CINXE.COM

Search results for: dynamic energy model

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dynamic energy model</title> <meta name="description" content="Search results for: dynamic energy model"> <meta name="keywords" content="dynamic energy model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dynamic energy model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dynamic energy model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 25401</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dynamic energy model</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25401</span> Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadine%20Yehya">Nadine Yehya</a>, <a href="https://publications.waset.org/abstracts/search?q=Chantal%20Maatouk"> Chantal Maatouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20model" title="physical model">physical model</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20refrigerant%20flow%20heat%20pump" title=" variable refrigerant flow heat pump"> variable refrigerant flow heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modeling" title=" dynamic modeling"> dynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=EnergyPlus" title=" EnergyPlus"> EnergyPlus</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20modeling%20approach" title=" the modeling approach"> the modeling approach</a> </p> <a href="https://publications.waset.org/abstracts/97232/dynamic-modeling-of-energy-systems-adapted-to-low-energy-buildings-in-lebanon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25400</span> Multi-Atlas Segmentation Based on Dynamic Energy Model: Application to Brain MR Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Huo">Jie Huo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Wu"> Jonathan Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Segmentation of anatomical structures in medical images is essential for scientific inquiry into the complex relationships between biological structure and clinical diagnosis, treatment and assessment. As a method of incorporating the prior knowledge and the anatomical structure similarity between a target image and atlases, multi-atlas segmentation has been successfully applied in segmenting a variety of medical images, including the brain, cardiac, and abdominal images. The basic idea of multi-atlas segmentation is to transfer the labels in atlases to the coordinate of the target image by matching the target patch to the atlas patch in the neighborhood. However, this technique is limited by the pairwise registration between target image and atlases. In this paper, a novel multi-atlas segmentation approach is proposed by introducing a dynamic energy model. First, the target is mapped to each atlas image by minimizing the dynamic energy function, then the segmentation of target image is generated by weighted fusion based on the energy. The method is tested on MICCAI 2012 Multi-Atlas Labeling Challenge dataset which includes 20 target images and 15 atlases images. The paper also analyzes the influence of different parameters of the dynamic energy model on the segmentation accuracy and measures the dice coefficient by using different feature terms with the energy model. The highest mean dice coefficient obtained with the proposed method is 0.861, which is competitive compared with the recently published method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20MRI%20segmentation" title="brain MRI segmentation">brain MRI segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20model" title=" dynamic energy model"> dynamic energy model</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-atlas%20segmentation" title=" multi-atlas segmentation"> multi-atlas segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20minimization" title=" energy minimization"> energy minimization</a> </p> <a href="https://publications.waset.org/abstracts/68716/multi-atlas-segmentation-based-on-dynamic-energy-model-application-to-brain-mr-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25399</span> The Assessment of Some Biological Parameters With Dynamic Energy Budget of Mussels in Agadir Bay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Okba">Zahra Okba</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20El%20Ouizgani"> Hassan El Ouizgani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anticipating an individual’s behavior to the environmental factors allows for having relevant ecological forecasts. The Dynamic Energy Budget model facilitates prediction, and it is mechanically dependent on biology to abiotic factors but is generally field verified under relatively stable physical conditions. Dynamic Energy Budget Theory (DEB) is a robust framework that can link the individual state to environmental factors, and in our work, we have tested its ability to account for variability by looking at model predictions in the Agadir Bay, which is characterized by a semi-arid climate and temperature is strongly influenced by the trade winds front and nutritional availability. From previous works in our laboratory, we have collected different biological DEB model parameters of Mytilus galloprovincialis mussel in Agadir Bay. We mathematically formulated the equations that make up the DEB model and then adjusted our analytical functions with the observed biological data of our local species. We also assumed the condition of constant immersion, and then we integrated the details of the tidal cycles to calculate the metabolic depression at low tide. Our results are quite satisfactory concerning the length and shape of the shell in one part and the gonadosomatic index in another part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20budget" title="dynamic energy budget">dynamic energy budget</a>, <a href="https://publications.waset.org/abstracts/search?q=mussels" title=" mussels"> mussels</a>, <a href="https://publications.waset.org/abstracts/search?q=mytilus%20galloprovincialis" title=" mytilus galloprovincialis"> mytilus galloprovincialis</a>, <a href="https://publications.waset.org/abstracts/search?q=agadir%20bay" title=" agadir bay"> agadir bay</a>, <a href="https://publications.waset.org/abstracts/search?q=DEB%20model" title=" DEB model"> DEB model</a> </p> <a href="https://publications.waset.org/abstracts/154958/the-assessment-of-some-biological-parameters-with-dynamic-energy-budget-of-mussels-in-agadir-bay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25398</span> A