CINXE.COM

Search results for: association rule mining.

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: association rule mining.</title> <meta name="description" content="Search results for: association rule mining."> <meta name="keywords" content="association rule mining."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="association rule mining." name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="association rule mining."> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1150</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: association rule mining.</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1150</span> Application of Association Rule Mining in Supplier Selection Criteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Haery">A. Haery</a>, <a href="https://publications.waset.org/search?q=N.%20Salmasi"> N. Salmasi</a>, <a href="https://publications.waset.org/search?q=M.%20Modarres%20Yazdi"> M. Modarres Yazdi</a>, <a href="https://publications.waset.org/search?q=H.%20Iranmanesh"> H. Iranmanesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the application of rule mining in order to review the effective factors on supplier selection is reviewed in the following three sections 1) criteria selecting and information gathering 2) performing association rule mining 3) validation and constituting rule base. Afterwards a few of applications of rule base is explained. Then, a numerical example is presented and analyzed by Clementine software. Some of extracted rules as well as the results are presented at the end. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Association%20rule%20mining" title="Association rule mining">Association rule mining</a>, <a href="https://publications.waset.org/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/search?q=supplierselection%20criteria." title=" supplierselection criteria."> supplierselection criteria.</a> </p> <a href="https://publications.waset.org/14811/application-of-association-rule-mining-in-supplier-selection-criteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14811/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14811/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14811/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14811/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14811/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14811/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14811/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14811/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14811/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14811/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1924</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1149</span> Analysis of Student Motivation Behavior on e-Learning Based on Association Rule Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kunyanuth%20Kularbphettong">Kunyanuth Kularbphettong</a>, <a href="https://publications.waset.org/search?q=Phanu%20Waraporn"> Phanu Waraporn</a>, <a href="https://publications.waset.org/search?q=Cholticha%20Tongsiri"> Cholticha Tongsiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This research aims to create a model for analysis of student motivation behavior on e-Learning based on association rule mining techniques in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The model was created under association rules, one of the data mining techniques with minimum confidence. The results showed that the student motivation behavior model by using association rule technique can indicate the important variables that influence the student motivation behavior on e-Learning.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Motivation%20behavior" title="Motivation behavior">Motivation behavior</a>, <a href="https://publications.waset.org/search?q=e-learning" title=" e-learning"> e-learning</a>, <a href="https://publications.waset.org/search?q=moodle%20log" title=" moodle log"> moodle log</a>, <a href="https://publications.waset.org/search?q=association%20rule%20mining." title=" association rule mining."> association rule mining.</a> </p> <a href="https://publications.waset.org/4005/analysis-of-student-motivation-behavior-on-e-learning-based-on-association-rule-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4005/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4005/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4005/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4005/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4005/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4005/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4005/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4005/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4005/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4005/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1886</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1148</span> Analysis of DNA Microarray Data using Association Rules: A Selective Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Anandhavalli%20Gauthaman">M. Anandhavalli Gauthaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>DNA microarrays allow the measurement of expression levels for a large number of genes, perhaps all genes of an organism, within a number of different experimental samples. It is very much important to extract biologically meaningful information from this huge amount of expression data to know the current state of the cell because most cellular processes are regulated by changes in gene expression. Association rule mining techniques are helpful to find association relationship between genes. Numerous association rule mining algorithms have been developed to analyze and associate this huge amount of gene expression data. This paper focuses on some of the popular association rule mining algorithms developed to analyze gene expression data.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=DNA%20microarray" title="DNA microarray">DNA microarray</a>, <a href="https://publications.waset.org/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/search?q=association%20rule%20mining." title=" association rule mining."> association rule mining.</a> </p> <a href="https://publications.waset.org/5818/analysis-of-dna-microarray-data-using-association-rules-a-selective-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5818/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5818/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5818/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5818/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5818/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5818/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5818/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5818/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5818/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5818/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2145</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1147</span> A New Model for Discovering XML Association Rules from XML Documents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20AliMohammadzadeh">R. AliMohammadzadeh</a>, <a href="https://publications.waset.org/search?q=M.%20Rahgozar"> M. Rahgozar</a>, <a href="https://publications.waset.org/search?q=A.%20Zarnani"> A. Zarnani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inherent flexibilities of XML in both structure and semantics makes mining from XML data a complex task with more challenges compared to traditional association rule mining in relational databases. In this paper, we propose a new model for the effective extraction of generalized association rules form a XML document collection. We directly use frequent subtree mining techniques in the discovery process and do not ignore the tree structure of data in the final rules. The frequent subtrees based on the user provided support are split to complement subtrees to form the rules. We explain our model within multi-steps from data preparation to rule generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=XML" title="XML">XML</a>, <a href="https://publications.waset.org/search?q=Data%20Mining" title=" Data Mining"> Data Mining</a>, <a href="https://publications.waset.org/search?q=Association%20Rule%20Mining." title=" Association Rule Mining."> Association Rule Mining.