CINXE.COM

Editing monoid in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Editing monoid in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Editing monoid </h1> <div id="MarkupHelp"> <h3 style="font-size: 1.1em; font-style: normal; text-align: center">Syntax tips</h3> <ol style="margin-left: 0em; padding-left: 0em"> <li style="font-size: 0.8em">The basic syntax is <a href="https://www.markdownguide.org/cheat-sheet/">extended Markdown</a>. </li> <li style="font-size: 0.8em">Links to other nLab pages should be made by surrounding the name of the page in double square brackets: [[ name of page ]]. To link to an nLab page but show a different link text, do the following: [[ name of page | link text to show ]].</li> <li style="font-size: 0.8em">LaTeX can be used inside single dollar signs (inline) or double dollar signs or \[ and \], as usual. </li> <li style="font-size: 0.8em">To create a table of contents, add \tableofcontents on its own line.</li> <li style="font-size: 0.8em">For a theorem or proof, use \begin{theorem} \end{theorem} as you would in LaTeX. Labelling and referencing is exactly as in LaTeX, with use of \label and \ref. The full list of supported environments can be found in the <a href="/nlab/show/HowTo#DefinitionTheoremProofEnvironments">HowTo</a>. </li> <li style="font-size: 0.8em">Tikz can be used for figures almost exactly as in LaTeX. Similarly, tikz-cd and xymatrix can be used for commutative diagrams. See the <a href="/nlab/show/HowTo#diagrams">HowTo</a>.</li> <li style="font-size: 0.8em">As an alternative to the Markdown syntax for sections (headings), one can use the usual LaTeX syntax \section, \subsection, etc.</li> <li style="font-size: 0.8em">For further help, see the <a href="/nlab/show/HowTo">HowTo</a>, or you are very welcome to ask at the <a href="https://nforum.ncatlab.org/">nForum</a>.</li> </ol> </div> <form accept-charset="utf-8" action="/nlab/save/monoid" id="editForm" method="post"> <div style="display: none;"> <input name="see_if_human" id="see_if_human" style="tabindex: -1; autocomplete: off"/> </div> <div> <textarea name="content" id="content" style="height: 45em; width: 70%;"> +-- {: .rightHandSide} +-- {: .toc .clickDown tabindex=&quot;0&quot;} ###Context### #### Category theory +--{: .hide} [[!include category theory - contents]] =-- #### Algebra +--{: .hide} [[!include higher algebra - contents]] =-- #### Monoid theory +-- {: .hide} [[!include monoid theory - contents]] =-- =-- =-- \tableofcontents ## Idea {#Idea} In [[algebra]], by a *monoid* one means a collection ([[set]]) of elements equipped with a [[binary operation]] (a &quot;multiplication operation&quot;) which is [[associativity|associative]] and has a [[unit element]]. Hence monoid structure on a set is a fairly rudimentary form of algebraic [[structure]] which [[underlying|underlies]] many familiar [[structures]] considered [[algebra]], such as that of *[[groups]]* (which are monoids with all [[inverse elements]]) and *[[rings]]* (which are [[abelian groups]] compatibly equipped with a *second* monoid structure). Therefore, in the algebraic literature monoids are, conversely, often called *unital [[semi-groups]]*. The root &quot;mono-&quot; in &quot;monoid&quot; refers to the single [[binary operation]] (cf. *[[duoid]]* and *[[dioid]]*). The terminology of *[[magmas]]* is meant to invoke this rudimemtary but foundational nature of basic algebraic structures: Monoids are precisely the [[unital magma|unital]] [[associative magmas]]. The [[categorification]] of the notion of monoids is that of *[[monads]]* whose ubiquitous role in [[mathematics]] (together with their [associated](adjoint+functor#RelationBetweenAdjunctionsAndMonads) [[adjoint functors]]) is hard to overstate. ## Definitions ### Elementary definition The classical definition of monoids in [[Sets]], as a [[unital magma|unital]] [[associative magma]]: \begin{definition}\label{MonoidsInSets} A **monoid** is a [[set]] $M$ equipped with the [[structure]] if 1. (**[[binary operation]]**) a [[map]] from the [[Cartesian product]] of the set with itself to itself $$ (\text{-}) \cdot (\text{-}) \,\colon\, M \times M \to M $$ 1. (**[[neutral element]]**) an [[element]] $$1 \in M$$ such that the following [[equations]] are satisfied 1. (**[[associativity]]**) $$ x, y, z \,\in\, M \;\;\;\;\; \vdash \;\;\;\;\; (x \cdot y) \cdot z \;=\; x \cdot (y \cdot z) \mathrlap{\,,} $$ * (**[[unitality]]**) $$ x \in M \;\;\;\;\; \vdash \;\;\;\;\; 1 \cdot x \;=\; x \;=\; x \cdot 1 \mathrlap{\,.