CINXE.COM
Search results for: petroleum contamination
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: petroleum contamination</title> <meta name="description" content="Search results for: petroleum contamination"> <meta name="keywords" content="petroleum contamination"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="petroleum contamination" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="petroleum contamination"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1317</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: petroleum contamination</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1317</span> Efficient of Technology Remediation Soil That Contaminated by Petroleum Based on Heat without Combustion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gavin%20Hutama%20Farandiarta">Gavin Hutama Farandiarta</a>, <a href="https://publications.waset.org/abstracts/search?q=Hegi%20Adi%20Prabowo"> Hegi Adi Prabowo</a>, <a href="https://publications.waset.org/abstracts/search?q=Istiara%20Rizqillah%20Hanifah"> Istiara Rizqillah Hanifah</a>, <a href="https://publications.waset.org/abstracts/search?q=Millati%20Hanifah%20Saprudin"> Millati Hanifah Saprudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Raden%20Iqrafia%20Ashna"> Raden Iqrafia Ashna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase of the petroleum’s consumption rate encourages industries to optimize and increase the activity in processing crude oil into petroleum. However, although the result gives a lot of benefits to humans worldwide, it also gives negative impact to the environment. One of the negative impacts of processing crude oil is the soil will be contaminated by petroleum sewage sludge. This petroleum sewage sludge, contains hydrocarbon compound and it can be calculated by Total Petroleum Hydrocarbon (TPH).Petroleum sludge waste is accounted as hazardous and toxic. The soil contamination caused by the petroleum sludge is very hard to get rid of. However, there is a way to manage the soil that is contaminated by petroleum sludge, which is by using heat (thermal desorption) in the process of remediation. There are several factors that affect the success rate of the remediation with the help of heat which are temperature, time, and air pressure in the desorption column. The remediation process using the help of heat is an alternative in soil recovery from the petroleum pollution which highly effective, cheap, and environmentally friendly that produces uncontaminated soil and the petroleum that can be used again. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20sewage%20sludge" title="petroleum sewage sludge">petroleum sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation%20soil" title=" remediation soil"> remediation soil</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption" title=" thermal desorption"> thermal desorption</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20petroleum%20hydrocarbon%20%28TPH%29" title=" total petroleum hydrocarbon (TPH)"> total petroleum hydrocarbon (TPH)</a> </p> <a href="https://publications.waset.org/abstracts/48698/efficient-of-technology-remediation-soil-that-contaminated-by-petroleum-based-on-heat-without-combustion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1316</span> Studying the Simultaneous Effect of Petroleum and DDT Pollution on the Geotechnical Characteristics of Sands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Seyfi">Sara Seyfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DDT and petroleum contamination in coastal sand alters the physical and mechanical properties of contaminated soils. This article aims to understand the effects of DDT pollution on the geotechnical characteristics of sand groups, including sand, silty sand, and clay sand. First, the studies conducted on the topic of the article will be reviewed. In the initial stage of the tests, this article deals with the identification of the used sands (sand, silty sand, clay sand) by FTIR, µ-XRF and SEM methods. Then, the geotechnical characteristics of these sand groups, including density, permeability, shear strength, compaction, and plasticity, are investigated using a sand cone, head permeability test, Vane shear test, strain gauge penetrometer, and plastic limit test. Sand groups are artificially contaminated with petroleum substances with 1, 2, 4, 8, 10, 12% by weight. In a separate experiment, amounts of 2, 4, 8, 12, 16, 20 mg/liter of DDT were added to the sand groups. Geotechnical characteristics and identification analysis are performed on the contaminated samples. In the final tests, the mentioned amounts of oil pollution and DDT are simultaneously added to the sand groups, and identification and measurement processes are carried out. The results of the tests showed that petroleum contamination had reduced the optimal moisture content, permeability, and plasticity of all samples. Except silty sand’s plasticity, which petroleum increased it by 1-4% and decreased it by 8-12%. The dry density of sand and clay sand increased, but that of silty sand decreased. Also, the shear strength of sand and silty sand increased, but that of clay sand decreased. DDT contamination increased the maximum dry density and decreased the permeability of all samples. It also reduced the optimum moisture content of the sand. The shear resistance of silty sand and clayey sand decreased, and plasticity of clayey sand increased, and silty sand decreased. The simultaneous effect of petroleum and DDT pollution on the maximum dry density of sand and clayey sand has been synergistic, on the plasticity of clayey sand and silty sand, there has been antagonism. This process has caused antagonism of optimal sand content, shear strength of silty sand and clay sand. In other cases, the effect of synergy or antagonism is not observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DDT%20contamination" title="DDT contamination">DDT contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20characteristics" title=" geotechnical characteristics"> geotechnical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination" title=" petroleum contamination"> petroleum contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a> </p> <a href="https://publications.waset.org/abstracts/186047/studying-the-simultaneous-effect-of-petroleum-and-ddt-pollution-on-the-geotechnical-characteristics-of-sands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1315</span> Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Stoian">M. A. Stoian</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Cocarta"> D. M. Cocarta</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Badea"> A. Badea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kg<sub>d.w.</sub>), while the second one was highly contaminated (TPH in soil was 24306 mg/kg<sub>d.w.</sub>). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), Chromium<sup>VI</sup> (Cr<sup>VI</sup>), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kg<sub>d.w</sub>; As in Site 2 = 11.62 mg/kg<sub>d.w</sub>, Cd in Site 1 = 0.9 mg/kg<sub>d.w</sub>; Cd in Site 2 = 1 mg/kg<sub>d.w</sub>; Cr<sup>VI</sup> was 0.1 mg/kg<sub>d.w</sub> for both sites; Ni in Site 1 = 37.00 mg/kg<sub>d.w</sub>; Ni in Site 2 = 42.46 mg/kg<sub>d.w</sub>; Pb in Site 1 = 34.67 mg/kg<sub>d.w</sub>; Pb in Site 2 = 120.44 mg/kg<sub>d.w</sub>. