup>m</sup><sub><b>i</b><b>j</b></sub> = μ<sup>m</sup><sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_21' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Magnetic susceptibility tensor χ<sup>m</sup><sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>=χ<sup>m</sup><sub>ij</sub>H<sub>j</sub></b><br> • Relates Magnetic field <b>H</b> with Magnetization <b>M</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ<sup>m</sup><sub><b>i</b><b>j</b></sub> = χ<sup>m</sup><sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_22' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Piezocaloric effect tensor α<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ΔS=α<sub>ij</sub>σ<sub>ij</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> with Entropy variation ΔS <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • α<sub><b>i</b><b>j</b></sub> = α<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_23' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Strain by hydrostatic pressure s<sub>ijkk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ε<sub>ij</sub>=-s<sub>ijkk</sub>p</b><br> • Relates Hydrostatic pressure p with Strain tensor ε<sub>ij</sub>.<br> • This tensor of rank 2 is obtained from the contraction of the last two indices of the elastic compliance tensor s<sub>ijkl</sub>. <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • s<sub><b>i</b><b>j</b></sub> = s<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_24' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Strain tensor ε<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • ε<sub><b>i</b><b>j</b></sub> = ε<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_25' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Susceptibility inverse tensor <font style= "text-decoration: overline;">χ</font><sub>ij</sub> (inverse effect)<br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>H<sub>i</sub>=<font style= "text-decoration: overline;">χ</font><sub>ij</sub>M<sub>j</sub></b><br> • Relates Magnetization <b>M</b> with Magnetic field <b>H</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • <font style= "text-decoration: overline;">χ</font><sub>ij</sub><sub><b>i</b><b>j</b></sub> = <font style= "text-decoration: overline;">χ</font><sub>ij</sub><sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_26' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Thermal expansion tensor α<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ε<sub>ij</sub>=α<sub>ij</sub>ΔT</b><br> • Relates Temperature variation ΔT with Strain tensor ε<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • α<sub><b>i</b><b>j</b></sub> = α<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_27' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Thermoelasticity tensor β<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>σ<sub>ij</sub>=-β<sub>ij</sub>ΔT</b><br> • Relates Temperature variation ΔT with Stress tensor σ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • β<sub><b>i</b><b>j</b></sub> = β<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_28' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Toroidic susceptibility tensor τ<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>T<sub>i</sub>=τ<sub>ij</sub>S<sub>j</sub></b><br> • Relates Toroidal field <b>S</b> with Toroidal moment <b>T</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • τ<sub><b>i</b><b>j</b></sub> = τ<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_29' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Magnetotoroidic tensor ζ<sub>ij</sub> (direct effect)<br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>=ζ<sub>ij</sub>S<sub>j</sub></b><br> • Relates Toroidal field <b>S</b> with Magnetization <b>M</b> <br> • Intrinsic symmetry symbol: <b>eV<sup>2</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_30' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Magnetotoroidic tensor ζ<sup>T</sup><sub>ij</sub> (inverse effect)<br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>T<sub>i</sub>=ζ<sup>T</sup><sub>ij</sub>H<sub>j</sub></b><br> • Relates Magnetic field <b>H</b> with Toroidal moment <b>T</b> <br> • Intrinsic symmetry symbol: <b>eV<sup>2</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_31' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Electrotoroidic tensor θ<sub>ij</sub> (direct effect)<br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>=θ<sub>ij</sub>S<sub>j</sub></b><br> • Relates Toroidal field <b>S</b> with Polarization <b>P</b> <br> • Intrinsic symmetry symbol: <b>aV<sup>2</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_32' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Electrotoroidic tensor θ<sup>T</sup><sub>ij</sub> (inverse effect)<br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>T<sub>i</sub>=θ<sup>T</sup><sub>ij</sub>E<sub>j</sub></b><br> • Relates Electric field <b>E</b> with Toroidal moment <b>T</b> <br> • Intrinsic symmetry symbol: <b>aV<sup>2</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_33' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Isothermal magnetoelectric effect tensor A<sub>ij</sub><br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>=A<sub>ij</sub>D<sub>j</sub></b><br> • Relates Electric displacement field <b>D</b> with Magnetization <b>M</b> <br> • Intrinsic symmetry symbol: <b>aeV<sup>2</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_34' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Isothermal magnetoelectric effect tensor A<sup>T</sup><sub>ij</sub> (inverse effect)<br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=-A<sup>T</sup><sub>ij</sub>H<sub>j</sub></b><br> • Relates Magnetic field <b>H</b> with Electric field <b>E</b> <br> • Intrinsic symmetry symbol: <b>aeV<sup>2</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_35' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Magnetoelectric tensor α<sub>ij</sub> (direct effect)<br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>=α<sub>ij</sub>E<sub>j</sub></b><br> • Relates Electric field <b>E</b> with Magnetization <b>M</b> <br> • Intrinsic symmetry symbol: <b>aeV<sup>2</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_36' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Magnetoelectric tensor α<sup>T</sup><sub>ij</sub> (inverse effect)<br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>=α<sup>T</sup><sub>ij</sub>H<sub>j</sub></b><br> • Relates Magnetic field <b>H</b> with Polarization <b>P</b> <br> • Intrinsic symmetry symbol: <b>aeV<sup>2</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_37' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Acoustoelectricity tensor ρ<sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>σ<sub>ij</sub>=ρ<sub>ijk</sub>J<sub>k</sub></b><br> • Relates Alternating electric current density <b>J</b> with Stress tensor σ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • ρ<sub><b>i</b><b>j</b>k</sub> = ρ<sub><b>j</b><b>i</b>k</sub> <br> • Abbreviated notation: ρ<sub>ijk</sub> → ρ<sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_38' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Isothermal piezoelectric tensor e<sup>T</sup><sub>ijk</sub> (inverse effect)<br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>σ<sub>ij</sub>=-e<sup>T</sup><sub>ijk</sub>E<sub>k</sub></b><br> • Relates Electric field <b>E</b> with Stress tensor σ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • e<sup>T</sup><sub><b>i</b><b>j</b>k</sub> = e<sup>T</sup><sub><b>j</b><b>i</b>k</sub> <br> • Abbreviated notation: e<sup>T</sup><sub>ijk</sub> → e<sup>T</sup><sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_39' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Piezoelectric tensor d<sup>T</sup><sub>ijk</sub> (inversee ffect) d<sup>T</sup><sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ε<sub>ij</sub>=d<sup>T</sup><sub>ijk</sub>E<sub>k</sub></b><br> • Relates Electric field <b>E</b> with Strain tensor ε<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • d<sup>T</sup><sub><b>i</b><b>j</b>k</sub> = d<sup>T</sup><sub><b>j</b><b>i</b>k</sub> <br> • Abbreviated notation: d<sup>T</sup><sub>ijk</sub> → d<sup>T</sup><sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_40' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Isothermal piezoelectric tensor e<sub>ijk</sub> (direct effect)<br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>D<sub>i</sub>=e<sub>ijk</sub>ε<sub>jk</sub></b><br> • Relates Strain tensor ε<sub>ij</sub> with Electric displacement field <b>D</b> <br> • Intrinsic symmetry symbol: <b>V[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • e<sub>i<b>j</b><b>k</b></sub> = e<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: e<sub>ijk</sub> → e<sub>αβ</sub><br> • i → α<br> • jk → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_41' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Piezoelectric tensor d<sub>ijk</sub>(directeffect) d<sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>=d<sub>ijk</sub>σ<sub>jk</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> with Polarization vector <b>P</b> <br> • Intrinsic symmetry symbol: <b>V[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • d<sub>i<b>j</b><b>k</b></sub> = d<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: d<sub>ijk</sub> → d<sub>αβ</sub><br> • i → α<br> • jk → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_42' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Second order magnetoelectric tensor α<sup>T</sup><sub>ijk</sub> (inverse effect)<br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>=α<sup>T</sup><sub>ijk</sub>H<sub>j</sub>H<sub>k</sub></b><br> • Relates Magnetic field <b>H</b> with Polarization <b>P</b> <br> • Intrinsic symmetry symbol: <b>V[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • α<sup>T</sup><sub>i<b>j</b><b>k</b></sub> = α<sup>T</sup><sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: α<sup>T</sup><sub>ijk</sub> → α<sup>T</sup><sub>αβ</sub><br> • i → α<br> • jk → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_43' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Piezotoroidic tensor γ<sub>ijk</sub> (direct effect)<br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>ε<sub>ij</sub>=γ<sub>ijk</sub>S<sub>k</sub></b><br> • Relates Toroidal field <b>S</b> with Strain tensor ε<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>a[V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • γ<sub><b>i</b><b>j</b>k</sub> = γ<sub><b>j</b><b>i</b>k</sub> <br> • Abbreviated notation: γ<sub>ijk</sub> → γ<sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_44' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Piezotoroidic tensor γ<sup>T</sup><sub>ijk</sub> (inverse effect)<br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>T<sub>i</sub>=γ<sup>T</sup><sub>ijk</sub>σ<sub>jk</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> with Toroidal moment <b>T</b> <br> • Intrinsic symmetry symbol: <b>aV[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • γ<sup>T</sup><sub>i<b>j</b><b>k</b></sub> = γ<sup>T</sup><sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: γ<sup>T</sup><sub>ijk</sub> → γ<sup>T</sup><sub>αβ</sub><br> • i → α<br> • jk → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_45' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Isothermal piezomagnetic tensor e<sup>mT</sup><sub>ijk</sub> (inverse effect)<br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>σ<sub>ij</sub>=-e<sup>mT</sup><sub>ijk</sub>H<sub>k</sub></b><br> • Relates Magnetic field <b>H</b> with Stress tensor σ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>ae[V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • e<sup>mT</sup><sub><b>i</b><b>j</b>k</sub> = e<sup>mT</sup><sub><b>j</b><b>i</b>k</sub> <br> • Abbreviated notation: e<sup>mT</sup><sub>ijk</sub> → e<sup>mT</sup><sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_46' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Piezomagnetic tensor Λ<sup>T</sup><sub>ijk</sub> (inverse effect)<br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>ε<sub>ij</sub>=Λ<sup>T</sup><sub>ijk</sub>H<sub>k</sub></b><br> • Relates Magnetic field <b>H</b> with Strain tensor ε<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>ae[V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • Λ<sup>T</sup><sub><b>i</b><b>j</b>k</sub> = Λ<sup>T</sup><sub><b>j</b><b>i</b>k</sub> <br> • Abbreviated notation: Λ<sup>T</sup><sub>ijk</sub> → Λ<sup>T</sup><sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_47' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Isothermal piezomagnetic tensor e<sup>m</sup><sub>ijk</sub> (direct effect)<br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>=e<sup>m</sup><sub>ijk</sub>ε<sub>jk</sub></b><br> • Relates Strain tensor ε<sub>ij</sub> with Magnetization <b>M</b> <br> • Intrinsic symmetry symbol: <b>aeV[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • e<sup>m</sup><sub>i<b>j</b><b>k</b></sub> = e<sup>m</sup><sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: e<sup>m</sup><sub>ijk</sub> → e<sup>m</sup><sub>αβ</sub><br> • i → α<br> • jk → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_48' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Piezomagnetic tensor Λ<sub>ijk</sub> (direct effect)<br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>=Λ<sub>ijk</sub>σ<sub>jk</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> with Magnetization <b>M</b> <br> • Intrinsic symmetry symbol: <b>aeV[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • Λ<sub>i<b>j</b><b>k</b></sub> = Λ<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: Λ<sub>ijk</sub> → Λ<sub>αβ</sub><br> • i → α<br> • jk → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_49' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Second order magnetoelectric tensor α<sub>ijk</sub> (direct effect)<br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>=α<sub>ijk</sub>E<sub>j</sub>E<sub>k</sub></b><br> • Relates Electric field <b>E</b> with Magnetization <b>M</b> <br> • Intrinsic symmetry symbol: <b>aeV[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • α<sub>i<b>j</b><b>k</b></sub> = α<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: α<sub>ijk</sub> → α<sub>αβ</sub><br> • i → α<br> • jk → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_50' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Elastic compliance tensor S<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ε<sub>ij</sub>=S<sub>ijkl</sub>σ<sub>kl</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> with Strain tensor ε<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[[V<sup>2</sup>][V<sup>2</sup>]]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • S<sub><b>i</b><b>j</b>kl</sub> = S<sub><b>j</b><b>i</b>kl</sub> <br> • S<sub>ij<b>k</b><b>l</b></sub> = S<sub>ij<b>l</b><b>k</b></sub> <br> • S<sub><b>ij</b><b>kl</b><b></b><b></b></sub> = S<sub><b>kl</b><b>ij</b><b></b><b></b></sub> <br> • Abbreviated notation: S<sub>ijkl</sub> → S<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_51' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Elastic stiffness tensor C<sub>ijkl</sub> C<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>σ<sub>ij</sub>=C<sub>ijkl</sub>ε<sub>kl</sub></b><br> • Relates Strain tensor ε<sub>ij</sub> with Stress tensor σ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[[V<sup>2</sup>][V<sup>2</sup>]]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • C<sub><b>i</b><b>j</b>kl</sub> = C<sub><b>j</b><b>i</b>kl</sub> <br> • C<sub>ij<b>k</b><b>l</b></sub> = C<sub>ij<b>l</b><b>k</b></sub> <br> • C<sub><b>ij</b><b>kl</b><b></b><b></b></sub> = C<sub><b>kl</b><b>ij</b><b></b><b></b></sub> <br> • Abbreviated notation: C<sub>ijkl</sub> → C<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_52' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Viscosity tensor η<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>σ<sub>ij</sub>=η<sub>ijkl</sub>∂ε<sub>kl</sub>/∂t</b><br> • Relates Strain tensor rate ∂ε<sub>ij</sub>/∂t with Stress tensor σ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[[V<sup>2</sup>][V<sup>2</sup>]]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • η<sub><b>i</b><b>j</b>kl</sub> = η<sub><b>j</b><b>i</b>kl</sub> <br> • η<sub>ij<b>k</b><b>l</b></sub> = η<sub>ij<b>l</b><b>k</b></sub> <br> • η<sub><b>ij</b><b>kl</b><b></b><b></b></sub> = η<sub><b>kl</b><b>ij</b><b></b><b></b></sub> <br> • Abbreviated notation: η<sub>ijkl</sub> → η<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_53' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Damage effect tensor D<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>σ<sub>ij</sub>=D<sub>ijkl</sub>σ<sub>kl</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> (before damage) with Effective stress tensor σ<sub>ij</sub> (after damage) <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>][V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • D<sub><b>i</b><b>j</b>kl</sub> = D<sub><b>j</b><b>i</b>kl</sub> <br> • D<sub>ij<b>k</b><b>l</b></sub> = D<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: D<sub>ijkl</sub> → D<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_54' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Electrostriction tensor γ<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ε<sub>ij</sub>=γ<sub>ijkl</sub>E<sub>k</sub>E<sub>l</sub></b><br> • Relates Electric field <b>E</b> and Electric field <b>E</b> with Strain tensor ε<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>][V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • γ<sub><b>i</b><b>j</b>kl</sub> = γ<sub><b>j</b><b>i</b>kl</sub> <br> • γ<sub>ij<b>k</b><b>l</b></sub> = γ<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: γ<sub>ijkl</sub> → γ<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_55' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Magnetostriction tensor N<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ε<sub>ij</sub>=N<sub>ijkl</sub>M<sub>k</sub>M<sub>l</sub></b><br> • Relates Magnetization <b>M</b> and Magnetization <b>M</b> with Strain tensor ε<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>][V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • N<sub><b>i</b><b>j</b>kl</sub> = N<sub><b>j</b><b>i</b>kl</sub> <br> • N<sub>ij<b>k</b><b>l</b></sub> = N<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: N<sub>ijkl</sub> → N<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_56' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Flexoelectric (modified) μ<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>=μ<sub>ijkl</sub>∇<sub>j</sub>ε<sub>kl</sub></b><br> • Relates strain tensor gradient ∇<sub>j</sub>ε<sub>kl</sub> with polarization vector P <br> • The intrinsic symmetry of this tensor has been claimed to be V[V3] instead of V2[V2] by Eliseev and Morozovska,Phys.Rev.B 98,094108 (2018). This allows to further reduce the number of independent coefficients, as shown here. However, this claim is not generally accepted as correct (C. Dreyer, M. Stengel, D. Vanderbilt, private communication). <br> • Intrinsic symmetry symbol: <b>V[V<sup>3</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • μ<sub>i<b>j</b>k<b>l</b></sub> = μ<sub>i<b>l</b>k<b>j</b></sub> <br> • μ<sub>i<b>j</b><b>k</b>l</sub> = μ<sub>i<b>k</b><b>j</b>l</sub> <br> • μ<sub>ij<b>k</b><b>l</b></sub> = μ<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: μ<sub>ijkl</sub> → μ<sub>αβγ</sub><br> • i → α<br> • jk → β<br> • l → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_57' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Elastothermoelectric power tensor E<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ΔΣ<sub>ij</sub>=E<sub>ijkl</sub>ε<sub>kl</sub></b><br> • Relates Strain tensor ε<sub>ij</sub> with Thermoelectric power tensor variation ΔΣ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>V<sup>2</sup>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • E<sub>ij<b>k</b><b>l</b></sub> = E<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: E<sub>ijkl</sub> → E<sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_58' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Flexoelectric tensor μ<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>=μ<sub>ijkl</sub>∇<sub>j</sub>ε<sub>kl</sub></b><br> • Relates Strain tensor gradient ∇<sub>i</sub>ε<sub>jk</sub> with Polarization vector <b>P</b> <br> • Intrinsic symmetry symbol: <b>V<sup>2</sup>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • μ<sub>ij<b>k</b><b>l</b></sub> = μ<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: μ<sub>ijkl</sub> → μ<sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_59' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Piezothermoelectric power tensor Π<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ΔΣ<sub>ij</sub>=Π<sub>ijkl</sub>σ<sub>kl</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> with Thermoelectric power tensor variation ΔΣ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>V<sup>2</sup>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • Π<sub>ij<b>k</b><b>l</b></sub> = Π<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: Π<sub>ijkl</sub> → Π<sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_60' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Flexomagnetic tensor Q<sub>ijkl</sub><br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>=Q<sub>ijkl</sub>∇<sub>j</sub>σ<sub>kl</sub></b><br> • Relates Stress tensor gradient <b>∇</b><sub>i</sub>σ<sub>jk</sub> with Magnetization <b>M</b> <br> • Intrinsic symmetry symbol: <b>aeV<sup>2</sup>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • Q<sub>ij<b>k</b><b>l</b></sub> = Q<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: Q<sub>ijkl</sub> → Q<sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_61' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Piezomagnetoelectric tensor π<sub>ijkl</sub><br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>=π<sub>ijkl</sub>H<sub>j</sub>σ<sub>kl</sub></b><br> • Relates Magnetization <b>M</b> and Stress tensor σ<sub>ij</sub> with Polarization vector <b>P</b> <br> • Intrinsic symmetry symbol: <b>aeV<sup>2</sup>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • π<sub>ij<b>k</b><b>l</b></sub> = π<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: π<sub>ijkl</sub> → π<sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_62' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 5 <sup>th</sup> rank Acoustic activity tensor b<sub>ijklm</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>σ<sub>ij</sub>=b<sub>ijklm</sub>∇<sub>m</sub>ε<sub>kl</sub></b><br> • Relates Strain tensor gradient ∇<sub>l</sub>ε<sub>ij</sub> with Stress tensor σ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[[V<sup>2</sup>][V<sup>2</sup>]]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • b<sub><b>i</b><b>j</b>klm</sub> = b<sub><b>j</b><b>i</b>klm</sub> <br> • b<sub>ij<b>k</b><b>l</b>m</sub> = b<sub>ij<b>l</b><b>k</b>m</sub> <br> • b<sub><b>ij</b><b>kl</b><b></b><b></b>m</sub> = b<sub><b>kl</b><b>ij</b><b></b><b></b>m</sub> <br> • Abbreviated notation: b<sub>ijklm</sub> → b<sub>αβγ</sub><br> • ij → α<br> • kl → β<br> • m → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_63' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 5 <sup>th</sup> rank Second-order piezoelectric tensor d<sub>ijklm</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>=d<sub>ijklm</sub>σ<sub>jk</sub>σ<sub>lm</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> and Stress tensor σ<sub>ij</sub> with Polarization vector <b>P</b> <br> • Intrinsic symmetry symbol: <b>V[[V<sup>2</sup>][V<sup>2</sup>]]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • d<sub>i<b>j</b><b>k</b>lm</sub> = d<sub>i<b>k</b><b>j</b>lm</sub> <br> • d<sub>ijk<b>l</b><b>m</b></sub> = d<sub>ijk<b>m</b><b>l</b></sub> <br> • d<sub>i<b>jk</b><b>lm</b><b></b><b></b></sub> = d<sub>i<b>lm</b><b>jk</b><b></b><b></b></sub> <br> • Abbreviated notation: d<sub>ijklm</sub> → d<sub>αβγ</sub><br> • i → α<br> • jk → β<br> • lm → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_64' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 6 <sup>th</sup> rank Third order elastic compliance tensor S<sub>ijklmn</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ε<sub>ij</sub>=S<sub>ijklmn</sub>σ<sub>kl</sub>σ<sub>mn</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> and Stress tensor σ<sub>ij</sub> with Strain tensor ε<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[[V<sup>2</sup>][V<sup>2</sup>][V<sup>2</sup>]]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • S<sub><b>i</b><b>j</b>klmn</sub> = S<sub><b>j</b><b>i</b>klmn</sub> <br> • S<sub>ij<b>k</b><b>l</b>mn</sub> = S<sub>ij<b>l</b><b>k</b>mn</sub> <br> • S<sub>ijkl<b>m</b><b>n</b></sub> = S<sub>ijkl<b>n</b><b>m</b></sub> <br> • S<sub><b>ij</b><b>kl</b><b>mn</b><b></b><b></b><b></b></sub> = S<sub><b>ij</b><b>mn</b><b>kl</b><b></b><b></b><b></b></sub> = S<sub><b>kl</b><b>ij</b><b>mn</b><b></b><b></b><b></b></sub> = S<sub><b>kl</b><b>mn</b><b>ij</b><b></b><b></b><b></b></sub> = S<sub><b>mn</b><b>ij</b><b>kl</b><b></b><b></b><b></b></sub> = S<sub><b>mn</b><b>kl</b><b>ij</b><b></b><b></b><b></b></sub> <br> • Abbreviated notation: S<sub>ijklmn</sub> → S<sub>αβγ</sub><br> • ij → α<br> • kl → β<br> • mn → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_65' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 6 <sup>th</sup> rank Third order elastic stiffness tensor C<sub>ijklmn</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>σ<sub>ij</sub>=C<sub>ijklmn</sub>ε<sub>kl</sub>ε<sub>mn</sub></b><br> • Relates Strain tensor ε<sub>ij</sub> and Strain tensor ε<sub>ij</sub> with Stress tensor σ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[[V<sup>2</sup>][V<sup>2</sup>][V<sup>2</sup>]]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • C<sub><b>i</b><b>j</b>klmn</sub> = C<sub><b>j</b><b>i</b>klmn</sub> <br> • C<sub>ij<b>k</b><b>l</b>mn</sub> = C<sub>ij<b>l</b><b>k</b>mn</sub> <br> • C<sub>ijkl<b>m</b><b>n</b></sub> = C<sub>ijkl<b>n</b><b>m</b></sub> <br> • C<sub><b>ij</b><b>kl</b><b>mn</b><b></b><b></b><b></b></sub> = C<sub><b>ij</b><b>mn</b><b>kl</b><b></b><b></b><b></b></sub> = C<sub><b>kl</b><b>ij</b><b>mn</b><b></b><b></b><b></b></sub> = C<sub><b>kl</b><b>mn</b><b>ij</b><b></b><b></b><b></b></sub> = C<sub><b>mn</b><b>ij</b><b>kl</b><b></b><b></b><b></b></sub> = C<sub><b>mn</b><b>kl</b><b>ij</b><b></b><b></b><b></b></sub> <br> • Abbreviated notation: C<sub>ijklmn</sub> → C<sub>αβγ</sub><br> • ij → α<br> • kl → β<br> • mn → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_66' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 8 <sup>th</sup> rank Damage tensor R<sub>ijklmnpq</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>C<sub>ijkl</sub>=R<sub>ijklmnpq</sub>C<sub>mnpq</sub></b><br> • Relates Elastic stiffness tensor C<sub>ijkl</sub> (before damage) with Elastic stiffness tensor C<sub>ijkl</sub> (after damage) <br> • Intrinsic symmetry symbol: <b>[[[V<sup>2</sup>][V<sup>2</sup>]][[V<sup>2</sup>][V<sup>2</sup>]]]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • R<sub><b>i</b><b>j</b>klmnpq</sub> = R<sub><b>j</b><b>i</b>klmnpq</sub> <br> • R<sub>ij<b>k</b><b>l</b>mnpq</sub> = R<sub>ij<b>l</b><b>k</b>mnpq</sub> <br> • R<sub>ijkl<b>m</b><b>n</b>pq</sub> = R<sub>ijkl<b>n</b><b>m</b>pq</sub> <br> • R<sub>ijklmn<b>p</b><b>q</b></sub> = R<sub>ijklmn<b>q</b><b>p</b></sub> <br> • R<sub><b>ij</b><b>kl</b><b></b><b></b>mnpq</sub> = R<sub><b>kl</b><b>ij</b><b></b><b></b>mnpq</sub> <br> • R<sub>ijkl<b>mn</b><b>pq</b><b></b><b></b></sub> = R<sub>ijkl<b>pq</b><b>mn</b><b></b><b></b></sub> <br> • R<sub><b>ijkl</b><b>mnpq</b><b></b><b></b><b></b><b></b><b></b><b></b></sub> = R<sub><b>mnpq</b><b>ijkl</b><b></b><b></b><b></b><b></b><b></b><b></b></sub> <br> • Abbreviated notation: R<sub>ijklmnpq</sub> → R<sub>αβγδ</sub><br> • ij → α<br> • kl → β<br> • mn → γ<br> • pq → δ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_67' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 8 <sup>th</sup> rank Fourth order elastic compliance tensor S<sub>ijklmnpq</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>ε<sub>ij</sub>=S<sub>ijklmnpq</sub>σ<sub>kl</sub>σ<sub>mn</sub>σ<sub>pq</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> and Stress tensor σ<sub>ij</sub> and Stress tensor σ<sub>ij</sub> with Strain tensor ε<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[[V<sup>2</sup>][V<sup>2</sup>][V<sup>2</sup>][V<sup>2</sup>]]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • S<sub><b>i</b><b>j</b>klmnpq</sub> = S<sub><b>j</b><b>i</b>klmnpq</sub> <br> • S<sub>ij<b>k</b><b>l</b>mnpq</sub> = S<sub>ij<b>l</b><b>k</b>mnpq</sub> <br> • S<sub>ijkl<b>m</b><b>n</b>pq</sub> = S<sub>ijkl<b>n</b><b>m</b>pq</sub> <br> • S<sub>ijklmn<b>p</b><b>q</b></sub> = S<sub>ijklmn<b>q</b><b>p</b></sub> <br> • S<sub><b>ij</b><b>kl</b><b>mn</b><b>pq</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>ij</b><b>kl</b><b>pq</b><b>mn</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>ij</b><b>mn</b><b>kl</b><b>pq</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>ij</b><b>mn</b><b>pq</b><b>kl</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>ij</b><b>pq</b><b>kl</b><b>mn</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>ij</b><b>pq</b><b>mn</b><b>kl</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>kl</b><b>ij</b><b>mn</b><b>pq</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>kl</b><b>ij</b><b>pq</b><b>mn</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>kl</b><b>mn</b><b>ij</b><b>pq</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>kl</b><b>mn</b><b>pq</b><b>ij</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>kl</b><b>pq</b><b>ij</b><b>mn</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>kl</b><b>pq</b><b>mn</b><b>ij</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>mn</b><b>ij</b><b>kl</b><b>pq</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>mn</b><b>ij</b><b>pq</b><b>kl</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>mn</b><b>kl</b><b>ij</b><b>pq</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>mn</b><b>kl</b><b>pq</b><b>ij</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>mn</b><b>pq</b><b>ij</b><b>kl</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>mn</b><b>pq</b><b>kl</b><b>ij</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>pq</b><b>ij</b><b>kl</b><b>mn</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>pq</b><b>ij</b><b>mn</b><b>kl</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>pq</b><b>kl</b><b>ij</b><b>mn</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>pq</b><b>kl</b><b>mn</b><b>ij</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>pq</b><b>mn</b><b>ij</b><b>kl</b><b></b><b></b><b></b><b></b></sub> = S<sub><b>pq</b><b>mn</b><b>kl</b><b>ij</b><b></b><b></b><b></b><b></b></sub> <br> • Abbreviated notation: S<sub>ijklmnpq</sub> → S<sub>αβγδ</sub><br> • ij → α<br> • kl → β<br> • mn → γ<br> • pq → δ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_68' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 8 <sup>th</sup> rank Fourth order elastic stiffness tensor C<sub>ijklmnpq</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>σ<sub>ij</sub>=C<sub>ijklmnpq</sub>ε<sub>kl</sub>ε<sub>mn</sub>ε<sub>pq</sub></b><br> • Relates Strain tensor ε<sub>ij</sub> and Strain tensor ε<sub>ij</sub> and Strain tensor ε<sub>ij</sub> with Stress tensor σ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[[V<sup>2</sup>][V<sup>2</sup>][V<sup>2</sup>][V<sup>2</sup>]]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • C<sub><b>i</b><b>j</b>klmnpq</sub> = C<sub><b>j</b><b>i</b>klmnpq</sub> <br> • C<sub>ij<b>k</b><b>l</b>mnpq</sub> = C<sub>ij<b>l</b><b>k</b>mnpq</sub> <br> • C<sub>ijkl<b>m</b><b>n</b>pq</sub> = C<sub>ijkl<b>n</b><b>m</b>pq</sub> <br> • C<sub>ijklmn<b>p</b><b>q</b></sub> = C<sub>ijklmn<b>q</b><b>p</b></sub> <br> • C<sub><b>ij</b><b>kl</b><b>mn</b><b>pq</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>ij</b><b>kl</b><b>pq</b><b>mn</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>ij</b><b>mn</b><b>kl</b><b>pq</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>ij</b><b>mn</b><b>pq</b><b>kl</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>ij</b><b>pq</b><b>kl</b><b>mn</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>ij</b><b>pq</b><b>mn</b><b>kl</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>kl</b><b>ij</b><b>mn</b><b>pq</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>kl</b><b>ij</b><b>pq</b><b>mn</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>kl</b><b>mn</b><b>ij</b><b>pq</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>kl</b><b>mn</b><b>pq</b><b>ij</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>kl</b><b>pq</b><b>ij</b><b>mn</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>kl</b><b>pq</b><b>mn</b><b>ij</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>mn</b><b>ij</b><b>kl</b><b>pq</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>mn</b><b>ij</b><b>pq</b><b>kl</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>mn</b><b>kl</b><b>ij</b><b>pq</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>mn</b><b>kl</b><b>pq</b><b>ij</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>mn</b><b>pq</b><b>ij</b><b>kl</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>mn</b><b>pq</b><b>kl</b><b>ij</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>pq</b><b>ij</b><b>kl</b><b>mn</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>pq</b><b>ij</b><b>mn</b><b>kl</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>pq</b><b>kl</b><b>ij</b><b>mn</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>pq</b><b>kl</b><b>mn</b><b>ij</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>pq</b><b>mn</b><b>ij</b><b>kl</b><b></b><b></b><b></b><b></b></sub> = C<sub><b>pq</b><b>mn</b><b>kl</b><b>ij</b><b></b><b></b><b></b><b></b></sub> <br> • Abbreviated notation: C<sub>ijklmnpq</sub> → C<sub>αβγδ</sub><br> • ij → α<br> • kl → β<br> • mn → γ<br> • pq → δ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_69' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Index ellipsoid β<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • β<sub><b>i</b><b>j</b></sub> = β<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_70' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Second-order thermo-optical effect tensor T<sub>ij</sub>.<br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=T<sub>ij</sub>(ΔT)<sup>2</sup></b><br> • Relates Temperature variation ΔT and Temperature variation ΔT with the symmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • T<sub><b>i</b><b>j</b></sub> = T<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_71' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Thermo-optical effect tensor t<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=t<sub>ij</sub>ΔT</b><br> • Relates Temperature variation ΔT with the symmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • t<sub><b>i</b><b>j</b></sub> = t<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_72' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Verdet tensor (related to Faraday effect) V<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=ε<sub>ijm</sub>V<sub>mk</sub>H<sub>k</sub> (with ε<sub>ijm</sub> Levi-Civita axial antisymmetric tensor)</b><br> • Relates magnetic field <b>H</b> with the antisymmetric part of the dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Related with Faraday effect coefficients F: F<sub>ijk</sub>=ε<sub>ijm</sub>V<sub>mk</sub>, where ε<sub>ijm</sub> Levi-Civita axial antisymmtric tensor. <br> • Intrinsic symmetry symbol: <b>V<sup>2</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_73' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Optical activity tensor g<sub>ij</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>G=g<sub>ij</sub>l<sub>i</sub>l<sub>j</sub></b><br> • Relates Direction cosines l<sub>i</sub> and Direction cosines l<sub>j</sub> with Optical activity coefficient G <br> • Intrinsic symmetry symbol: <b>e[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • g<sub><b>i</b><b>j</b></sub> = g<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_74' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Thermogyration tensor g<sub>ij</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δg<sub>ij</sub>=g<sub>ij</sub>T</b><br> • Relates Temperature T with Optical activity tensor variation Δg<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>e[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • g<sub><b>i</b><b>j</b></sub> = g<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_75' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Spontaneous Faraday effect β<sub>ij</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Intrinsic symmetry symbol: <b>a{V<sup>2</sup>}</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • β<sub><b>i</b><b>j</b></sub> = -β<sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_76' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Natural optical activity γ<sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=i γ<sub>ijk</sub>k<sub>k</sub></b><br> • Relates light wave vector with dielectric impermeability tensor variation (antisymmetric part).<br> • Connected with gyrotropic second-rank axial tensor g<sub>lk</sub>=k<sub>0</sub>/2ε<sub>ijk</sub>g<sub>ijl</sub>, with ε<sub>ijk</sub> Levi-Civita axial antisymmetric tensor and k<sub>0</sub> modulus of light wave vector in vacuum. Gyration given by G=g<sub>lk</sub>k<sub>l</sub>k<sub>k</sub>/k<sub>0</sub><sup>2</sup>.<br> • Real in non-disipative media. <br> • Intrinsic symmetry symbol: <b>{V<sup>2</sup>}V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • γ<sub><b>i</b><b>j</b>k</sub> = -γ<sub><b>j</b><b>i</b>k</sub> <br></td></tr></table></center><br><br></div> <div id='legend_77' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Pockels (electrooptic) effect z<sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=z<sub>ijk</sub>E<sub>k</sub></b><br> • Relates Electric field <b>E</b> with the symmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • z<sub><b>i</b><b>j</b>k</sub> = z<sub><b>j</b><b>i</b>k</sub> <br> • Abbreviated notation: z<sub>ijk</sub> → z<sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_78' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Thermoelectro-optical effect tensor r<sup>(T)</sup><sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=r<sup>(T)</sup><sub>ijk</sub>E<sub>k</sub>ΔT</b><br> • Relates Electric field <b>E</b> and Temperature variation ΔT with the symmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • r<sup>(T)</sup><sub><b>i</b><b>j</b>k</sub> = r<sup>(T)</sup><sub><b>j</b><b>i</b>k</sub> <br> • Abbreviated notation: r<sup>(T)</sup><sub>ijk</sub> → r<sup>(T)</sup><sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_79' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Magneto-optical tensor (Faraday effect) F<sub>ijk</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=F<sub>ijk</sub>H<sub>k</sub></b><br> • Relates Magnetic field <b>H</b> with the antisymmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub>.<br> • Pure imaginary in non-dissipative media. <br> • Intrinsic symmetry symbol: <b>e{V<sup>2</sup>}V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • F<sub><b>i</b><b>j</b>k</sub> = -F<sub><b>j</b><b>i</b>k</sub> <br></td></tr></table></center><br><br></div> <div id='legend_80' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Thermomagneto-optical effect tensor f<sup>(T)</sup><sub>ijk</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=f<sup>(T)</sup><sub>ijk</sub>H<sub>k</sub>ΔT</b><br> • Relates Magnetic field <b>H</b> and Temperature variation ΔT with the antisymmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>e{V<sup>2</sup>}V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • f<sup>(T)</sup><sub><b>i</b><b>j</b>k</sub> = -f<sup>(T)</sup><sub><b>j</b><b>i</b>k</sub> <br></td></tr></table></center><br><br></div> <div id='legend_81' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Electrogyration effect tensor γ<sub>ijk</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δg<sub>ij</sub>=γ<sub>ijk</sub>E<sub>k</sub></b><br> • Relates Electric field <b>E</b> with Optical activity tensor variation Δg<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>e[V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • γ<sub><b>i</b><b>j</b>k</sub> = γ<sub><b>j</b><b>i</b>k</sub> <br> • Abbreviated notation: γ<sub>ijk</sub> → γ<sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_82' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Spontaneous Gyrotropic Birefringence γ<sub>ijk</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=i γ<sub>ijk</sub>k<sub>k</sub></b><br> • Relates light wave vector with dielectric impermeability tensor variation (symmetric part).<br> • Pure imaginary in non-dissipative media. <br> • Intrinsic symmetry symbol: <b>a[V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • γ<sub><b>i</b><b>j</b>k</sub> = γ<sub><b>j</b><b>i</b>k</sub> <br> • Abbreviated notation: γ<sub>ijk</sub> → γ<sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_83' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Magneto-optic Kerr effect q<sub>ijk</sub><br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=q<sub>ijk</sub>H<sub>k</sub></b><br> • Relates Magnetic field <b>H</b> with Dielectric impermeability tensor variation Δβ<sub>ij</sub> (symmetric part) <br> • Intrinsic symmetry symbol: <b>ae[V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • q<sub><b>i</b><b>j</b>k</sub> = q<sub><b>j</b><b>i</b>k</sub> <br> • Abbreviated notation: q<sub>ijk</sub> → q<sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_84' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Birefringence in Cubic Crystals γ<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>= γ<sub>ijlm</sub>k<sub>l</sub>k<sub>m</sub></b><br> • Relates light wave vector and light wave vector with dielectric impermeability tensor variation (symmetric part).