</a> </p> <a href="https://publications.waset.org/10492/a-new-model-for-discovering-xml-association-rules-from-xml-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10492/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10492/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10492/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10492/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10492/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10492/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10492/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10492/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10492/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10492/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1631</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1146</span> Review and Comparison of Associative Classification Data Mining Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Suzan%20Wedyan">Suzan Wedyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Associative%20Classification" title="Associative Classification">Associative Classification</a>, <a href="https://publications.waset.org/search?q=Classification" title=" Classification"> Classification</a>, <a href="https://publications.waset.org/search?q=Data%20Mining" title=" Data Mining"> Data Mining</a>, <a href="https://publications.waset.org/search?q=Learning" title=" Learning"> Learning</a>, <a href="https://publications.waset.org/search?q=Rule%20Ranking" title=" Rule Ranking"> Rule Ranking</a>, <a href="https://publications.waset.org/search?q=Rule%20Pruning" title=" Rule Pruning"> Rule Pruning</a>, <a href="https://publications.waset.org/search?q=Prediction." title=" Prediction."> Prediction.</a> </p> <a href="https://publications.waset.org/9997152/review-and-comparison-of-associative-classification-data-mining-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997152/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997152/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997152/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997152/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997152/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997152/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997152/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997152/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997152/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997152/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6633</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1145</span> Role of Association Rule Mining in Numerical Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sudhir%20Jagtap">Sudhir Jagtap</a>, <a href="https://publications.waset.org/search?q=Kodge%20B.%20G."> Kodge B. G.</a>, <a href="https://publications.waset.org/search?q=Shinde%20G.%20N."> Shinde G. N.</a>, <a href="https://publications.waset.org/search?q=Devshette%20P.%20M"> Devshette P. M</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical analysis naturally finds applications in all fields of engineering and the physical sciences, but in the 21st century, the life sciences and even the arts have adopted elements of scientific computations. The numerical data analysis became key process in research and development of all the fields [6]. In this paper we have made an attempt to analyze the specified numerical patterns with reference to the association rule mining techniques with minimum confidence and minimum support mining criteria. The extracted rules and analyzed results are graphically demonstrated. Association rules are a simple but very useful form of data mining that describe the probabilistic co-occurrence of certain events within a database [7]. They were originally designed to analyze market-basket data, in which the likelihood of items being purchased together within the same transactions are analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Numerical%20data%20analysis" title="Numerical data analysis">Numerical data analysis</a>, <a href="https://publications.waset.org/search?q=Data%20Mining" title=" Data Mining"> Data Mining</a>, <a href="https://publications.waset.org/search?q=Association%0ARule%20Mining" title=" Association Rule Mining"> Association Rule Mining</a> </p> <a href="https://publications.waset.org/9376/role-of-association-rule-mining-in-numerical-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9376/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9376/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9376/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9376/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9376/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9376/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9376/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9376/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9376/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9376/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2861</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1144</span> A Tree Based Association Rule Approach for XML Data with Semantic Integration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=D.%20Sasikala">D. Sasikala</a>, <a href="https://publications.waset.org/search?q=K.%20Premalatha"> K. Premalatha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The use of eXtensible Markup Language (XML) in web, business and scientific databases lead to the development of methods, techniques and systems to manage and analyze XML data. Semi-structured documents suffer due to its heterogeneity and dimensionality. XML structure and content mining represent convergence for research in semi-structured data and text mining. As the information available on the internet grows drastically, extracting knowledge from XML documents becomes a harder task. Certainly, documents are often so large that the data set returned as answer to a query may also be very big to convey the required information. To improve the query answering, a Semantic Tree Based Association Rule (STAR) mining method is proposed. This method provides intentional information by considering the structure, content and the semantics of the content. The method is applied on Reuter&rsquo;s dataset and the results show that the proposed method outperforms well.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Semi--structured%20Document" title="Semi--structured Document">Semi--structured Document</a>, <a href="https://publications.waset.org/search?q=Tree%20based%20Association%20Rule%20%28TAR%29" title=" Tree based Association Rule (TAR)"> Tree based Association Rule (TAR)</a>, <a href="https://publications.waset.org/search?q=Semantic%20Association%20Rule%20Mining." title=" Semantic Association Rule Mining."> Semantic Association Rule Mining.</a> </p> <a href="https://publications.waset.org/10000251/a-tree-based-association-rule-approach-for-xml-data-with-semantic-integration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000251/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000251/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000251/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000251/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000251/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000251/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000251/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000251/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000251/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000251/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2352</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1143</span> Analysis of Causality between Defect Causes Using Association Rule Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sangdeok%20Lee">Sangdeok Lee</a>, <a href="https://publications.waset.org/search?q=Sangwon%20Han"> Sangwon Han</a>, <a href="https://publications.waset.org/search?q=Changtaek%20Hyun"> Changtaek Hyun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction defects are major components that result in negative impacts on project performance including schedule delays and cost overruns. Since construction defects generally occur when a few associated causes combine, a thorough understanding of defect causality is required in order to more systematically prevent construction defects. To address this issue, this paper uses association rule mining (ARM) to quantify the causality between defect causes, and social network analysis (SNA) to find indirect causality among them. The suggested approach is validated with 350 defect instances from concrete works in 32 projects in Korea. The results show that the interrelationships revealed by the approach reflect the characteristics of the concrete task and the important causes that should be prevented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Causality" title="Causality">Causality</a>, <a href="https://publications.waset.org/search?q=defect%20causes" title=" defect causes"> defect causes</a>, <a href="https://publications.waset.org/search?q=social%20network%20analysis" title=" social network analysis"> social network analysis</a>, <a href="https://publications.waset.org/search?q=association%20rule%20mining." title=" association rule mining. "> association rule mining. </a> </p> <a href="https://publications.waset.org/10004942/analysis-of-causality-between-defect-causes-using-association-rule-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004942/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004942/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004942/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004942/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004942/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004942/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004942/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004942/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004942/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004942/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1337</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1142</span> A