CINXE.COM

Search results for: vector quantization (VQ)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: vector quantization (VQ)</title> <meta name="description" content="Search results for: vector quantization (VQ)"> <meta name="keywords" content="vector quantization (VQ)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="vector quantization (VQ)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="vector quantization (VQ)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1143</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: vector quantization (VQ)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1113</span> A Comparative Study of Series-Connected Two-Motor Drive Fed by a Single Inverter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Djahbar">A. Djahbar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Bounadja"> E. Bounadja</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zegaoui"> A. Zegaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Allouache"> H. Allouache</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, vector control of a series-connected two-machine drive system fed by a single inverter (CSI/VSI) is presented. The two stator windings of both machines are connected in series while the rotors may be connected to different loads, are called series-connected two-machine drive. Appropriate phase transposition is introduced while connecting the series stator winding to obtain decoupled control the two-machines. The dynamic decoupling of each machine from the group is obtained using the vector control algorithm. The independent control is demonstrated by analyzing the characteristics of torque and speed of each machine obtained via simulation under vector control scheme. The viability of the control techniques is proved using analytically and simulation approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drives" title="drives">drives</a>, <a href="https://publications.waset.org/abstracts/search?q=inverter" title=" inverter"> inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20induction%20machine" title=" multi-phase induction machine"> multi-phase induction machine</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20control" title=" vector control"> vector control</a> </p> <a href="https://publications.waset.org/abstracts/42943/a-comparative-study-of-series-connected-two-motor-drive-fed-by-a-single-inverter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1112</span> Diagonal Vector Autoregressive Models and Their Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usoro%20Anthony%20E.">Usoro Anthony E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Udoh%20Emediong"> Udoh Emediong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diagonal Vector Autoregressive Models are special classes of the general vector autoregressive models identified under certain conditions, where parameters are restricted to the diagonal elements in the coefficient matrices. Variance, autocovariance, and autocorrelation properties of the upper and lower diagonal VAR models are derived. The new set of VAR models is verified with empirical data and is found to perform favourably with the general VAR models. The advantage of the diagonal models over the existing models is that the new models are parsimonious, given the reduction in the interactive coefficients of the general VAR models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VAR%20models" title="VAR models">VAR models</a>, <a href="https://publications.waset.org/abstracts/search?q=diagonal%20VAR%20models" title=" diagonal VAR models"> diagonal VAR models</a>, <a href="https://publications.waset.org/abstracts/search?q=variance" title=" variance"> variance</a>, <a href="https://publications.waset.org/abstracts/search?q=autocovariance" title=" autocovariance"> autocovariance</a>, <a href="https://publications.waset.org/abstracts/search?q=autocorrelations" title=" autocorrelations"> autocorrelations</a> </p> <a href="https://publications.waset.org/abstracts/157980/diagonal-vector-autoregressive-models-and-their-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1111</span> A Low-Cost Experimental Approach for Teaching Energy Quantization: Determining the Planck Constant with Arduino and Led</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gast%C3%A3o%20Soares%20Ximenes%20de%20Oliveira">Gastão Soares Ximenes de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Richar%20Nicol%C3%A1s%20Dur%C3%A1n"> Richar Nicolás Durán</a>, <a href="https://publications.waset.org/abstracts/search?q=Romeo%20Micah%20Szmoski"> Romeo Micah Szmoski</a>, <a href="https://publications.waset.org/abstracts/search?q=Eloiza%20Aparecida%20Avila%20de%20Matos"> Eloiza Aparecida Avila de Matos</a>, <a href="https://publications.waset.org/abstracts/search?q=Elano%20Gustavo%20Rein"> Elano Gustavo Rein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article aims to present an experimental method to determine Planck's constant by calculating the cutting potential V₀ from LEDs with different wavelengths. The experiment is designed using Arduino as a central tool in order to make the experimental activity more engaging and attractive for students with the use of digital technologies. From the characteristic curves of each LED, graphical analysis was used to obtain the cutting potential, and knowing the corresponding wavelength, it was possible to calculate Planck's constant. This constant was also obtained from the linear adjustment of the cutting potential graph by the frequency of each LED. Given the relevance of Planck's constant in physics, it is believed that this experiment can offer teachers the opportunity to approach concepts from modern physics, such as the quantization of energy, in a more accessible and applied way in the classroom. This will not only enrich students' understanding of the fundamental nature of matter but also encourage deeper engagement with the principles of quantum physics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physics%20teaching" title="physics teaching">physics teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20technology" title=" educational technology"> educational technology</a>, <a href="https://publications.waset.org/abstracts/search?q=modern%20physics" title=" modern physics"> modern physics</a>, <a href="https://publications.waset.org/abstracts/search?q=Planck%20constant" title=" Planck constant"> Planck constant</a>, <a href="https://publications.waset.org/abstracts/search?q=Arduino" title=" Arduino"> Arduino</a> </p> <a href="https://publications.waset.org/abstracts/173953/a-low-cost-experimental-approach-for-teaching-energy-quantization-determining-the-planck-constant-with-arduino-and-led" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1110</span> Improving Cheon-Kim-Kim-Song (CKKS) Performance with Vector Computation and GPU