<br> • Real in non-dissipative media. <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>][V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • γ<sub><b>i</b><b>j</b>kl</sub> = γ<sub><b>j</b><b>i</b>kl</sub> <br> • γ<sub>ij<b>k</b><b>l</b></sub> = γ<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: γ<sub>ijkl</sub> → γ<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_85' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Elasto-optical tensor p<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=p<sub>ijkl</sub>ε<sub>kl</sub></b><br> • Relates Strain tensor ε<sub>ij</sub> with the symmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>][V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • π<sub><b>i</b><b>j</b>kl</sub> = π<sub><b>j</b><b>i</b>kl</sub> <br> • π<sub>ij<b>k</b><b>l</b></sub> = π<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: π<sub>ijkl</sub> → π<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_86' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Kerr effect tensor R<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=R<sub>ijkl</sub>E<sub>k</sub>E<sub>l</sub></b><br> • Relates Electric field <b>E</b> and Electric field <b>E</b> with the symmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>][V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • R<sub><b>i</b><b>j</b>kl</sub> = R<sub><b>j</b><b>i</b>kl</sub> <br> • R<sub>ij<b>k</b><b>l</b></sub> = R<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: R<sub>ijkl</sub> → R<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_87' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Piezo-optical tensor π<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=π<sub>ijkl</sub>σ<sub>kl</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> with the symmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>][V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • π<sub><b>i</b><b>j</b>kl</sub> = π<sub><b>j</b><b>i</b>kl</sub> <br> • π<sub>ij<b>k</b><b>l</b></sub> = π<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: π<sub>ijkl</sub> → π<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_88' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Second-order magneto-optical (Cotton-Mouton effect) tensor C<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=C<sub>ijkl</sub>H<sub>k</sub>H<sub>l</sub></b><br> • Relates Magnetic field <b>H</b> and Magnetic field <b>H</b> with the symmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>][V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • C<sub><b>i</b><b>j</b>kl</sub> = C<sub><b>j</b><b>i</b>kl</sub> <br> • C<sub>ij<b>k</b><b>l</b></sub> = C<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: C<sub>ijkl</sub> → C<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_89' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Thermopiezo-optical effect tensor π<sup>(T)</sup><sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=π<sup>(T)</sup><sub>ijkl</sub>σ<sub>kl</sub>ΔT</b><br> • Relates Stress tensor σ<sub>ij</sub> and Temperature variation ΔT with the symmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>][V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • π<sup>(T)</sup><sub><b>i</b><b>j</b>kl</sub> = π<sup>(T)</sup><sub><b>j</b><b>i</b>kl</sub> <br> • π<sup>(T)</sup><sub>ij<b>k</b><b>l</b></sub> = π<sup>(T)</sup><sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: π<sup>(T)</sup><sub>ijkl</sub> → π<sup>(T)</sup><sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_90' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Magnetoelectro-optical effect tensor m<sub>ijkl</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=m<sub>ijkl</sub>H<sub>k</sub>E<sub>l</sub></b><br> • Relates Magnetic field <b>H</b> and Electric field <b>E</b> with the antisymmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>e{V<sup>2</sup>}V<sup>2</sup></b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • m<sub><b>i</b><b>j</b>kl</sub> = -m<sub><b>j</b><b>i</b>kl</sub> <br></td></tr></table></center><br><br></div> <div id='legend_91' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Piezogyration tensor C<sub>ijkl</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δg<sub>ij</sub>=C<sub>ijkl</sub>σ<sub>kl</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> with Optical activity tensor variation Δg<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>e[V<sup>2</sup>][V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • C<sub><b>i</b><b>j</b>kl</sub> = C<sub><b>j</b><b>i</b>kl</sub> <br> • C<sub>ij<b>k</b><b>l</b></sub> = C<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: C<sub>ijkl</sub> → C<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_92' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Quadratic electrogyration effect tensor β<sub>ijkl</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δg<sub>ij</sub>=β<sub>ijkl</sub>E<sub>k</sub>E<sub>l</sub></b><br> • Relates Electric field <b>E</b> and Electric field <b>E</b> with Optical activity tensor variation Δg<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>e[V<sup>2</sup>][V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • β<sub><b>i</b><b>j</b>kl</sub> = β<sub><b>j</b><b>i</b>kl</sub> <br> • β<sub>ij<b>k</b><b>l</b></sub> = β<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: β<sub>ijkl</sub> → β<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_93' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Nonmutual Optical Activity γ<sub>ijkl</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>= γ<sub>ijlm</sub>k<sub>l</sub>k<sub>m</sub></b><br> • Relates light wave vector and light wave vector with dielectric impermeability tensor variation (antisymmetric part).<br> • Pure imaginary in non-dissipative media. <br> • Intrinsic symmetry symbol: <b>a{V<sup>2</sup>}[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • γ<sub><b>i</b><b>j</b>kl</sub> = -γ<sub><b>j</b><b>i</b>kl</sub> <br> • γ<sub>ij<b>k</b><b>l</b></sub> = γ<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: γ<sub>ijkl</sub> → γ<sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_94' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Quadratic magneto-optic Kerr effect B<sub>ijkl</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=B<sub>ijkl</sub>H<sub>k</sub>H<sub>l</sub></b><br> • Relates Magnetic field <b>H</b> and Magnetic field <b>H</b> with the antisymmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>a{V<sup>2</sup>}[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • B<sub><b>i</b><b>j</b>kl</sub> = -B<sub><b>j</b><b>i</b>kl</sub> <br> • B<sub>ij<b>k</b><b>l</b></sub> = B<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: B<sub>ijkl</sub> → B<sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_95' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 5 <sup>th</sup> rank Piezoelectro-optical effect tensor z<sub>ijklm</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=z<sub>ijklm</sub>σ<sub>kl</sub>E<sub>m</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> and Electric field <b>E</b> with the symmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>][V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • z<sub><b>i</b><b>j</b>klm</sub> = z<sub><b>j</b><b>i</b>klm</sub> <br> • z<sub>ij<b>k</b><b>l</b>m</sub> = z<sub>ij<b>l</b><b>k</b>m</sub> <br> • Abbreviated notation: z<sub>ijklm</sub> → z<sub>αβγ</sub><br> • ij → α<br> • kl → β<br> • m → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_96' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 5 <sup>th</sup> rank Piezomagneto-optical effect tensor ω<sub>ijklm</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=ω<sub>ijklm</sub>H<sub>k</sub>σ<sub>lm</sub></b><br> • Relates Magnetic field <b>H</b> and Stress tensor σ<sub>ij</sub> with the antisymmetric part of the Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>e{V<sup>2</sup>}V[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • ω<sub><b>i</b><b>j</b>klm</sub> = -ω<sub><b>j</b><b>i</b>klm</sub> <br> • ω<sub>ijk<b>l</b><b>m</b></sub> = ω<sub>ijk<b>m</b><b>l</b></sub> <br> • Abbreviated notation: ω<sub>ijklm</sub> → ω<sub>αβγδ</sub><br> • i → α<br> • j → β<br> • k → γ<br> • lm → δ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_97' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 5 <sup>th</sup> rank Gradient piezogyration tensor β<sub>ijklm</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δg<sub>ij</sub>=β<sub>ijklm</sub><vec>∇</vec><sub>m</sub>σ<sub>kl</sub></b><br> • Relates Stress tensor gradient <b>∇</b><sub>k</sub>σ<sub>ij</sub> with Optical activity tensor variation Δg<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>e[V<sup>2</sup>][V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • β<sub><b>i</b><b>j</b>klm</sub> = β<sub><b>j</b><b>i</b>klm</sub> <br> • β<sub>ij<b>k</b><b>l</b>m</sub> = β<sub>ij<b>l</b><b>k</b>m</sub> <br> • Abbreviated notation: β<sub>ijklm</sub> → β<sub>αβγ</sub><br> • ij → α<br> • kl → β<br> • m → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_98' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 6 <sup>th</sup> rank Second-order piezo-optical tensor Π<sub>ijklmn</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δβ<sub>ij</sub>=Π<sub>ijklmn</sub>σ<sub>kl</sub>σ<sub>mn</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> and Stress tensor σ<sub>ij</sub> with the symmetric part of Dielectric impermeability tensor variation Δβ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>][[V<sup>2</sup>][V<sup>2</sup>]]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • Π<sub><b>i</b><b>j</b>klmn</sub> = Π<sub><b>j</b><b>i</b>klmn</sub> <br> • Π<sub>ij<b>k</b><b>l</b>mn</sub> = Π<sub>ij<b>l</b><b>k</b>mn</sub> <br> • Π<sub>ijkl<b>m</b><b>n</b></sub> = Π<sub>ijkl<b>n</b><b>m</b></sub> <br> • Π<sub>ij<b>kl</b><b>mn</b><b></b><b></b></sub> = Π<sub>ij<b>mn</b><b>kl</b><b></b><b></b></sub> <br> • Abbreviated notation: Π<sub>ijklmn</sub> → Π<sub>αβγ</sub><br> • ij → α<br> • kl → β<br> • mn → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_99' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 6 <sup>th</sup> rank Quadratic piezogyration tensor C<sub>ijklmn</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δg<sub>ij</sub>=C<sub>ijklmn</sub>σ<sub>kl</sub>σ<sub>mn</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> and Stress tensor σ<sub>ij</sub> with Optical activity tensor variation Δg<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>e[V<sup>2</sup>][[V<sup>2</sup>][V<sup>2</sup>]]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • C<sub><b>i</b><b>j</b>klmn</sub> = C<sub><b>j</b><b>i</b>klmn</sub> <br> • C<sub>ij<b>k</b><b>l</b>mn</sub> = C<sub>ij<b>l</b><b>k</b>mn</sub> <br> • C<sub>ijkl<b>m</b><b>n</b></sub> = C<sub>ijkl<b>n</b><b>m</b></sub> <br> • C<sub>ij<b>kl</b><b>mn</b><b></b><b></b></sub> = C<sub>ij<b>mn</b><b>kl</b><b></b><b></b></sub> <br> • Abbreviated notation: C<sub>ijklmn</sub> → C<sub>αβγ</sub><br> • ij → α<br> • kl → β<br> • mn → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_100' style="display:none"><p style="font-size:25px"><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank General second-order susceptibility (non dissipative media and no dispersion) χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(ω<sub>3</sub>)=χ<sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)</b><br> • Relates Electric field of frequency ω<sub>1</sub> and Electric field of frequency ω<sub>2</sub> with Polarization of frequency ω<sub>3</sub>.<br> • <b>Tensor of real coefficients (imaginary part null). Kleinman symmetry.</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>3</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub><b>i</b><b>j</b>k</sub> = χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub><b>j</b><b>i</b>k</sub> <br> • χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub><b>i</b>j<b>k</b></sub> = χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub><b>k</b>j<b>i</b></sub> <br> • χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>i<b>j</b><b>k</b></sub> = χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub> → χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_101' style="display:none"><p style="font-size:25px"><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Optical rectification (non-dissipative media and no dispersion) χ(0;ω,-ω)<sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(0)=χ<sub>ijk</sub>(0;ω,-ω)E<sub>j</sub>(ω)E<sub>k</sub>(-ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 0.<br> • <b>Tensor of real coefficients (imaginary part null). Kleinman symmetry. </b> <br> • Intrinsic symmetry symbol: <b>[V<sup>3</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(0;ω,-ω)<sub><b>i</b><b>j</b>k</sub> = χ(0;ω,-ω)<sub><b>j</b><b>i</b>k</sub> <br> • χ(0;ω,-ω)<sub><b>i</b>j<b>k</b></sub> = χ(0;ω,-ω)<sub><b>k</b>j<b>i</b></sub> <br> • χ(0;ω,-ω)<sub>i<b>j</b><b>k</b></sub> = χ(0;ω,-ω)<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: χ(0;ω,-ω)<sub>ijk</sub> → χ(0;ω,-ω)<sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_102' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Second-harmonic generation (non-dissipative media and no dispersion) χ(2ω;ω,ω)<sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(2ω)=χ<sub>ijk</sub>(2ω;ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω.<br> • <b>Tensor of real coefficients (imaginary part null). Kleinman symmetry.</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>3</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(2ω;ω,ω)<sub><b>i</b><b>j</b>k</sub> = χ(2ω;ω,ω)<sub><b>j</b><b>i</b>k</sub> <br> • χ(2ω;ω,ω)<sub><b>i</b>j<b>k</b></sub> = χ(2ω;ω,ω)<sub><b>k</b>j<b>i</b></sub> <br> • χ(2ω;ω,ω)<sub>i<b>j</b><b>k</b></sub> = χ(2ω;ω,ω)<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: χ(2ω;ω,ω)<sub>ijk</sub> → χ(2ω;ω,ω)<sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_103' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank General optical rectification (dissipative media) χ(0;ω,-ω)<sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(0)=χ<sub>ijk</sub>(0;ω,-ω)E<sub>j</sub>(ω)E<sub>k</sub>(-ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 0.<br> • <b>Tensor of complex coefficients. Real in non-dissipative media.</b> <br> • Onsager relations imply 1'χ<sub>ijk</sub>(0;ω,-ω)=χ<sub>ikj</sub>(0;ω,-ω)</b> <br> • Intrinsic symmetry symbol: <b>V[V<sup>2</sup>]*</b><br></td></tr></table></center><br><br></div> <div id='legend_104' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Optical rectification (non-dissipative media)Real part χ(0;ω,-ω)<sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(0)=χ<sub>ijk</sub>(0;ω,-ω)E<sub>j</sub>(ω)E<sub>k</sub>(-ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 0.<br> • <b>Tensor of complex coefficients. Only the real part of χ<sub>ijk</sub>(0;ω,-ω) is considered. </b> <br> • Intrinsic symmetry symbol: <b>V[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(0;ω,-ω)<sub>i<b>j</b><b>k</b></sub> = χ(0;ω,-ω)<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: χ(0;ω,-ω)<sub>ijk</sub> → χ(0;ω,-ω)<sub>αβ</sub><br> • i → α<br> • jk → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_105' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Second-harmonic generation (non-dissipative media). Real part. χ(2ω;ω,ω)<sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(2ω)=χ<sub>ijk</sub>(2ω;ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω.<br> • <b>Tensor of complex coefficients. Only the real part of χ<sub>ijk</sub>(2ω;ω,ω) is considered.</b> <br> • Intrinsic symmetry symbol: <b>V[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(2ω;ω,ω)<sub>i<b>j</b><b>k</b></sub> = χ(2ω;ω,ω)<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: χ(2ω;ω,ω)<sub>ijk</sub> → χ(2ω;ω,ω)<sub>αβ</sub><br> • i → α<br> • jk → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_106' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank General second-order susceptibility (non-dissipative media). Real part. χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(ω<sub>3</sub>)=χ<sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)</b><br> • Relates Electric field of frequency ω<sub>1</sub> and Electric field of frequency ω<sub>2</sub> with Polarization of frequency ω<sub>3</sub>.<br> • <b>Tensor of complex coefficients. Only the real part of χ<sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>) is considered.</b> <br> • Intrinsic symmetry symbol: <b>V<sup>3</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_107' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank General second-order susceptibility by magnetic dipole (non-dissipative media and no dispersion) χ<sup>m</sup>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>(ω<sub>3</sub>)=χ<sup>m</sup><sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)</b><br> • Relates Electric field of frequency ω<sub>1</sub> and Electric field of frequency ω<sub>2</sub> with Magnetization of frequency ω<sub>3</sub>.<br> • <b> Tensor of pure imaginary coefficients (real part null). Kleinman symmetry.</b> <br> • Intrinsic symmetry symbol: <b>e[V<sup>3</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ<sup>m</sup>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub><b>i</b><b>j</b>k</sub> = χ<sup>m</sup>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub><b>j</b><b>i</b>k</sub> <br> • χ<sup>m</sup>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub><b>i</b>j<b>k</b></sub> = χ<sup>m</sup>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub><b>k</b>j<b>i</b></sub> <br> • χ<sup>m</sup>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>i<b>j</b><b>k</b></sub> = χ<sup>m</sup>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: χ<sup>m</sup>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub> → χ<sup>m</sup>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_108' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Second-harmonic generation by magnetic dipole (non-dissipative media and no dispersion) χ<sup>m</sup>(2ω;ω,ω)<sub>ijk</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>(2ω)=χ<sup>m</sup><sub>ijk</sub>(2ω;ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω.<br> • <b>Tensor of pure imaginary coefficients (real part null). Kleinman symmetry.</b> <br> • Intrinsic symmetry symbol: <b>e[V<sup>3</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ<sup>m</sup>(2ω;ω,ω)<sub><b>i</b><b>j</b>k</sub> = χ<sup>m</sup>(2ω;ω,ω)<sub><b>j</b><b>i</b>k</sub> <br> • χ<sup>m</sup>(2ω;ω,ω)<sub><b>i</b>j<b>k</b></sub> = χ<sup>m</sup>(2ω;ω,ω)<sub><b>k</b>j<b>i</b></sub> <br> • χ<sup>m</sup>(2ω;ω,ω)<sub>i<b>j</b><b>k</b></sub> = χ<sup>m</sup>(2ω;ω,ω)<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: χ<sup>m</sup>(2ω;ω,ω)<sub>ijk</sub> → χ<sup>m</sup>(2ω;ω,ω)<sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_109' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Second-harmonic generation by magnetic dipole (non-dissipative media). Imaginary part. χ<sup>m</sup>(2ω;ω,ω)<sub>ijk</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>(2ω)=χ<sup>m</sup><sub>ijk</sub>(2ω;ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω.<br> • <b>Tensor of complex coefficients. Only the imaginary part of χ<sup>m</sup><sub>ijk</sub>(2ω;ω,ω) is considered.</b> <br> • Intrinsic symmetry symbol: <b>eV[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ<sup>m</sup>(2ω;ω,ω)<sub>i<b>j</b><b>k</b></sub> = χ<sup>m</sup>(2ω;ω,ω)<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: χ<sup>m</sup>(2ω;ω,ω)<sub>ijk</sub> → χ<sup>m</sup>(2ω;ω,ω)<sub>αβ</sub><br> • i → α<br> • jk → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_110' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank General second-order susceptibility by magnetic dipole (non-dissipative media) Imaginary part χ<sup>m</sup>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>(ω<sub>3</sub>)=χ<sup>m</sup><sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)</b><br> • Relates Electric field of frequency ω<sub>1</sub> and Electric field of frequency ω<sub>2</sub> with Magnetization of frequency ω<sub>3</sub>.<br> • <b> Tensor of complex coefficients. Only the imaginary part of χ<sup>m</sup><sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>) is considered.</b> <br> • Intrinsic symmetry symbol: <b>eV<sup>3</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_111' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Optical rectification (non-dissipative media)Imaginary part χ(0;ω,-ω)<sub>ijk</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(0)=χ<sub>ijk</sub>(0;ω,-ω)E<sub>j</sub>(ω)E<sub>k</sub>(-ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 0.<br> • <b>Tensor of complex coefficients. Only the imaginary part of χ<sub>ijk</sub>(0;ω,-ω) is considered. </b> <br> • Intrinsic symmetry symbol: <b>aV{V<sup>2</sup>}</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(0;ω,-ω)<sub>i<b>j</b><b>k</b></sub> = -χ(0;ω,-ω)<sub>i<b>k</b><b>j</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_112' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Second-harmonic generation (non-dissipative media). Imaginary part. χ(2ω;ω,ω)<sub>ijk</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(2ω)=χ<sub>ijk</sub>(2ω;ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω.<br> • <b>Tensor of complex coefficients. Only the imaginary part of χ<sub>ijk</sub>(2ω;ω,ω) is considered.