Text Mining Technique Using Association Rules Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hany%20Mahgoub">Hany Mahgoub</a>, <a href="https://publications.waset.org/search?q=Dietmar%20R%C3%B6sner"> Dietmar Rösner</a>, <a href="https://publications.waset.org/search?q=Nabil%20Ismail"> Nabil Ismail</a>, <a href="https://publications.waset.org/search?q=Fawzy%20Torkey"> Fawzy Torkey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper describes text mining technique for automatically extracting association rules from collections of textual documents. The technique called, Extracting Association Rules from Text (EART). It depends on keyword features for discover association rules amongst keywords labeling the documents. In this work, the EART system ignores the order in which the words occur, but instead focusing on the words and their statistical distributions in documents. The main contributions of the technique are that it integrates XML technology with Information Retrieval scheme (TFIDF) (for keyword/feature selection that automatically selects the most discriminative keywords for use in association rules generation) and use Data Mining technique for association rules discovery. It consists of three phases: Text Preprocessing phase (transformation, filtration, stemming and indexing of the documents), Association Rule Mining (ARM) phase (applying our designed algorithm for Generating Association Rules based on Weighting scheme GARW) and Visualization phase (visualization of results). Experiments applied on WebPages news documents related to the outbreak of the bird flu disease. The extracted association rules contain important features and describe the informative news included in the documents collection. The performance of the EART system compared with another system that uses the Apriori algorithm throughout the execution time and evaluating extracted association rules.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Text%20mining" title="Text mining">Text mining</a>, <a href="https://publications.waset.org/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/search?q=association%20rule%20mining" title=" association rule mining"> association rule mining</a> </p> <a href="https://publications.waset.org/3124/a-text-mining-technique-using-association-rules-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3124/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3124/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3124/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3124/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3124/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3124/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3124/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3124/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3124/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3124/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4439</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1141</span> Concepts Extraction from Discharge Notes using Association Rule Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Basak%20Oguz%20Yolcular">Basak Oguz Yolcular</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large amount of valuable information is available in plain text clinical reports. New techniques and technologies are applied to extract information from these reports. In this study, we developed a domain based software system to transform 600 Otorhinolaryngology discharge notes to a structured form for extracting clinical data from the discharge notes. In order to decrease the system process time discharge notes were transformed into a data table after preprocessing. Several word lists were constituted to identify common section in the discharge notes, including patient history, age, problems, and diagnosis etc. N-gram method was used for discovering terms co-Occurrences within each section. Using this method a dataset of concept candidates has been generated for the validation step, and then Predictive Apriori algorithm for Association Rule Mining (ARM) was applied to validate candidate concepts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=association%20rule%20mining" title="association rule mining">association rule mining</a>, <a href="https://publications.waset.org/search?q=otorhinolaryngology" title=" otorhinolaryngology"> otorhinolaryngology</a>, <a href="https://publications.waset.org/search?q=predictive%20apriori" title="predictive apriori">predictive apriori</a>, <a href="https://publications.waset.org/search?q=text%20mining" title=" text mining"> text mining</a> </p> <a href="https://publications.waset.org/8672/concepts-extraction-from-discharge-notes-using-association-rule-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8672/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8672/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8672/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8672/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8672/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8672/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8672/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8672/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8672/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8672/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1614</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1140</span> A Network Traffic Prediction Algorithm Based On Data Mining Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=D.%20Prangchumpol">D. Prangchumpol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper is a description approach to predict incoming and outgoing data rate in network system by using association rule discover, which is one of the data mining techniques. Information of incoming and outgoing data in each times and network bandwidth are network performance parameters, which needed to solve in the traffic problem. Since congestion and data loss are important network problems. The result of this technique can predicted future network traffic. In addition, this research is useful for network routing selection and network performance improvement.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Traffic%20prediction" title="Traffic prediction">Traffic prediction</a>, <a href="https://publications.waset.org/search?q=association%20rule" title=" association rule"> association rule</a>, <a href="https://publications.waset.org/search?q=data%20mining." title=" data mining."> data mining.</a> </p> <a href="https://publications.waset.org/16461/a-network-traffic-prediction-algorithm-based-on-data-mining-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16461/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16461/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16461/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16461/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16461/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16461/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16461/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16461/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16461/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16461/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3669</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1139</span> Analysis of Users’ Behavior on Book Loan Log Based On Association Rule Mining </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kanyarat%20Bussaban">Kanyarat Bussaban</a>, <a href="https://publications.waset.org/search?q=Kunyanuth%20Kularbphettong"> Kunyanuth Kularbphettong </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, Apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was <span dir="RTL">79</span>.<span dir="RTL">24</span>percent and the MSE was <span dir="RTL">22.91</span>. The results showed that the user&rsquo;s behavior model by using association rule technique can use to manage the library resources.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Behavior" title="Behavior">Behavior</a>, <a href="https://publications.waset.org/search?q=data%20mining%20technique" title=" data mining technique"> data mining technique</a>, <a href="https://publications.waset.org/search?q=Apriori%20algorithm." title=" Apriori algorithm. "> Apriori algorithm. </a> </p> <a href="https://publications.waset.org/9997109/analysis-of-users-behavior-on-book-loan-log-based-on-association-rule-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997109/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997109/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997109/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997109/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997109/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997109/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997109/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997109/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997109/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997109/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2306</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1138</span> Parallel and Distributed Mining of Association Rule on Knowledge Grid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=U.