Literature Review of the Trend towards Indoor Dynamic Thermal Comfort</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Katungyi">James Katungyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Steady State thermal comfort model which dominates thermal comfort practice and which posits the ideal thermal conditions in a narrow range of thermal conditions does not deliver the expected comfort levels among occupants. Furthermore, the buildings where this model is applied consume a lot of energy in conditioning. This paper reviews significant literature about thermal comfort in dynamic indoor conditions including the adaptive thermal comfort model and alliesthesia. A major finding of the paper is that the adaptive thermal comfort model is part of a trend from static to dynamic indoor environments in aspects such as lighting, views, sounds and ventilation. Alliesthesia or thermal delight is consistent with this trend towards dynamic thermal conditions. It is within this trend that the two fold goal of increased thermal comfort and reduced energy consumption lies. At the heart of this trend is a rediscovery of the link between the natural environment and human well-being, a link that was partially severed by over-reliance on mechanically dominated artificial indoor environments. The paper concludes by advocating thermal conditioning solutions that integrate mechanical with natural thermal conditioning in a balanced manner in order to meet occupant thermal needs without endangering the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20thermal%20comfort" title="adaptive thermal comfort">adaptive thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=alliesthesia" title=" alliesthesia"> alliesthesia</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20environment" title=" natural environment"> natural environment</a> </p> <a href="https://publications.waset.org/abstracts/93485/a-literature-review-of-the-trend-towards-indoor-dynamic-thermal-comfort" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25397</span> Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akaash%20Tawade">Akaash Tawade</a>, <a href="https://publications.waset.org/abstracts/search?q=Manan%20Khattar"> Manan Khattar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucas%20Spangher"> Lucas Spangher</a>, <a href="https://publications.waset.org/abstracts/search?q=Costas%20J.%20Spanos"> Costas J. Spanos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20demand%20forecasting" title="energy demand forecasting">energy demand forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20cognitive%20behavioral%20modeling" title=" social cognitive behavioral modeling"> social cognitive behavioral modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20game" title=" social game"> social game</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning" title=" transfer learning"> transfer learning</a> </p> <a href="https://publications.waset.org/abstracts/126076/dynamic-control-theory-a-behavioral-modeling-approach-to-demand-forecasting-amongst-office-workers-engaged-in-a-competition-on-energy-shifting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25396</span> Combining the Dynamic Conditional Correlation and Range-GARCH Models to Improve Covariance Forecasts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Fiszeder">Piotr Fiszeder</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Fa%C5%82dzi%C5%84ski"> Marcin Fałdziński</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Moln%C3%A1r"> Peter Molnár</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dynamic conditional correlation model of Engle (2002) is one of the most popular multivariate volatility models. However, this model is based solely on closing prices. It has been documented in the literature that the high and low price of the day can be used in an efficient volatility estimation. We, therefore, suggest a model which incorporates high and low prices into the dynamic conditional correlation framework. Empirical evaluation of this model is conducted on three datasets: currencies, stocks, and commodity exchange-traded funds. The utilisation of realized variances and covariances as proxies for true variances and covariances allows us to reach a strong conclusion that our model outperforms not only the standard dynamic conditional correlation model but also a competing range-based dynamic conditional correlation model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=volatility" title="volatility">volatility</a>, <a href="https://publications.waset.org/abstracts/search?q=DCC%20model" title=" DCC model"> DCC model</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20and%20low%20prices" title=" high and low prices"> high and low prices</a>, <a href="https://publications.waset.org/abstracts/search?q=range-based%20models" title=" range-based models"> range-based models</a>, <a href="https://publications.waset.org/abstracts/search?q=covariance%20forecasting" title=" covariance forecasting"> covariance forecasting</a> </p> <a href="https://publications.waset.org/abstracts/107388/combining-the-dynamic-conditional-correlation-and-range-garch-models-to-improve-covariance-forecasts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25395</span> Dynamic Thermal Modelling of a PEMFC-Type Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Avila%20Lopez">Marco Avila Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasnae%20Ait-Douchi"> Hasnae Ait-Douchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20De%20Los%20Santos"> Silvia De Los Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Badr%20Eddine%20Lebrouhi"> Badr Eddine Lebrouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pamela%20Ram%C3%ADrez%20Vidal"> Pamela Ramírez Vidal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of the energy transition, fuel cell technology has emerged as a solution for harnessing hydrogen energy and mitigating greenhouse gas emissions. An in-depth study was conducted on a PEMFC-type fuel cell, with an initiation of an analysis of its operational principles and constituent components. Subsequently, the modelling of the fuel cell was undertaken using the Python programming language, encompassing both steady-state and transient regimes. In the case of the steady-state regime, the physical and electrochemical phenomena occurring within the fuel cell were modelled, with the assumption