</b> <br> • Intrinsic symmetry symbol: <b>aV[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(2ω;ω,ω)<sub>i<b>j</b><b>k</b></sub> = χ(2ω;ω,ω)<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: χ(2ω;ω,ω)<sub>ijk</sub> → χ(2ω;ω,ω)<sub>αβ</sub><br> • i → α<br> • jk → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_113' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank General second-order susceptibility (non-dissipative media). Imaginary part. χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(ω<sub>3</sub>)=χ<sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)</b><br> • Relates Electric field of frequency ω<sub>1</sub> and Electric field of frequency ω<sub>2</sub> with Polarization of frequency ω<sub>3</sub>.<br> • <b>Tensor of complex coefficients. Only the imaginary part of χ<sub>ijk</sub>(ω<sub>3</sub>ω,ω) is considered.</b> <br> • Intrinsic symmetry symbol: <b>aV<sup>3</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_114' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Second-harmonic generation by magnetic dipole (non-dissipative media). Real part. χ<sup>m</sup>(2ω;ω,ω)<sub>ijk</sub><br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>(2ω)=χ<sup>m</sup><sub>ijk</sub>(2ω;ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω.<br> • <b>Tensor of complex coefficients. Only the real part of χ<sup>m</sup><sub>ijk</sub>(2ωω,ω) is considered.</b> <br> • Intrinsic symmetry symbol: <b>aeV[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ<sup>m</sup>(2ω;ω,ω)<sub>i<b>j</b><b>k</b></sub> = χ<sup>m</sup>(2ω;ω,ω)<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: χ<sup>m</sup>(2ω;ω,ω)<sub>ijk</sub> → χ<sup>m</sup>(2ω;ω,ω)<sub>αβ</sub><br> • i → α<br> • jk → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_115' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank General second-order susceptibility by magnetic dipole (non-dissipative media) Real part χ<sup>m</sup>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub><br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>M<sub>i</sub>(ω<sub>3</sub>)=χ<sup>m</sup><sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)</b><br> • Relates Electric field of frequency ω<sub>1</sub> and Electric field of frequency ω<sub>2</sub> with Magnetization of frequency ω<sub>3</sub>.<br> • <b> Tensor of complex coefficients. Only the real part of χ<sup>m</sup><sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>) is considered.</b> <br> • Intrinsic symmetry symbol: <b>aeV<sup>3</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_116' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank General second-harmonic generation (dissipative media) χ(2ω;ω,ω)<sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(2ω)=χ<sub>ijk</sub>(2ω;ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω.<br> • <b>Tensor of complex coefficients.</b><br> • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the tensor for difference frequency generation: 1'χ<sub>ijk</sub>(2ω;ω,ω)=χ<sub>jik</sub>(ω;2ω,-ω)=χ<sub>kij</sub>(ω;2ω,-ω)</b> <br> • Intrinsic symmetry symbol: <b>(V[V<sup>2</sup>])*</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(2ω;ω,ω)<sub>i<b>j</b><b>k</b></sub> = χ(2ω;ω,ω)<sub>i<b>k</b><b>j</b></sub> <br> • Abbreviated notation: χ(2ω;ω,ω)<sub>ijk</sub> → χ(2ω;ω,ω)<sub>αβ</sub><br> • i → α<br> • jk → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_117' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank General second-order susceptibility (dissipative media) χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(ω<sub>3</sub>)=χ<sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)</b><br> • Relates Electric field of frequency ω<sub>1</sub> and Electric field of frequency ω<sub>2</sub> with Polarization of frequency ω<sub>3</sub>.<br> • <b>Tensor of complex coefficients.</b><br> • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the tensor for difference frequency generation:<br>1' χ<sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)=χ<sub>jik</sub>(ω<sub>2</sub>;ω<sub>3</sub>,-ω<sub>1</sub>)=χ<sub>kij</sub>(ω<sub>1</sub>;ω<sub>3</sub>,-ω<sub>2</sub>)</b> <br> • Intrinsic symmetry symbol: <b>(V<sup>3</sup>)*</b><br></td></tr></table></center><br><br></div> <div id='legend_118' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Degenerate four-wave mixing χ(ω;-ω,ω,ω)<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(ω)=χ<sub>ijkl</sub>(ω;-ω,ω,ω)E<sub>j</sub>(-ω)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency ω.<br> • <b>Tensor of complex coefficients.<br> • Onsager relations imply: 1'χ<sub>ijkl</sub>(ω;-ω,ω,ω)=χ<sub>klij</sub>(ω;-ω,ω,ω).</b> <br> • Intrinsic symmetry symbol: <b>[[V<sup>2</sup>][V<sup>2</sup>]]*</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(ω;-ω,ω,ω)<sub><b>i</b><b>j</b>kl</sub> = χ(ω;-ω,ω,ω)<sub><b>j</b><b>i</b>kl</sub> <br> • χ(ω;-ω,ω,ω)<sub>ij<b>k</b><b>l</b></sub> = χ(ω;-ω,ω,ω)<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: χ(ω;-ω,ω,ω)<sub>ijkl</sub> → χ(ω;-ω,ω,ω)<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_119' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Electric-field induced second-harmonic generation (non-dissipative media and no dispersion) χ(2ω;0,ω,ω)<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(2ω)=χ<sub>ijkl</sub>(2ω;0,ω,ω)E<sub>j</sub>(0)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</b><br> • Relates Electric field of frequency 0 and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω.<br> • <b>Tensor of real coefficients (imaginary part null). Kleinman symmetry.</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>4</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(2ω;0,ω,ω)<sub><b>i</b><b>j</b>kl</sub> = χ(2ω;0,ω,ω)<sub><b>j</b><b>i</b>kl</sub> <br> • χ(2ω;0,ω,ω)<sub><b>i</b>j<b>k</b>l</sub> = χ(2ω;0,ω,ω)<sub><b>k</b>j<b>i</b>l</sub> <br> • χ(2ω;0,ω,ω)<sub><b>i</b>jk<b>l</b></sub> = χ(2ω;0,ω,ω)<sub><b>l</b>jk<b>i</b></sub> <br> • χ(2ω;0,ω,ω)<sub>i<b>j</b><b>k</b>l</sub> = χ(2ω;0,ω,ω)<sub>i<b>k</b><b>j</b>l</sub> <br> • χ(2ω;0,ω,ω)<sub>i<b>j</b>k<b>l</b></sub> = χ(2ω;0,ω,ω)<sub>i<b>l</b>k<b>j</b></sub> <br> • χ(2ω;0,ω,ω)<sub>ij<b>k</b><b>l</b></sub> = χ(2ω;0,ω,ω)<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: χ(2ω;0,ω,ω)<sub>ijkl</sub> → χ(2ω;0,ω,ω)<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_120' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank General third-order susceptibility (non-dissipative media and no dispersion) χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(ω<sub>4</sub>)=χ<sub>ijkl</sub>(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>3</sub>)E<sub>k</sub>(ω<sub>2</sub>)E<sub>l</sub>(ω<sub>1</sub>)</b><br> • Relates Electric field of frequency ω<sub>1</sub> and Electric field of frequency ω<sub>2</sub> and Electric field of frequency ω<sub>3</sub> with Polarization of frequency ω<sub>4</sub>.<br> • <b> Tensor of real coefficients (imaginary part null). Kleinman symmetry.</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>4</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub><b>i</b><b>j</b>kl</sub> = χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub><b>j</b><b>i</b>kl</sub> <br> • χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub><b>i</b>j<b>k</b>l</sub> = χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub><b>k</b>j<b>i</b>l</sub> <br> • χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub><b>i</b>jk<b>l</b></sub> = χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub><b>l</b>jk<b>i</b></sub> <br> • χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>i<b>j</b><b>k</b>l</sub> = χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>i<b>k</b><b>j</b>l</sub> <br> • χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>i<b>j</b>k<b>l</b></sub> = χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>i<b>l</b>k<b>j</b></sub> <br> • χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>ij<b>k</b><b>l</b></sub> = χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijkl</sub> → χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_121' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Third-harmonic generation (non-dissipative media and no dispersion) χ(3ω;ω,ω,ω)<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(3ω)=χ<sub>ijkl</sub>(3ω;ω,ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 3ω.<br> • <b>Tensor of real coefficients (imaginary part null). Kleinman symmetry.</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>4</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(3ω;ω,ω,ω)<sub><b>i</b><b>j</b>kl</sub> = χ(3ω;ω,ω,ω)<sub><b>j</b><b>i</b>kl</sub> <br> • χ(3ω;ω,ω,ω)<sub><b>i</b>j<b>k</b>l</sub> = χ(3ω;ω,ω,ω)<sub><b>k</b>j<b>i</b>l</sub> <br> • χ(3ω;ω,ω,ω)<sub><b>i</b>jk<b>l</b></sub> = χ(3ω;ω,ω,ω)<sub><b>l</b>jk<b>i</b></sub> <br> • χ(3ω;ω,ω,ω)<sub>i<b>j</b><b>k</b>l</sub> = χ(3ω;ω,ω,ω)<sub>i<b>k</b><b>j</b>l</sub> <br> • χ(3ω;ω,ω,ω)<sub>i<b>j</b>k<b>l</b></sub> = χ(3ω;ω,ω,ω)<sub>i<b>l</b>k<b>j</b></sub> <br> • χ(3ω;ω,ω,ω)<sub>ij<b>k</b><b>l</b></sub> = χ(3ω;ω,ω,ω)<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: χ(3ω;ω,ω,ω)<sub>ijkl</sub> → χ(3ω;ω,ω,ω)<sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_122' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Four-wave mixing χ(ω<sub>1</sub>;-ω<sub>2</sub>,ω<sub>1</sub>,ω<sub>2</sub>)<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(ω<sub>1</sub>)=χ<sub>ijkl</sub>(ω<sub>1</sub>;-ω<sub>2</sub>,ω<sub>1</sub>,ω<sub>2</sub>)E<sub>j</sub>(-ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)E<sub>l</sub>(ω<sub>2</sub>)</b><br> • Relates Electric field of frequency ω<sub>1</sub> and Electric field of frequency ω<sub>2</sub> and Electric field of frequency ω<sub>2</sub> with Polarization of frequency ω<sub>1</sub>.<br> • <b>Tensor of complex coefficients.<br> • Onsager relations imply: 1'χ<sub>ijkl</sub>(ω<sub>1</sub>;-ω<sub>2</sub>,ω<sub>1</sub>,ω<sub>2</sub>)=χ<sub>klij</sub>(ω<sub>1</sub>;-ω<sub>2</sub>,ω<sub>1</sub>,ω<sub>2</sub>).</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>V<sup>2</sup>]*</b><br></td></tr></table></center><br><br></div> <div id='legend_123' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Third-harmonic generation (non-dissipative media). Real part. χ(3ω;ω,ω,ω)<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(3ω)=χ<sub>ijkl</sub>(3ω;ω,ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 3ω.<br> • <b>Tensor of complex coefficients. Only the real part of χ<sub>ijkl</sub>(3ω;ω,ω,ω) is considered.</b> <br> • Intrinsic symmetry symbol: <b>V[V<sup>3</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(3ω;ω,ω,ω)<sub>i<b>j</b><b>k</b>l</sub> = χ(3ω;ω,ω,ω)<sub>i<b>k</b><b>j</b>l</sub> <br> • χ(3ω;ω,ω,ω)<sub>i<b>j</b>k<b>l</b></sub> = χ(3ω;ω,ω,ω)<sub>i<b>l</b>k<b>j</b></sub> <br> • χ(3ω;ω,ω,ω)<sub>ij<b>k</b><b>l</b></sub> = χ(3ω;ω,ω,ω)<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: χ(3ω;ω,ω,ω)<sub>ijkl</sub> → χ(3ω;ω,ω,ω)<sub>αβγ</sub><br> • i → α<br> • jk → β<br> • l → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_124' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank General third-order susceptibility (non-dissipative media). Real part. χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(ω<sub>4</sub>)=χ<sub>ijkl</sub>(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>3</sub>)E<sub>k</sub>(ω<sub>2</sub>)E<sub>l</sub>(ω<sub>1</sub>)</b><br> • Relates Electric field of frequency ω<sub>1</sub> and Electric field of frequency ω<sub>2</sub> and Electric field of frequency ω<sub>3</sub> with Polarization of frequency ω<sub>4</sub>.<br> • <b> Tensor of complex coefficients.<br> • Only the real part of χ<sub>ijkl</sub>(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>) is considered.</b> <br> • Intrinsic symmetry symbol: <b>V<sup>4</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_125' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Electric-field induced second-harmonic generation (non-dissipative media). Real part. χ(2ω;0,ω,ω)<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(2ω)=χ<sub>ijkl</sub>(2ω;0,ω,ω)E<sub>j</sub>(0)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</b><br> • Relates Electric field of frequency 0 and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω.<br> • <b>Tensor of complex coefficients. Only the real part of χ<sub>ijkl</sub>(2ω0,ω,ω) is considered.</b> <br> • Intrinsic symmetry symbol: <b>V<sup>2</sup>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(2ω;0,ω,ω)<sub>ij<b>k</b><b>l</b></sub> = χ(2ω;0,ω,ω)<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: χ(2ω;0,ω,ω)<sub>ijkl</sub> → χ(2ω;0,ω,ω)<sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_126' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Third-harmonic generation (non-dissipative media). Imaginary part. χ(3ω;ω,ω,ω)<sub>ijkl</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(3ω)=χ<sub>ijkl</sub>(3ω;ω,ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 3ω.<br> • <b>Tensor of complex coefficients. Only the imaginary part of χ<sub>ijkl</sub>(3ω;ω,ω,ω) is considered.</b> <br> • Intrinsic symmetry symbol: <b>aV[V<sup>3</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(3ω;ω,ω,ω)<sub>i<b>j</b><b>k</b>l</sub> = χ(3ω;ω,ω,ω)<sub>i<b>k</b><b>j</b>l</sub> <br> • χ(3ω;ω,ω,ω)<sub>i<b>j</b>k<b>l</b></sub> = χ(3ω;ω,ω,ω)<sub>i<b>l</b>k<b>j</b></sub> <br> • χ(3ω;ω,ω,ω)<sub>ij<b>k</b><b>l</b></sub> = χ(3ω;ω,ω,ω)<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: χ(3ω;ω,ω,ω)<sub>ijkl</sub> → χ(3ω;ω,ω,ω)<sub>αβγ</sub><br> • i → α<br> • jk → β<br> • l → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_127' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank General third-order susceptibility (non-dissipative media). Imaginary part. χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijkl</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(ω<sub>4</sub>)=χ<sub>ijkl</sub>(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>3</sub>)E<sub>k</sub>(ω<sub>2</sub>)E<sub>l</sub>(ω<sub>1</sub>)</b><br> • Relates Electric field of frequency ω<sub>1</sub> and Electric field of frequency ω<sub>2</sub> and Electric field of frequency ω<sub>3</sub> with Polarization of frequency ω<sub>4</sub>.<br> • <b> Tensor of complex coefficients.<br> • Only the imaginary part of χ<sub>ijkl</sub>(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)is considered.</b> <br> • Intrinsic symmetry symbol: <b>aV<sup>4</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_128' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Electric-field induced second-harmonic generation (non-dissipative media). Imaginary part. χ(2ω0,ω,ω)<sub>ijkl</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(2ω)=χ<sub>ijkl</sub>(2ω;0,ω,ω)E<sub>j</sub>(0)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</b><br> • Relates Electric field of frequency 0 and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω.<br> • <b>Tensor of complex coefficients.Only the imaginary part of χ<sub>ijkl</sub>(2ω;0,ω,ω) is considered.</b> <br> • Intrinsic symmetry symbol: <b>aV<sup>2</sup>[V<sup>2</sup>] </b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(2ω;0,ω,ω)<sub>ij<b>k</b><b>l</b></sub> = χ(2ω;0,ω,ω)<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: χ(2ω;0,ω,ω)<sub>ijkl</sub> → χ(2ω;0,ω,ω)<sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_129' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank General third-harmonic generation (dissipative media) χ(3ω;ω,ω,ω)<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(3ω)=χ<sub>ijkl</sub>(3ω;ω,ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</b><br> • Relates Electric field of frequency ω and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 3ω.<br> • <b>Tensor of complex coefficients.</b><br> • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with a tensor for a different third order process: 1'χ<sub>ijkl</sub>(3ω;ω,ω,ω)=χ<sub>jikl</sub>(ω;3ω,-ω,-ω)=χ<sub>kijl</sub>(ω;3ω,-ω,-ω)=χ<sub>lijk</sub>(ω;3ω,-ω,-ω).</b> <br> • Intrinsic symmetry symbol: <b>(V[V<sup>3</sup>])*</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • χ(3ω;ω,ω,ω)<sub>i<b>j</b><b>k</b>l</sub> = χ(3ω;ω,ω,ω)<sub>i<b>k</b><b>j</b>l</sub> <br> • χ(3ω;ω,ω,ω)<sub>i<b>j</b>k<b>l</b></sub> = χ(3ω;ω,ω,ω)<sub>i<b>l</b>k<b>j</b></sub> <br> • χ(3ω;ω,ω,ω)<sub>ij<b>k</b><b>l</b></sub> = χ(3ω;ω,ω,ω)<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: χ(3ω;ω,ω,ω)<sub>ijkl</sub> → χ(3ω;ω,ω,ω)<sub>αβγ</sub><br> • i → α<br> • jk → β<br> • l → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_130' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank General third-order susceptibility (dissipative media) χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>P<sub>i</sub>(ω<sub>4</sub>)=χ<sub>ijkl</sub>(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>3</sub>)E<sub>k</sub>(ω<sub>2</sub>)E<sub>l</sub>(ω<sub>1</sub>)</b><br> • Relates Electric field of frequency ω<sub>1</sub> and Electric field of frequency ω<sub>2</sub> and Electric field of frequency ω<sub>3</sub> with Polarization of frequency ω<sub>4</sub>.<br> • <b>Tensor of complex coefficients.</b><br> • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with a tensor for other third order processes: 1'χ<sub>ijkl</sub>(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)=χ<sub>jikl</sub>(ω<sub>3</sub>;ω<sub>4</sub>,-ω<sub>2</sub>,-ω<sub>1</sub>)=χ<sub>kijl</sub>(ω<sub>2</sub>;ω<sub>4</sub>,-ω<sub>3</sub>,-ω<sub>1</sub>)=χ<sub>lijk</sub>(ω<sub>1</sub>;ω<sub>4</sub>,-ω<sub>3</sub>,-ω<sub>2</sub>).</b> <br> • Intrinsic symmetry symbol: <b>(V<sup>4</sup>)*</b><br></td></tr></table></center><br><br></div> <div id='legend_131' style="display:none"><p style="font-size:25px"><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Diffusion tensor D<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>J<sub>i</sub>=D<sub>ij</sub><vec>∇</vec><sub>j</sub>C</b><br> • Relates Concentration gradient <b>∇</b>C with Diffusive flux <b>J</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]*</b><br></td></tr></table></center><br><br></div> <div id='legend_132' style="display:none"><p style="font-size:25px"><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Dufour effect (reversal thermodiffusion) tensor β<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=β<sub>ij</sub><vec>∇</vec><sub>j</sub>C</b><br> • Relates Concentration gradient <b>∇</b>C with Heat flux <b>q</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]*</b><br></td></tr></table></center><br><br></div> <div id='legend_133' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Electric conductivity tensor σ<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>J<sub>i</sub>=σ<sub>ij</sub>E<sub>j</sub></b><br> • Relates Electric field <b>E</b> with Electric current density <b>J</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]*</b><br></td></tr></table></center><br><br></div> <div id='legend_134' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Electric resistivity tensor ρ<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=ρ<sub>ij</sub>J<sub>j</sub></b><br> • Relates Electric current density <b>J</b> with Electric field <b>E</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]*</b><br></td></tr></table></center><br><br></div> <div id='legend_135' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Electrodiffusion tensor γ<sub>ij</sub> (direct effect)<br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>J<sub>i</sub>=γ<sub>ij</sub>E<sub>j</sub>T</b><br> • Relates Electric field <b>E</b> with Diffusive flux <b>J</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]*</b><br></td></tr></table></center><br><br></div> <div id='legend_136' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Electrodiffusion tensor γ<sup>T</sup><sub>ij</sub> (inverse effect)<br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>J<sub>i</sub>=γ<sup>T</sup><sub>ij</sub><vec>∇</vec><sub>j</sub>C</b><br> • Relates Concentration gradient <b>∇</b>C with Electric current density <b>J</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]*</b><br></td></tr></table></center><br><br></div> <div id='legend_137' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Soret effect (thermodiffusion) tensor β<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>J<sub>i</sub>=β<sub>ij</sub><vec>∇</vec><sub>j</sub>T</b><br> • Relates Temperature gradient <b>∇</b>T with Diffusive flux <b>J</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]*</b><br></td></tr></table></center><br><br></div> <div id='legend_138' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Thermal conductivity tensor κ<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=κ<sub>ij</sub><vec>∇</vec><sub>j</sub>T</b><br> • Relates Temperature gradient <b>∇</b>T with Heat flux <b>q</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]*</b><br></td></tr></table></center><br><br></div> <div id='legend_139' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Thermal diffusivity tensor α<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>∂T/∂t=α<sub>ij</sub><vec>∇</vec><sub>i</sub>T<vec>∇</vec><sub>j</sub>T</b><br> • Relates Temperature gradient <b>∇</b>T and Temperature gradient <b>∇</b>T with Time derivative