Acceleration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smaran%20Manchala">Smaran Manchala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Homomorphic Encryption (HE) enables computations on encrypted data without requiring decryption, mitigating data vulnerability during processing. Usable Fully Homomorphic Encryption (FHE) could revolutionize secure data operations across cloud computing, AI training, and healthcare, providing both privacy and functionality, however, the computational inefficiency of schemes like Cheon-Kim-Kim-Song (CKKS) hinders their widespread practical use. This study focuses on optimizing CKKS for faster matrix operations through the implementation of vector computation parallelization and GPU acceleration. The variable effects of vector parallelization on GPUs were explored, recognizing that while parallelization typically accelerates operations, it could introduce overhead that results in slower runtimes, especially in smaller, less computationally demanding operations. To assess performance, two neural network models, MLPN and CNN—were tested on the MNIST dataset using both ARM and x86-64 architectures, with CNN chosen for its higher computational demands. Each test was repeated 1,000 times, and outliers were removed via Z-score analysis to measure the effect of vector parallelization on CKKS performance. Model accuracy was also evaluated under CKKS encryption to ensure optimizations did not compromise results. According to the results of the trail runs, applying vector parallelization had a 2.63X efficiency increase overall with a 1.83X performance increase for x86-64 over ARM architecture. Overall, these results suggest that the application of vector parallelization in tandem with GPU acceleration significantly improves the efficiency of CKKS even while accounting for vector parallelization overhead, providing impact in future zero trust operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CKKS%20scheme" title="CKKS scheme">CKKS scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=runtime%20efficiency" title=" runtime efficiency"> runtime efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=fully%20homomorphic%20encryption%20%28FHE%29" title=" fully homomorphic encryption (FHE)"> fully homomorphic encryption (FHE)</a>, <a href="https://publications.waset.org/abstracts/search?q=GPU%20acceleration" title=" GPU acceleration"> GPU acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20parallelization" title=" vector parallelization"> vector parallelization</a> </p> <a href="https://publications.waset.org/abstracts/192456/improving-cheon-kim-kim-song-ckks-performance-with-vector-computation-and-gpu-acceleration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1109</span> Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karchung">Karchung</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ruangsinchaiwanich"> S. Ruangsinchaiwanich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20drive" title="electric drive">electric drive</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title=" induction motor"> induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=open-loop%20vector%20control" title=" open-loop vector control"> open-loop vector control</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20vector%20pulse%20width%20modulation%20technique" title=" space vector pulse width modulation technique"> space vector pulse width modulation technique</a> </p> <a href="https://publications.waset.org/abstracts/105539/open-loop-vector-control-of-induction-motor-with-space-vector-pulse-width-modulation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1108</span> Using New Machine Algorithms to Classify Iranian Musical Instruments According to Temporal, Spectral and Coefficient Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ronak%20Khosravi">Ronak Khosravi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Abbasi%20Layegh"> Mahmood Abbasi Layegh</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Haghipour"> Siamak Haghipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Avin%20Esmaili"> Avin Esmaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a study on classification of musical woodwind instruments using a small set of features selected from a broad range of extracted ones by the sequential forward selection method was carried out. Firstly, we extract 42 features for each record in the music database of 402 sound files belonging to five different groups of Flutes (end blown and internal duct), Single –reed, Double –reed (exposed and capped), Triple reed and Quadruple reed. Then, the sequential forward selection method is adopted to choose the best feature set in order to achieve very high classification accuracy. Two different classification techniques of support vector machines and relevance vector machines have been tested out and an accuracy of up to 96% can be achieved by using 21 time, frequency and coefficient features and relevance vector machine with the Gaussian kernel function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coefficient%20features" title="coefficient features">coefficient features</a>, <a href="https://publications.waset.org/abstracts/search?q=relevance%20vector%20machines" title=" relevance vector machines"> relevance vector machines</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20features" title=" spectral features"> spectral features</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20features" title=" temporal features"> temporal features</a> </p> <a href="https://publications.waset.org/abstracts/54321/using-new-machine-algorithms-to-classify-iranian-musical-instruments-according-to-temporal-spectral-and-coefficient-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1107</span> A Deletion-Cost Based Fast Compression Algorithm for Linear Vector Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiuxiao%20Chen">Qiuxiao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Hou"> Yan Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Wu"> Ning Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As there are deficiencies of the classic Douglas-Peucker Algorithm (DPA), such as high risks of deleting key nodes by mistake, high complexity, time consumption and relatively slow execution speed, a new Deletion-Cost Based Compression Algorithm (DCA) for linear vector data was proposed. For each curve — the basic element of linear vector data, all the deletion costs of its middle nodes were calculated, and the minimum deletion cost was compared with the pre-defined threshold. If the former was greater than or equal to the latter, all remaining nodes were reserved and the curve’s compression process was finished. Otherwise, the node with the minimal deletion cost was deleted, its two neighbors' deletion costs were updated, and the same loop on the compressed curve was repeated