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10<sup>-6</sup>, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10<sup>-5 </sup>compared with 8.61×10<sup>-6</sup>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carcinogenic%20risk" title="carcinogenic risk">carcinogenic risk</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20health%20risk%20assessment" title=" human health risk assessment"> human health risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20pollution" title=" soil pollution"> soil pollution</a> </p> <a href="https://publications.waset.org/abstracts/62735/human-health-risk-assessment-from-metals-present-in-a-soil-contaminated-by-crude-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1314</span> Study on Breakdown Voltage Characteristics of Different Types of Oils with Contaminations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Jouhar">C. Jouhar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Rajesh%20Kamath"> B. Rajesh Kamath</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Veeraiah"> M. K. Veeraiah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Kurian"> M. Z. Kurian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since long time ago, petroleum-based mineral oils have been used for liquid insulation in high voltage equipments. Mineral oils are widely used as insulation for transmission and distribution power transformers, capacitors and other high voltage equipment. Petroleum-based insulating oils have excellent dielectric properties such as high electric field strength, low dielectric losses and good long-term performance. Due to environmental consideration, an attempt to search the alternate liquid insulation is required. The influence of particles on the voltage breakdown in insulating oil and other liquids has been recognized for many years. Particles influence both AC and DC voltage breakdown in insulating oil. Experiments are conducted under AC voltage. The breakdown process starts with a microscopic bubble, an area of large distance where ions or electrons initiate avalanches. Insulating liquids drive their dielectric strength from the much higher density compare to gases. Experiments are carried out under High Voltage AC (HVAC) in different types of oils namely castor oil, vegetable oil and mineral oil. The Breakdown Voltage (BDV) with presence of moisture and particle contamination in different types of oils is studied. The BDV of vegetable oil is better when compared to other oils without contamination. The BDV of mineral oil is better when compared to other types of oils in presence of contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakdown%20voltage" title="breakdown voltage">breakdown voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage%20AC" title=" high voltage AC"> high voltage AC</a>, <a href="https://publications.waset.org/abstracts/search?q=insulating%20oil" title=" insulating oil"> insulating oil</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20breakdown" title=" oil breakdown"> oil breakdown</a> </p> <a href="https://publications.waset.org/abstracts/52370/study-on-breakdown-voltage-characteristics-of-different-types-of-oils-with-contaminations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1313</span> Permeable Bio-Reactive Barriers to Tackle Petroleum Hydrocarbon Contamination in the Sub-Antarctic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20L.%20Freidman">Benjamin L. Freidman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sally%20L.%20Gras"> Sally L. Gras</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Snape"> Ian Snape</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoff%20W.%20Stevens"> Geoff W. Stevens</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathryn%20A.%20Mumford"> Kathryn A. Mumford</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing transportation and storage of petroleum hydrocarbons in Antarctic and sub-Antarctic regions have resulted in frequent accidental spills. Migrating petroleum hydrocarbon spills can have a significant impact on terrestrial and marine ecosystems in cold regions, as harsh environmental conditions result in heightened sensitivity to pollution. This migration of contaminants has led to the development of Permeable Reactive Barriers (PRB) for application in cold regions. PRB’s are one of the most practical technologies for on-site or in-situ groundwater remediation in cold regions due to their minimal energy, monitoring and maintenance requirements. The Main Power House site has been used as a fuel storage and power generation area for the Macquarie Island research station since at least 1960. Soil analysis at the site has revealed Total Petroleum Hydrocarbon (TPH) (C9-C28) concentrations as high as 19,000 mg/kg soil. Groundwater TPH concentrations at this site can exceed 350 mg/L TPH. Ongoing migration of petroleum hydrocarbons into the neighbouring marine ecosystem resulted in the installation of a ‘funnel and gate’ PRB in November 2014. The ‘funnel and gate’ design successfully intercepted contaminated groundwater and analysis of TPH retention and biodegradation on PRB media are currently underway. Installation of the PRB facilitates research aimed at better understanding the contribution of particle attached biofilms to the remediation of groundwater systems. Bench-scale PRB system analysis at The University of Melbourne is currently examining the role biofilms play in petroleum hydrocarbon degradation, and how controlled release nutrient media can heighten the metabolic activity of biofilms in cold regions in the presence of low temperatures and low nutrient groundwater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum" title=" petroleum"> petroleum</a>, <a href="https://publications.waset.org/abstracts/search?q=Macquarie%20island" title=" Macquarie island"> Macquarie island</a>, <a href="https://publications.waset.org/abstracts/search?q=funnel%20and%20gate" title=" funnel and gate"> funnel and gate</a> </p> <a href="https://publications.waset.org/abstracts/37838/permeable-bio-reactive-barriers-to-tackle-petroleum-hydrocarbon-contamination-in-the-sub-antarctic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1312</span> The Role of Innovative Marketing on Achieving Quality in Petroleum Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malki%20Fatima%20Zahra%20Nadia">Malki Fatima Zahra Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Kellal%20Chaimaa"> Kellal Chaimaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahimi%20Houria"> Brahimi Houria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The following research aims to measure the impact of innovative marketing in achieving product quality in the Algerian Petroleum Company. In order to achieve the aim of the study, a random sample of 60 individuals was selected and the answers were analyzed using structural equation modeling to test the study hypotheses. The research concluded that there is a strong relationship between innovative marketing and the quality of petroleum products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marketing" title="marketing">marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20products" title=" petroleum products"> petroleum products</a> </p> <a href="https://publications.waset.org/abstracts/179621/the-role-of-innovative-marketing-on-achieving-quality-in-petroleum-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1311</span> Effect of Oil Contamination on the Liquefaction Behavior of Sandy Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mahdi%20Shojaedin"> Mohammad Mahdi Shojaedin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil leakage from the pipelines and the tanks carrying them, or during oil extraction, could lead to the changes in the characteristics and properties of the soil. In this paper, conducting a series of experimental cyclic triaxial tests, the effects of oil contamination on the liquefaction potential of sandy soils is investigated. The studied specimens are prepared by mixing the Firoozkuh sand with crude oil in 4, 8 and 12 percent by soil dry weight. The results show that the oil contamination up to 8% causes an increase in the soil liquefaction resistance and then with increase in the contamination, the liquefaction resistance decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20triaxial%20test" title="cyclic triaxial test">cyclic triaxial test</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction%20resistance" title=" liquefaction resistance"> liquefaction resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20contamination" title=" oil contamination"> oil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20soil" title=" sandy soil"> sandy soil</a> </p> <a href="https://publications.waset.org/abstracts/8592/effect-of-oil-contamination-on-the-liquefaction-behavior-of-sandy-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1310</span> Removal of Total Petroleum Hydrocarbons from Contaminated Soils by Electrochemical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Coc%C3%A2r%C8%9B%C4%83">D. M. Cocârță</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Istrate"> I. A. Istrate</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Streche"> C. Streche</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Dumitru"> D. M. Dumitru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil contamination phenomena are a wide world issue that has received the important attention in the last decades. The main pollutants that have affected soils are especially those resulted from the oil extraction, transport and processing. This paper presents results obtained in