%20Sakthi">U. Sakthi</a>, <a href="https://publications.waset.org/search?q=R.%20Hemalatha"> R. Hemalatha</a>, <a href="https://publications.waset.org/search?q=R.%20S.%20Bhuvaneswaran"> R. S. Bhuvaneswaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Virtual organization, Knowledge Discovery (KD) service contains distributed data resources and computing grid nodes. Computational grid is integrated with data grid to form Knowledge Grid, which implements Apriori algorithm for mining association rule on grid network. This paper describes development of parallel and distributed version of Apriori algorithm on Globus Toolkit using Message Passing Interface extended with Grid Services (MPICHG2). The creation of Knowledge Grid on top of data and computational grid is to support decision making in real time applications. In this paper, the case study describes design and implementation of local and global mining of frequent item sets. The experiments were conducted on different configurations of grid network and computation time was recorded for each operation. We analyzed our result with various grid configurations and it shows speedup of computation time is almost superlinear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Association%20rule" title="Association rule">Association rule</a>, <a href="https://publications.waset.org/search?q=Grid%20computing" title=" Grid computing"> Grid computing</a>, <a href="https://publications.waset.org/search?q=Knowledge%20grid" title=" Knowledge grid"> Knowledge grid</a>, <a href="https://publications.waset.org/search?q=Mobility%20prediction." title="Mobility prediction.">Mobility prediction.</a> </p> <a href="https://publications.waset.org/11084/parallel-and-distributed-mining-of-association-rule-on-knowledge-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11084/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11084/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11084/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11084/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11084/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11084/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11084/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11084/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11084/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11084/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2182</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1137</span> Mining Educational Data to Analyze the Student Motivation Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kunyanuth%20Kularbphettong">Kunyanuth Kularbphettong</a>, <a href="https://publications.waset.org/search?q=Cholticha%20Tongsiri"> Cholticha Tongsiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research aims to discover the knowledge for analysis student motivation behavior on e-Learning based on Data Mining Techniques, in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The data mining techniques was applied in this research including association rules, classification techniques. The results showed that using data mining technique can indicate the important variables that influence the student motivation behavior on e-Learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=association%20rule%20mining" title="association rule mining">association rule mining</a>, <a href="https://publications.waset.org/search?q=classification%20techniques" title=" classification techniques"> classification techniques</a>, <a href="https://publications.waset.org/search?q=e-%0ALearning" title=" e- Learning"> e- Learning</a>, <a href="https://publications.waset.org/search?q=Moodle%20log%20Motivation%20Behavior" title=" Moodle log Motivation Behavior"> Moodle log Motivation Behavior</a> </p> <a href="https://publications.waset.org/12793/mining-educational-data-to-analyze-the-student-motivation-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12793/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12793/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12793/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12793/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12793/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12793/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12793/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12793/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12793/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12793/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3093</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1136</span> SUPAR: System for User-Centric Profiling of Association Rules in Streaming Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sarabjeet%20Kaur%20Kochhar">Sarabjeet Kaur Kochhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With a surge of stream processing applications novel techniques are required for generation and analysis of association rules in streams. The traditional rule mining solutions cannot handle streams because they generally require multiple passes over the data and do not guarantee the results in a predictable, small time. Though researchers have been proposing algorithms for generation of rules from streams, there has not been much focus on their analysis. We propose Association rule profiling, a user centric process for analyzing association rules and attaching suitable profiles to them depending on their changing frequency behavior over a previous snapshot of time in a data stream. Association rule profiles provide insights into the changing nature of associations and can be used to characterize the associations. We discuss importance of characteristics such as predictability of linkages present in the data and propose metric to quantify it. We also show how association rule profiles can aid in generation of user specific, more understandable and actionable rules. The framework is implemented as SUPAR: System for Usercentric Profiling of Association Rules in streaming data. The proposed system offers following capabilities: i) Continuous monitoring of frequency of streaming item-sets and detection of significant changes therein for association rule profiling. ii) Computation of metrics for quantifying predictability of associations present in the data. iii) User-centric control of the characterization process: user can control the framework through a) constraint specification and b) non-interesting rule elimination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20Streams" title="Data Streams">Data Streams</a>, <a href="https://publications.waset.org/search?q=User%20subjectivity" title=" User subjectivity"> User subjectivity</a>, <a href="https://publications.waset.org/search?q=Change%0Adetection" title=" Change detection"> Change detection</a>, <a href="https://publications.waset.org/search?q=Association%20rule%20profiles" title=" Association rule profiles"> Association rule profiles</a>, <a href="https://publications.waset.org/search?q=Predictability." title=" Predictability."> Predictability.</a> </p> <a href="https://publications.waset.org/14884/supar-system-for-user-centric-profiling-of-association-rules-in-streaming-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14884/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14884/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14884/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14884/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14884/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14884/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14884/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14884/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14884/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14884/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1458</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1135</span> Applying Fuzzy FP-Growth to Mine Fuzzy Association Rules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chien-Hua%20Wang">Chien-Hua Wang</a>, <a href="https://publications.waset.org/search?q=Wei-Hsuan%20Lee"> Wei-Hsuan Lee</a>, <a href="https://publications.waset.org/search?q=Chin-Tzong%20Pang"> Chin-Tzong Pang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In data mining, the association rules are used to find for the associations between the different items of the transactions database. As the data collected and stored, rules of value can be found through association rules, which can be applied to help managers execute marketing strategies and establish sound market frameworks. This paper aims to use Fuzzy Frequent Pattern growth (FFP-growth) to derive from fuzzy association rules. At first, we apply fuzzy partition methods and decide a membership function of quantitative value for each transaction item. Next, we implement FFP-growth to deal with the process of data mining. In addition, in order to understand the impact of Apriori algorithm and FFP-growth algorithm on the execution time and the number of generated association rules, the experiment will be performed by using different sizes of databases and thresholds. Lastly, the experiment results show FFPgrowth algorithm is more efficient than other existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20mining" title="Data mining">Data mining</a>, <a href="https://publications.waset.org/search?q=association%20rule" title=" association rule"> association rule</a>, <a href="https://publications.waset.org/search?q=fuzzy%20frequent%20patterngrowth." title=" fuzzy frequent patterngrowth."