till the termination. By several comparative experiments using different types of linear vector data, the comparison between DPA and DCA was performed from the aspects of compression quality and computing efficiency. Experiment results showed that DCA outperformed DPA in compression accuracy and execution efficiency as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Douglas-Peucker%20algorithm" title="Douglas-Peucker algorithm">Douglas-Peucker algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20vector%20data" title=" linear vector data"> linear vector data</a>, <a href="https://publications.waset.org/abstracts/search?q=compression" title=" compression"> compression</a>, <a href="https://publications.waset.org/abstracts/search?q=deletion%20cost" title=" deletion cost"> deletion cost</a> </p> <a href="https://publications.waset.org/abstracts/8376/a-deletion-cost-based-fast-compression-algorithm-for-linear-vector-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1106</span> AI Peer Review Challenge: Standard Model of Physics vs 4D GEM EOS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20A.%20Harness">David A. Harness</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural evolution of ATP cognitive systems is to meet AI peer review standards. ATP process of axiom selection from Mizar to prove a conjecture would be further refined, as in all human and machine learning, by solving the real world problem of the proposed AI peer review challenge: Determine which conjecture forms the higher confidence level constructive proof between Standard Model of Physics SU(n) lattice gauge group operation vs. present non-standard 4D GEM EOS SU(n) lattice gauge group spatially extended operation in which the photon and electron are the first two trace angular momentum invariants of a gravitoelectromagnetic (GEM) energy momentum density tensor wavetrain integration spin-stress pressure-volume equation of state (EOS), initiated via 32 lines of Mathematica code. Resulting gravitoelectromagnetic spectrum ranges from compressive through rarefactive of the central cosmological constant vacuum energy density in units of pascals. Said self-adjoint group operation exclusively operates on the stress energy momentum tensor of the Einstein field equations, introducing quantization directly on the 4D spacetime level, essentially reformulating the Yang-Mills virtual superpositioned particle compounded lattice gauge groups quantization of the vacuum—into a single hyper-complex multi-valued GEM U(1) × SU(1,3) lattice gauge group Planck spacetime mesh quantization of the vacuum. Thus the Mizar corpus already contains all of the axioms required for relevant DeepMath premise selection and unambiguous formal natural language parsing in context deep learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20theorem%20proving" title="automated theorem proving">automated theorem proving</a>, <a href="https://publications.waset.org/abstracts/search?q=constructive%20quantum%20field%20theory" title=" constructive quantum field theory"> constructive quantum field theory</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20theory" title=" information theory"> information theory</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/74654/ai-peer-review-challenge-standard-model-of-physics-vs-4d-gem-eos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1105</span> SVM-Based Modeling of Mass Transfer Potential of Multiple Plunging Jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surinder%20Deswal">Surinder Deswal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Pal"> Mahesh Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper investigates the potential of support vector machines based regression approach to model the mass transfer capacity of multiple plunging jets, both vertical (θ = 90°) and inclined (θ = 60°). The data set used in this study consists of four input parameters with a total of eighty eight cases. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 (root mean square error values of 0.0025 and 0.0020) were achieved by using polynomial and radial basis kernel functions based support vector regression respectively. Results suggest an improved performance by radial basis function in comparison to polynomial kernel based support vector machines. The estimated overall mass transfer coefficient, by both the kernel functions, is in good agreement with actual experimental values (within a scatter of ±15 %); thereby suggesting the utility of support vector machines based regression approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title="mass transfer">mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20plunging%20jets" title=" multiple plunging jets"> multiple plunging jets</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20sciences" title=" ecological sciences"> ecological sciences</a> </p> <a href="https://publications.waset.org/abstracts/9906/svm-based-modeling-of-mass-transfer-potential-of-multiple-plunging-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1104</span> Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Zeighami">Vahid Zeighami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Ghsemi"> Mohsen Ghsemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Akbari"> Reza Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a Multi-Level Artificial Bee Colony (called MLABC) is presented. In MLABC two species are used. The first species employs n colonies in which each of the them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information between them. The proposed algorithm is tested on a set of well known test functions. The results show that MLABC algorithms provide efficiency and robustness to solve numerical functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20bee%20colony" title="artificial bee colony">artificial bee colony</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperative" title=" cooperative"> cooperative</a>, <a href="https://publications.waset.org/abstracts/search?q=multilevel%20cooperation" title=" multilevel cooperation"> multilevel cooperation</a>, <a href="https://publications.waset.org/abstracts/search?q=vector" title=" vector"> vector</a> </p> <a href="https://publications.waset.org/abstracts/15646/using-cooperation-approaches-at-different-levels-of-artificial-bee-colony-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1103</span> Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Ben%20Youssef">Nadia Ben Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Bouzid"> Aicha Bouzid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gradient" title="gradient">gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title=" edge detection"> edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20image" title=" color image"> color image</a>, <a href="https://publications.waset.org/abstracts/search?q=quaternion" title=" quaternion"> quaternion</a> </p> <a