the framework of a research project focused on the management of contaminated sites with petroleum products/ REMPET. One of the specific objectives of the REMPET project was to assess the electrochemical treatment (improved with polarity change respect to the typical approach) as a treatment option for the remediation of total petroleum hydrocarbons (TPHs) from contaminated soils. Petroleum hydrocarbon compounds attach to soil components and are difficult to remove and degrade. Electrochemical treatment is a physicochemical treatment that has gained acceptance as an alternative method, for the remediation of organic contaminated soils comparing with the traditional methods as bioremediation and chemical oxidation. This type of treatment need short time and have high removal efficiency, being usually applied in heterogeneous soils with low permeability. During the experimental tests, the following parameters were monitored: pH, redox potential, humidity, current intensity, energy consumption. The electrochemical method was applied in an experimental setup with the next dimensions: 450 mm x 150 mm x 150 mm (L x l x h). The setup length was devised in three electrochemical cells that were connected at two power supplies. The power supplies configuration was provided in such manner that each cell has a cathode and an anode without overlapping. The initial value of TPH concentration in soil was of 1420.28 mg/kg<sub>dw</sub>. The remediation method has been applied for only 21 days, when it was already noticed an average removal efficiency of 31 %, with better results in the anode area respect to the cathode one (33% respect to 27%). The energy consumption registered after the development of the experiment was 10.6 kWh for exterior power supply and 16.1 kWh for the interior one. Taking into account that at national level, the most used methods for soil remediation are bioremediation (which needs too much time to be implemented and depends on many factors) and thermal desorption (which involves high costs in order to be implemented), the study of electrochemical treatment will give an alternative to these two methods (and their limitations). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20remediation" title="electrochemical remediation">electrochemical remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20petroleum%20hydrocarbons" title=" total petroleum hydrocarbons"> total petroleum hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20contamination" title=" soil contamination"> soil contamination</a> </p> <a href="https://publications.waset.org/abstracts/63608/removal-of-total-petroleum-hydrocarbons-from-contaminated-soils-by-electrochemical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1309</span> Low NOx Combustion of Pulverized Petroleum Cokes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sewon%20Kim">Sewon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minjun%20Kwon"> Minjun Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Changyeop%20Lee"> Changyeop Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is aimed to study combustion characteristics of low NOx burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. Therefore, the research and development regarding the petroleum coke burner is needed for applying this industrial system. In this study, combustion and emission characteristics of petroleum cokes burner are experimentally investigated in an industrial steam boiler. The low NOx burner is designed to control fuel and air mixing to achieve staged combustion, which, in turn reduces both flame temperature and oxygen. Air distribution ratio of triple staged air are optimized experimentally. The result showed that NOx concentration is lowest when overfire air is used, and the burner function at a fuel rich condition. That is, the burner is operated at the equivalence ratio of 1.67 and overall equivalence ratio including overfire air is kept 0.87. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20cokes" title="petroleum cokes">petroleum cokes</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20NOx" title=" low NOx"> low NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalence%20ratio" title=" equivalence ratio"> equivalence ratio</a> </p> <a href="https://publications.waset.org/abstracts/29236/low-nox-combustion-of-pulverized-petroleum-cokes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">623</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1308</span> Protection of Floating Roof Petroleum Storage Tanks against Lightning Strokes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Mohamed">F. M. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Y.%20Abdelaziz"> A. Y. Abdelaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of petroleum storage tank fires has gained a great deal of attention due to the high cost of petroleum, and the consequent disruption of petroleum production; therefore, much of the current research has focused on petroleum storage tank fires. Also, the number of petroleum tank fires is oscillating between 15 and 20 fires per year. About 33% of all tank fires are attributed to lightning. Floating roof tanks (FRT’s) are especially vulnerable to lightning. To minimize the likelihood of a fire, the API RP 545 recommends three major modifications to floating roof tanks. This paper was inspired by a stroke of lightning that ignited a fire in a crude oil storage tank belonging to an Egyptian oil company, and is aimed at providing an efficient lightning protection system to the tank under study, in order to avoid the occurrence of such phenomena in the future and also, to give valuable recommendations to be applied to floating roof tank projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20roof%20tank" title=" floating roof tank"> floating roof tank</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20protection%20system" title=" lightning protection system"> lightning protection system</a> </p> <a href="https://publications.waset.org/abstracts/67175/protection-of-floating-roof-petroleum-storage-tanks-against-lightning-strokes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1307</span> Delineation of Oil– Polluted Sites in Ibeno LGA, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ime%20R.%20Udotong">Ime R. Udotong</a>, <a href="https://publications.waset.org/abstracts/search?q=Ofonime%20U.%20M.%20John"> Ofonime U. M. John</a>, <a href="https://publications.waset.org/abstracts/search?q=Justina%20I.%20R.%20Udotong"> Justina I. R. Udotong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil and condensate producer in Nigeria. Besides MPNU, other multinational oil companies like Shell Petroleum Development Company Ltd, Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of ENI E&P operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria, respectively. This study was designed to carry out the survey of the oil impacted sites in Ibeno, Nigeria. A combinations of electrical resistivity (ER), ground penetrating radar (GPR) and physico-chemical as well as microbiological characterization of soils and water samples from the area were carried out. Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from significant concentrations of THC, BTEX and heavy metal contents in the environment. Also, high resistivity values and GPR profiles clearly showing the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones corroborates previous significant oil input. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Hydrocarbon pollution of the study area was confirmed by the results of soil and water physico-chemical and microbiological analysis. The levels of THC contamination observed in this study are indicative of high levels of crude oil contamination. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas, the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively as well as the high counts of hydrocarbonoclastic microorganisms in excess of 1% confirmed significant recent pollution of the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil-polluted%20sites" title="oil-polluted sites">oil-polluted sites</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemical%20analyses" title=" physico-chemical analyses"> physico-chemical analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiological%20characterization" title=" microbiological characterization"> microbiological characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20investigations" title=" geotechnical investigations"> geotechnical investigations</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20hydrocarbon%20content" title=" total hydrocarbon content"> total hydrocarbon content</a> </p> <a href="https://publications.waset.org/abstracts/26478/delineation-of-oil-polluted-sites-in-ibeno-lga-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1306</span> Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belhaj%20Mohamed">Belhaj Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saidi"> M. Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Boucherab"> N. Boucherab</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ouertani"> N. Ouertani</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Bouazizi"> I. Bouazizi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ben%20Jrad"> M. Ben Jrad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS), capillary GC with flame-ionization detection, Compund Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (-198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas%20seeps" title=" oil and gas seeps"> oil and gas seeps</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20geochemistry" title=" organic geochemistry"> organic geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20rock" title=" source rock"> source rock</a> </p> <a href="https://publications.waset.org/abstracts/23626/geochemical-study-of-natural-bitumen-condensate-and-gas-seeps-from-sousse-area-central-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1305</span> Prediction of Metals Available to Maize Seedlings in Crude Oil Contaminated Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stella%20O.%20Olubodun">Stella O. Olubodun</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20E.%20Eriyamremu"> George E. Eriyamremu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study assessed the effect of crude oil applied at rates, 0, 2, 5, and 10% on the fractional chemical forms and availability of some metals in soils from Usen, Edo State, with no known crude oil contamination and soil from a crude oil spill site in Ubeji, Delta State, Nigeria. Three methods were used to determine the bioavailability of metals in the soils: maize (<em>Zea mays</em>) plant, EDTA and BCR sequential extraction. The sequential extract acid soluble fraction of the BCR extraction (most labile fraction of the soils, normally associated with bioavailability) were compared with total metal concentration in maize seedlings as a means to compare the chemical and biological measures of bioavailability. Total Fe was higher in comparison to other metals for the crude oil contaminated soils. The metal concentrations were below the limits of 4.7% Fe, 190mg/kg Cu and 720mg/kg Zn intervention values and 36mg/kg Cu and 140mg/kg Zn target values for soils provided by the Department of Petroleum Resources (DPR) guidelines. The concentration of the metals in maize seedlings increased with increasing rates of crude oil contamination. Comparison of the metal concentrations in maize seedlings with EDTA extractable concentrations showed that EDTA extracted more metals than maize plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=availability" title="availability">availability</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil%20contamination" title=" crude oil contamination"> crude oil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=EDTA" title=" EDTA"> EDTA</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a> </p> <a href="https://publications.waset.org/abstracts/38382/prediction-of-metals-available-to-maize-seedlings-in-crude-oil-contaminated-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1304</span> Oil Exploration in the Niger Delta and the Right to a Healthy Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olufunke%20Ayilara%20Aje-Famuyide">Olufunke Ayilara Aje-Famuyide</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The centrality of the Petroleum Industry in the world energy is undoubted. The world economy almost runs and depends on petroleum. Petroleum industry is a multi-trillion industry; it turns otherwise poor and underdeveloped countries into wealthy nations and thrusts them at the center of international diplomacy. Although these developing nations lack the necessary technology to explore and exploit petroleum resources they are not without help as developed nations, represented by their multinational corporations are ready and willing to provide both the technical and managerial expertise necessary for the development of this natural resource. However, the exploration of these petroleum resources comes with, sometimes, grave, concomitant consequences. These consequences are especially pronounced with respect to the environment. From the British Petroleum Oil rig explosion and the resultant oil spillage and pollution in New Mexico, United States to the Mobil Oil spillage along Nigerian coast, the story and consequence is virtually the same. Nigeria’s Niger Delta Region produces Nigeria’s petroleum which accounts for more than ninety-five percent of Nigeria’s foreign exchange earnings. Between 1999 and 2007, Nigeria earned more than $400 billion from petroleum exports. Nevertheless, petroleum exploration and exploitation has devastated the Niger Delta environment. From oil spillage which pollutes the rivers, farms and wetlands to gas flaring by the multi-national corporations; the consequences is similar-a region that has been devastated by petroleum exploitation. This paper thus seeks to examine the consequences and impact of petroleum pollution in the Niger Delta of Nigeria with particular reference on the right of the people of Niger Delta to a healthy environment. The paper further seeks to examine the relevant international, regional instrument and Nigeria’s municipal laws that are meant to protect the result of the people of the Niger Delta and their enforcement by the Nigerian State. It is quite worrisome that the Niger Delta Region and its people have suffered and are still suffering grave violations of their right to a healthy environment as a result of petroleum exploitation in their region. The Nigerian effort at best is half-hearted in its protection of the people’s right. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=exploration" title=" exploration"> exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum" title=" petroleum"> petroleum</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution "> pollution </a> </p> <a href="https://publications.waset.org/abstracts/27314/oil-exploration-in-the-niger-delta-and-the-right-to-a-healthy-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1303</span> Characterization of Biosurfactant during Crude Oil Biodegradation Employing Pseudomonas sp. PG1: A Strain Isolated from Garage Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaustuvmani%20Patowary">Kaustuvmani Patowary</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Deka"> Suresh Deka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil pollution accidents, nowadays, have become a common phenomenon and have caused ecological and social disasters. Microorganisms with high oil-degrading performance are essential for bioremediation of petroleum hydrocarbon. In this investigation, an effective biosurfactant producer and hydrocarbon degrading bacterial strain, Pseudomonas sp.PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated garage soil of Pathsala, Assam, India, using crude oil enrichment technique. The growth parameters such as pH and temperature were optimized for the strain and upto 81.8% degradation of total petroleum hydrocarbon (TPH) has been achieved after 5 weeks when grown in mineral salt media (MSM) containing 2% (w/v) crude oil as the carbon source. The biosurfactant production during the course of hydrocarbon degradation was monitored by surface tension measurement and emulsification activity. The produced biosurfactant had the ability to decrease the surface tension of MSM from 72 mN/m to 29.6 mN/m, with the critical micelle concentration (CMC)of 56 mg/L. The biosurfactant exhibited 100% emulsification activity on crude oil. FTIR spectroscopy and LCMS-MS analysis of the purified biosurfactant revealed that the biosurfactant is Rhamnolipidic in nature with several rhamnolipid congeners. Gas Chromatography-Mass spectroscopy (GC-MS) analysis clearly demonstrated that the strain PG1 efficiently degrade different hydrocarbon fractions of the crude oil. The study suggeststhat application of the biosurfactant producing strain PG1 as an appropriate