of the temperature ∂T/∂t <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]*</b><br></td></tr></table></center><br><br></div> <div id='legend_140' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Thermal resistivity tensor r<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b><vec>∇</vec><sub>i</sub>T=r<sub>ij</sub>q<sub>j</sub></b><br> • Relates Heat flux <b>q</b> with Temperature gradient <b>∇</b>T <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]*</b><br></td></tr></table></center><br><br></div> <div id='legend_141' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Ordinary Resistivity ρ<sup>(s)</sup><sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=ρ<sub>ij</sub>J<sub>j</sub></b><br> • Relates Electric current density <b>J</b> with Electric Field <b>E</b>. <br> • Symmetric part of Electric resistivity tensor ρ<sup>(s)</sup><sub>ij</sub>=(ρ<sub>ij</sub>+ρ<sub>ji</sub>)/2. <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • ρ<sup>(s)</sup><sub><b>i</b><b>j</b></sub> = ρ<sup>(s)</sup><sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_142' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Ordinary Thermal Conductivity κ<sup>(s)</sup><sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=κ<sub>ij</sub>∇<sub>j</sub>T</b><br> • Relates Temperature gradient <b>∇T</b> with Heat flux <b>q</b>. <br> • Symmetric part of Thermal Conductivity tensor κ<sup>(s)</sup><sub>ij</sub>=(κ<sub>ij</sub>+κ<sub>ji</sub>)/2. <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • κ<sup>(s)</sup><sub><b>i</b><b>j</b></sub> = κ<sup>(s)</sup><sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_143' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Ordinary Peltier Effect P<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=π<sub>ij</sub>J<sub>j</sub>, E<sub>i</sub>=β<sub>ij</sub>∇<sub>j</sub>T, <br> P<sub>ij</sub>=(π<sub>ij</sub>+β<sub>ji</sub>)/2</b><br> • <b>π</b> relates Electric current density <b>J</b> with Heat flux <b>q</b> and <b>β</b> relates Temperature gradient <b>∇T</b> with Electric field <b>E</b>. <br> • Intrinsic symmetry symbol: <b>V<sup>2</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_144' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Ordinary Seebeck Effect S<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=β<sub>ij</sub>∇<sub>j</sub>T, q<sub>i</sub>=π<sub>ij</sub>J<sub>j</sub>, <br> S<sub>ij</sub>=(β<sub>ij</sub>+π<sub>ji</sub>)/2</b><br> • <b>β</b> relates Temperature gradient <b>∇T</b> with Electric field <b>E</b> and <b>π</b> relates Electric current density <b>J</b> with Heat flux <b>q</b>. <br> • Intrinsic symmetry symbol: <b>V<sup>2</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_145' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Spontaneous Hall Effect ρ<sup>(a)</sup><sub>ij</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=ρ<sub>ij</sub>J<sub>j</sub></b><br> • Relates Electric current density <b>J</b> with Electric Field <b>E</b>. <br> • Antisymmetric part of Electric Resistivity tensor ρ<sup>(a)</sup><sub>ij</sub>=(ρ<sub>ij</sub>-ρ<sub>ji</sub>)/2. <br> • Intrinsic symmetry symbol: <b>a{V<sup>2</sup>}</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • ρ<sup>(a)</sup><sub><b>i</b><b>j</b></sub> = -ρ<sup>(a)</sup><sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_146' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Spontaneous Righi-Leduc Effect κ<sup>(a)</sup><sub>ij</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=κ<sub>ij</sub>∇<sub>j</sub>T</b><br> • Relates Temperature gradient <b>∇T</b> with Heat flux <b>q</b>. <br> • Antisymmetric part of Thermal Conductivity tensor κ<sup>(a)</sup><sub>ij</sub>=(κ<sub>ij</sub>-κ<sub>ji</sub>)/2. <br> • Intrinsic symmetry symbol: <b>a{V<sup>2</sup>}</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • κ<sup>(a)</sup><sub><b>i</b><b>j</b></sub> = -κ<sup>(a)</sup><sub><b>j</b><b>i</b></sub> <br></td></tr></table></center><br><br></div> <div id='legend_147' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Spontaneous Ettingshausen Effect SE<sub>ij</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=π<sub>ij</sub>J<sub>j</sub>, E<sub>i</sub>=β<sub>ij</sub>∇<sub>j</sub>T, <br> SE<sub>ij</sub>=(π<sub>ij</sub>-β<sub>ji</sub>)/2</b><br> • <b>π</b> relates Electric current density <b>J</b> with Heat flux <b>q</b> and <b>β</b> relates Temperature gradient <b>∇T</b> with Electric field <b>E</b>. <br> • Intrinsic symmetry symbol: <b>aV<sup>2</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_148' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Spontaneous Nernst Effect SN<sub>ij</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=β<sub>ij</sub>∇<sub>j</sub>T, q<sub>i</sub>=π<sub>ij</sub>J<sub>j</sub>, <br> SN<sub>ij</sub>=(β<sub>ij</sub>-π<sub>ji</sub>)/2</b><br> • <b>β</b> relates Temperature gradient <b>∇T</b> with Electric field <b>E</b> and <b>π</b> relates Electric current density <b>J</b> with Heat flux <b>q</b>. <br> • Intrinsic symmetry symbol: <b>aV<sup>2</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_149' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Peltier effect tensor π<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=π<sub>ij</sub>J<sub>j</sub></b><br> • Relates Electric current density <b>J</b> with Heat flux <b>q</b>.<br> • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the Thermoelectric power (Seebeck) effect tensor β.<br> •1'π<sub>ijkl</sub>=β<sub>jikl</sub>. <br> • Intrinsic symmetry symbol: <b>(V<sup>2</sup>)*</b><br></td></tr></table></center><br><br></div> <div id='legend_150' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Thermoelectric power (Seebeck effect) tensor β<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=β<sub>ij</sub><vec>∇</vec><sub>j</sub>T</b><br> • Relates Electric field <b>E</b> with Temperature gradient <b>∇</b>T.<br> • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the Peltier effect tensor π.<br> •1'β<sub>ijkl</sub>=π<sub>jikl</sub> <br> • Intrinsic symmetry symbol: <b>(V<sup>2</sup>)*</b><br></td></tr></table></center><br><br></div> <div id='legend_151' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 2 <sup>nd</sup> rank Thomson heat tensor τ<sub>ij</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>∂q/∂t=τ<sub>ij</sub><vec>∇</vec><sub>i</sub>TJ<sub>j</sub></b><br> • Relates Temperature gradient <b>∇</b>T and Electric current density <b>J</b> with Heat production rate ∂q/∂t.<br> • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with another tensor property. <br> • Intrinsic symmetry symbol: <b>(V<sup>2</sup>)*</b><br></td></tr></table></center><br><br></div> <div id='legend_152' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Ordinary Hall Effect R<sup>(a)</sup><sub>ijk</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=R<sub>ijk</sub>J<sub>j</sub>H<sub>k</sub></b><br> • Relates Electric current density <b>J</b> and Magnetic field <b>H</b> with Electric field <b>E</b>. <br> • Antisymmetric part of Hall effect tensor R<sup>(a)</sup><sub>ijk</sub>=(R<sub>ijk</sub>-R<sub>jik</sub>)/2. <br> • Intrinsic symmetry symbol: <b>e{V<sup>2</sup>}V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • R<sup>(a)</sup><sub><b>i</b><b>j</b>k</sub> = -R<sup>(a)</sup><sub><b>j</b><b>i</b>k</sub> <br></td></tr></table></center><br><br></div> <div id='legend_153' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Ordinary Righi-Leduc Effect Q<sup>(a)</sup><sub>ijk</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=Q<sub>ijk</sub>∇<sub>j</sub>TH<sub>k</sub></b><br> • Relates Temperature gradient <b>∇T</b> and Magnetic field <b>H</b> with Heat flux <b>q</b>. <br> • Antisymmetric part of Righi-Leduc Effect tensor Q<sup>(a)</sup><sub>ijk</sub>=(Q<sub>ijk</sub>-Q<sub>jik</sub>)/2. <br> • Intrinsic symmetry symbol: <b>e{V<sup>2</sup>}V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • Q<sup>(a)</sup><sub><b>i</b><b>j</b>k</sub> = -Q<sup>(a)</sup><sub><b>j</b><b>i</b>k</sub> <br></td></tr></table></center><br><br></div> <div id='legend_154' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Hall effect (magnetorresistance) tensor R<sub>ijk</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=R<sub>ijk</sub>J<sub>j</sub>H<sub>k</sub></b><br> • Relates Electric current density <b>J</b> and Magnetic field <b>H</b> with Electric field <b>E</b> <br> • Intrinsic symmetry symbol: <b>e{V<sup>2</sup>}*V</b><br></td></tr></table></center><br><br></div> <div id='legend_155' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Righi-Leduc, Maggi-Righi-Leduc and magnetothermal effects tensor Q<sub>ijk</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=Q<sub>ijk</sub><vec>∇</vec><sub>j</sub>TH<sub>k</sub></b><br> • Relates Temperature gradient <b>∇</b>T and Magnetic field <b>H</b> with Heat flux <b>q</b> <br> • Intrinsic symmetry symbol: <b>e{V<sup>2</sup>}*V</b><br></td></tr></table></center><br><br></div> <div id='legend_156' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Ordinary Ettingshausen Effect OE<sub>ij</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=M<sub>ijk</sub>J<sub>j</sub>H<sub>k</sub>, E<sub>i</sub>=N<sub>ijk</sub>∇<sub>j</sub>TH<sub>k</sub>, <br> OE<sub>ijk</sub>=(M<sub>ijk</sub>-N<sub>jik</sub>)/2</b><br> • <b>M</b> relates Electric current density <b>J</b> and Magnetic field <b>H</b> with Heat flux <b>q</b> and <b>N</b> relates Temperature gradient <b>∇T</b> and Magnetic field <b>H</b> with Electric field <b>E</b>. <br> • Intrinsic symmetry symbol: <b>eV<sup>3</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_157' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Ordinary Nernst Effect ON<sub>ijk</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=N<sub>ijk</sub>∇<sub>j</sub>TH<sub>k</sub>, q<sub>i</sub>=M<sub>ijk</sub>J<sub>j</sub>H<sub>k</sub>, <br> ON<sub>ijk</sub>=(N<sub>ijk</sub>-M<sub>jik</sub>)/2</b><br> • <b>N</b> relates Temperature gradient <b>∇T</b> and Magnetic field <b>H</b> with Electric field <b>E</b> and <b>M</b> relates Electric current density <b>J</b> and Magnetic field <b>H</b> with Heat flux <b>q</b>. <br> • Intrinsic symmetry symbol: <b>eV<sup>3</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_158' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Linear Magneto-heat Conductivity Effect Q<sup>(s)</sup><sub>ijk</sub><br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=Q<sub>ijk</sub>∇<sub>j</sub>TH<sub>k</sub></b><br> • Relates Temperature gradient <b>∇T</b> and Magnetic field <b>H</b> with Heat flux <b>q</b>. <br> • Symmetric part of Righi-Leduc Effect tensor Q<sup>(s)</sup><sub>ijk</sub>=(Q<sub>ijk</sub>+Q<sub>jik</sub>)/2. <br> • Intrinsic symmetry symbol: <b>ae[V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • Q<sup>(s)</sup><sub><b>i</b><b>j</b>k</sub> = Q<sup>(s)</sup><sub><b>j</b><b>i</b>k</sub> <br> • Abbreviated notation: Q<sup>(s)</sup><sub>ijk</sub> → Q<sup>(s)</sup><sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_159' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Linear Magnetorresistance R<sup>(s)</sup><sub>ijk</sub><br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=R<sub>ijk</sub>J<sub>j</sub>H<sub>k</sub></b><br> • Relates Electric current density <b>J</b> and Magnetic field <b>H</b> with Electric Field <b>E</b>. <br> • Symmetric part of Hall effect tensor R<sup>(s)</sup><sub>ijk</sub>=(R<sub>ijk</sub>+R<sub>jik</sub>)/2. <br> • Intrinsic symmetry symbol: <b>ae[V<sup>2</sup>]V</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • R<sup>(s)</sup><sub><b>i</b><b>j</b>k</sub> = R<sup>(s)</sup><sub><b>j</b><b>i</b>k</sub> <br> • Abbreviated notation: R<sup>(s)</sup><sub>ijk</sub> → R<sup>(s)</sup><sub>αβ</sub><br> • ij → α<br> • k → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_160' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Linear Magneto Peltier Effect MP<sub>ijk</sub><br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=M<sub>ijk</sub>J<sub>j</sub>H<sub>k</sub>, E<sub>i</sub>=N<sub>ijk</sub>∇<sub>j</sub>TH<sub>k</sub>, <br> MP<sub>ijk</sub>=(M<sub>ijk</sub>+N<sub>jik</sub>)/2</b><br> • <b>M</b> relates Electric current density <b>J</b> and Magnetic field <b>H</b> with Heat flux <b>q</b> and <b>N</b> relates Temperature gradient <b>∇T</b> and Magnetic field <b>H</b> with Electric field <b>E</b>. <br> • Intrinsic symmetry symbol: <b>aeV<sup>3</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_161' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Linear Magneto Seebeck Effect MS<sub>ijk</sub><br> • Axial tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=N<sub>ijk</sub>∇<sub>j</sub>TH<sub>k</sub>, q<sub>i</sub>=M<sub>ijk</sub>J<sub>j</sub>H<sub>k</sub>, <br> MS<sub>ijk</sub>=(N<sub>ijk</sub>+M<sub>jik</sub>)/2</b><br> • <b>N</b> relates Temperature gradient <b>∇T</b> and Magnetic field <b>H</b> with Electric field <b>E</b> and <b>M</b> relates Electric current density <b>J</b> and Magnetic field <b>H</b> with Heat flux <b>q</b>. <br> • Intrinsic symmetry symbol: <b>aeV<sup>3</sup></b><br></td></tr></table></center><br><br></div> <div id='legend_162' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Ettingshausen effect tensor M<sub>ijk</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=M<sub>ijk</sub></sub>J<sub>j</sub>H<sub>k</sub></b><br> • Relates Electric current density <b>J</b> and Magnetic field <b>H</b> with Heat flux <b>q</b>.<br> • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the Nernst effect tensor N.<br> •1'M<sub>ijkl</sub>=N<sub>jikl</sub>. <br> • Intrinsic symmetry symbol: <b>(eV<sup>3</sup>)*</b><br></td></tr></table></center><br><br></div> <div id='legend_163' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 3 <sup>rd</sup> rank Nernst effect tensor N<sub>ijk</sub><br> • Axial tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=N<sub>ijk</sub><vec>∇</vec>T<sub>j</sub>H<sub>k</sub></b><br> • Relates Temperature gradient <b>∇</b>T and Magnetic field <b>H</b> with Electric field <b>E</b>.<br> • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the Ettinghausen effect tensor M.<br> •1'N<sub>ijkl</sub>=M<sub>jikl</sub>. <br> • Intrinsic symmetry symbol: <b>(eV<sup>3</sup>)*</b><br></td></tr></table></center><br><br></div> <div id='legend_164' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Quadratic Magneto-heat-conductivity S<sup>(s)</sup><sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=S<sub>ijkl</sub>∇<sub>j</sub>TH<sub>k</sub>H<sub>l</sub></b><br> • Relates Temperature gradient <b>∇T</b>, Magnetic field <b>H</b> and Magnetic field <b>H</b> with Heat flux <b>q</b>. <br> • Symmetric part of magneto-heat conductivity tensor S<sup>(s)</sup><sub>ijkl</sub>=(S<sub>ijkl</sub>+S<sub>jikl</sub>)/2. <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>][V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • S<sup>(s)</sup><sub><b>i</b><b>j</b>kl</sub> = S<sup>(s)</sup><sub><b>j</b><b>i</b>kl</sub> <br> • S<sup>(s)</sup><sub>ij<b>k</b><b>l</b></sub> = S<sup>(s)</sup><sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: S<sup>(s)</sup><sub>ijkl</sub> → S<sup>(s)</sup><sub>αβ</sub><br> • ij → α<br> • kl → β<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_165' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Magnetic resistance tensor T<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=T<sub>ijkl</sub>J<sub>j</sub>H<sub>k</sub>H<sub>l</sub></b><br> • Relates Electric current density <b>J</b> and Magnetic field <b>H</b> and Magnetic field <b>H</b> with Electric field <b>E</b> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]*[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • T<sub>ij<b>k</b><b>l</b></sub> = T<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: T<sub>ijkl</sub> → T<sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_166' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Magneto-heat-conductivity tensor S<sub>ijkl</sub> S<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=S<sub>ijkl</sub>∇<sub>j</sub>TH<sub>k</sub>H<sub>l</sub></b><br> • Relates Temperature gradient <b>∇T</b>, Magnetic field <b>H</b> and Magnetic field <b>H</b> with Heat flux <b>q</b>.<br> • Onsager relations imply 1'S<sub>ij</sub>=S<sub>ji</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]*[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • S<sub>ij<b>k</b><b>l</b></sub> = S<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: S<sub>ijkl</sub> → S<sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_167' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Piezoresistivity (Strain Gauge effect) tensor π<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>Δρ<sub>ij</sub>=π<sub>ijkl</sub>σ<sub>kl</sub></b><br> • Relates Stress tensor σ<sub>ij</sub> with Electric resistivity tensor variation Δρ<sub>ij</sub> <br> • Intrinsic symmetry symbol: <b>[V<sup>2</sup>]*[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • π<sub>ij<b>k</b><b>l</b></sub> = π<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: π<sub>ijkl</sub> → π<sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_168' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Quadratic Anomalous Righi-Leduc Effect S<sup>(a)</sup><sub>ijkl</sub><br> • Polar tensor which inverts under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=S<sub>ijkl</sub>∇<sub>j</sub>TH<sub>k</sub>H<sub>l</sub></b><br> • Relates Temperature gradient <b>∇T</b>, Magnetic field <b>H</b> and Magnetic field <b>H</b> with Heat flux <b>q</b>. <br> • Antisymmetric part of magneto-heat conductivity tensor S<sup>(a)</sup><sub>ijkl</sub>=(S<sub>ijkl</sub>-S<sub>jikl</sub>)/2. <br> • Intrinsic symmetry symbol: <b>a{V<sup>2</sup>}[V<sup>2</sup>]</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • S<sup>(a)</sup><sub><b>i</b><b>j</b>kl</sub> = -S<sup>(a)</sup><sub><b>j</b><b>i</b>kl</sub> <br> • S<sup>(a)</sup><sub>ij<b>k</b><b>l</b></sub> = S<sup>(a)</sup><sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: S<sup>(a)</sup><sub>ijkl</sub> → S<sup>(a)</sup><sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_169' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Magneto Peltier effect P<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>q<sub>i</sub>=P<sub>ijkl</sub>H<sub>k</sub>H<sub>l</sub>J<sub>j</sub></b><br> • Relates current density and magnetic field and magnetic field with heat flux.<br> • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the magneto-Seebeck effect tensor α.<br> •1'P<sub>ijkl</sub>=α<sub>jikl</sub> <br> • Intrinsic symmetry symbol: <b>(V<sup>2</sup>[V<sup>2</sup>])*</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • P<sub>ij<b>k</b><b>l</b></sub> = P<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: P<sub>ijkl</sub> → P<sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> <div id='legend_170' style="display:none"><p style="font-size:25px"><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br></p><center><table style="width:500px" bgcolor="#CCEEFF"><tr><td><b><center><big>Information about the selected tensor</big></center></b><br> • 4 <sup>th</sup> rank Magneto Seebeck effect α<sub>ijkl</sub><br> • Polar tensor invariant under time-reversal symmetry operation<br> • Defining equation: <b>E<sub>i</sub>=α<sub>ijkl</sub>∇<sub>j</sub>TH<sub>k</sub>H<sub>l</sub></b><br> • Relates temperature gradient ∇T and magnetic field and magnetic field with electric field.<br> • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the magneto-Peltier effect tensor P.<br> •1'α<sub>ijkl</sub>=P<sub>jikl</sub> <br> • Intrinsic symmetry symbol: <b>(V<sup>2</sup>[V<sup>2</sup>])*</b><br> • Symmetrized indexes due to intrinsic symmetry: <br> • α<sub>ij<b>k</b><b>l</b></sub> = α<sub>ij<b>l</b><b>k</b></sub> <br> • Abbreviated notation: α<sub>ijkl</sub> → α<sub>αβγ</sub><br> • i → α<br> • j → β<br> • kl → γ<br> Convention used for the substitutions:<br> 11 → 1 | 22 → 2 | 33 → 3 | 23,32 → 4 | 13,31 → 5 | 12,21 → 6</td></tr></table></center><br><br></div> </td></tr></table><!-- This program provides the systematic absences for non-polarized neutron magnetic diffraction corresponding to any Shubnikov magnetic space group. The program can also provide a list of magnetic space groups that are compatible with a set of systematic absences introduced by the user. (For incommensurate cases, the program provides the systematic absences for a superspace group defined by the user) <br/><br/> This program can be used in three different ways: <ul> <li><font color="darkred"><b>Option A</b></font></li> <br> <b>Input data :</b> <br><br> <ul><li> A Magnetic Space Group in standard setting (<a href="/cryst/magnext_help.html#bns_og">BNS or OG</a>), given by means of its label, or chosen from a table displayed when you click on the button [<b>choose it </b>].</li></ul> <br> <b>Output data :</b> <br><br> <ul><li>The systematic absences of the group in the chosen setting.</li></ul> </ul> <ul> <li><font color="darkred"><b>Option B</b></font></li> <br> <b>Input data :</b> <br><br> <ul><li>A magnetic space group specified by means of the <a href="/cryst/magnext_help.html#Symmetry_cards">symmetry cards</a> of a set of generators of the space group.