> fuzzy frequent patterngrowth.</a> </p> <a href="https://publications.waset.org/11140/applying-fuzzy-fp-growth-to-mine-fuzzy-association-rules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11140/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11140/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11140/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11140/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11140/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11140/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11140/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11140/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11140/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11140/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1800</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1134</span> Improved FP-growth Algorithm with Multiple Minimum Supports Using Maximum Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Elsayeda%20M.%20Elgaml">Elsayeda M. Elgaml</a>, <a href="https://publications.waset.org/search?q=Dina%20M.%20Ibrahim"> Dina M. Ibrahim</a>, <a href="https://publications.waset.org/search?q=Elsayed%20A.%20Sallam"> Elsayed A. Sallam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called &ldquo;MSFP-growth&rdquo; that enhancing the FPgrowth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy.&nbsp;</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Association%20Rules" title="Association Rules">Association Rules</a>, <a href="https://publications.waset.org/search?q=FP-growth" title=" FP-growth"> FP-growth</a>, <a href="https://publications.waset.org/search?q=Multiple%20minimum%0D%0Asupports" title=" Multiple minimum supports"> Multiple minimum supports</a>, <a href="https://publications.waset.org/search?q=Weka%20Tool" title=" Weka Tool"> Weka Tool</a> </p> <a href="https://publications.waset.org/10001311/improved-fp-growth-algorithm-with-multiple-minimum-supports-using-maximum-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001311/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001311/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001311/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001311/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001311/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001311/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001311/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001311/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001311/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001311/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3318</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1133</span> An Improved k Nearest Neighbor Classifier Using Interestingness Measures for Medical Image Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20Alamelu%20Mangai">J. Alamelu Mangai</a>, <a href="https://publications.waset.org/search?q=Satej%20Wagle"> Satej Wagle</a>, <a href="https://publications.waset.org/search?q=V.%20Santhosh%20Kumar"> V. Santhosh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract" style="text-indent:10.2pt">The exponential increase in the volume of medical image database has imposed new challenges to clinical routine in maintaining patient history, diagnosis, treatment and monitoring. With the advent of data mining and machine learning techniques it is possible to automate and/or assist physicians in clinical diagnosis. In this research a medical image classification framework using data mining techniques is proposed. It involves feature extraction, feature selection, feature discretization and classification. In the classification phase, the performance of the traditional kNN k nearest neighbor classifier is improved using a feature weighting scheme and a distance weighted voting instead of simple majority voting. Feature weights are calculated using the interestingness measures used in association rule mining. Experiments on the retinal fundus images show that the proposed framework improves the classification accuracy of traditional kNN from 78.57 % to 92.85 %.<o:p></o:p></p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Medical%20Image%20Mining" title="Medical Image Mining">Medical Image Mining</a>, <a href="https://publications.waset.org/search?q=Data%20Mining" title=" Data Mining"> Data Mining</a>, <a href="https://publications.waset.org/search?q=Feature%20Weighting" title=" Feature Weighting"> Feature Weighting</a>, <a href="https://publications.waset.org/search?q=Association%20Rule%20Mining" title=" Association Rule Mining"> Association Rule Mining</a>, <a href="https://publications.waset.org/search?q=k%20nearest%20neighbor%20classifier." title=" k nearest neighbor classifier."> k nearest neighbor classifier.</a> </p> <a href="https://publications.waset.org/16638/an-improved-k-nearest-neighbor-classifier-using-interestingness-measures-for-medical-image-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16638/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16638/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16638/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16638/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16638/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16638/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16638/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16638/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16638/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16638/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3308</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1132</span> Semi-Automatic Method to Assist Expert for Association Rules Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Amdouni%20Hamida">Amdouni Hamida</a>, <a href="https://publications.waset.org/search?q=Gammoudi%20Mohamed%20Mohsen"> Gammoudi Mohamed Mohsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to help the expert to validate association rules extracted from data, some quality measures are proposed in the literature. We distinguish two categories: objective and subjective measures. The first one depends on a fixed threshold and on data quality from which the rules are extracted. The second one consists on providing to the expert some tools in the objective to explore and visualize rules during the evaluation step. However, the number of extracted rules to validate remains high. Thus, the manually mining rules task is very hard. To solve this problem, we propose, in this paper, a semi-automatic method to assist the expert during the association rule's validation. Our method uses rule-based classification as follow: (i) We transform association rules into classification rules (classifiers), (ii) We use the generated classifiers for data classification. (iii) We visualize association rules with their quality classification to give an idea to the expert and to assist him during validation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Association%20rules" title="Association rules">Association rules</a>, <a href="https://publications.waset.org/search?q=Rule-based%20classification" title=" Rule-based classification"> Rule-based classification</a>, <a href="https://publications.waset.org/search?q=Classification%20quality" title=" Classification quality"> Classification quality</a>, <a href="https://publications.waset.org/search?q=Validation." title=" Validation."> Validation.</a> </p> <a href="https://publications.waset.org/10002201/semi-automatic-method-to-assist-expert-for-association-rules-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002201/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002201/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002201/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002201/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002201/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002201/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002201/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002201/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002201/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002201/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1791</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1131</span> Analyzing the Relation of Community Group for Research Paper Bookmarking by Using Association Rule</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Jomsri">P. Jomsri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Currently searching through internet is very popular especially in a field of academic. A huge of educational information such as research papers are overload for user. So community-base web sites have been developed to help user search information more easily from process of customizing a web site to need each specifies user or set of user. In this paper propose to use association rule analyze the community group on research paper bookmarking. A set of design goals for community group frameworks is developed and discussed. Additionally Researcher analyzes the initial relation by using association rule discovery between the antecedent and the consequent of a rule in the groups of user for generate the idea to improve ranking search result and development recommender system.