candidate for bioremediation of crude oil contaminants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbon" title="petroleum hydrocarbon">petroleum hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20contamination" title=" hydrocarbon contamination"> hydrocarbon contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=rhamnolipid" title=" rhamnolipid"> rhamnolipid</a> </p> <a href="https://publications.waset.org/abstracts/27073/characterization-of-biosurfactant-during-crude-oil-biodegradation-employing-pseudomonas-sp-pg1-a-strain-isolated-from-garage-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1302</span> The Effect of Artificial Intelligence on Petroleum Industry and Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Shokry%20Hanna%20Saleh%20Tadros">Mina Shokry Hanna Saleh Tadros</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The centrality of the Petroleum Industry in the world energy is undoubted. The world economy almost runs and depends on petroleum. Petroleum industry is a multi-trillion industry; it turns otherwise poor and underdeveloped countries into wealthy nations and thrusts them at the center of international diplomacy. Although these developing nations lack the necessary technology to explore and exploit petroleum resources they are not without help as developed nations, represented by their multinational corporations are ready and willing to provide both the technical and managerial expertise necessary for the development of this natural resource. However, the exploration of these petroleum resources comes with, sometimes, grave, concomitant consequences. These consequences are especially pronounced with respect to the environment. From the British Petroleum Oil rig explosion and the resultant oil spillage and pollution in New Mexico, United States to the Mobil Oil spillage along Egyptian coast, the story and consequence is virtually the same. Egypt’s delta Region produces Nigeria’s petroleum which accounts for more than ninety-five percent of Nigeria’s foreign exchange earnings. Between 1999 and 2007, Egypt earned more than $400 billion from petroleum exports. Nevertheless, petroleum exploration and exploitation has devastated the Delta environment. From oil spillage which pollutes the rivers, farms and wetlands to gas flaring by the multi-national corporations; the consequences is similar-a region that has been devastated by petroleum exploitation. This paper thus seeks to examine the consequences and impact of petroleum pollution in the Egypt Delta with particular reference on the right of the people of Niger Delta to a healthy environment. The paper further seeks to examine the relevant international, regional instrument and Nigeria’s municipal laws that are meant to protect the result of the people of the Egypt Delta and their enforcement by the Nigerian State. It is quite worrisome that the Egypt Delta Region and its people have suffered and are still suffering grave violations of their right to a healthy environment as a result of petroleum exploitation in their region. The Egypt effort at best is half-hearted in its protection of the people’s right. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20roof%20tank" title=" floating roof tank"> floating roof tank</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20protection%20systemenvironment" title=" lightning protection systemenvironment"> lightning protection systemenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=exploration" title=" exploration"> exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum" title=" petroleum"> petroleum</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutionDuvernay%20petroleum%20system" title=" pollutionDuvernay petroleum system"> pollutionDuvernay petroleum system</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20generation" title=" oil generation"> oil generation</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-source%20correlation" title=" oil-source correlation"> oil-source correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=Re-Os" title=" Re-Os"> Re-Os</a> </p> <a href="https://publications.waset.org/abstracts/183788/the-effect-of-artificial-intelligence-on-petroleum-industry-and-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1301</span> Re-Os Application to Petroleum System: Implications from the Geochronology and Oil-Source Correlation of Duvernay Petroleum System, Western Canadian Sedimentary Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junjie%20Liu">Junjie Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Selby"> David Selby</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Obermajer"> Mark Obermajer</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Mort"> Andy Mort</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inaugural application of Re-Os dating, which is based on the beta decay of 187Re to 187Os with a long half-life of 41.577 ± 0.12 Byr and initially used for sulphide minerals and organic rich rocks, to petroleum systems was performed on bitumen of the Polaris Mississippi Valley Type Pb-Zn deposit, Canada. To further our understanding of the Re-Os system and its application to petroleum systems, here we present a study on Duvernay Petroleum System, Western Canadian Sedimentary Basin. The Late Devonian Duvernay Formation organic-rich shales are the only source of the petroleum system. The Duvernay shales reached maturation only during the Laramide Orogeny (80 – 35 Ma) and the generated oil migrated short distances into the interfingering Leduc reefs and overlying Nisku carbonates with no or little secondary alteration post oil-generation. Although very low in Re and Os, the asphaltenes of Duvernay-sourced Leduc and Nisku oils define a Laramide Re-Os age. In addition, the initial Os isotope compositions of the oil samples are similar to that of the Os isotope composition of the Duvernay Formation at the time of oil generation, but are very different to other oil-prone intervals of the basin, showing the ability of the Os isotope composition as an inorganic oil-source correlation tool. In summary, the ability of the Re-Os geochronometer to record the timing of oil generation and trace the source of an oil is confirmed in the Re-Os study of Duvernay Petroleum System. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duvernay%20petroleum%20system" title="Duvernay petroleum system">Duvernay petroleum system</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20generation" title=" oil generation"> oil generation</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-source%20correlation" title=" oil-source correlation"> oil-source correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=Re-Os" title=" Re-Os"> Re-Os</a> </p> <a href="https://publications.waset.org/abstracts/67543/re-os-application-to-petroleum-system-implications-from-the-geochronology-and-oil-source-correlation-of-duvernay-petroleum-system-western-canadian-sedimentary-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1300</span> Phytoremediation Potenciality of ‘Polypogon monspeliensis L. in Detoxification of Petroleum-Contaminated Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mozhgan%20Farzami%20Sepehr">Mozhgan Farzami Sepehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Nourozi"> Farhad Nourozi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a greenhouse study, decontamination capacity of the species Polypogon monspoliensis, for detoxification of petroleum-polluted soils caused by sewage and waste materials of Tehran Petroleum Refinery. For this purpose, the amount of total oil and grease before and 45 days after transplanting one-month-old seedlings in the soils of five different treatments in which pollution-free agricultural soil and contaminated soil were mixed together with the weight ratio of respectively 1 to 9 (% 10), 2 to 8 (%20), 3 to 7 (%30) , 4 to 6 (%40), and 5 to 5 (%50) were evaluated and compared with the amounts obtained from control treatment without vegetation, but with the same concentration of pollution. Findings demonstrated that the maximum reduction in the petroleum rate ,as much as 84.85 percent, is related to the treatment 10% containing the plant. Increasing the shoot height in treatments 10% and 20% as well as the root dry and fresh weight in treatments 10% , 20% , and 30% shows that probably activity of more rhizosphere microorganisms of the plant in these treatments has led to the improvement in growth of plant organs comparing to the treatments without pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title="phytoremediation">phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20oil%20and%20%20grease" title=" total oil and grease"> total oil and grease</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizosphere" title=" rhizosphere"> rhizosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum-contaminated%20soil" title=" petroleum-contaminated soil "> petroleum-contaminated soil </a> </p> <a href="https://publications.waset.org/abstracts/22502/phytoremediation-potenciality-of-polypogon-monspeliensis-l-in-detoxification-of-petroleum-contaminated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1299</span> Competition in Petroleum Extraction and the Challenges of Climate Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Rabiei%20Majd">Saeid Rabiei Majd</a>, <a href="https://publications.waset.org/abstracts/search?q=Motahareh%20Alvandi"> Motahareh Alvandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahareh%20Asefi"> Bahareh Asefi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extraction of maximum natural resources is one of the common policies of governments, especially petroleum resources that have high economic and strategic value. The incentive to access and maintain profitable oil markets for governments or international oil companies, causing neglects them to pay attention to environmental principles and sustainable development, which in turn drives up environmental and climate change. Significant damage to the environment can cause severe damage to citizens and indigenous people, such as the compulsory evacuation of their zone due to contamination of water and air resources, destruction of animals and plants. Hawizeh Marshes is a common aquatic and environmental ecosystem along the Iran-Iraq border that also has oil resources. This marsh has been very rich in animal, vegetative, and oil resources. Since 1990, the political motives, the strategic importance of oil extraction, and the disregard for the environmental rights of the Iraqi and Iranian governments in the region have caused 90% of the marshes and forced migration of indigenous people. In this paper, we examine the environmental degradation factors resulting from the adoption of policies and practices of governments in this region based on the principles of environmental rights and sustainable development. Revision of the implementation of the government’s policies and natural resource utilization systems can prevent the spread of climate change, which is a serious international challenge today. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous%20rights" title=" indigenous rights"> indigenous rights</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20operation" title=" petroleum operation"> petroleum operation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development%20principles" title=" sustainable development principles"> sustainable development principles</a>, <a href="https://publications.waset.org/abstracts/search?q=sovereignty%20on%20resources" title=" sovereignty on resources"> sovereignty on resources</a> </p> <a href="https://publications.waset.org/abstracts/112085/competition-in-petroleum-extraction-and-the-challenges-of-climate-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1298</span> Application of Waterflooding Technique in Petroleum Reservoir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khwaja%20Naweed%20Seddiqi">Khwaja Naweed Seddiqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrocarbon resources are important for the redevelopment and sustainable progress of Afghanistan’s infrastructure. This paper aim is to increase the oil recovery of Hitervian reservoir of Angut oil field in north part of Afghanistan by an easy and available method, which is Buckley-Leveret frontal displacement theory. In this paper oil displacement by water that takes placed by injecting water into the under laying petroleum reservoir which called waterflooding technique is investigated. The theory is investigated in a laboratory experiment first then applied in Angut oil field which is now under the operation of a private petroleum company. Based on this study oil recovery of Angut oil field, residual oil saturation, Buckle-Leveret saturation and FBL is determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waterflooding%20technique" title="waterflooding technique">waterflooding technique</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20fluid%20flow" title=" two phase fluid flow"> two phase fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Buckley-Leveret" title=" Buckley-Leveret"> Buckley-Leveret</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering" title=" petroleum engineering "> petroleum engineering </a> </p> <a href="https://publications.waset.org/abstracts/61843/application-of-waterflooding-technique-in-petroleum-reservoir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1297</span> Application of Artificial Intelligence in EOR </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Mofarrah">Masoumeh Mofarrah</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20NahanMoghadam"> Amir NahanMoghadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise, and improve EOR methods and their application. Recently, Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic, and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization infeasible and effective way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=EOR" title=" EOR"> EOR</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20systems" title=" expert systems"> expert systems</a> </p> <a href="https://publications.waset.org/abstracts/13143/application-of-artificial-intelligence-in-eor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1296</span> Literature Review: Application of Artificial Intelligence in EOR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Mofarrah">Masoumeh Mofarrah</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20NahanMoghadam"> Amir NahanMoghadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise and improve EOR methods and their application. Recently Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization in feasible and effective way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=EOR" title=" EOR"> EOR</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20systems" title=" expert systems"> expert systems</a> </p> <a href="https://publications.waset.org/abstracts/13153/literature-review-application-of-artificial-intelligence-in-eor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1295</span> Using Fly Ash Based Synthetic Zeolite Permeable Reactive Barrier to Remove Arsenic, Cadmium, and their Mixture from Aqueous Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mozhgan%20Bahadory">Mozhgan Bahadory</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholam-Hossein%20Rostami"> Gholam-Hossein Rostami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the next quarter of a century, the US government and the private sector will spend billions of dollars annually to clean the contaminated sites from pollution such as petroleum products, heavy metals, and solvents organic compounds. During the past three decades, almost 750,000 sites that require remediation have been reported to the United States federal and state agencies. Out of these contamination sites, approximately 300,000 are still in need of remediation. In these sites, the most widespread forms of contamination are petroleum products and heavy metals. At least half of US Department of Defense, US Department of Energy, Superfund sites, and Resource Conservation and Recovery Act (RCRA) sites have been reported to contain heavy metals. Heavy metals most often found in the contaminated water are lead, mercury, chromium, cadmium, arsenic, and zinc. This investigation emphasizes the elimination of arsenic and cadmium from aqueous solution. During the past several years, we developed a novel material called Alkali-Activated fly ash Material Permeable Reactive Barrier (AAM-PRB), which includes fly ash, fine aggregates, coarse aggregates, activating chemicals, and water. AAM can be produced with high permeability, 10-1 cm/s, then crushed into pelletized form. Laboratory experiments showed that water containing 10 ppm, 100 ppm, and 1000 ppm of arsenic and cadmium ion passing through AAM-PRB reduced to less than 0.1 ppm. However, water containing 10,000 ppm arsenic ion passing through AAM- PRB shows that the breakthrough was