href="https://publications.waset.org/abstracts/141138/review-on-quaternion-gradient-operator-with-marginal-and-vector-approaches-for-colour-edge-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1102</span> Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaogang%20Li">Xiaogang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jieqiong%20Miao"> Jieqiong Miao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square error <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grey%20prediction%20model" title="Grey prediction model">Grey prediction model</a>, <a href="https://publications.waset.org/abstracts/search?q=trigonometric%20functions" title=" trigonometric functions"> trigonometric functions</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithms" title=" genetic algorithms"> genetic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20mean%20square%20error" title=" root mean square error"> root mean square error</a> </p> <a href="https://publications.waset.org/abstracts/29370/life-prediction-method-of-lithium-ion-battery-based-on-grey-support-vector-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1101</span> Forecasting of Grape Juice Flavor by Using Support Vector Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ren-Jieh%20Kuo">Ren-Jieh Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Shou%20Huang"> Chun-Shou Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractively. Thus, this study intends to introduce the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN and LR to forecast the flavor of grapes juice in real data, the result shows that SVR is more suitable and effective at predicting performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flavor%20forecasting" title="flavor forecasting">flavor forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=Support%20Vector%20Regression" title=" Support Vector Regression"> Support Vector Regression</a>, <a href="https://publications.waset.org/abstracts/search?q=China" title=" China"> China</a> </p> <a href="https://publications.waset.org/abstracts/21311/forecasting-of-grape-juice-flavor-by-using-support-vector-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1100</span> Pyramid Binary Pattern for Age Invariant Face Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Bijarnia">Saroj Bijarnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Preety%20Singh"> Preety Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a simple and effective biometrics system based on face verification across aging using a new variant of texture feature, Pyramid Binary Pattern. This employs Local Binary Pattern along with its hierarchical information. Dimension reduction of generated texture feature vector is done using Principal Component Analysis. Support Vector Machine is used for classification. Our proposed method achieves an accuracy of 92:24% and can be used in an automated age-invariant face verification system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biometrics" title="biometrics">biometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=age%20invariant" title=" age invariant"> age invariant</a>, <a href="https://publications.waset.org/abstracts/search?q=verification" title=" verification"> verification</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/64435/pyramid-binary-pattern-for-age-invariant-face-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1099</span> The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Sawatnatee">P. Sawatnatee</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Udomsuk"> S. Udomsuk</a>, <a href="https://publications.waset.org/abstracts/search?q=K-N.%20Areerak"> K-N. Areerak</a>, <a href="https://publications.waset.org/abstracts/search?q=K-L.%20Areerak"> K-L. Areerak</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Srikaew"> A. Srikaew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indirect%20vector%20control" title="indirect vector control">indirect vector control</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title=" induction motor"> induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20tabu%20search" title=" adaptive tabu search"> adaptive tabu search</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20design" title=" control design"> control design</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a> </p> <a href="https://publications.waset.org/abstracts/2026/the-optimal-indirect-vector-controller-design-via-an-adaptive-tabu-search-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1098</span> The Acquisition of Case in Biological Domain Based on Text Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shen%20Jian">Shen Jian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Jie"> Hu Jie</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Jin"> Qi Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Wei%20Jie"> Liu Wei Jie</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Ji%20Yi"> Chen Ji Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Ying%20Hong"> Peng Ying Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to settle the problem of acquiring case in biological related to design problems, a biometrics instance acquisition method based on text mining is presented. Through the construction of corpus text vector space and knowledge mining, the feature selection, similarity measure and case retrieval method of text in the field of biology are studied. First, we establish a vector space model of the corpus in the biological field and complete the preprocessing steps. Then, the corpus is retrieved by using the vector space model combined with the functional keywords to obtain the biological domain examples related to the design problems. Finally, we verify the validity of this method by taking the example of text. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title="text mining">text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20space%20model" title=" vector space model"> vector space model</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=biologically%20inspired%20design" title=" biologically inspired design"> biologically inspired design</a> </p> <a href="https://publications.waset.org/abstracts/88075/the-acquisition-of-case-in-biological-domain-based-on-text-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1097</span> Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irtaza%20M.