</li></ul> <br> <b>Output data :</b> <br><br> <ul><li>The systematic absences of the group. The corresponding magnetic space group in the standard settings (<a href="/cryst/magnext_help.html#bns_og">BNS and OG</a>) and the transformation matrices are also given.</li></ul> </ul> <ul> <li><font color="darkred"><b>Option C</b></font></li> <br> <b>Input data :</b> <br><br> <ul><li>A set of systematic absences in <a href="/cryst/magnext_help.html#bns_og">BNS or OG</a> setting.</li></ul> <br> <b>Output data :</b> <br><br> <ul><li>A list of Magnetic Space Group compatible with the chosen systematic absences.</li></ul> <br><br>For more details click on <a href="/cryst/magnext_help.html">help</a> --> </ul> </td> </tr> </table> </td> <td width="65%"> <form method="post" action="/cgi-bin/cryst/programs/nph-mtensor" name="form1"> <input type="hidden" name="magnum" value=""> <!-- # Luis's change. 2018/11/06. Remove the possibility of asking for domain-related structures. <br> <center><i><a href="mtensor_domain.pl">Introduce a parent space group and a magnetic space subgroup and calculate tensors of the resulting domain-related equivalent structures (not available for TRANSPORT TENSORS)</a></i></center><br> --> <ul> <!-- <input type="hidden" name="type" value="list" checked> <input type="hidden" name="type2" value="list"> --> <!-- # Luis's change. Text change 2018_11_09 </font><font color="red"><b> Please, enter a magnetic point group by one of these ways:</b></font><br><br> # Substituted by the next line --> </font><font color="red"><b> Please, enter a magnetic point group or a magnetic space group:</b></font><br><br> </ul> <!-- # Luis's change. 2018_11_09. Remove the following line. It is related with other changes. Now there is only one way to introduce the group. <center><input type="radio" name="input_type" value="standard" onClick="javascript:showbyhandno();" checked><b>Choose a magnetic point group:</b></center><br> --> <!-- <input type="radio" name="input_way" value="standard" checked><i>In standard settings:</i><br><br>--> <table width="100%" class="grey"> <tr> <td align=left style="white-space:nowrap;"> Magnetic Point or Space Group number: <input type="button" name="choose" value="choose it" onClick="location.href='/cryst/mtensor.php?from=mtensor&magtr=3'"></nobr> </td> </tr> </table> <!-- <br><center><input type="checkbox" name="nonconv" value="nonconv" onClick="javascript:showNonconv();"><i>Non-conventional setting </i><br><br></center> --> <div id='nonconvDiv' style="display:none"> <table class="grey" width=100%> <tr> <td colspan=6 align=center><a href="nph-doc-trmat">Transformation to the standard setting</a></td> </tr> <tr> <td colspan=6 align=center><i><a href="nph-doc-trmat#abcxyz">abc</a></i> format: <input type="text" name="trm" value="a,b,c"></td> </tr> <tr><td colspan=6 align=center><br>- OR -</td></tr> <tr> <td> </td> <td align="center" colspan="3"> <TABLE border="0" width="100%" cellpadding="10"> <TR> <TD ALIGN="center" colspan="1"> <small>Transformation matrix</small> <TABLE ALIGN="center"> <TR> <TD ALIGN="right"><INPUT TYPE="text" NAME="x1" VALUE="1" SIZE="6"></TD> <TD ALIGN="right"><INPUT TYPE="text" NAME="x2" VALUE="0" SIZE="6"></TD> <TD ALIGN="right"><INPUT TYPE="text" NAME="x3" VALUE="0" SIZE="6"></TD> </TR> <TR> <TD ALIGN="right"><INPUT TYPE="text" NAME="y1" VALUE="0" SIZE="6"></TD> <TD ALIGN="right"><INPUT TYPE="text" NAME="y2" VALUE="1" SIZE="6"></TD> <TD ALIGN="right"><INPUT TYPE="text" NAME="y3" VALUE="0" SIZE="6"></TD> </TR> <TR> <TD ALIGN="right"><INPUT TYPE="text" NAME="z1" VALUE="0" SIZE="6"></TD> <TD ALIGN="right"><INPUT TYPE="text" NAME="z2" VALUE="0" SIZE="6"></TD> <TD ALIGN="right"><INPUT TYPE="text" NAME="z3" VALUE="1" SIZE="6"></TD> </TR> </TABLE> </TD> <!-- <TD ALIGN="center" colspan="1"> <small>Origin Shift</small> <TABLE ALIGN="center"> <TR ALIGN="right"><TD><INPUT TYPE="text" NAME="x4" VALUE="0" SIZE="6" MAXLENGTH="6"></TD></TR> <TR ALIGN="right"><TD><INPUT TYPE="text" NAME="y4" VALUE="0" SIZE="6" MAXLENGTH="6"></TD></TR> <TR ALIGN="right"><TD><INPUT TYPE="text" NAME="z4" VALUE="0" SIZE="6" MAXLENGTH="6"></TD></TR> </TABLE> </TD>--> </TR> </TABLE> </td> </tr> <tr><td colspan=6 align=center><small>[If the matrix format is different than identity, it will be preferred over the <i>abc</i> format]</small></td></tr> </table><br> <INPUT TYPE="hidden" NAME="x4" VALUE="0"> <INPUT TYPE="hidden" NAME="y4" VALUE="0"> <INPUT TYPE="hidden" NAME="z4" VALUE="0"> <!-- <table width="100%"> <tr> <td align="center"><input type="submit" name="nc" value="Submit"></TD> </tr> </table> --> </div> <!-- <br><b><center><input type="radio" name="input_type" value="by_hand" onClick="javascript:showbyhand();">Introduce a magnetic point group by hand:</b></center><br> <div id='byhandDiv' style="display:none"> <table width="100%" class="grey" cellspacing="10" cellpadding="10"> <tr><td><center> <i><a href="/cryst/magnext_help.html#generalized">Choose the setting</a> of the magnetic space group: </i><br><input type="radio" name="BNSOG" value="BNS" onchange="setTrans('nav2','text3')" checked>BNS | <input type="radio" name="BNSOG" value="OG" onchange="setTrans('nav2','text4')">OG<br><br></form> <form method="post" action="/cgi-bin/cryst/programs/nph-magnext" name="form2"> <input type="hidden" name="type" value="user"> <div id="nav2"></div> <input type="radio" name="basic_x" value="x+1,yz,+1" checked>(1|1,0,0) or <font color="red">(1'|1,0,0)</font><input type="radio" name="basic_x" value="x+1,y,z,-1"><br> <input type="radio" name="basic_y" value="x,y+1,z,+1" checked>(1|0,1,0) or <font color="red">(1'|0,1,0)</font><input type="radio" name="basic_y" value="x,y+1,z,-1"><br> <input type="radio" name="basic_z" value="x,y,z+1,+1" checked>(1|0,0,1) or <font color="red">(1'|0,0,1)</font><input type="radio" name="basic_z" value="x,y,z+1,-1"><br> <center>Symmetry operations:<br><small> <i>Only a set of generators of the point group in <a href="/cryst/magnext_help.html#Symmetry_cards">symmetry cards notation</a> is necessary</i></small> <textarea cols="80" rows="14" name="sym_cards"> x,-y,-z,+1 -x,-y,z,-1 -x,y,-z,-1</textarea> <textarea cols="45" rows="17" name="sym_cards"> x,y,z,+1 x,-y,-z,+1 -x,-y,z+0.5,-1 -x,y+0.5,-z,-1</textarea> </td> </tr> </table> <br> --> </div> <br><ul><font color="red"><b> Please, choose a tensor by one of these ways:</b></font></ul> <br><ul><input type="radio" id="tensor_type" name="tensor_type" value="standard" checked><font color="red"><b> Choose a tensor from the lists</b></font></ul> <center><input type="checkbox" name="All" value="all">Show symmetry-adapted tensors for all the magnetic point groups in standard setting<br><i><small>(this overrides previous choices)</small></i><br></center><br><center><b><a href="javascript:;" onClick="javascript:showHideElem('eq_block');">EQUILIBRIUM TENSORS</a></b></center><div id="eq_block" style="display:none"><center><br><table width="100%" border="5" align="center" cellspacing="10"><tr><th>Rank</th><th><a class="blue" href="/html/cryst/mtensor_help.html#intrinsic">Intrinsic symmetry</a></th><th>Tensor description</th><th>Defining equation</th><th>Select</th></tr><tr><td align="center" rowspan=15>1</td><td align="center" rowspan=6>V</td><td align="center">Electric polarization vector P<sub>i</sub></td><td align="center">-</td><td align="center"><input type="radio" name="choose_tensor" value="polarization" checked="checked" onChange="active_legend(1);"></td></tr> <tr><td align="center">Electrocaloric effect tensor p<sub>i</sub></td><td align="center">ΔS=p<sub>i</sub>E<sub>i</sub></td><td align="center"><input type="radio" name="choose_tensor" value="electrocaloric" onChange="active_legend(2);"></td></tr> <tr><td align="center">Electrothermal effect tensor t<sub>i</sub></td><td align="center">E<sub>i</sub>=-t<sub>i</sub>ΔT</td><td align="center"><input type="radio" name="choose_tensor" value="electrothermal" onChange="active_legend(3);"></td></tr> <tr><td align="center">Heat of polarization tensor t<sub>i</sub></td><td align="center">ΔS=t<sub>i</sub>ΔP<sub>i</sub></td><td align="center"><input type="radio" name="choose_tensor" value="polarization_heat" onChange="active_legend(4);"></td></tr> <tr><td align="center">Piezoelectric polarization tensor under hydrostatic pressure d<sub>ijj</sub></td><td align="center">P<sub>i</sub>=-d<sub>ijj</sub>p</td><td align="center"><input type="radio" name="choose_tensor" value="hydr_piezo_polarization" onChange="active_legend(5);"></td></tr> <tr><td align="center">Pyroelectric tensor p<sub>i</sub></td><td align="center">ΔP<sub>i</sub>=p<sub>i</sub>ΔT</td><td align="center"><input type="radio" name="choose_tensor" value="pyroelectric" onChange="active_legend(6);"></td></tr> <tr><td align="center" rowspan=1>eV</td><td align="center">Axial toroidal moment A<sub>i</sub></td><td align="center">-</td><td align="center"><input type="radio" name="choose_tensor" value="axialtoroidic" onChange="active_legend(7);"></td></tr> <tr><td align="center" rowspan=3>aV</td><td align="center">Polar Toroidal moment T<sub>i</sub></td><td align="center">-</td><td align="center"><input type="radio" name="choose_tensor" value="toroidal" onChange="active_legend(8);"></td></tr> <tr><td align="center">Pyrotoroidic tensor r<sub>i</sub></td><td align="center">T<sub>i</sub>=r<sub>i</sub>ΔT</td><td align="center"><input type="radio" name="choose_tensor" value="pyrotoroidic" onChange="active_legend(9);"></td></tr> <tr><td align="center">Toroidalcaloric tensor r<sup>T</sup><sub>i</sub></td><td align="center">ΔS=r<sup>T</sup><sub>i</sub>S<sub>i</sub></td><td align="center"><input type="radio" name="choose_tensor" value="toroidalcaloric" onChange="active_legend(10);"></td></tr> <tr><td align="center" rowspan=5>aeV</td><td align="center">Heat of Magnetization tensor t<sub>i</sub></td><td align="center">ΔS=t<sub>i</sub>M<sub>i</sub></td><td align="center"><input type="radio" name="choose_tensor" value="magnetization_heat" onChange="active_legend(11);"></td></tr> <tr><td align="center">Magnetization vector M<sub>i</sub></td><td align="center">-</td><td align="center"><input type="radio" name="choose_tensor" value="magnetization" onChange="active_legend(12);"></td></tr> <tr><td align="center">Magnetocaloric tensor q<sup>T</sup><sub>i</sub></td><td align="center">ΔS=q<sup>T</sup><sub>i</sub>H<sub>i</sub></td><td align="center"><input type="radio" name="choose_tensor" value="magnetocaloric" onChange="active_legend(13);"></td></tr> <tr><td align="center">Magnetothermal effect tensor t<sub>i</sub></td><td align="center">H<sub>i</sub>=-t<sub>i</sub>ΔT</td><td align="center"><input type="radio" name="choose_tensor" value="magnetothermal" onChange="active_legend(14);"></td></tr> <tr><td align="center">Pyromagnetic tensor q<sub>i</sub> (direct effect)</td><td align="center">M<sub>i</sub>=q<sub>i</sub>ΔT</td><td align="center"><input type="radio" name="choose_tensor" value="pyromagnetic" onChange="active_legend(15);"></td></tr> <tr><td align="center" rowspan=21>2</td><td align="center" rowspan=13>[V<sup>2</sup>]</td><td align="center">Dielectric impermeability tensor β<sub>ij</sub></td><td align="center">E<sub>i</sub>=β<sub>ij</sub>D<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="impermeability" onChange="active_legend(16);"></td></tr> <tr><td align="center">Dielectric permittivity tensor ε<sub>ij</sub></td><td align="center">D<sub>i</sub>=ε<sub>ij</sub>E<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="permittivity" onChange="active_legend(17);"></td></tr> <tr><td align="center">Dielectric susceptibility tensor χ<sup>e</sup><sub>ij</sub></td><td align="center">P<sub>i</sub>=χ<sup>e</sup><sub>ij</sub>E<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="susceptibility" onChange="active_legend(18);"></td></tr> <tr><td align="center">Heat of deformation tensor β<sub>ij</sub></td><td align="center">ΔS=β<sub>ij</sub>ε<sub>ij</sub></td><td align="center"><input type="radio" name="choose_tensor" value="deformation_heat" onChange="active_legend(19);"></td></tr> <tr><td align="center">Magnetic permeability tensor μ<sup>m</sup><sub>ij</sub></td><td align="center">B<sub>i</sub>=μ<sup>m</sup><sub>ij</sub>H<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="permeability" onChange="active_legend(20);"></td></tr> <tr><td align="center">Magnetic susceptibility tensor χ<sup>m</sup><sub>ij</sub></td><td align="center">M<sub>i</sub>=χ<sup>m</sup><sub>ij</sub>H<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="susceptibility_mag" onChange="active_legend(21);"></td></tr> <tr><td align="center">Piezocaloric effect tensor α<sub>ij</sub></td><td align="center">ΔS=α<sub>ij</sub>σ<sub>ij</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezocaloric" onChange="active_legend(22);"></td></tr> <tr><td align="center">Strain by hydrostatic pressure s<sub>ijkk</sub></td><td align="center">ε<sub>ij</sub>=-s<sub>ijkk</sub>p</td><td align="center"><input type="radio" name="choose_tensor" value="compressibility" onChange="active_legend(23);"></td></tr> <tr><td align="center">Strain tensor ε<sub>ij</sub></td><td align="center">-</td><td align="center"><input type="radio" name="choose_tensor" value="strain" onChange="active_legend(24);"></td></tr> <tr><td align="center">Susceptibility inverse tensor <font style= "text-decoration: overline;">χ</font><sub>ij</sub> (inverse effect)</td><td align="center">H<sub>i</sub>=<font style= "text-decoration: overline;">χ</font><sub>ij</sub>M<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="susceptibility_inv" onChange="active_legend(25);"></td></tr> <tr><td align="center">Thermal expansion tensor α<sub>ij</sub></td><td align="center">ε<sub>ij</sub>=α<sub>ij</sub>ΔT</td><td align="center"><input type="radio" name="choose_tensor" value="t_expansion" onChange="active_legend(26);"></td></tr> <tr><td align="center">Thermoelasticity tensor β<sub>ij</sub></td><td align="center">σ<sub>ij</sub>=-β<sub>ij</sub>ΔT</td><td align="center"><input type="radio" name="choose_tensor" value="thermoelasticity" onChange="active_legend(27);"></td></tr> <tr><td align="center">Toroidic susceptibility tensor τ<sub>ij</sub></td><td align="center">T<sub>i</sub>=τ<sub>ij</sub>S<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="susceptibility_tor" onChange="active_legend(28);"></td></tr> <tr><td align="center" rowspan=2>eV<sup>2</sup></td><td align="center">Magnetotoroidic tensor ζ<sub>ij</sub> (direct effect)</td><td align="center">M<sub>i</sub>=ζ<sub>ij</sub>S<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="magnetotoroidic" onChange="active_legend(29);"></td></tr> <tr><td align="center">Magnetotoroidic tensor ζ<sup>T</sup><sub>ij</sub> (inverse effect)</td><td align="center">T<sub>i</sub>=ζ<sup>T</sup><sub>ij</sub>H<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="magnetotoroidic_inv" onChange="active_legend(30);"></td></tr> <tr><td align="center" rowspan=2>aV<sup>2</sup></td><td align="center">Electrotoroidic tensor θ<sub>ij</sub> (direct effect)</td><td align="center">P<sub>i</sub>=θ<sub>ij</sub>S<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="electrotoroidic" onChange="active_legend(31);"></td></tr> <tr><td align="center">Electrotoroidic tensor θ<sup>T</sup><sub>ij</sub> (inverse effect)</td><td align="center">T<sub>i</sub>=θ<sup>T</sup><sub>ij</sub>E<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="electrotoroidic_inv" onChange="active_legend(32);"></td></tr> <tr><td align="center" rowspan=4>aeV<sup>2</sup></td><td align="center">Isothermal magnetoelectric effect tensor A<sub>ij</sub></td><td align="center">M<sub>i</sub>=A<sub>ij</sub>D<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="isothermal_magnetoelectric" onChange="active_legend(33);"></td></tr> <tr><td align="center">Isothermal magnetoelectric effect tensor A<sup>T</sup><sub>ij</sub> (inverse effect)</td><td align="center">E<sub>i</sub>=-A<sup>T</sup><sub>ij</sub>H<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="isothermal_magnetoelectric_inv" onChange="active_legend(34);"></td></tr> <tr><td align="center">Magnetoelectric tensor α<sub>ij</sub> (direct effect)</td><td align="center">M<sub>i</sub>=α<sub>ij</sub>E<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="magnetoelectric" onChange="active_legend(35);"></td></tr> <tr><td align="center">Magnetoelectric tensor α<sup>T</sup><sub>ij</sub> (inverse effect)</td><td align="center">P<sub>i</sub>=α<sup>T</sup><sub>ij</sub>H<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="magnetoelectric_inv" onChange="active_legend(36);"></td></tr> <tr><td align="center" rowspan=13>3</td><td align="center" rowspan=3>[V<sup>2</sup>]V</td><td align="center">Acoustoelectricity tensor ρ<sub>ijk</sub></td><td align="center">σ<sub>ij</sub>=ρ<sub>ijk</sub>J<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="acoustoelectricity" onChange="active_legend(37);"></td></tr> <tr><td align="center">Isothermal piezoelectric tensor e<sup>T</sup><sub>ijk</sub> (inverse effect)</td><td align="center">σ<sub>ij</sub>=-e<sup>T</sup><sub>ijk</sub>E<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="isothermal_piezoelectric_inv" onChange="active_legend(38);"></td></tr> <tr><td align="center">Piezoelectric tensor d<sup>T</sup><sub>ijk</sub> (inversee ffect) d<sup>T</sup><sub>ijk</sub></td><td align="center">ε<sub>ij</sub>=d<sup>T</sup><sub>ijk</sub>E<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezoelectric_inv" onChange="active_legend(39);"></td></tr> <tr><td align="center" rowspan=3>V[V<sup>2</sup>]</td><td align="center">Isothermal piezoelectric tensor e<sub>ijk</sub> (direct effect)</td><td align="center">D<sub>i</sub>=e<sub>ijk</sub>ε<sub>jk</sub></td><td align="center"><input type="radio" name="choose_tensor" value="isothermal_piezoelectric" onChange="active_legend(40);"></td></tr> <tr><td align="center">Piezoelectric tensor d<sub>ijk</sub>(directeffect) d<sub>ijk</sub></td><td align="center">P<sub>i</sub>=d<sub>ijk</sub>σ<sub>jk</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezoelectric" onChange="active_legend(41);"></td></tr> <tr><td align="center">Second order magnetoelectric tensor α<sup>T</sup><sub>ijk</sub> (inverse effect)</td><td align="center">P<sub>i</sub>=α<sup>T</sup><sub>ijk</sub>H<sub>j</sub>H<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="magnetoelectric_inv_second" onChange="active_legend(42);"></td></tr> <tr><td align="center" rowspan=1>a[V<sup>2</sup>]V</td><td align="center">Piezotoroidic tensor γ<sub>ijk</sub> (direct effect)</td><td align="center">ε<sub>ij</sub>=γ<sub>ijk</sub>S<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezotoroidic" onChange="active_legend(43);"></td></tr> <tr><td align="center" rowspan=1>aV[V<sup>2</sup>]</td><td align="center">Piezotoroidic tensor γ<sup>T</sup><sub>ijk</sub> (inverse effect)</td><td align="center">T<sub>i</sub>=γ<sup>T</sup><sub>ijk</sub>σ<sub>jk</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezotoroidic_inv" onChange="active_legend(44);"></td></tr> <tr><td align="center" rowspan=2>ae[V<sup>2</sup>]V</td><td align="center">Isothermal piezomagnetic tensor e<sup>mT</sup><sub>ijk</sub> (inverse effect)</td><td align="center">σ<sub>ij</sub>=-e<sup>mT</sup><sub>ijk</sub>H<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="isothermal_piezomagnetic_inv" onChange="active_legend(45);"></td></tr> <tr><td align="center">Piezomagnetic tensor Λ<sup>T</sup><sub>ijk</sub> (inverse effect)</td><td align="center">ε<sub>ij</sub>=Λ<sup>T</sup><sub>ijk</sub>H<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezomagnetic_inv" onChange="active_legend(46);"></td></tr> <tr><td align="center" rowspan=3>aeV[V<sup>2</sup>]</td><td align="center">Isothermal piezomagnetic tensor e<sup>m</sup><sub>ijk</sub> (direct effect)</td><td align="center">M<sub>i</sub>=e<sup>m</sup><sub>ijk</sub>ε<sub>jk</sub></td><td align="center"><input type="radio" name="choose_tensor" value="isothermal_piezomagnetic" onChange="active_legend(47);"></td></tr> <tr><td align="center">Piezomagnetic tensor Λ<sub>ijk</sub> (direct effect)</td><td align="center">M<sub>i</sub>=Λ<sub>ijk</sub>σ<sub>jk</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezomagnetic" onChange="active_legend(48);"></td></tr> <tr><td align="center">Second order magnetoelectric tensor α<sub>ijk</sub> (direct effect)</td><td align="center">M<sub>i</sub>=α<sub>ijk</sub>E<sub>j</sub>E<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="magnetoelectric_second" onChange="active_legend(49);"></td></tr> <tr><td align="center" rowspan=12>4</td><td align="center" rowspan=3>[[V<sup>2</sup>][V<sup>2</sup>]]</td><td align="center">Elastic compliance tensor S<sub>ijkl</sub></td><td align="center">ε<sub>ij</sub>=S<sub>ijkl</sub>σ<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="elasticity" onChange="active_legend(50);"></td></tr> <tr><td align="center">Elastic stiffness tensor C<sub>ijkl</sub> C<sub>ijkl</sub></td><td align="center">σ<sub>ij</sub>=C<sub>ijkl</sub>ε<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="elasticity_inv" onChange="active_legend(51);"></td></tr> <tr><td align="center">Viscosity tensor η<sub>ijkl</sub></td><td align="center">σ<sub>ij</sub>=η<sub>ijkl</sub>∂ε<sub>kl</sub>/∂t</td><td align="center"><input type="radio" name="choose_tensor" value="viscosity" onChange="active_legend(52);"></td></tr> <tr><td