achieved. The removal of the mixture of arsenic and cadmium from aqueous solutions was also tested by using AAM-PRB. The results indicate that the efficiency of AAM-PRB for simultaneous removal of arsenic and cadmium from 10 ppm, 100 ppm, and 1,000 ppm were marginally below that of arsenic alone. Still, it was significantly lower for cadmium from the aqueous solution. The basic science behind removing heavy metal and microstructural investigation AAM-PRB will be the focus of our future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminated%20water" title=" contaminated water"> contaminated water</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20barrier" title=" reactive barrier"> reactive barrier</a> </p> <a href="https://publications.waset.org/abstracts/176764/using-fly-ash-based-synthetic-zeolite-permeable-reactive-barrier-to-remove-arsenic-cadmium-and-their-mixture-from-aqueous-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1294</span> Recovery of Petroleum Reservoir by Waterflooding Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zabihullah%20Mahdi">Zabihullah Mahdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khwaja%20Naweed%20Seddiqi"> Khwaja Naweed Seddiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Honma"> Shigeo Honma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through many types of research and practical studies, it has been identified that the average oil recovery factor of a petroleum reservoir is about 30 to 35 %. This study is focused on enhanced oil recovery by laboratory experiment and graphical investigation based on Buckley-Leverett theory. Horizontal oil displacement by water, in a petroleum reservoir is analyzed under the Buckley-Leverett frontal displacement theory. The extraction and prerequisite of this theory are based and pursued focusing on the key factors that control displacement. The theory is executable to the waterflooding method, which is generally employed in petroleum engineering reservoirs to sustain oil production recovery, and the techniques for evaluating the average water saturation behind the water front and the oil recovery factors in the reservoirs are presented. In this paper, the Buckley-Leverett theory handled to an experimental model and the amount of recoverable oil are investigated to be over 35%. The irreducible water saturation, viz. connate water saturation, in the reservoir is also a significant inspiration for the recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buckley-Leverett%20theory" title="Buckley-Leverett theory">Buckley-Leverett theory</a>, <a href="https://publications.waset.org/abstracts/search?q=waterflooding%20technique" title=" waterflooding technique"> waterflooding technique</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering" title=" petroleum engineering"> petroleum engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=immiscible%20displacement" title=" immiscible displacement"> immiscible displacement</a> </p> <a href="https://publications.waset.org/abstracts/59677/recovery-of-petroleum-reservoir-by-waterflooding-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1293</span> Heavy Metal Contamination of a Dumpsite Environment as Assessed with Pollution Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olubunmi%20S.%20Shittu">Olubunmi S. Shittu</a>, <a href="https://publications.waset.org/abstracts/search?q=Olufemi%20J.%20Ayodele"> Olufemi J. Ayodele</a>, <a href="https://publications.waset.org/abstracts/search?q=Augustus%20O.%20A.%20Ilori"> Augustus O. A. Ilori</a>, <a href="https://publications.waset.org/abstracts/search?q=Abidemi%20O.%20Filani"> Abidemi O. Filani</a>, <a href="https://publications.waset.org/abstracts/search?q=Adetola%20T.%20Afuye"> Adetola T. Afuye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indiscriminate refuse dumping in and around Ado-Ekiti combined with improper management of few available dumpsites, such as Ilokun dumpsite, posed the threat of heavy metals pollution in the surrounding soils and underground water that needs assessment using pollution indices. Surface soils (0-15 cm) were taken from the centre of Ilokun dumpsite (0 m) and environs at different directions and distances during the dry and wet seasons, as well as a background sample at 1000 m away, adjacent to the dumpsite at Ilokun, Ado-Ekiti, Nigeria. The concentration of heavy metals used to calculate the pollution indices for the soils were determined using Atomic Adsorption Spectrophotometer. The soils recorded high concentrations of all the heavy metals above the background concentrations irrespective of the season with highest concentrations at the 0 m except Ni and Fe at 50 m during the dry and wet season, respectively. The heavy metals concentration were in the order of Ni > Mn > Pb > Cr > Cu > Cd > Fe during the dry season, and Fe > Cr > Cu > Pb > Ni > Cd > Mn during the wet season. Using the Contamination Factor (CF), the soils were classified to be moderately contaminated with Cd and Fe to very high contamination with other metals during the dry season and low Cd contamination (0.87), moderate contamination with Fe, Pb, Mn and Ni and very high contamination with Cr and Cu during the wet season. At both seasons, the Pollution Load Index (PLI) indicates the soils to be generally polluted with heavy metals and the Geoaccumulation Index (I<em><sub>geo</sub></em>) calculated shown the soils to be in unpolluted to moderately polluted levels. Enrichment Factor (EF) implied the soils to be deficiently enriched with all the heavy metals except Cr (7.90) and Cu (6.42) that were at significantly enrichment levels during the wet season. Modified Degree of Contamination (mC<sub>d</sub>) recorded, indicated the soils to be of very high to extremely high degree of contamination during the dry season and moderate degree of contamination during the wet season except 0 m with high degree of contamination. The concentration of heavy metals in the soils combined with some of the pollution indices indicated the soils in and around the Ilokun Dumpsite are being polluted with heavy metals from anthropogenic sources constituted by the indiscriminate refuse dumping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination%20factor" title="contamination factor">contamination factor</a>, <a href="https://publications.waset.org/abstracts/search?q=enrichment%20factor" title=" enrichment factor"> enrichment factor</a>, <a href="https://publications.waset.org/abstracts/search?q=geoaccumulation%20index" title=" geoaccumulation index"> geoaccumulation index</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20degree%20of%20contamination" title=" modified degree of contamination"> modified degree of contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20load%20index" title=" pollution load index"> pollution load index</a> </p> <a href="https://publications.waset.org/abstracts/73809/heavy-metal-contamination-of-a-dumpsite-environment-as-assessed-with-pollution-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1292</span> Lead in The Soil-Plant System Following Aged Contamination from Ceramic Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Pedron">F. Pedron</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Grifoni"> M. Grifoni</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Petruzzelli"> G. Petruzzelli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Barbafieri"> M. Barbafieri</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rosellini"> I. Rosellini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Pezzarossa"> B. Pezzarossa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead contamination of agricultural land mainly vegetated with perennial ryegrass (<em>Lolium perenne</em>) has been investigated. The metal derived from the discharge of sludge from a ceramic industry in the past had used lead paints. The results showed very high values of lead concentration in many soil samples. In order to assess the lead soil contamination, a sequential extraction with H<sub>2</sub>O, KNO<sub>3</sub>, EDTA was performed, and the chemical forms of lead in the soil were evaluated. More than 70% of lead was in a potentially bioavailable form. Analysis of <em>Lolium perenne</em> showed elevated lead concentration. A Freundlich-like model was used to describe the transferability of the metal from the soil to the plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title="bioavailability">bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=Freundlich-like%20equation" title=" Freundlich-like