of uniform temperature throughout all cell compartments. Parametric identification was carried out, resulting in a remarkable mean error of only 1.62% when the model results were compared to experimental data documented in the literature. The dynamic model that was developed enabled the scrutiny of the fuel cell's response in terms of temperature and voltage under varying current conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic" title=" dynamic"> dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20model" title=" thermal model"> thermal model</a>, <a href="https://publications.waset.org/abstracts/search?q=PEMFC" title=" PEMFC"> PEMFC</a> </p> <a href="https://publications.waset.org/abstracts/176646/dynamic-thermal-modelling-of-a-pemfc-type-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25394</span> Energy Consumption, Population and Economic Development Dynamics in Nigeria: An Empirical Evidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evelyn%20Nwamaka%20Ogbeide-Osaretin">Evelyn Nwamaka Ogbeide-Osaretin</a>, <a href="https://publications.waset.org/abstracts/search?q=Bright%20Orhewere"> Bright Orhewere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examined the role of the population in the linkage between energy consumption and economic development in Nigeria. Time series data on energy consumption, population, and economic development were used for the period 1995 to 2020. The Autoregressive Distributed Lag -Error Correction Model (ARDL-ECM) was engaged. Economic development had a negative substantial impact on energy consumption in the long run. Population growth had a positive significant effect on energy consumption. Government expenditure was also found to impact the level of energy consumption, while energy consumption is not a function of oil price in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title="dynamic analysis">dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20development" title=" economic development"> economic development</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/148993/energy-consumption-population-and-economic-development-dynamics-in-nigeria-an-empirical-evidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25393</span> Calculating All Dark Energy and Dark Matter Effects Through Dynamic Gravity Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sean%20Kinney">Sean Kinney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifest. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, using the math of Dynamic Gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need of exotic measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity" title="gravity">gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20gravity" title=" dynamic gravity"> dynamic gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title=" dark matter"> dark matter</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a> </p> <a href="https://publications.waset.org/abstracts/162095/calculating-all-dark-energy-and-dark-matter-effects-through-dynamic-gravity-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25392</span> Calculating All Dark Energy and Dark Matter Effects through Dynamic Gravity Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sean%20Michael%20Kinney">Sean Michael Kinney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifests. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, use the math of Dynamic gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need for exotic measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20gravity" title="dynamic gravity">dynamic gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title=" dark matter"> dark matter</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a> </p> <a href="https://publications.waset.org/abstracts/162838/calculating-all-dark-energy-and-dark-matter-effects-through-dynamic-gravity-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25391</span> Settlement Network Supplying Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bal%C3%A1zs%20Kulcs%C3%A1r">Balázs Kulcsár</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Few people now doubt the future of the global energy transition. The only question is whether the pace of renewables' penetration will be sufficient to compete with the rate of warming. Dynamic changes are also taking place in the Hungarian electricity system. In addition to nuclear power, which provides the basic electricity supply, the most dynamic is solar power, which is largely small-scale and residential. The emergence of solar power is outlining the emergence of energy production and supply fabric of municipalities. This creates the potential for over-producing municipalities to supply the electricity needs of neighboring settlements with lower production beyond renewables. By taking advantage of this energy sharing, electricity supply based on pure renewables can be achieved more quickly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20geography" title=" energy geography"> energy geography</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sufficiency" title=" self-sufficiency"> self-sufficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transition" title=" energy transition"> energy transition</a> </p> <a href="https://publications.waset.org/abstracts/142481/settlement-network-supplying-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25390</span> Dynamic Shear Energy Absorption of Ultra-High Performance Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20J.%20Thomas">Robert J. Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Colton%20Bedke"> Colton Bedke</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Sorensen"> Andrew Sorensen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exemplary mechanical performance and durability of ultra-high performance concrete (UHPC) has led to its rapid emergence as an advanced cementitious material. The uncharacteristically high mechanical strength and ductility of UHPC makes it a promising potential material for defense structures which may be subject to highly dynamic loads like impact or blast. However, the mechanical response of UHPC under dynamic loading has not been fully characterized. In particular, there is a need to characterize the energy absorption of UHPC under high-frequency shear loading. This paper presents preliminary results from a parametric study of the dynamic shear energy absorption of UHPC using the Charpy impact test. UHPC mixtures with compressive strengths in the range of 100-150 MPa exhibited dynamic shear energy absorption in the range of 0.9-1.5 kJ/m. Energy absorption is shown to be sensitive to the water/cement ratio, silica fume content, and aggregate gradation. Energy absorption was weakly correlated to compressive strength. Results are highly sensitive to specimen preparation methods, and there is a demonstrated need for a standardized test method for high frequency shear in cementitious composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charpy%20impact%20test" title="Charpy impact test">Charpy impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20shear" title=" dynamic shear"> dynamic shear</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20loading" title=" impact loading"> impact loading</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-high%20performance%20concrete" title=" ultra-high performance concrete"> ultra-high performance concrete</a> </p> <a href="https://publications.waset.org/abstracts/60402/dynamic-shear-energy-absorption-of-ultra-high-performance-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25389</span> Mining Coupled to Agriculture: Systems Thinking in Scalable Food Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jason%20West">Jason West</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low profitability in agriculture production along with increasing scrutiny over environmental effects is limiting food production at scale. In contrast, the mining sector offers access to resources including energy, water, transport and chemicals for food production at low marginal cost. Scalable agricultural production can benefit from the nexus of resources (water, energy, transport) offered by mining activity in remote locations. A decision support bioeconomic model for controlled environment vertical farms was used. Four submodels were used: crop structure, nutrient requirements, resource-crop integration, and economic. They escalate to a macro mathematical model. A demonstrable dynamic systems framework is needed to prove productive outcomes are feasible. We demonstrate a generalized bioeconomic macro model for controlled environment production systems in minesites using systems dynamics modeling methodology. Despite the complexity of bioeconomic modelling of resource-agricultural dynamic processes and interactions, the economic potential greater than general economic models would assume. Scalability of production as an input becomes a key success feature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20production%20systems" title="crop production systems">crop production systems</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=mining" title=" mining"> mining</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20systems" title=" dynamic systems"> dynamic systems</a> </p> <a href="https://publications.waset.org/abstracts/150725/mining-coupled-to-agriculture-systems-thinking-in-scalable-food-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25388</span> Dynamic Response and Damage Modeling of Glass Fiber Reinforced Epoxy Composite Pipes: Numerical Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Maziz">Ammar Maziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostapha%20Tarfaoui"> Mostapha Tarfaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Rechak"> Said Rechak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high mechanical performance of composite pipes can be adversely affected by their low resistance to impact loads. Loads in dynamic origin are dangerous and cause consequences on the operation of pipes because the damage is often not detected and can affect the structural integrity of composite pipes. In this work, an advanced 3-D finite element (FE) model, based on the use of intralaminar damage models was developed and used to predict damage under low-velocity impact. The performance of the numerical model is validated with the confrontation with the results of experimental tests. The results show that at low impact energy, the damage happens mainly by matrix cracking and delamination. The model capabilities to simulate the low-velocity impact events on the full-scale composite structures were proved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20velocity%20impact" title=" low velocity impact"> low velocity impact</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20behavior" title=" dynamic behavior"> dynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20damage%20modeling" title=" progressive damage modeling"> progressive damage modeling</a> </p> <a href="https://publications.waset.org/abstracts/107609/dynamic-response-and-damage-modeling-of-glass-fiber-reinforced-epoxy-composite-pipes-numerical-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25387</span> The Effect of Dark energy on Amplitude of Gravitational Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Khodagholizadeh">Jafar Khodagholizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this talk, we study the tensor mode equation of perturbation in the presence of nonzero $-\Lambda$ as dark energy, whose dynamic nature depends on the Hubble parameter $ H$ and/or its time derivative. Dark energy, according to the total vacuum contribution, has little effect during the radiation-dominated era, but it reduces the squared amplitude of gravitational waves (GWs) up to $60\%$ for the wavelengths that enter the horizon during the matter-dominated era. Moreover, the observations bound on dark energy models, such as running vacuum model (RVM), generalized running vacuum model (GRVM), and generalized running vacuum subcase (GRVS), are effective in reducing the GWs’ amplitude. Although this effect is less for the wavelengths that enter the horizon at later times, this reduction is stable and permanent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravitational%20waves" title="gravitational waves">gravitational waves</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a>, <a href="https://publications.waset.org/abstracts/search?q=GW%27s%20amplitude" title=" GW&#039;s amplitude"> GW&#039;s amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=all%20stage%20universe" title=" all stage universe"> all stage universe</a> </p> <a href="https://publications.waset.org/abstracts/144763/the-effect-of-dark-energy-on-amplitude-of-gravitational-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25386</span> Evaluation