align="center" rowspan=3>[V<sup>2</sup>][V<sup>2</sup>]</td><td align="center">Damage effect tensor D<sub>ijkl</sub></td><td align="center">σ<sub>ij</sub>=D<sub>ijkl</sub>σ<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="damage_effect" onChange="active_legend(53);"></td></tr> <tr><td align="center">Electrostriction tensor γ<sub>ijkl</sub></td><td align="center">ε<sub>ij</sub>=γ<sub>ijkl</sub>E<sub>k</sub>E<sub>l</sub></td><td align="center"><input type="radio" name="choose_tensor" value="electrostriction" onChange="active_legend(54);"></td></tr> <tr><td align="center">Magnetostriction tensor N<sub>ijkl</sub></td><td align="center">ε<sub>ij</sub>=N<sub>ijkl</sub>M<sub>k</sub>M<sub>l</sub></td><td align="center"><input type="radio" name="choose_tensor" value="magnetostriction" onChange="active_legend(55);"></td></tr> <tr><td align="center" rowspan=1>V[V<sup>3</sup>]</td><td align="center">Flexoelectric (modified) μ<sub>ijkl</sub></td><td align="center">P<sub>i</sub>=μ<sub>ijkl</sub>∇<sub>j</sub>ε<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="flexoelectricNew" onChange="active_legend(56);"></td></tr> <tr><td align="center" rowspan=3>V<sup>2</sup>[V<sup>2</sup>]</td><td align="center">Elastothermoelectric power tensor E<sub>ijkl</sub></td><td align="center">ΔΣ<sub>ij</sub>=E<sub>ijkl</sub>ε<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="elastothermoelectric" onChange="active_legend(57);"></td></tr> <tr><td align="center">Flexoelectric tensor μ<sub>ijkl</sub></td><td align="center">P<sub>i</sub>=μ<sub>ijkl</sub>∇<sub>j</sub>ε<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="flexoelectric" onChange="active_legend(58);"></td></tr> <tr><td align="center">Piezothermoelectric power tensor Π<sub>ijkl</sub></td><td align="center">ΔΣ<sub>ij</sub>=Π<sub>ijkl</sub>σ<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezothermoelectric" onChange="active_legend(59);"></td></tr> <tr><td align="center" rowspan=2>aeV<sup>2</sup>[V<sup>2</sup>]</td><td align="center">Flexomagnetic tensor Q<sub>ijkl</sub></td><td align="center">M<sub>i</sub>=Q<sub>ijkl</sub>∇<sub>j</sub>σ<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="flexomagnetic" onChange="active_legend(60);"></td></tr> <tr><td align="center">Piezomagnetoelectric tensor π<sub>ijkl</sub></td><td align="center">P<sub>i</sub>=π<sub>ijkl</sub>H<sub>j</sub>σ<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezomagnetoelectric" onChange="active_legend(61);"></td></tr> <tr><td align="center" rowspan=2>5</td><td align="center" rowspan=1>[[V<sup>2</sup>][V<sup>2</sup>]]V</td><td align="center">Acoustic activity tensor b<sub>ijklm</sub></td><td align="center">σ<sub>ij</sub>=b<sub>ijklm</sub>∇<sub>m</sub>ε<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="acoustic_activity" onChange="active_legend(62);"></td></tr> <tr><td align="center" rowspan=1>V[[V<sup>2</sup>][V<sup>2</sup>]]</td><td align="center">Second-order piezoelectric tensor d<sub>ijklm</sub></td><td align="center">P<sub>i</sub>=d<sub>ijklm</sub>σ<sub>jk</sub>σ<sub>lm</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezoelectric_quad" onChange="active_legend(63);"></td></tr> <tr><td align="center" rowspan=2>6</td><td align="center" rowspan=2>[[V<sup>2</sup>][V<sup>2</sup>][V<sup>2</sup>]]</td><td align="center">Third order elastic compliance tensor S<sub>ijklmn</sub></td><td align="center">ε<sub>ij</sub>=S<sub>ijklmn</sub>σ<sub>kl</sub>σ<sub>mn</sub></td><td align="center"><input type="radio" name="choose_tensor" value="third_order_elastic" onChange="active_legend(64);"></td></tr> <tr><td align="center">Third order elastic stiffness tensor C<sub>ijklmn</sub></td><td align="center">σ<sub>ij</sub>=C<sub>ijklmn</sub>ε<sub>kl</sub>ε<sub>mn</sub></td><td align="center"><input type="radio" name="choose_tensor" value="third_order_elastic_inv" onChange="active_legend(65);"></td></tr> <tr><td align="center" rowspan=3>8</td><td align="center" rowspan=1>[[[V<sup>2</sup>][V<sup>2</sup>]][[V<sup>2</sup>][V<sup>2</sup>]]]</td><td align="center">Damage tensor R<sub>ijklmnpq</sub></td><td align="center">C<sub>ijkl</sub>=R<sub>ijklmnpq</sub>C<sub>mnpq</sub></td><td align="center"><input type="radio" name="choose_tensor" value="damage" onChange="active_legend(66);"></td></tr> <tr><td align="center" rowspan=2>[[V<sup>2</sup>][V<sup>2</sup>][V<sup>2</sup>][V<sup>2</sup>]]</td><td align="center">Fourth order elastic compliance tensor S<sub>ijklmnpq</sub></td><td align="center">ε<sub>ij</sub>=S<sub>ijklmnpq</sub>σ<sub>kl</sub>σ<sub>mn</sub>σ<sub>pq</sub></td><td align="center"><input type="radio" name="choose_tensor" value="fourth_order_elastic" onChange="active_legend(67);"></td></tr> <tr><td align="center">Fourth order elastic stiffness tensor C<sub>ijklmnpq</sub></td><td align="center">σ<sub>ij</sub>=C<sub>ijklmnpq</sub>ε<sub>kl</sub>ε<sub>mn</sub>ε<sub>pq</sub></td><td align="center"><input type="radio" name="choose_tensor" value="fourth_order_elastic_inv" onChange="active_legend(68);"></td></tr> </table></div><br></center><center><b><a href="javascript:;" onClick="javascript:showHideElem('opt_block');">OPTICAL TENSORS</a></b><br><div id="opt_block" style="display:none"><br><table border="5" width="100%" align="center"><tr><th>Rank</th><th><a class="blue" href="/html/cryst/mtensor_help.html#intrinsic">Intrinsic symmetry</a></th><th>Tensor description</th><th>Defining equation</th><th>Select</th></tr><tr><td align="center" rowspan=7>2</td><td align="center" rowspan=3>[V<sup>2</sup>]</td><td align="center">Index ellipsoid β<sub>ij</sub></td><td align="center">-</td><td align="center"><input type="radio" name="choose_tensor" value="Indexellipsoid" onChange="active_legend(69);"></td></tr> <tr><td align="center">Second-order thermo-optical effect tensor T<sub>ij</sub>.</td><td align="center">Δβ<sub>ij</sub>=T<sub>ij</sub>(ΔT)<sup>2</sup></td><td align="center"><input type="radio" name="choose_tensor" value="thermooptical_quad" onChange="active_legend(70);"></td></tr> <tr><td align="center">Thermo-optical effect tensor t<sub>ij</sub></td><td align="center">Δβ<sub>ij</sub>=t<sub>ij</sub>ΔT</td><td align="center"><input type="radio" name="choose_tensor" value="thermooptical" onChange="active_legend(71);"></td></tr> <tr><td align="center" rowspan=1>V<sup>2</sup></td><td align="center">Verdet tensor (related to Faraday effect) V<sub>ij</sub></td><td align="center">Δβ<sub>ij</sub>=ε<sub>ijm</sub>V<sub>mk</sub>H<sub>k</sub> </td><td align="center"><input type="radio" name="choose_tensor" value="verdet" onChange="active_legend(72);"></td></tr> <tr><td align="center" rowspan=2>e[V<sup>2</sup>]</td><td align="center">Optical activity tensor g<sub>ij</sub></td><td align="center">G=g<sub>ij</sub>l<sub>i</sub>l<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="gyration" onChange="active_legend(73);"></td></tr> <tr><td align="center">Thermogyration tensor g<sub>ij</sub></td><td align="center">Δg<sub>ij</sub>=g<sub>ij</sub>T</td><td align="center"><input type="radio" name="choose_tensor" value="thermogyration" onChange="active_legend(74);"></td></tr> <tr><td align="center" rowspan=1>a{V<sup>2</sup>}</td><td align="center">Spontaneous Faraday effect β<sub>ij</sub></td><td align="center">-</td><td align="center"><input type="radio" name="choose_tensor" value="spontaneousFaraday" onChange="active_legend(75);"></td></tr> <tr><td align="center" rowspan=8>3</td><td align="center" rowspan=1>{V<sup>2</sup>}V</td><td align="center">Natural optical activity γ<sub>ijk</sub></td><td align="center">Δβ<sub>ij</sub>=i γ<sub>ijk</sub>k<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="naturaloptic" onChange="active_legend(76);"></td></tr> <tr><td align="center" rowspan=2>[V<sup>2</sup>]V</td><td align="center">Pockels (electrooptic) effect z<sub>ijk</sub></td><td align="center">Δβ<sub>ij</sub>=z<sub>ijk</sub>E<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="pockels" onChange="active_legend(77);"></td></tr> <tr><td align="center">Thermoelectro-optical effect tensor r<sup>(T)</sup><sub>ijk</sub></td><td align="center">Δβ<sub>ij</sub>=r<sup>(T)</sup><sub>ijk</sub>E<sub>k</sub>ΔT</td><td align="center"><input type="radio" name="choose_tensor" value="thermoelectrooptical" onChange="active_legend(78);"></td></tr> <tr><td align="center" rowspan=2>e{V<sup>2</sup>}V</td><td align="center">Magneto-optical tensor (Faraday effect) F<sub>ijk</sub></td><td align="center">Δβ<sub>ij</sub>=F<sub>ijk</sub>H<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="faraday" onChange="active_legend(79);"></td></tr> <tr><td align="center">Thermomagneto-optical effect tensor f<sup>(T)</sup><sub>ijk</sub></td><td align="center">Δβ<sub>ij</sub>=f<sup>(T)</sup><sub>ijk</sub>H<sub>k</sub>ΔT</td><td align="center"><input type="radio" name="choose_tensor" value="thermomagnetooptical" onChange="active_legend(80);"></td></tr> <tr><td align="center" rowspan=1>e[V<sup>2</sup>]V</td><td align="center">Electrogyration effect tensor γ<sub>ijk</sub></td><td align="center">Δg<sub>ij</sub>=γ<sub>ijk</sub>E<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="electrogyrational" onChange="active_legend(81);"></td></tr> <tr><td align="center" rowspan=1>a[V<sup>2</sup>]V</td><td align="center">Spontaneous Gyrotropic Birefringence γ<sub>ijk</sub></td><td align="center">Δβ<sub>ij</sub>=i γ<sub>ijk</sub>k<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="SpontGyrotropicBirefringence" onChange="active_legend(82);"></td></tr> <tr><td align="center" rowspan=1>ae[V<sup>2</sup>]V</td><td align="center">Magneto-optic Kerr effect q<sub>ijk</sub></td><td align="center">Δβ<sub>ij</sub>=q<sub>ijk</sub>H<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="kerr_mag" onChange="active_legend(83);"></td></tr> <tr><td align="center" rowspan=11>4</td><td align="center" rowspan=6>[V<sup>2</sup>][V<sup>2</sup>]</td><td align="center">Birefringence in Cubic Crystals γ<sub>ijkl</sub></td><td align="center">Δβ<sub>ij</sub>= γ<sub>ijlm</sub>k<sub>l</sub>k<sub>m</sub></td><td align="center"><input type="radio" name="choose_tensor" value="BirefringenceCubic" onChange="active_legend(84);"></td></tr> <tr><td align="center">Elasto-optical tensor p<sub>ijkl</sub></td><td align="center">Δβ<sub>ij</sub>=p<sub>ijkl</sub>ε<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="elastooptical" onChange="active_legend(85);"></td></tr> <tr><td align="center">Kerr effect tensor R<sub>ijkl</sub></td><td align="center">Δβ<sub>ij</sub>=R<sub>ijkl</sub>E<sub>k</sub>E<sub>l</sub></td><td align="center"><input type="radio" name="choose_tensor" value="kerr" onChange="active_legend(86);"></td></tr> <tr><td align="center">Piezo-optical tensor π<sub>ijkl</sub></td><td align="center">Δβ<sub>ij</sub>=π<sub>ijkl</sub>σ<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezooptical" onChange="active_legend(87);"></td></tr> <tr><td align="center">Second-order magneto-optical (Cotton-Mouton effect) tensor C<sub>ijkl</sub></td><td align="center">Δβ<sub>ij</sub>=C<sub>ijkl</sub>H<sub>k</sub>H<sub>l</sub></td><td align="center"><input type="radio" name="choose_tensor" value="cotton_mouton" onChange="active_legend(88);"></td></tr> <tr><td align="center">Thermopiezo-optical effect tensor π<sup>(T)</sup><sub>ijkl</sub></td><td align="center">Δβ<sub>ij</sub>=π<sup>(T)</sup><sub>ijkl</sub>σ<sub>kl</sub>ΔT</td><td align="center"><input type="radio" name="choose_tensor" value="thermopiezooptical" onChange="active_legend(89);"></td></tr> <tr><td align="center" rowspan=1>e{V<sup>2</sup>}V<sup>2</sup></td><td align="center">Magnetoelectro-optical effect tensor m<sub>ijkl</sub></td><td align="center">Δβ<sub>ij</sub>=m<sub>ijkl</sub>H<sub>k</sub>E<sub>l</sub></td><td align="center"><input type="radio" name="choose_tensor" value="magnetoelectrooptical" onChange="active_legend(90);"></td></tr> <tr><td align="center" rowspan=2>e[V<sup>2</sup>][V<sup>2</sup>]</td><td align="center">Piezogyration tensor C<sub>ijkl</sub></td><td align="center">Δg<sub>ij</sub>=C<sub>ijkl</sub>σ<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezogyration" onChange="active_legend(91);"></td></tr> <tr><td align="center">Quadratic electrogyration effect tensor β<sub>ijkl</sub></td><td align="center">Δg<sub>ij</sub>=β<sub>ijkl</sub>E<sub>k</sub>E<sub>l</sub></td><td align="center"><input type="radio" name="choose_tensor" value="electrogyrational_quad" onChange="active_legend(92);"></td></tr> <tr><td align="center" rowspan=2>a{V<sup>2</sup>}[V<sup>2</sup>]</td><td align="center">Nonmutual Optical Activity γ<sub>ijkl</sub></td><td align="center">Δβ<sub>ij</sub>= γ<sub>ijlm</sub>k<sub>l</sub>k<sub>m</sub></td><td align="center"><input type="radio" name="choose_tensor" value="NonmutualOA" onChange="active_legend(93);"></td></tr> <tr><td align="center">Quadratic magneto-optic Kerr effect B<sub>ijkl</sub></td><td align="center">Δβ<sub>ij</sub>=B<sub>ijkl</sub>H<sub>k</sub>H<sub>l</sub></td><td align="center"><input type="radio" name="choose_tensor" value="kerr_mag_quad" onChange="active_legend(94);"></td></tr> <tr><td align="center" rowspan=3>5</td><td align="center" rowspan=1>[V<sup>2</sup>][V<sup>2</sup>]V</td><td align="center">Piezoelectro-optical effect tensor z<sub>ijklm</sub></td><td align="center">Δβ<sub>ij</sub>=z<sub>ijklm</sub>σ<sub>kl</sub>E<sub>m</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezoelectrooptical" onChange="active_legend(95);"></td></tr> <tr><td align="center" rowspan=1>e{V<sup>2</sup>}V[V<sup>2</sup>]</td><td align="center">Piezomagneto-optical effect tensor ω<sub>ijklm</sub></td><td align="center">Δβ<sub>ij</sub>=ω<sub>ijklm</sub>H<sub>k</sub>σ<sub>lm</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezomagnetooptical" onChange="active_legend(96);"></td></tr> <tr><td align="center" rowspan=1>e[V<sup>2</sup>][V<sup>2</sup>]V</td><td align="center">Gradient piezogyration tensor β<sub>ijklm</sub></td><td align="center">Δg<sub>ij</sub>=β<sub>ijklm</sub><vec>∇</vec><sub>m</sub>σ<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="gradient_piezogyration" onChange="active_legend(97);"></td></tr> <tr><td align="center" rowspan=2>6</td><td align="center" rowspan=1>[V<sup>2</sup>][[V<sup>2</sup>][V<sup>2</sup>]]</td><td align="center">Second-order piezo-optical tensor Π<sub>ijklmn</sub></td><td align="center">Δβ<sub>ij</sub>=Π<sub>ijklmn</sub>σ<sub>kl</sub>σ<sub>mn</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezooptical_quad" onChange="active_legend(98);"></td></tr> <tr><td align="center" rowspan=1>e[V<sup>2</sup>][[V<sup>2</sup>][V<sup>2</sup>]]</td><td align="center">Quadratic piezogyration tensor C<sub>ijklmn</sub></td><td align="center">Δg<sub>ij</sub>=C<sub>ijklmn</sub>σ<sub>kl</sub>σ<sub>mn</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezogyration_quad" onChange="active_legend(99);"></td></tr> </table></div><br></center><center><b><a href="javascript:;" onClick="javascript:showHideElem('nonopt_block');">NONLINEAR OPTICAL SUSCEPTIBILITY TENSORS</a></b><br><div id="nonopt_block" style="display:none"><br><table border="5" width="100%" align="center"><tr><th>Rank</th><th><a class="blue" href="/html/cryst/mtensor_help.html#intrinsic">Intrinsic symmetry</a></th><th>Tensor description</th><th>Defining equation</th><th>Select</th></tr><tr><td align="center" rowspan=18>3</td><td align="center" rowspan=3>[V<sup>3</sup>]</td><td align="center">General second-order susceptibility (non dissipative media and no dispersion) χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub></td><td align="center">P<sub>i</sub>(ω<sub>3</sub>)=χ<sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)</td><td align="center"><input type="radio" name="choose_tensor" value="general_susceptibility_second_Kleinman" onChange="active_legend(100);"></td></tr> <tr><td align="center">Optical rectification (non-dissipative media and no dispersion) χ(0;ω,-ω)<sub>ijk</sub></td><td align="center">P<sub>i</sub>(0)=χ<sub>ijk</sub>(0;ω,-ω)E<sub>j</sub>(ω)E<sub>k</sub>(-ω)</td><td align="center"><input type="radio" name="choose_tensor" value="OptRectification_nondissp_Kleinman" onChange="active_legend(101);"></td></tr> <tr><td align="center">Second-harmonic generation (non-dissipative media and no dispersion) χ(2ω;ω,ω)<sub>ijk</sub></td><td align="center">P<sub>i</sub>(2ω)=χ<sub>ijk</sub>(2ω;ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="SHG_nondissip_Kleinman" onChange="active_legend(102);"></td></tr> <tr><td align="center" rowspan=1>V[V<sup>2</sup>]*</td><td align="center">General optical rectification (dissipative media) χ(0;ω,-ω)<sub>ijk</sub></td><td align="center">P<sub>i</sub>(0)=χ<sub>ijk</sub>(0;ω,-ω)E<sub>j</sub>(ω)E<sub>k</sub>(-ω)</td><td align="center"><input type="radio" name="choose_tensor" value="general_OptRectification" onChange="active_legend(103);"></td></tr> <tr><td align="center" rowspan=2>V[V<sup>2</sup>]</td><td align="center">Optical rectification (non-dissipative media)Real part χ(0;ω,-ω)<sub>ijk</sub></td><td align="center">P<sub>i</sub>(0)=χ<sub>ijk</sub>(0;ω,-ω)E<sub>j</sub>(ω)E<sub>k</sub>(-ω)</td><td align="center"><input type="radio" name="choose_tensor" value="OptRectification_nondissp_real" onChange="active_legend(104);"></td></tr> <tr><td align="center">Second-harmonic generation (non-dissipative media). Real part. χ(2ω;ω,ω)<sub>ijk</sub></td><td align="center">P<sub>i</sub>(2ω)=χ<sub>ijk</sub>(2ω;ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="SHG_nondissip_real" onChange="active_legend(105);"></td></tr> <tr><td align="center" rowspan=1>V<sup>3</sup></td><td align="center">General second-order susceptibility (non-dissipative media). Real part. χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub></td><td align="center">P<sub>i</sub>(ω<sub>3</sub>)=χ<sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)</td><td align="center"><input type="radio" name="choose_tensor" value="susceptibility_second_real" onChange="active_legend(106);"></td></tr> <tr><td align="center" rowspan=2>e[V<sup>3</sup>]</td><td align="center">General second-order susceptibility by magnetic dipole (non-dissipative media and no dispersion) χ<sup>m</sup>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub></td><td align="center">M<sub>i</sub>(ω<sub>3</sub>)=χ<sup>m</sup><sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)</td><td align="center"><input type="radio" name="choose_tensor" value="susceptibility_second_magnetic_Kleinman" onChange="active_legend(107);"></td></tr> <tr><td align="center">Second-harmonic generation by magnetic dipole (non-dissipative media and no dispersion) χ<sup>m</sup>(2ω;ω,ω)<sub>ijk</sub></td><td align="center">M<sub>i</sub>(2ω)=χ<sup>m</sup><sub>ijk</sub>(2ω;ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="SHG_nondissip_magnetic_Kleinman" onChange="active_legend(108);"></td></tr> <tr><td align="center" rowspan=1>eV[V<sup>2</sup>]</td><td align="center">Second-harmonic generation by magnetic dipole (non-dissipative media). Imaginary part. χ<sup>m</sup>(2ω;ω,ω)<sub>ijk</sub></td><td align="center">M<sub>i</sub>(2ω)=χ<sup>m</sup><sub>ijk</sub>(2ω;ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="SHG_nondissip_magnetic_imag" onChange="active_legend(109);"></td></tr> <tr><td align="center" rowspan=1>eV<sup>3</sup></td><td align="center">General second-order susceptibility by magnetic dipole (non-dissipative media) Imaginary part χ<sup>m</sup>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub></td><td align="center">M<sub>i</sub>(ω<sub>3</sub>)=χ<sup>m</sup><sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)</td><td align="center"><input type="radio" name="choose_tensor" value="susceptibility_second_magnetic_imag" onChange="active_legend(110);"></td></tr> <tr><td align="center" rowspan=1>aV{V<sup>2</sup>}</td><td align="center">Optical rectification (non-dissipative media)Imaginary part χ(0;ω,-ω)<sub>ijk</sub></td><td align="center">P<sub>i</sub>(0)=χ<sub>ijk</sub>(0;ω,-ω)E<sub>j</sub>(ω)E<sub>k</sub>(-ω)</td><td align="center"><input type="radio" name="choose_tensor" value="OptRectification_nondissp_imag" onChange="active_legend(111);"></td></tr> <tr><td align="center" rowspan=1>aV[V<sup>2</sup>]</td><td align="center">Second-harmonic generation (non-dissipative media). Imaginary part. χ(2ω;ω,ω)<sub>ijk</sub></td><td align="center">P<sub>i</sub>(2ω)=χ<sub>ijk</sub>(2ω;ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="SHG_nondissip_imag" onChange="active_legend(112);"></td></tr> <tr><td align="center" rowspan=1>aV<sup>3</sup></td><td align="center">General second-order susceptibility (non-dissipative media). Imaginary part. χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub></td><td align="center">P<sub>i</sub>(ω<sub>3</sub>)=χ<sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)</td><td align="center"><input type="radio" name="choose_tensor" value="susceptibility_second_imag" onChange="active_legend(113);"></td></tr> <tr><td align="center" rowspan=1>aeV[V<sup>2</sup>]</td><td align="center">Second-harmonic generation by magnetic dipole (non-dissipative media). Real part. χ<sup>m</sup>(2ω;ω,ω)<sub>ijk</sub></td><td