equation"> Freundlich-like equation</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20extraction" title=" sequential extraction"> sequential extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20lead%20contamination" title=" soil lead contamination"> soil lead contamination</a> </p> <a href="https://publications.waset.org/abstracts/90618/lead-in-the-soil-plant-system-following-aged-contamination-from-ceramic-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1291</span> Linking Disgust and Misophonia: The Role of Mental Contamination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laurisa%20Peters">Laurisa Peters</a>, <a href="https://publications.waset.org/abstracts/search?q=Usha%20Barahmand"> Usha Barahmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Stalias-Mantzikos"> Maria Stalias-Mantzikos</a>, <a href="https://publications.waset.org/abstracts/search?q=Naila%20Shamsina"> Naila Shamsina</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerry%20Aguero"> Kerry Aguero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, the authors sought to examine whether the links between moral and sexual disgust and misophonia are mediated by mental contamination. An internationally diverse sample of 283 adults (193 females, 76 males, and 14 non-binary individuals) ranging in age from 18 to 60 years old was recruited from online social media platforms and survey recruitment sites. The sample completed an online battery of scales that consisted of the New York Misophonia Scale, State Mental Contamination Scale, and the Three-Domain Disgust Scale. The hypotheses were evaluated using a series of mediations performed using the PROCESS add-on in SPSS. Correlations were found between emotional and aggressive-avoidant reactions in misophonia, mental contamination, pathogen disgust, and sexual disgust. Moral disgust and non-aggressive reactions in misophonia failed to correlate significantly with any of the other constructs. Sexual disgust had direct and indirect effects, while pathogen disgust had only direct effects on aspects of misophonia. These findings partially support our hypothesis that mental contamination mediates the link between disgust propensity and misophonia while also confirming that pathogen-based disgust is not associated with mental contamination. Findings imply that misophonia is distinct from obsessive-compulsive disorder. Further research into the conceptualization of moral disgust is warranted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=misophonia" title="misophonia">misophonia</a>, <a href="https://publications.waset.org/abstracts/search?q=moral%20disgust" title=" moral disgust"> moral disgust</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogen%20disgust" title=" pathogen disgust"> pathogen disgust</a>, <a href="https://publications.waset.org/abstracts/search?q=sexual%20disgust" title=" sexual disgust"> sexual disgust</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20contamination" title=" mental contamination"> mental contamination</a> </p> <a href="https://publications.waset.org/abstracts/156112/linking-disgust-and-misophonia-the-role-of-mental-contamination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1290</span> Heavy Metal Contamination in Sediments of North East Coast of Tamilnadu by EDXRF Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ravisankar">R. Ravisankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tholkappian%20A.%20Chandrasekaran"> Tholkappian A. Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Raghu"> Y. Raghu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Satapathy"> K. K. Satapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20R.%20Prasad"> M. V. R. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Kanagasabapathy"> K. V. Kanagasabapathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coastal areas of Tamilnadu are assuming greater importance owing to increasing human population, urbanization and accelerated industrial activities. sIn the present study, sediment samples are collected along the east coast of Tamilnadu for assessment of heavy metal pollution. The concentration of 13 selected heavy metals such as Mg, Al, Si, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn determined by Energy dispersive X-ray fluorescence (EDXRF) technique. In order to describe the pollution status, Contamination factor and pollution load index are calculated and reported. This result suggests that sources of metal contamination were mainly attributed to natural inputs from surrounding environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediments" title="sediments">sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=EDXRF" title=" EDXRF"> EDXRF</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20contamination%20factors" title=" pollution contamination factors"> pollution contamination factors</a> </p> <a href="https://publications.waset.org/abstracts/24170/heavy-metal-contamination-in-sediments-of-north-east-coast-of-tamilnadu-by-edxrf-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1289</span> Bioremediation Influence on Shear Strength of Contaminated Soils </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tawar%20Mahmoodzadeh">Tawar Mahmoodzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today soil contamination is an unavoidable issue; Irrespective of environmental impact, which happens during the soil contaminating and remediating process, the influence of this phenomenon on soil has not been searched thoroughly. In this study, unconfined compression and compaction tests were done on samples, contaminated and treated soil after 50 days of bio-treatment. The results show that rising in the amount of oil, cause decreased optimum water content and maximum dry density and increased strength. However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20contamination%20soil" title="oil contamination soil">oil contamination soil</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a> </p> <a href="https://publications.waset.org/abstracts/108173/bioremediation-influence-on-shear-strength-of-contaminated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1288</span> Investments in Petroleum Industry Abnormally Normal: A Case Study Based on Petroleum and Natural Gas Companies in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhika%20Ramanchi">Radhika Ramanchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oil market during 2014-2015 in India with large price fluctuations is very confusing to individual investor. The drop in oil prices supported stocks of some oil marketing companies (OMCs) like Bharat Petroleum Corporation, Hindustan Petroleum Corporation (HPCL) and Indian Oil Corporation etc their shares rose 84.74%, 128.63% and 59.16%, respectively. Lower oil prices, and lower current account, a smaller subsidy burden are the reasons for outperformance. On the other hand, lower crude prices giving downward pressure on upstream companies like Oil and Natural Gas Corp. Ltd (ONGC) and Reliance Petroleum (RIL) Oil India Ltd (OIL). Not having clarity on a subsidy sharing mechanism is the reason for downward trend on these stocks. Shares of ONGC and RIL have underperformed so far in 2015. When the oil price fall profits of the companies will effect, generate less money and may cut their dividends in Long run. In this situation this paper objective is to study investment strategies in oil marketing companies, by applying CAPM and Security Market Line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petrol%20industry" title="petrol industry">petrol industry</a>, <a href="https://publications.waset.org/abstracts/search?q=price%20fluctuations" title=" price fluctuations"> price fluctuations</a>, <a href="https://publications.waset.org/abstracts/search?q=sharp%20single%20index%20model" title=" sharp single index model"> sharp single index model</a>, <a href="https://publications.waset.org/abstracts/search?q=SML" title=" SML"> SML</a>, <a href="https://publications.waset.org/abstracts/search?q=Markowitz%20model" title=" Markowitz model"> Markowitz model</a> </p> <a href="https://publications.waset.org/abstracts/46771/investments-in-petroleum-industry-abnormally-normal-a-case-study-based-on-petroleum-and-natural-gas-companies-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination&page=43">43</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination&page=44">44</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>