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=association%20rule" title="association rule">association rule</a>, <a href="https://publications.waset.org/search?q=information%20retrieval" title=" information retrieval"> information retrieval</a>, <a href="https://publications.waset.org/search?q=research%20paper%20bookmarking." title=" research paper bookmarking."> research paper bookmarking.</a> </p> <a href="https://publications.waset.org/853/analyzing-the-relation-of-community-group-for-research-paper-bookmarking-by-using-association-rule" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/853/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/853/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/853/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/853/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/853/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/853/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/853/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/853/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/853/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/853/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1444</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1130</span> Improving the Performance of Proxy Server by Using Data Mining Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Jomsri">P. Jomsri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Currently, web usage make a huge data from a lot of user attention. In general, proxy server is a system to support web usage from user and can manage system by using hit rates. This research tries to improve hit rates in proxy system by applying data mining technique. The data set are collected from proxy servers in the university and are investigated relationship based on several features. The model is used to predict the future access websites. Association rule technique is applied to get the relation among Date, Time, Main Group web, Sub Group web, and Domain name for created model. The results showed that this technique can predict web content for the next day, moreover the future accesses of websites increased from 38.15% to 85.57 %. This model can predict web page access which tends to increase the efficient of proxy servers as a result. In additional, the performance of internet access will be improved and help to reduce traffic in networks.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Association%20rule" title="Association rule">Association rule</a>, <a href="https://publications.waset.org/search?q=proxy%20server" title=" proxy server"> proxy server</a>, <a href="https://publications.waset.org/search?q=data%20mining." title=" data mining."> data mining.</a> </p> <a href="https://publications.waset.org/16471/improving-the-performance-of-proxy-server-by-using-data-mining-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16471/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16471/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16471/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16471/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16471/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16471/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16471/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16471/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16471/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16471/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3062</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1129</span> Model Discovery and Validation for the Qsar Problem using Association Rule Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Luminita%20Dumitriu">Luminita Dumitriu</a>, <a href="https://publications.waset.org/search?q=Cristina%20Segal"> Cristina Segal</a>, <a href="https://publications.waset.org/search?q=Marian%20Craciun"> Marian Craciun</a>, <a href="https://publications.waset.org/search?q=Adina%20Cocu"> Adina Cocu</a>, <a href="https://publications.waset.org/search?q=Lucian%20P.%20Georgescu"> Lucian P. Georgescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several approaches in trying to solve the Quantitative 1Structure-Activity Relationship (QSAR) problem. These approaches are based either on statistical methods or on predictive data mining. Among the statistical methods, one should consider regression analysis, pattern recognition (such as cluster analysis, factor analysis and principal components analysis) or partial least squares. Predictive data mining techniques use either neural networks, or genetic programming, or neuro-fuzzy knowledge. These approaches have a low explanatory capability or non at all. This paper attempts to establish a new approach in solving QSAR problems using descriptive data mining. This way, the relationship between the chemical properties and the activity of a substance would be comprehensibly modeled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=association%20rules" title="association rules">association rules</a>, <a href="https://publications.waset.org/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/search?q=Quantitative%20Structure%20-%20Activity%20Relationship." title=" Quantitative Structure - Activity Relationship."> Quantitative Structure - Activity Relationship.</a> </p> <a href="https://publications.waset.org/13096/model-discovery-and-validation-for-the-qsar-problem-using-association-rule-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13096/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13096/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13096/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13096/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13096/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13096/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13096/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13096/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13096/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13096/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1788</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1128</span> Finding Fuzzy Association Rules Using FWFP-Growth with Linguistic Supports and Confidences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chien-Hua%20Wang">Chien-Hua Wang</a>, <a href="https://publications.waset.org/search?q=Chin-Tzong%20Pang"> Chin-Tzong Pang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In data mining, the association rules are used to search for the relations of items of the transactions database. Following the data is collected and stored, it can find rules of value through association rules, and assist manager to proceed marketing strategy and plan market framework. In this paper, we attempt fuzzy partition methods and decide membership function of quantitative values of each transaction item. Also, by managers we can reflect the importance of items as linguistic terms, which are transformed as fuzzy sets of weights. Next, fuzzy weighted frequent pattern growth (FWFP-Growth) is used to complete the process of data mining. The method above is expected to improve Apriori algorithm for its better efficiency of the whole association rules. An example is given to clearly illustrate the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Association%20Rule" title="Association Rule">Association Rule</a>, <a href="https://publications.waset.org/search?q=Fuzzy%20Partition%20Methods" title=" Fuzzy Partition Methods"> Fuzzy Partition Methods</a>, <a href="https://publications.waset.org/search?q=FWFP-Growth" title=" FWFP-Growth"> FWFP-Growth</a>, <a href="https://publications.waset.org/search?q=Apiroir%20algorithm" title=" Apiroir algorithm"> Apiroir algorithm</a> </p> <a href="https://publications.waset.org/15457/finding-fuzzy-association-rules-using-fwfp-growth-with-linguistic-supports-and-confidences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15457/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15457/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15457/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15457/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15457/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15457/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15457/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15457/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15457/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15457/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1652</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1127</span> An