%20Syed">Irtaza M. Syed</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaamran%20Raahemifar"> Kaamran Raahemifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a comparative assessment of Space Vector Pulse Width Modulation (SVPWM) and Model Predictive Control (MPC) for two-level three phase (2L-3P) Voltage Source Inverter (VSI). VSI with associated system is subjected to both control techniques and the results are compared. Matlab/Simulink was used to model, simulate and validate the control schemes. Findings of this study show that MPC is superior to SVPWM in terms of total harmonic distortion (THD) and implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=voltage%20source%20inverter" title="voltage source inverter">voltage source inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20vector%20pulse%20width%20modulation" title=" space vector pulse width modulation"> space vector pulse width modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a> </p> <a href="https://publications.waset.org/abstracts/16220/space-vector-pwm-and-model-predictive-control-for-voltage-source-inverter-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1096</span> Exploring Students&#039; Alternative Conception in Vector Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umporn%20Wutchana">Umporn Wutchana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An open ended problem and unstructured interview had been used to explore students’ conceptual and procedural understanding of vector components. The open ended problem had been designed based on research instrument used in previous physics education research. Without physical context, we asked students to find out magnitude and draw graphical form of vector components. The open ended problem was given to 211 first year students of faculty of science during the third (summer) semester in 2014 academic year. The students spent approximately 15 minutes of their second time of the General Physics I course to complete the open ended problem after they had failed. Consequently, their responses were classified based on the similarity of errors performed in the responses. Then, an unstructured interview was conducted. 7 students were randomly selected and asked to reason and explain their answers. The study results showed that 53% of 211 students provided correct numerical magnitude of vector components while 10.9% of them confused and punctuated the magnitude of vectors in x- with y-components. Others 20.4% provided just symbols and the last 15.6% gave no answer. When asking to draw graphical form of vector components, only 10% of 211 students made corrections. A majority of them produced errors and revealed alternative conceptions. 46.5% drew longer and/or shorter magnitude of vector components. 43.1% drew vectors in different forms or wrote down other symbols. Results from the unstructured interview indicated that some students just memorized the method to get numerical magnitude of x- and y-components. About graphical form of component vectors, some students though that the length of component vectors should be shorter than those of the given one. So then, it could be combined to be equal length of the given vectors while others though that component vectors should has the same length as the given vectors. It was likely to be that many students did not develop a strong foundation of understanding in vector components but just learn by memorizing its solution or the way to compute its magnitude and attribute little meaning to such concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphical%20vectors" title="graphical vectors">graphical vectors</a>, <a href="https://publications.waset.org/abstracts/search?q=vectors" title=" vectors"> vectors</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20components" title=" vector components"> vector components</a>, <a href="https://publications.waset.org/abstracts/search?q=misconceptions" title=" misconceptions"> misconceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20conceptions" title=" alternative conceptions"> alternative conceptions</a> </p> <a href="https://publications.waset.org/abstracts/49280/exploring-students-alternative-conception-in-vector-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1095</span> An Epsilon Hierarchical Fuzzy Twin Support Vector Regression </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arindam%20Chaudhuri">Arindam Chaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research presents epsilon- hierarchical fuzzy twin support vector regression (epsilon-HFTSVR) based on epsilon-fuzzy twin support vector regression (epsilon-FTSVR) and epsilon-twin support vector regression (epsilon-TSVR). Epsilon-FTSVR is achieved by incorporating trapezoidal fuzzy numbers to epsilon-TSVR which takes care of uncertainty existing in forecasting problems. Epsilon-FTSVR determines a pair of epsilon-insensitive proximal functions by solving two related quadratic programming problems. The structural risk minimization principle is implemented by introducing regularization term in primal problems of epsilon-FTSVR. This yields dual stable positive definite problems which improves regression performance. Epsilon-FTSVR is then reformulated as epsilon-HFTSVR consisting of a set of hierarchical layers each containing epsilon-FTSVR. Experimental results on both synthetic and real datasets reveal that epsilon-HFTSVR has remarkable generalization performance with minimum training time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regression" title="regression">regression</a>, <a href="https://publications.waset.org/abstracts/search?q=epsilon-TSVR" title=" epsilon-TSVR"> epsilon-TSVR</a>, <a href="https://publications.waset.org/abstracts/search?q=epsilon-FTSVR" title=" epsilon-FTSVR"> epsilon-FTSVR</a>, <a href="https://publications.waset.org/abstracts/search?q=epsilon-HFTSVR" title=" epsilon-HFTSVR"> epsilon-HFTSVR</a> </p> <a href="https://publications.waset.org/abstracts/20236/an-epsilon-hierarchical-fuzzy-twin-support-vector-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1094</span> Instance Selection for MI-Support Vector Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amy%20M.%20Kwon">Amy M. Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Support vector machine (SVM) is a well-known algorithm in machine learning due to its superior performance, and it also functions well in multiple-instance (MI) problems. Our study proposes a schematic algorithm to select instances based on Hausdorff distance, which can be adapted to SVMs as input vectors under the MI setting. Based on experiments on five benchmark datasets, our strategy for adapting representation outperformed in comparison with original approach. In addition, task execution times (TETs) were reduced by more than 80% based on MissSVM. Hence, it is noteworthy to consider this representation adaptation to SVMs under MI-setting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title="support vector machine">support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=Margin" title=" Margin"> Margin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hausdorff%20distance" title=" Hausdorff distance"> Hausdorff distance</a>, <a href="https://publications.waset.org/abstracts/search?q=representation%20selection" title=" representation