} $$ \end{definition} ### In a monoidal category {#inamonoidalcategory} See *[[monoid in a monoidal category]]*. ### In terms of string diagrams The data of a monoid may be written in [[string diagrams]] as: [[monoid-data-labeled.png:pic]] Thanks to the distinctive shapes, one can usually omit the labels: [[monoid-data-unlabeled.png:pic]] The axioms $\mu \cdot (\eta \otimes M) = 1_M = \mu \cdot (M \otimes \eta)$ and $\mu \cdot (M \otimes \mu) = \mu \cdot (\mu \otimes M)$ then appear as: [[monoid-axioms-unlabeled.png:pic]] ### As a one-object category {#AsAOneObjectCategory} Equivalently, and more efficiently, we may say that a (classical) monoid is the [[hom-set]] of a [[category]] with a single [[object]], equipped with the structure of its unit element and composition. More tersely, one may say that a monoid *is* a category with a single object, or more precisely (to get the proper morphisms and $2$-morphisms) a [[pointed object|pointed]] category with a single object. But taking this too literally may create conflicts in notation. To avoid this, for a given monoid $M$, we write $\mathbf{B}M$ for the corresponding category with single object $\bullet$ and with $M$ as its [[hom-set]]: the [[delooping]] of $M$, so that $M = Hom_{\mathbf{B}M}(\bullet, \bullet)$. This realizes every monoid as a monoid of [[endomorphism|endomorphisms]]. Similarly, a monoid in $(C,\otimes,I)$ may be defined as the [[hom-object]] of a $C$-[[enriched category]] with a single object, equipped with its composition and identity-assigning morphisms; and so on, as in the classical (i.e. $\mathbf{Set}$-enriched) case. For more on this see also [[group]]. ### As a strict monoidal category An alternate way to view a monoid as a category is as a discrete [[strict monoidal category]] $\mathbf{C}$ where the elements of the monoid are the objects of $\mathbf{C}$, the binary operation of the monoid provides the tensor product bifunctor, and the identity of the monoid is the unit object. Preordered monoids then yield (non-discrete) strict monoidal categories with the morphisms witnessing the preorder in the usual way. ### $\mathcal{O}$-Monoids over an $(\infty,1)$-Operad The notion of _associative monoids_ discussed above are controled by the [[associative operad]]. More generally in [[higher algebra]], for $\mathcal{O}$ any [[operad]] or [[(infinity,1)-operad]], one can consider **$\mathcal{O}$-monoids**. ([Lurie, def. 2.4.2.1](#Lurie)) These are closely related to [[(infinity,1)-algebras over an (infinity,1)-operad]] with respect to $\mathcal{O}$ ([Lurie, prop. 2.4.2.5](#Lurie)). ## Properties ### Finite products (and sums) Let $M$ be a monoid, and let $M^*$ be the [[free monoid]] on $M$ with canonical function $h:M \to M^*$ taking the elements of $M$ to the generators in $M^*$. The finite product operation on $M$ is a [[monoid homomorphism]] $$\prod_{i = 0}^{\mathrm{len}(-) - 1}(-)(i):M^* \to M$$ from $M^*$ to $M$, where: $$\prod_{i = 0}^{\mathrm{len}(\epsilon) - 1} \epsilon(i) = 1$$ $$\prod_{i = 0}^{\mathrm{len}(h(a)) - 1} (h(a))(i) = a$$ $$\left(\prod_{i = 0}^{\mathrm{len}(a) - 1} a(i)\right) \cdot \left(\prod_{i = 0}^{\mathrm{len}(b) - 1} b(i)\right) = \prod_{i = 0}^{\mathrm{len}(a b) - 1} (a b)(i)$$ If $M$ is written additively $(+, 0)$ instead of multiplicatively $(\cdot, 1)$, the operation is called finite sum, and is defined as $$\sum_{i = 0}^{\mathrm{len}(-) - 1}(-)(i):M^* \to M$$ from $M^*$ to $M$, where: $$\sum_{i = 0}^{\mathrm{len}(\epsilon) - 1} \epsilon(i) = 0$$ $$\sum_{i = 0}^{\mathrm{len}(h(a)) - 1} (h(a))(i) = a$$ $$\left(\sum_{i = 0}^{\mathrm{len}(a) - 1} a(i)\right) + \left(\sum_{i = 0}^{\mathrm{len}(b) - 1} b(i)\right) = \sum_{i = 0}^{\mathrm{len}(a b) - 1} (a b)(i)$$ ## Examples * A monoid in which every element has an inverse is a [[group]]. For that reason monoids are often known (especially outside category theory) as _semi-group_s. (But this term is often extended to monoids without identities, that is to sets equipped with any associative operation.) * The set of [[endomorphism|endomorphisms]] of a given object in a category has a canonical monoid structure given by composition. ## Remarks on notation It can be important to distinguish between a $k$-tuply monoidal structure and the corresponding $k$-tuply degenerate category, even though there is a map identifying them. The issue appears here for instance when discussing the universal $G$-bundle in its groupoid incarnation. This is $$ G \to \mathbf{E}G \to \mathbf{B}G $$ (where $\mathbf{E}G = G//G$ is the action groupoid of $G$ acting on itself). On the left we crucially have $G$ as a monoidal 0-category, on the right as a once-degenerate 1-category. Without this notation we cannot even _write down_ the universal $G$-bundle! Or take the important difference between group [[representation|representations]] and group 2-algebras, the former being functors $\mathbf{B}G \to Vect$, the latter functors $G \to Vect$. Both these are very important. Or take an abelian group $A$ and a codomain like $2Vect$. Then there are 3 different things we can sensibly consider, namely 2-functors $$ A \to 2Vect $$ $$ \mathbf{B}A \to 2Vect $$ and $$ \mathbf{B}^2A \to 2Vect \,. $$ All of these concepts are different, and useful. The first one is an object in the group 3-algebra of $A$. The second is a pseudo-representation of the group $A$. The third is a representations of the 2-group $\mathbf{B}A$. We have notation to distinguish this, and we should use it. Finally, writing $\mathbf{B}G$ for the 1-object $n$-groupoid version of an $n$-monoid $G$ makes notation behave nicely with respect to nerves, because then realization bars $|\cdot|$ simply commute with the $B$s in the game: $|\mathbf{B}G| = B|G|$. This behavior under nerves shows also that, generally, writing $\mathbf{B}G$ gives the right intuition for what an expression means. For instance, what&#39;s the &quot;geometric&quot; reason that a group representation is an arrow $\rho : \mathbf{B}G \to Vect$? It&#39;s because this is, literally, equivalently thought of as the corresponding classifying map of the vector bundle on $\mathbf{B}G$ which is $\rho$-associated to the universal $G$-bundle: the $\rho$-associated vector bundle to the universal $G$-bundle is, in its groupoid incarnations, $$ \array{ V \\ \downarrow \\ V//G \\ \downarrow \\ \mathbf{B}G } \,, $$ where $V$ is the vector space that $\rho$ is representing on, and this is classified by the representation $\rho : \mathbf{B}G \to Vect$ in that this is the pullback of the universal $Vect$-bundle $$ \array{ V//G &amp;\to&amp; Vect_* \\ \downarrow &amp;&amp; \downarrow \\ \mathbf{B}G &amp;\stackrel{\rho}{\to}&amp; Vect } \,, $$ In summary, it is important to make people understand that groups can be identified with one-object groupoids. But next it is important to make clear that not everything that can be identified should be, for instance concerning the crucial difference between the category in which $G$ lives and the 2-category in which $\mathbf{B}G$ lives. ## Related concepts * [[monoid in a monoidal category]], [[category of monoids]] * [[monoidal symmetric proset]] * **monoid**, internal monoid/monoid object, * [[commutative monoid]], [[cancellative monoid]] * [[monoidal groupoid]], [[braided monoidal groupoid]], [[symmetric monoidal groupoid]] * [[k-tuply monoidal n-groupoid]] * [[algebra in an (∞,1)-category|monoid object in a (∞,1)-category]] * [[topological monoid]] * [[comonoid]], [[cocommutative comonoid]] * [[duoid]] * [[group]], [[group object]] * [[ring]], [[ring object]] * [[categorical algebra]] * [[A3-type]] * [[monoidal setoid]] [[!include oidification - table]] ## References Beware that the term &quot;monoid&quot; was first used by * [[Arthur Cayley]], *Second and Third Memoirs on Skew Surfaces*, Otherwise Scrolls, Phil. Trans. (1863 and 1869) for certain [[surfaces]], quite unrelated to the modern meaning of the term. Instead, what are now called *monoids* ([[unital magma|unital]] [[associative magmas]]) were called *groupoids* (now clashing with the modern use of *[[groupoid]]*) by * [[Garrett Birkhoff]], *Hausdorff Groupoids*, Annals of Mathematics, Second Series **35** 2 (1934) 351-360 &amp;lbrack;[jstor:1968437](https://www.jstor.org/stable/1968437), [doi:10.2307/1968437](https://doi.org/10.2307/1968437)&amp;rbrack; The modern terminology &quot;monoid&quot; for unital associative magmas is (according to [Hollings 2009, p. 529](#Hollings09)) due to * [[Nicolas Bourbaki]], [[Éléments de Mathématique]] (1943) For more on the history of the notion: * {#Hollings09} Christopher Hollings, *The Early Development of the Algebraic Theory of Semigroups*, Archive for History of Exact Sciences **63** (2009) 497–536 &amp;lbrack;[doi:10.1007/s00407-009-0044-3](https://doi.org/10.1007/s00407-009-0044-3)&amp;rbrack; * Math.SE, *[Who invented Monoid?](https://mathoverflow.net/q/338281/381)* Exposition of basics of [[monoidal categories]] and [[categorical algebra]]: * _[[geometry of physics -- categories and toposes]]_, Section 2: _[Basic notions of categorical algebra](geometry+of+physics+--+categories+and+toposes#BasicNotionsOfCategoricalAlgebra)_ Properties of monoids expressed through properties of their [[toposes]] of [[presheaves]]: * Jens Hemelaer, Morgan Rogers, _Monoid Properties as Invariants of Toposes of Monoid Actions_, [arXiv:2004.10513](https://arxiv.org/abs/2004.10513). Formalization of [[monoid objects]] as [[mathematical structures]] in [[proof assistants]]: in a context of plain [[Agda]]: * [[Martín Escardó]], *[The Types of Magmas and Monoids](https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#magmasandmonoids)*, §4 in: *Introduction to Univalent Foundations of Mathematics with Agda* &amp;lbrack;[arXiv:1911.00580](https://arxiv.org/abs/1911.00580), [webpage](https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html)&amp;rbrack; in a context of [[cubical type theory|cubical]] [[Agda]]: * [[1lab]]: *[Algebra.Monoid](https://1lab.dev/Algebra.Monoid.html)* [[!redirects monoid]] [[!redirects monoids]]</textarea> <p> <input id="alter_title" name="alter_title" onchange="toggleVisibility();" type="checkbox" value="1" /> <label for="alter_title">Change page name.</label><br/> <span id="title_change" style="display:none"><label for="new_name">New name:</label> <input id="new_name" name="new_name" onblur="addRedirect();" type="text" value="monoid" /></span> </p> <div> <p style="font-size: 0.8em; width: 70%;"> For non-trivial edits, please briefly describe your changes below. Your comments will be added to the <a href="https://nforum.ncatlab.org/discussion/9132/#Item_13">nForum discussion thread</a> for this page, which can also be used for further discussion related to this page. For trivial edits, such as correcting typos, please leave the box below empty; feel free to ask for advice at the nForum if you are unsure. </p> </div> <div> <textarea name="announcement" id="announcement" style="height: 10em; width: 70%"></textarea> </div> <div id="editFormButtons"> <input type="submit" value="Submit" accesskey="s"/> as <input id="author" name="author" onblur="this.value == '' ? this.value = 'Anonymous' : true" onfocus="this.value == 'Anonymous' ? this.value = '' : true;" type="text" value="Anonymous" /> | <span> <a href="/nlab/cancel_edit/monoid" accesskey="c">Cancel</a> <span class="unlock">(unlocks page)</span> </span> </div> </div> </form> <script type="text/javascript"> <!--//--><![CDATA[//><!-- function toggleVisibility() { var span = document.getElementById('title_change'); if (span.style.display =='inline') { span.style.display ='none'; document.getElementById('new_name').value = "monoid"; var content = document.getElementById('content').value document.getElementById('content').value = content.replace(/\[\[!redirects monoid\]\]\n/, '') } else span.style.display ='inline' } function addRedirect(){ var e = document.getElementById('new_name').value; if ( e != "monoid" && e != '') { var content = document.getElementById('content'); content.value = '[[!redirects monoid]]\n' + content.value } } document.forms["editForm"].elements["content"].focus(); //--><!]]> </script> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10