Efficient Data Mining Approach on Compressed Transactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jia-Yu%20Dai">Jia-Yu Dai</a>, <a href="https://publications.waset.org/search?q=Don-Lin%20Yang"> Don-Lin Yang</a>, <a href="https://publications.waset.org/search?q=Jungpin%20Wu"> Jungpin Wu</a>, <a href="https://publications.waset.org/search?q=Ming-Chuan%20Hung"> Ming-Chuan Hung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an era of knowledge explosion, the growth of data increases rapidly day by day. Since data storage is a limited resource, how to reduce the data space in the process becomes a challenge issue. Data compression provides a good solution which can lower the required space. Data mining has many useful applications in recent years because it can help users discover interesting knowledge in large databases. However, existing compression algorithms are not appropriate for data mining. In [1, 2], two different approaches were proposed to compress databases and then perform the data mining process. However, they all lack the ability to decompress the data to their original state and improve the data mining performance. In this research a new approach called Mining Merged Transactions with the Quantification Table (M2TQT) was proposed to solve these problems. M2TQT uses the relationship of transactions to merge related transactions and builds a quantification table to prune the candidate itemsets which are impossible to become frequent in order to improve the performance of mining association rules. The experiments show that M2TQT performs better than existing approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Association%20rule" title="Association rule">Association rule</a>, <a href="https://publications.waset.org/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/search?q=merged%20transaction" title=" merged transaction"> merged transaction</a>, <a href="https://publications.waset.org/search?q=quantification%20table." title="quantification table.">quantification table.</a> </p> <a href="https://publications.waset.org/13363/an-efficient-data-mining-approach-on-compressed-transactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13363/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13363/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13363/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13363/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13363/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13363/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13363/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13363/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13363/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13363/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1960</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1126</span> A Multi-Agent Framework for Data Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kamal%20Ali%20Albashiri">Kamal Ali Albashiri</a>, <a href="https://publications.waset.org/search?q=Khaled%20Ahmed%20Kadouh"> Khaled Ahmed Kadouh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A generic and extendible Multi-Agent Data Mining (MADM) framework, MADMF (the Multi-Agent Data Mining Framework) is described. The central feature of the framework is that it avoids the use of agreed meta-language formats by supporting a framework of wrappers. The advantage offered is that the framework is easily extendible, so that further data agents and mining agents can simply be added to the framework. A demonstration MADMF framework is currently available. The paper includes details of the MADMF architecture and the wrapper principle incorporated into it. A full description and evaluation of the framework-s operation is provided by considering two MADM scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multi-Agent%20Data%20Mining%20%28MADM%29" title="Multi-Agent Data Mining (MADM)">Multi-Agent Data Mining (MADM)</a>, <a href="https://publications.waset.org/search?q=Frequent%0AItemsets" title=" Frequent Itemsets"> Frequent Itemsets</a>, <a href="https://publications.waset.org/search?q=Meta%20ARM" title=" Meta ARM"> Meta ARM</a>, <a href="https://publications.waset.org/search?q=Association%20Rule%20Mining" title=" Association Rule Mining"> Association Rule Mining</a>, <a href="https://publications.waset.org/search?q=Classifier%20generator." title=" Classifier generator."> Classifier generator.</a> </p> <a href="https://publications.waset.org/10851/a-multi-agent-framework-for-data-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10851/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10851/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10851/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10851/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10851/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10851/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10851/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10851/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10851/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10851/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2074</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1125</span> Association Rules Mining and NOSQL Oriented Document in Big Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sarra%20Senhadji">Sarra Senhadji</a>, <a href="https://publications.waset.org/search?q=Imene%20Benzeguimi"> Imene Benzeguimi</a>, <a href="https://publications.waset.org/search?q=Zohra%20Yagoub"> Zohra Yagoub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Apriori" title="Apriori">Apriori</a>, <a href="https://publications.waset.org/search?q=Association%20rules%20mining" title=" Association rules mining"> Association rules mining</a>, <a href="https://publications.waset.org/search?q=Big%20Data" title=" Big Data"> Big Data</a>, <a href="https://publications.waset.org/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/search?q=Hadoop" title=" Hadoop"> Hadoop</a>, <a href="https://publications.waset.org/search?q=Map%20Reduce" title=" Map Reduce"> Map Reduce</a>, <a href="https://publications.waset.org/search?q=MongoDB" title=" MongoDB"> MongoDB</a>, <a href="https://publications.waset.org/search?q=NoSQL." title=" NoSQL. "> NoSQL. </a> </p> <a href="https://publications.waset.org/10011643/association-rules-mining-and-nosql-oriented-document-in-big-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011643/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011643/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011643/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011643/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011643/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011643/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011643/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011643/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011643/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011643/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">694</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1124</span> A Hybrid Approach for Thread Recommendation in MOOC Forums</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ahmad.%20A.%20Kardan">Ahmad. A. Kardan</a>, <a href="https://publications.waset.org/search?q=Amir%20Narimani"> Amir Narimani</a>, <a href="https://publications.waset.org/search?q=Foozhan%20Ataiefard"> Foozhan Ataiefard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recommender Systems have been developed to provide contents and services compatible to users based on their behaviors and interests. Due to information overload in online discussion forums and users diverse interests, recommending relative topics and threads is considered to be helpful for improving the ease of forum usage. In order to lead learners to find relevant information in educational forums, recommendations are even more needed. We present a hybrid thread recommender system for MOOC forums by applying social network analysis and association rule mining techniques. Initial results indicate that the proposed recommender system performs comparatively well with regard to limited available data from users&#39; previous posts in the forum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Association%20rule%20mining" title="Association rule mining">Association rule mining</a>, <a href="https://publications.waset.org/search?q=hybrid%20recommender%20system" title=" hybrid recommender system"> hybrid recommender system</a>, <a href="https://publications.waset.org/search?q=massive%20open%20online%20courses" title=" massive open online courses"> massive open online courses</a>, <a href="https://publications.waset.org/search?q=MOOCs" title=" MOOCs"> MOOCs</a>, <a href="https://publications.waset.org/search?q=social%20network%20analysis." title=" social network analysis."