selection"> representation selection</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-instance%20learning" title=" multiple-instance learning"> multiple-instance learning</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/186528/instance-selection-for-mi-support-vector-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1093</span> Semigroups of Linear Transformations with Fixed Subspaces: Green’s Relations and Ideals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanisa%20Chaiya">Yanisa Chaiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jintana%20Sanwong"> Jintana Sanwong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let V be a vector space over a field and W a subspace of V. Let Fix(V,W) denote the set of all linear transformations on V with fix all elements in W. In this paper, we show that Fix(V,W) is a semigroup under the composition of maps and describe Green’s relations on this semigroup in terms of images, kernels and the dimensions of subspaces of the quotient space V/W where V/W = {v+W : v is an element in V} with v+W = {v+w : w is an element in W}. Let dim(U) denote the dimension of a vector space U and Vα = {vα : v is an element in V} where vα is an image of v under a linear transformation α. For any cardinal number a let a'= min{b : b > a}. We also show that the ideals of Fix(V,W) are precisely the sets. Fix(r) ={α ∊ Fix(V,W) : dim(Vα/W) < r} where 1 ≤ r ≤ a' and a = dim(V/W). Moreover, we prove that if V is a finite-dimensional vector space, then every ideal of Fix(V,W) is principle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Green%E2%80%99s%20relations" title="Green’s relations">Green’s relations</a>, <a href="https://publications.waset.org/abstracts/search?q=ideals" title=" ideals"> ideals</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20transformation%20semi-groups" title=" linear transformation semi-groups"> linear transformation semi-groups</a>, <a href="https://publications.waset.org/abstracts/search?q=principle%20ideals" title=" principle ideals"> principle ideals</a> </p> <a href="https://publications.waset.org/abstracts/59302/semigroups-of-linear-transformations-with-fixed-subspaces-greens-relations-and-ideals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1092</span> Road Accidents Bigdata Mining and Visualization Using Support Vector Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usha%20Lokala">Usha Lokala</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivas%20Nowduri"> Srinivas Nowduri</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhakar%20K.%20Sharma"> Prabhakar K. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM&rsquo;s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20mechanism%20%28SVM%29" title="support vector mechanism (SVM)">support vector mechanism (SVM)</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20%28ML%29" title=" machine learning (ML)"> machine learning (ML)</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines%20%28SVM%29" title=" support vector machines (SVM)"> support vector machines (SVM)</a>, <a href="https://publications.waset.org/abstracts/search?q=department%20of%20transportation%20%28DFT%29" title=" department of transportation (DFT)"> department of transportation (DFT)</a> </p> <a href="https://publications.waset.org/abstracts/70645/road-accidents-bigdata-mining-and-visualization-using-support-vector-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1091</span> Retrospective Evaluation of Vector-borne Infections in Cats Living in Germany (2012-2019)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Sch%C3%A4fer">I. Schäfer</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kohn"> B. Kohn</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Volkmann"> M. Volkmann</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M%C3%BCller"> E. Müller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Blood-feeding arthropods transmit parasitic, bacterial, or viral pathogens to domestic animals and wildlife. Vector-borne infections are gaining significance due to the increase of travel, import of domestic animals from abroad, and the changing climate in Europe. Aims of the study: The main objective of this retrospective study was to assess the prevalence of vector-borne infections in cats in which a ‘Feline Travel Profile’ had been conducted. Material and Methods: This retrospective study included test results from cats for which a ‘Feline Travel Profile’ established by LABOKLIN had been requested by veterinarians between April 2012 and December 2019. This profile contains direct detection methods via polymerase chain reaction (PCR) for Hepatozoon spp. and Dirofilaria spp. as well as indirect detection methods via immunofluorescence antibody test (IFAT) for Ehrlichia spp. and Leishmania spp. This profile was expanded to include an IFAT for Rickettsia spp. from July 2015 onwards. The prevalence of the different vector-borne infectious agents was calculated. Results: A total of 602 cats were tested using the ‘Feline Travel Profile’. Positive test results were as follows: Rickettsia spp. IFAT 54/442 (12.2%), Ehrlichia spp. IFAT 68/602 (11.3%), Leishmania spp. IFAT 21/602 (3.5%), Hepatozoon spp. PCR 51/595 (8.6%), and Dirofilaria spp. PCR 1/595 cats (0.2%). Co-infections with more than one pathogen could be detected in 22/602 cats. Conclusions: 170/602 cats (28.2%) were tested positive for at least one vector-borne pathogen. Infections with multiple pathogens could be detected in 3.7% of the cats. The data emphasizes the importance of considering vector-borne infections as potential differential diagnoses in cats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arthopod-transmitted%20infections" title="arthopod-transmitted infections">arthopod-transmitted infections</a>, <a href="https://publications.waset.org/abstracts/search?q=feline%20vector-borne%20infections" title=" feline vector-borne infections"> feline vector-borne infections</a>, <a href="https://publications.waset.org/abstracts/search?q=Germany" title=" Germany"> Germany</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20diagnostics" title=" laboratory diagnostics"> laboratory diagnostics</a> </p> <a href="https://publications.waset.org/abstracts/126367/retrospective-evaluation-of-vector-borne-infections-in-cats-living-in-germany-2012-2019" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1090</span> Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satish%20Kumar%20Peddapelli">Satish Kumar Peddapelli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have become popular and considerable interest by researcher are given on them. A fast Space-Vector Pulse Width Modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analysed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=five-level%20inverter" title="five-level inverter">five-level inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20vector%20pulse%20wide%20modulation" title=" space vector pulse wide modulation"> space vector pulse wide modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=diode%20clamped%20inverter" title=" diode clamped inverter"> diode clamped inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20engineering" title=" electrical engineering"> electrical engineering</a> </p> <a href="https://publications.waset.org/abstracts/8909/recent-advances-in-pulse-width-modulation-techniques-and-multilevel-inverters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1089</span> Possibility of Creating Polygon Layers from Raster Layers Obtained by using Classic Image Processing Software: Case of Geological Map of Rwanda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Louis%20Nahimana">Louis Nahimana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most maps are in a raster or pdf format and it is not easy to get vector layers of published maps. Faced to the production of geological simplified map of the northern Lake Tanganyika countries without geological information in vector format, I tried a method of obtaining vector layers from raster layers created from geological maps of Rwanda and DR Congo in pdf and jpg format. The procedure was as follows: The original raster maps were georeferenced using ArcGIS10.2. Under Adobe Photoshop, map areas with the same color corresponding to a lithostratigraphic unit were selected all over the map and saved in a specific raster layer. Using the same image processing software Adobe Photoshop, each RGB raster layer was converted in grayscale type and improved before importation in ArcGIS10. After georeferencing, each lithostratigraphic raster layer was transformed into a multitude of polygons with the tool "Raster to Polygon (Conversion)". Thereafter, tool "Aggregate Polygons (Cartography)" allowed obtaining a single polygon layer. Repeating the same steps for each color corresponding to a homogeneous rock unit, it was possible to reconstruct the simplified geological constitution of Rwanda and the Democratic Republic of Congo in vector format. By using the tool «Append (Management)», vector layers obtained were combined with those from Burundi to achieve vector layers of the geology of the « Northern Lake Tanganyika countries ». <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creating%20raster%20layer%20under%20image%20processing%20software" title="creating raster layer under image processing software">creating raster layer under image processing software</a>, <a href="https://publications.waset.org/abstracts/search?q=raster%20to%20polygon" title=" raster to polygon"> raster to polygon</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregate%20polygons" title=" aggregate polygons"> aggregate polygons</a>, <a href="https://publications.waset.org/abstracts/search?q=adobe%20photoshop" title=" adobe photoshop"> adobe photoshop</a> </p> <a href="https://publications.waset.org/abstracts/31397/possibility-of-creating-polygon-layers-from-raster-layers-obtained-by-using-classic-image-processing-software-case-of-geological-map-of-rwanda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1088</span> Investigation of the Effects of Sampling Frequency on the THD of 3-Phase Inverters Using Space Vector Modulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khattab%20Al%20Qaisi">Khattab Al Qaisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Bowring"> Nicholas Bowring</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the simulation results of the effects of sampling frequency on the total harmonic distortion (THD) of three-phase inverters using the space vector pulse width modulation (SVPWM) and space vector control (SVC) algorithms. The relationship between the variables was studied using curve fitting techniques, and it has been shown that, for 50 Hz inverters, there is an exponential relation between the sampling frequency and THD up to around 8500 Hz, beyond which the performance of the model becomes irregular, and there is an negative exponential relation between the sampling frequency and the marginal improvement to the THD. It has also been found that the performance of SVPWM is better than that of SVC with the same sampling frequency in most frequency range, including the range where the performance of the former is irregular. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSI" title="DSI">DSI</a>, <a href="https://publications.waset.org/abstracts/search?q=SVPWM" title=" SVPWM"> SVPWM</a>, <a href="https://publications.waset.org/abstracts/search?q=THD" title=" THD"> THD</a>, <a href="https://publications.waset.org/abstracts/search?q=DC-AC%20converter" title=" DC-AC converter"> DC-AC converter</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20frequency" title=" sampling frequency"> sampling frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/17856/investigation-of-the-effects-of-sampling-frequency-on-the-thd-of-3-phase-inverters-using-space-vector-modulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1087</span> Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Serkani">Elham Serkani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Gharaee%20Garakani"> Hossein Gharaee Garakani</a>, <a href="https://publications.waset.org/abstracts/search?q=Naser%20Mohammadzadeh"> Naser Mohammadzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Elaheh%20Vaezpour"> Elaheh Vaezpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title="decision tree">decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=intrusion%20detection%20system" title=" intrusion detection system"> intrusion detection system</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/90456/hybrid-anomaly-detection-using-decision-tree-and-support-vector-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1086</span> Numerical Investigation of Poling Vector Angle on Adaptive Sandwich Plate Deflection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Pouladkhan">Alireza Pouladkhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yavari%20Foroushani"> Mohammad Yavari Foroushani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mortazavi"> Ali Mortazavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a finite element model for a sandwich plate containing a piezoelectric core. A sandwich plate with a piezoelectric core is constructed using the shear mode of piezoelectric materials. The orientation of poling vector has a significant effect on deflection and stress induced in the piezo-actuated adaptive sandwich plate. In the present study, the influence of this factor for a clamped-clamped-free-free and simple-simple-free-free square sandwich plate is investigated using Finite Element Method. The study uses ABAQUS (v.6.7) software to derive the finite element model of the sandwich plate. By using this model, the study gives the