align="center">M<sub>i</sub>(2ω)=χ<sup>m</sup><sub>ijk</sub>(2ω;ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="SHG_nondissip_magnetic_real" onChange="active_legend(114);"></td></tr> <tr><td align="center" rowspan=1>aeV<sup>3</sup></td><td align="center">General second-order susceptibility by magnetic dipole (non-dissipative media) Real part χ<sup>m</sup>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub></td><td align="center">M<sub>i</sub>(ω<sub>3</sub>)=χ<sup>m</sup><sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)</td><td align="center"><input type="radio" name="choose_tensor" value="susceptibility_second_magnetic_real" onChange="active_legend(115);"></td></tr> <tr><td align="center" rowspan=1>(V[V<sup>2</sup>])*</td><td align="center">General second-harmonic generation (dissipative media) χ(2ω;ω,ω)<sub>ijk</sub></td><td align="center">P<sub>i</sub>(2ω)=χ<sub>ijk</sub>(2ω;ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="general_SHG" onChange="active_legend(116);"></td></tr> <tr><td align="center" rowspan=1>(V<sup>3</sup>)*</td><td align="center">General second-order susceptibility (dissipative media) χ(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijk</sub></td><td align="center">P<sub>i</sub>(ω<sub>3</sub>)=χ<sub>ijk</sub>(ω<sub>3</sub>;ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)</td><td align="center"><input type="radio" name="choose_tensor" value="general_susceptibility_second" onChange="active_legend(117);"></td></tr> <tr><td align="center" rowspan=13>4</td><td align="center" rowspan=1>[[V<sup>2</sup>][V<sup>2</sup>]]*</td><td align="center">Degenerate four-wave mixing χ(ω;-ω,ω,ω)<sub>ijkl</sub></td><td align="center">P<sub>i</sub>(ω)=χ<sub>ijkl</sub>(ω;-ω,ω,ω)E<sub>j</sub>(-ω)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="DFWM" onChange="active_legend(118);"></td></tr> <tr><td align="center" rowspan=3>[V<sup>4</sup>]</td><td align="center">Electric-field induced second-harmonic generation (non-dissipative media and no dispersion) χ(2ω;0,ω,ω)<sub>ijkl</sub></td><td align="center">P<sub>i</sub>(2ω)=χ<sub>ijkl</sub>(2ω;0,ω,ω)E<sub>j</sub>(0)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="EFISH_nondissip_Kleinman" onChange="active_legend(119);"></td></tr> <tr><td align="center">General third-order susceptibility (non-dissipative media and no dispersion) χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijkl</sub></td><td align="center">P<sub>i</sub>(ω<sub>4</sub>)=χ<sub>ijkl</sub>(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>3</sub>)E<sub>k</sub>(ω<sub>2</sub>)E<sub>l</sub>(ω<sub>1</sub>)</td><td align="center"><input type="radio" name="choose_tensor" value="susceptibility_third_Kleinman" onChange="active_legend(120);"></td></tr> <tr><td align="center">Third-harmonic generation (non-dissipative media and no dispersion) χ(3ω;ω,ω,ω)<sub>ijkl</sub></td><td align="center">P<sub>i</sub>(3ω)=χ<sub>ijkl</sub>(3ω;ω,ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="THG_nondissip_Kleinman" onChange="active_legend(121);"></td></tr> <tr><td align="center" rowspan=1>[V<sup>2</sup>V<sup>2</sup>]*</td><td align="center">Four-wave mixing χ(ω<sub>1</sub>;-ω<sub>2</sub>,ω<sub>1</sub>,ω<sub>2</sub>)<sub>ijkl</sub></td><td align="center">P<sub>i</sub>(ω<sub>1</sub>)=χ<sub>ijkl</sub>(ω<sub>1</sub>;-ω<sub>2</sub>,ω<sub>1</sub>,ω<sub>2</sub>)E<sub>j</sub>(-ω<sub>2</sub>)E<sub>k</sub>(ω<sub>1</sub>)E<sub>l</sub>(ω<sub>2</sub>)</td><td align="center"><input type="radio" name="choose_tensor" value="FWM" onChange="active_legend(122);"></td></tr> <tr><td align="center" rowspan=1>V[V<sup>3</sup>]</td><td align="center">Third-harmonic generation (non-dissipative media). Real part. χ(3ω;ω,ω,ω)<sub>ijkl</sub></td><td align="center">P<sub>i</sub>(3ω)=χ<sub>ijkl</sub>(3ω;ω,ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="THG_nondissip_real" onChange="active_legend(123);"></td></tr> <tr><td align="center" rowspan=1>V<sup>4</sup></td><td align="center">General third-order susceptibility (non-dissipative media). Real part. χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijkl</sub></td><td align="center">P<sub>i</sub>(ω<sub>4</sub>)=χ<sub>ijkl</sub>(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>3</sub>)E<sub>k</sub>(ω<sub>2</sub>)E<sub>l</sub>(ω<sub>1</sub>)</td><td align="center"><input type="radio" name="choose_tensor" value="susceptibility_third_real" onChange="active_legend(124);"></td></tr> <tr><td align="center" rowspan=1>V<sup>2</sup>[V<sup>2</sup>]</td><td align="center">Electric-field induced second-harmonic generation (non-dissipative media). Real part. χ(2ω;0,ω,ω)<sub>ijkl</sub></td><td align="center">P<sub>i</sub>(2ω)=χ<sub>ijkl</sub>(2ω;0,ω,ω)E<sub>j</sub>(0)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="EFISH_nondissip_real" onChange="active_legend(125);"></td></tr> <tr><td align="center" rowspan=1>aV[V<sup>3</sup>]</td><td align="center">Third-harmonic generation (non-dissipative media). Imaginary part. χ(3ω;ω,ω,ω)<sub>ijkl</sub></td><td align="center">P<sub>i</sub>(3ω)=χ<sub>ijkl</sub>(3ω;ω,ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="THG_nondissip_imag" onChange="active_legend(126);"></td></tr> <tr><td align="center" rowspan=1>aV<sup>4</sup></td><td align="center">General third-order susceptibility (non-dissipative media). Imaginary part. χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijkl</sub></td><td align="center">P<sub>i</sub>(ω<sub>4</sub>)=χ<sub>ijkl</sub>(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>3</sub>)E<sub>k</sub>(ω<sub>2</sub>)E<sub>l</sub>(ω<sub>1</sub>)</td><td align="center"><input type="radio" name="choose_tensor" value="susceptibility_third_imag" onChange="active_legend(127);"></td></tr> <tr><td align="center" rowspan=1>aV<sup>2</sup>[V<sup>2</sup>] </td><td align="center">Electric-field induced second-harmonic generation (non-dissipative media). Imaginary part. χ(2ω0,ω,ω)<sub>ijkl</sub></td><td align="center">P<sub>i</sub>(2ω)=χ<sub>ijkl</sub>(2ω;0,ω,ω)E<sub>j</sub>(0)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="EFISH_nondissip_imag" onChange="active_legend(128);"></td></tr> <tr><td align="center" rowspan=1>(V[V<sup>3</sup>])*</td><td align="center">General third-harmonic generation (dissipative media) χ(3ω;ω,ω,ω)<sub>ijkl</sub></td><td align="center">P<sub>i</sub>(3ω)=χ<sub>ijkl</sub>(3ω;ω,ω,ω)E<sub>j</sub>(ω)E<sub>k</sub>(ω)E<sub>l</sub>(ω)</td><td align="center"><input type="radio" name="choose_tensor" value="general_THG" onChange="active_legend(129);"></td></tr> <tr><td align="center" rowspan=1>(V<sup>4</sup>)*</td><td align="center">General third-order susceptibility (dissipative media) χ(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)<sub>ijkl</sub></td><td align="center">P<sub>i</sub>(ω<sub>4</sub>)=χ<sub>ijkl</sub>(ω<sub>4</sub>;ω<sub>3</sub>,ω<sub>2</sub>,ω<sub>1</sub>)E<sub>j</sub>(ω<sub>3</sub>)E<sub>k</sub>(ω<sub>2</sub>)E<sub>l</sub>(ω<sub>1</sub>)</td><td align="center"><input type="radio" name="choose_tensor" value="general_susceptibility_third" onChange="active_legend(130);"></td></tr> </table></div><br></center><center><b><a href="javascript:;" onClick="javascript:showHideElem('tr_block');">TRANSPORT TENSORS</a></b><br><div id=tr_block style="display:none"><br><table border="5" width="100%" align="center"><tr><th>Rank</th><th><a class="blue" href="/html/cryst/mtensor_help.html#intrinsic">Intrinsic symmetry</a></th><th>Tensor description</th><th>Defining equation</th><th>Select</th></tr><tr><td align="center" rowspan=21>2</td><td align="center" rowspan=10>[V<sup>2</sup>]*</td><td align="center">Diffusion tensor D<sub>ij</sub></td><td align="center">J<sub>i</sub>=D<sub>ij</sub><vec>∇</vec><sub>j</sub>C</td><td align="center"><input type="radio" name="choose_tensor" value="diffusion" onChange="active_legend(131);"></td></tr> <tr><td align="center">Dufour effect (reversal thermodiffusion) tensor β<sub>ij</sub></td><td align="center">q<sub>i</sub>=β<sub>ij</sub><vec>∇</vec><sub>j</sub>C</td><td align="center"><input type="radio" name="choose_tensor" value="dufour" onChange="active_legend(132);"></td></tr> <tr><td align="center">Electric conductivity tensor σ<sub>ij</sub></td><td align="center">J<sub>i</sub>=σ<sub>ij</sub>E<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="conductivity_mag" onChange="active_legend(133);"></td></tr> <tr><td align="center">Electric resistivity tensor ρ<sub>ij</sub></td><td align="center">E<sub>i</sub>=ρ<sub>ij</sub>J<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="resistivity_mag" onChange="active_legend(134);"></td></tr> <tr><td align="center">Electrodiffusion tensor γ<sub>ij</sub> (direct effect)</td><td align="center">J<sub>i</sub>=γ<sub>ij</sub>E<sub>j</sub>T</td><td align="center"><input type="radio" name="choose_tensor" value="electrodiffusion" onChange="active_legend(135);"></td></tr> <tr><td align="center">Electrodiffusion tensor γ<sup>T</sup><sub>ij</sub> (inverse effect)</td><td align="center">J<sub>i</sub>=γ<sup>T</sup><sub>ij</sub><vec>∇</vec><sub>j</sub>C</td><td align="center"><input type="radio" name="choose_tensor" value="electrodiffusion_inv" onChange="active_legend(136);"></td></tr> <tr><td align="center">Soret effect (thermodiffusion) tensor β<sub>ij</sub></td><td align="center">J<sub>i</sub>=β<sub>ij</sub><vec>∇</vec><sub>j</sub>T</td><td align="center"><input type="radio" name="choose_tensor" value="soret" onChange="active_legend(137);"></td></tr> <tr><td align="center">Thermal conductivity tensor κ<sub>ij</sub></td><td align="center">q<sub>i</sub>=κ<sub>ij</sub><vec>∇</vec><sub>j</sub>T</td><td align="center"><input type="radio" name="choose_tensor" value="t_conductivity_mag" onChange="active_legend(138);"></td></tr> <tr><td align="center">Thermal diffusivity tensor α<sub>ij</sub></td><td align="center">∂T/∂t=α<sub>ij</sub><vec>∇</vec><sub>i</sub>T<vec>∇</vec><sub>j</sub>T</td><td align="center"><input type="radio" name="choose_tensor" value="t_diffusivity" onChange="active_legend(139);"></td></tr> <tr><td align="center">Thermal resistivity tensor r<sub>ij</sub></td><td align="center"><vec>∇</vec><sub>i</sub>T=r<sub>ij</sub>q<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="t_resistivity_mag" onChange="active_legend(140);"></td></tr> <tr><td align="center" rowspan=2>[V<sup>2</sup>]</td><td align="center">Ordinary Resistivity ρ<sup>(s)</sup><sub>ij</sub></td><td align="center">E<sub>i</sub>=ρ<sub>ij</sub>J<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="resistivity" onChange="active_legend(141);"></td></tr> <tr><td align="center">Ordinary Thermal Conductivity κ<sup>(s)</sup><sub>ij</sub></td><td align="center">q<sub>i</sub>=κ<sub>ij</sub>∇<sub>j</sub>T</td><td align="center"><input type="radio" name="choose_tensor" value="thermconduct" onChange="active_legend(142);"></td></tr> <tr><td align="center" rowspan=2>V<sup>2</sup></td><td align="center">Ordinary Peltier Effect P<sub>ij</sub></td><td align="center">q<sub>i</sub>=π<sub>ij</sub>J<sub>j</sub>, E<sub>i</sub>=β<sub>ij</sub>∇<sub>j</sub>T, <br> P<sub>ij</sub>=(π<sub>ij</sub>+β<sub>ji</sub>)/2</td><td align="center"><input type="radio" name="choose_tensor" value="ordinpeltier" onChange="active_legend(143);"></td></tr> <tr><td align="center">Ordinary Seebeck Effect S<sub>ij</sub></td><td align="center">E<sub>i</sub>=β<sub>ij</sub>∇<sub>j</sub>T, q<sub>i</sub>=π<sub>ij</sub>J<sub>j</sub>, <br> S<sub>ij</sub>=(β<sub>ij</sub>+π<sub>ji</sub>)/2</td><td align="center"><input type="radio" name="choose_tensor" value="ordinseebeck" onChange="active_legend(144);"></td></tr> <tr><td align="center" rowspan=2>a{V<sup>2</sup>}</td><td align="center">Spontaneous Hall Effect ρ<sup>(a)</sup><sub>ij</sub></td><td align="center">E<sub>i</sub>=ρ<sub>ij</sub>J<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="she" onChange="active_legend(145);"></td></tr> <tr><td align="center">Spontaneous Righi-Leduc Effect κ<sup>(a)</sup><sub>ij</sub></td><td align="center">q<sub>i</sub>=κ<sub>ij</sub>∇<sub>j</sub>T</td><td align="center"><input type="radio" name="choose_tensor" value="srle" onChange="active_legend(146);"></td></tr> <tr><td align="center" rowspan=2>aV<sup>2</sup></td><td align="center">Spontaneous Ettingshausen Effect SE<sub>ij</sub></td><td align="center">q<sub>i</sub>=π<sub>ij</sub>J<sub>j</sub>, E<sub>i</sub>=β<sub>ij</sub>∇<sub>j</sub>T, <br> SE<sub>ij</sub>=(π<sub>ij</sub>-β<sub>ji</sub>)/2</td><td align="center"><input type="radio" name="choose_tensor" value="sponettingshausen" onChange="active_legend(147);"></td></tr> <tr><td align="center">Spontaneous Nernst Effect SN<sub>ij</sub></td><td align="center">E<sub>i</sub>=β<sub>ij</sub>∇<sub>j</sub>T, q<sub>i</sub>=π<sub>ij</sub>J<sub>j</sub>, <br> SN<sub>ij</sub>=(β<sub>ij</sub>-π<sub>ji</sub>)/2</td><td align="center"><input type="radio" name="choose_tensor" value="sponnernst" onChange="active_legend(148);"></td></tr> <tr><td align="center" rowspan=3>(V<sup>2</sup>)*</td><td align="center">Peltier effect tensor π<sub>ij</sub></td><td align="center">q<sub>i</sub>=π<sub>ij</sub>J<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="peltier" onChange="active_legend(149);"></td></tr> <tr><td align="center">Thermoelectric power (Seebeck effect) tensor β<sub>ij</sub></td><td align="center">E<sub>i</sub>=β<sub>ij</sub><vec>∇</vec><sub>j</sub>T</td><td align="center"><input type="radio" name="choose_tensor" value="seebeck" onChange="active_legend(150);"></td></tr> <tr><td align="center">Thomson heat tensor τ<sub>ij</sub></td><td align="center">∂q/∂t=τ<sub>ij</sub><vec>∇</vec><sub>i</sub>TJ<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="thomson" onChange="active_legend(151);"></td></tr> <tr><td align="center" rowspan=12>3</td><td align="center" rowspan=2>e{V<sup>2</sup>}V</td><td align="center">Ordinary Hall Effect R<sup>(a)</sup><sub>ijk</sub></td><td align="center">E<sub>i</sub>=R<sub>ijk</sub>J<sub>j</sub>H<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="ordinaryhall" onChange="active_legend(152);"></td></tr> <tr><td align="center">Ordinary Righi-Leduc Effect Q<sup>(a)</sup><sub>ijk</sub></td><td align="center">q<sub>i</sub>=Q<sub>ijk</sub>∇<sub>j</sub>TH<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="ordinRL" onChange="active_legend(153);"></td></tr> <tr><td align="center" rowspan=2>e{V<sup>2</sup>}*V</td><td align="center">Hall effect (magnetorresistance) tensor R<sub>ijk</sub></td><td align="center">E<sub>i</sub>=R<sub>ijk</sub>J<sub>j</sub>H<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="hall" onChange="active_legend(154);"></td></tr> <tr><td align="center">Righi-Leduc, Maggi-Righi-Leduc and magnetothermal effects tensor Q<sub>ijk</sub></td><td align="center">q<sub>i</sub>=Q<sub>ijk</sub><vec>∇</vec><sub>j</sub>TH<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="righi_leduc" onChange="active_legend(155);"></td></tr> <tr><td align="center" rowspan=2>eV<sup>3</sup></td><td align="center">Ordinary Ettingshausen Effect OE<sub>ij</sub></td><td align="center">q<sub>i</sub>=M<sub>ijk</sub>J<sub>j</sub>H<sub>k</sub>, E<sub>i</sub>=N<sub>ijk</sub>∇<sub>j</sub>TH<sub>k</sub>, <br> OE<sub>ijk</sub>=(M<sub>ijk</sub>-N<sub>jik</sub>)/2</td><td align="center"><input type="radio" name="choose_tensor" value="ordinettingshausen" onChange="active_legend(156);"></td></tr> <tr><td align="center">Ordinary Nernst Effect ON<sub>ijk</sub></td><td align="center">E<sub>i</sub>=N<sub>ijk</sub>∇<sub>j</sub>TH<sub>k</sub>, q<sub>i</sub>=M<sub>ijk</sub>J<sub>j</sub>H<sub>k</sub>, <br> ON<sub>ijk</sub>=(N<sub>ijk</sub>-M<sub>jik</sub>)/2</td><td align="center"><input type="radio" name="choose_tensor" value="ordnern" onChange="active_legend(157);"></td></tr> <tr><td align="center" rowspan=2>ae[V<sup>2</sup>]V</td><td align="center">Linear Magneto-heat Conductivity Effect Q<sup>(s)</sup><sub>ijk</sub></td><td align="center">q<sub>i</sub>=Q<sub>ijk</sub>∇<sub>j</sub>TH<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="linmagheat" onChange="active_legend(158);"></td></tr> <tr><td align="center">Linear Magnetorresistance R<sup>(s)</sup><sub>ijk</sub></td><td align="center">E<sub>i</sub>=R<sub>ijk</sub>J<sub>j</sub>H<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="linmagnetorresist" onChange="active_legend(159);"></td></tr> <tr><td align="center" rowspan=2>aeV<sup>3</sup></td><td align="center">Linear Magneto Peltier Effect MP<sub>ijk</sub></td><td align="center">q<sub>i</sub>=M<sub>ijk</sub>J<sub>j</sub>H<sub>k</sub>, E<sub>i</sub>=N<sub>ijk</sub>∇<sub>j</sub>TH<sub>k</sub>, <br> MP<sub>ijk</sub>=(M<sub>ijk</sub>+N<sub>jik</sub>)/2</td><td align="center"><input type="radio" name="choose_tensor" value="linmagpel" onChange="active_legend(160);"></td></tr> <tr><td align="center">Linear Magneto Seebeck Effect MS<sub>ijk</sub></td><td align="center">E<sub>i</sub>=N<sub>ijk</sub>∇<sub>j</sub>TH<sub>k</sub>, q<sub>i</sub>=M<sub>ijk</sub>J<sub>j</sub>H<sub>k</sub>, <br> MS<sub>ijk</sub>=(N<sub>ijk</sub>+M<sub>jik</sub>)/2</td><td align="center"><input type="radio" name="choose_tensor" value="linmagseebeck" onChange="active_legend(161);"></td></tr> <tr><td align="center" rowspan=2>(eV<sup>3</sup>)*</td><td align="center">Ettingshausen effect tensor M<sub>ijk</sub></td><td align="center">q<sub>i</sub>=M<sub>ijk</sub></sub>J<sub>j</sub>H<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="ettinghausen" onChange="active_legend(162);"></td></tr> <tr><td align="center">Nernst effect tensor N<sub>ijk</sub></td><td align="center">E<sub>i</sub>=N<sub>ijk</sub><vec>∇</vec>T<sub>j</sub>H<sub>k</sub></td><td align="center"><input type="radio" name="choose_tensor" value="nernst" onChange="active_legend(163);"></td></tr> <tr><td align="center" rowspan=7>4</td><td align="center" rowspan=1>[V<sup>2</sup>][V<sup>2</sup>]</td><td align="center">Quadratic Magneto-heat-conductivity S<sup>(s)</sup><sub>ijkl</sub></td><td align="center">q<sub>i</sub>=S<sub>ijkl</sub>∇<sub>j</sub>TH<sub>k</sub>H<sub>l</sub></td><td align="center"><input type="radio" name="choose_tensor" value="quadmagheat" onChange="active_legend(164);"></td></tr> <tr><td align="center" rowspan=3>[V<sup>2</sup>]*[V<sup>2</sup>]</td><td align="center">Magnetic resistance tensor T<sub>ijkl</sub></td><td align="center">E<sub>i</sub>=T<sub>ijkl</sub>J<sub>j</sub>H<sub>k</sub>H<sub>l</sub></td><td align="center"><input type="radio" name="choose_tensor" value="magnetic_resistance" onChange="active_legend(165);"></td></tr> <tr><td align="center">Magneto-heat-conductivity tensor S<sub>ijkl</sub> S<sub>ijkl</sub></td><td align="center">q<sub>i</sub>=S<sub>ijkl</sub>∇<sub>j</sub>TH<sub>k</sub>H<sub>l</sub></td><td align="center"><input type="radio" name="choose_tensor" value="magnetoheatconductivity" onChange="active_legend(166);"></td></tr> <tr><td align="center">Piezoresistivity (Strain Gauge effect) tensor π<sub>ijkl</sub></td><td align="center">Δρ<sub>ij</sub>=π<sub>ijkl</sub>σ<sub>kl</sub></td><td align="center"><input type="radio" name="choose_tensor" value="piezoresistivity" onChange="active_legend(167);"></td></tr> <tr><td align="center" rowspan=1>a{V<sup>2</sup>}[V<sup>2</sup>]</td><td align="center">Quadratic Anomalous Righi-Leduc Effect S<sup>(a)</sup><sub>ijkl</sub></td><td align="center">q<sub>i</sub>=S<sub>ijkl</sub>∇<sub>j</sub>TH<sub>k</sub>H<sub>l</sub></td><td align="center"><input type="radio" name="choose_tensor" value="quadanomRL" onChange="active_legend(168);"></td></tr> <tr><td align="center" rowspan=2>(V<sup>2</sup>[V<sup>2</sup>])*</td><td align="center">Magneto Peltier effect P<sub>ijkl</sub></td><td align="center">q<sub>i</sub>=P<sub>ijkl</sub>H<sub>k</sub>H<sub>l</sub>J<sub>j</sub></td><td align="center"><input type="radio" name="choose_tensor" value="MagnetoPeltier" onChange="active_legend(169);"></td></tr> <tr><td align="center">Magneto Seebeck effect α<sub>ijkl</sub></td><td align="center">E<sub>i</sub>=α<sub>ijkl</sub>∇<sub>j</sub>TH<sub>k</sub>H<sub>l</sub></td><td align="center"><input type="radio" name="choose_tensor" value="MagnetoSeebeck" onChange="active_legend(170);"></td></tr> </table></center><br><ul><input type="radio" id="tensor_type" name="tensor_type" value="by_hand"><font color="red"><b> Build your own tensor</b></font></ul><ul>- Introduce Jahn's symbol without superscripts. Examples: (1) [[V2][V2]], (2) a{V2}*, (3) (V2[V2])* </center><br><br> <center><input type="text" name="jahnsymbol" value=""></ul><left><center> <input type='hidden' name="database_type" value = "mtensor"> <center> <br><input type="submit" name="enter" value="Get results"> </center> <br> </form> </td> </tr> </table> <br/> <br/> <center> [<a class="blue" href="/">Bilbao Crystallographic Server Main Menu</a>] <br/><br/> <table class="signature" width="100%"> <tr> <td align="left"> <table> <tr> <td><small><a href="http://www.cryst.ehu.es">Bilbao Crystallographic Server</a><br>http://www.cryst.ehu.es</small></td> <td> <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Licencia de Creative Commons" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a> </td> </tr> </table> </td> <td align="right" rowspan="2"> <small>For comments, please mail to<br> <a class="blue" href= "mailto:administrador.bcs@ehu.eus">administrador.bcs@ehu.eus</a></small> </td> </tr> </table> </center> </body> </html>