> social network analysis.</a> </p> <a href="https://publications.waset.org/10007978/a-hybrid-approach-for-thread-recommendation-in-mooc-forums" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007978/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007978/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007978/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007978/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007978/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007978/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007978/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007978/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007978/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007978/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1263</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1123</span> Mining Association Rules from Unstructured Documents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hany%20Mahgoub">Hany Mahgoub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a system for discovering association rules from collections of unstructured documents called EART (Extract Association Rules from Text). The EART system treats texts only not images or figures. EART discovers association rules amongst keywords labeling the collection of textual documents. The main characteristic of EART is that the system integrates XML technology (to transform unstructured documents into structured documents) with Information Retrieval scheme (TF-IDF) and Data Mining technique for association rules extraction. EART depends on word feature to extract association rules. It consists of four phases: structure phase, index phase, text mining phase and visualization phase. Our work depends on the analysis of the keywords in the extracted association rules through the co-occurrence of the keywords in one sentence in the original text and the existing of the keywords in one sentence without co-occurrence. Experiments applied on a collection of scientific documents selected from MEDLINE that are related to the outbreak of H5N1 avian influenza virus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Association%20rules" title="Association rules">Association rules</a>, <a href="https://publications.waset.org/search?q=information%20retrieval" title=" information retrieval"> information retrieval</a>, <a href="https://publications.waset.org/search?q=knowledgediscovery%20in%20text" title=" knowledgediscovery in text"> knowledgediscovery in text</a>, <a href="https://publications.waset.org/search?q=text%20mining." title=" text mining."> text mining.</a> </p> <a href="https://publications.waset.org/3514/mining-association-rules-from-unstructured-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3514/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3514/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3514/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3514/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3514/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3514/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3514/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3514/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3514/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3514/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2442</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1122</span> Incremental Mining of Shocking Association Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Eiad%20Yafi">Eiad Yafi</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Sultan%20Al-Hegami"> Ahmed Sultan Al-Hegami</a>, <a href="https://publications.waset.org/search?q=M.%20A.%20Alam"> M. A. Alam</a>, <a href="https://publications.waset.org/search?q=Ranjit%20Biswas"> Ranjit Biswas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Association rules are an important problem in data mining. Massively increasing volume of data in real life databases has motivated researchers to design novel and incremental algorithms for association rules mining. In this paper, we propose an incremental association rules mining algorithm that integrates shocking interestingness criterion during the process of building the model. A new interesting measure called shocking measure is introduced. One of the main features of the proposed approach is to capture the user background knowledge, which is monotonically augmented. The incremental model that reflects the changing data and the user beliefs is attractive in order to make the over all KDD process more effective and efficient. We implemented the proposed approach and experiment it with some public datasets and found the results quite promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Knowledge%20discovery%20in%20databases%20%28KDD%29" title="Knowledge discovery in databases (KDD)">Knowledge discovery in databases (KDD)</a>, <a href="https://publications.waset.org/search?q=Data%0Amining" title=" Data mining"> Data mining</a>, <a href="https://publications.waset.org/search?q=Incremental%20Association%20rules" title=" Incremental Association rules"> Incremental Association rules</a>, <a href="https://publications.waset.org/search?q=Domain%20knowledge" title=" Domain knowledge"> Domain knowledge</a>, <a href="https://publications.waset.org/search?q=Interestingness" title=" Interestingness"> Interestingness</a>, <a href="https://publications.waset.org/search?q=Shocking%20rules%20%28SHR%29." title=" Shocking rules (SHR)."> Shocking rules (SHR).</a> </p> <a href="https://publications.waset.org/14329/incremental-mining-of-shocking-association-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14329/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14329/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14329/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14329/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14329/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14329/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14329/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14329/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14329/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14329/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1867</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1121</span> Association Rule and Decision Tree based Methodsfor Fuzzy Rule Base Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ferenc%20Peter%20Pach">Ferenc Peter Pach</a>, <a href="https://publications.waset.org/search?q=Janos%20Abonyi"> Janos Abonyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the data-driven generation of fuzzy IF...THEN rules. The resulted fuzzy rule base can be applied to build a classifier, a model used for prediction, or it can be applied to form a decision support system. Among the wide range of possible approaches, the decision tree and the association rule based algorithms are overviewed, and two new approaches are presented based on the a priori fuzzy clustering based partitioning of the continuous input variables. An application study is also presented, where the developed methods are tested on the well known Wisconsin Breast Cancer classification problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=" title=""></a> </p> <a href="https://publications.waset.org/13993/association-rule-and-decision-tree-based-methodsfor-fuzzy-rule-base-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13993/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13993/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13993/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13993/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13993/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13993/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13993/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13993/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13993/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13993/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2304</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=association%20rule%20mining.&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=association%20rule%20mining.&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=association%20rule%20mining.&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=association%20rule%20mining.&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=association%20rule%20mining.&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=association%20rule%20mining.&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=association%20rule%20mining.&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=association%20rule%20mining.&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=association%20rule%20mining.&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=association%20rule%20mining.&amp;page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=association%20rule%20mining.&amp;page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=association%20rule%20mining.&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10