influences of the poling vector angle on the response of the smart structure and determines the maximum transverse displacement and maximum stress induced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20plate" title=" sandwich plate"> sandwich plate</a>, <a href="https://publications.waset.org/abstracts/search?q=poling%20vector" title=" poling vector"> poling vector</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20materials" title=" piezoelectric materials"> piezoelectric materials</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20structure" title=" smart structure"> smart structure</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20enthalpy" title=" electric enthalpy"> electric enthalpy</a> </p> <a href="https://publications.waset.org/abstracts/6825/numerical-investigation-of-poling-vector-angle-on-adaptive-sandwich-plate-deflection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1085</span> Application of Support Vector Machines in Fault Detection and Diagnosis of Power Transmission Lines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Farhat">I. A. Farhat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bin%20Hasan"> M. Bin Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A developed approach for the protection of power transmission lines using Support Vector Machines (SVM) technique is presented. In this paper, the SVM technique is utilized for the classification and isolation of faults in power transmission lines. Accurate fault classification and location results are obtained for all possible types of short circuit faults. As in distance protection, the approach utilizes the voltage and current post-fault samples as inputs. The main advantage of the method introduced here is that the method could easily be extended to any power transmission line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line%20protection" title=" power transmission line protection"> power transmission line protection</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines%20%28SVM%29" title=" support vector machines (SVM)"> support vector machines (SVM)</a> </p> <a href="https://publications.waset.org/abstracts/13818/application-of-support-vector-machines-in-fault-detection-and-diagnosis-of-power-transmission-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1084</span> Investigation and Monitoring Method of Vector Density in Kaohsiung City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiu-Wen%20Chang">Chiu-Wen Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Yun%20Chang"> I-Yun Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Ting%20Chen"> Wei-Ting Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Ping%20Ho"> Hui-Ping Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Ying%20Pan"> Chao-Ying Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Joh-Jong%20Huang"> Joh-Jong Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dengue is a ‘community disease’ or ‘environmental disease’, as long as the environment exist suitable container (including natural and artificial) for mosquito breeding, once the virus invade will lead to the dengue epidemic. Surveillance of vector density is critical to effective infectious disease control and play an important role in monitoring the dynamics of mosquitoes in community, such as mosquito species, density, distribution area. The objective of this study was to examine the relationship in vector density survey (Breteau index, Adult index, House index, Container index, and Larvae index) form 2014 to 2016 in Kaohsiung City and evaluate the effects of introducing the Breeding Elimination and Appraisal Team (hereinafter referred to as BEAT) as an intervention measure on eliminating dengue vector breeding site started from May 2016. BEAT were performed on people who were suspected of contracting dengue fever, a surrounding area measuring 50 meters by 50 meters was demarcated as the emergency prevention and treatment zone. BEAT would perform weekly vector mosquito inspections and vector mosquito inspections in regions with a high Gravitrap index and assign a risk assessment index to each region. These indices as well as the prevention and treatment results were immediately reported to epidemic prevention-related units every week. The results indicated that, vector indices from 2014 to 2016 showed no statistically significant differences in the Breteau index, adult index, and house index (p > 0.05) but statistically significant differences in the container index and larvae index (p <0.05). After executing the integrated elimination work, container index and larvae index are statistically significant different from 2014 to 2016 in the (p < 0.05). A post hoc test indicated that the container index of 2014 (M = 12.793) was significantly higher than that of 2016 (M = 7.631), and that the larvae index of 2015 (M = 34.065) was significantly lower than that of 2014 (M = 66.867). The results revealed that effective vector density surveillance could highlight the focus breeding site and then implement the immediate control action (BEAT), which successfully decreased the vector density and the risk of dengue epidemic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Breteau%20index" title="Breteau index">Breteau index</a>, <a href="https://publications.waset.org/abstracts/search?q=dengue%20control" title=" dengue control"> dengue control</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20method" title=" monitoring method"> monitoring method</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20density" title=" vector density"> vector density</a> </p> <a href="https://publications.waset.org/abstracts/78216/investigation-and-monitoring-method-of-vector-density-in-kaohsiung-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vector%20quantization%20%28VQ%29&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vector%20quantization%20%28VQ%29&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vector%20quantization%20%28VQ%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vector%20quantization%20%28VQ%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vector%20quantization%20%28VQ%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vector%20quantization%20%28VQ%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vector%20quantization%20%28VQ%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vector%20quantization%20%28VQ%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vector%20quantization%20%28VQ%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vector%20quantization%20%28VQ%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vector%20quantization%20%28VQ%29&amp;page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vector%20quantization%20%28VQ%29&amp;page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vector%20quantization%20%28VQ%29&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10