of High Damping Rubber Considering Initial History through Dynamic Loading Test and Program Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyeong%20Hoon%20Park">Kyeong Hoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Taiji%20Mazuda"> Taiji Mazuda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High damping rubber (HDR) bearings are dissipating devices mainly used in seismic isolation systems and have a great damping performance. Although many studies have been conducted on the dynamic model of HDR bearings, few models can reflect phenomena such as dependency of experienced shear strain on initial history. In order to develop a model that can represent the dependency of experienced shear strain of HDR by Mullins effect, dynamic loading test was conducted using HDR specimen. The reaction of HDR was measured by applying a horizontal vibration using a hybrid actuator under a constant vertical load. Dynamic program analysis was also performed after dynamic loading test. The dynamic model applied in program analysis is a bilinear type double-target model. This model is modified from typical bilinear model. This model can express the nonlinear characteristics related to the initial history of HDR bearings. Based on the dynamic loading test and program analysis results, equivalent stiffness and equivalent damping ratio were calculated to evaluate the mechanical properties of HDR and the feasibility of the bilinear type double-target model was examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base-isolation" title="base-isolation">base-isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20model" title=" bilinear model"> bilinear model</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20damping%20rubber" title=" high damping rubber"> high damping rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=loading%20test" title=" loading test"> loading test</a> </p> <a href="https://publications.waset.org/abstracts/127258/evaluation-of-high-damping-rubber-considering-initial-history-through-dynamic-loading-test-and-program-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25385</span> Dynamic Modeling of Wind Farms in the Jeju Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dae-Hee%20Son">Dae-Hee Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Hee%20Kang"> Sang-Hee Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon-Ryul%20Nam"> Soon-Ryul Nam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we develop a dynamic modeling of wind farms in the Jeju power system. The dynamic model of wind farms is developed to study their dynamic effects on the Jeju power system. PSS/E is used to develop the dynamic model of a wind farm composed of 1.5-MW doubly fed induction generators. The output of a wind farm is regulated based on pitch angle control, in which the two controllable parameters are speed and power references. The simulation results confirm that the pitch angle is successfully controlled, regardless of the variation in wind speed and output regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title="dynamic model">dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeju%20power%20system" title=" Jeju power system"> Jeju power system</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20limitation" title=" online limitation"> online limitation</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch%20angle%20control" title=" pitch angle control"> pitch angle control</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20farm" title=" wind farm"> wind farm</a> </p> <a href="https://publications.waset.org/abstracts/47581/dynamic-modeling-of-wind-farms-in-the-jeju-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25384</span> Distributional and Dynamic impact of Energy Subsidy Reform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hojati%20Najafabadi">Ali Hojati Najafabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Hosein%20Rahmati"> Mohamad Hosein Rahmati</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ali%20Madanizadeh"> Seyed Ali Madanizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Governments execute energy subsidy reforms by either increasing energy prices or reducing energy price dispersion. These policies make less use of energy per plant (intensive margin), vary the total number of firms (extensive margin), promote technological progress (technology channel), and make additional resources to redistribute (resource channel). We estimate a structural dynamic firm model with endogenous technology adaptation using data from the manufacturing firms in Iran and a country ranked the second-largest energy subsidy plan by the IMF. The findings show significant dynamics and distributional effects due to an energy reform plan. The price elasticity of energy consumption in the industrial sector is about -2.34, while it is -3.98 for large firms. The dispersion elasticity, defined as the amounts of changes in energy consumption by a one-percent reduction in the standard error of energy price distribution, is about 1.43, suggesting significant room for a distributional policy. We show that the intensive margin is the main driver of energy price elasticity, whereas the other channels mostly offset it. In contrast, the labor response is mainly through the extensive margin. Total factor productivity slightly improves in light of the reduction in energy consumption if, at the same time, the redistribution policy boosts the aggregate demands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20reform" title="energy reform">energy reform</a>, <a href="https://publications.waset.org/abstracts/search?q=firm%20dynamics" title=" firm dynamics"> firm dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20estimation" title=" structural estimation"> structural estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=subsidy%20policy" title=" subsidy policy"> subsidy policy</a> </p> <a href="https://publications.waset.org/abstracts/148062/distributional-and-dynamic-impact-of-energy-subsidy-reform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25383</span> Flow Dynamics of Nanofluids in a Horizontal Cylindrical Annulus Using Nonhomogeneous Dynamic Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Uddin">M. J. Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rahman"> M. M. Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transient natural convective flow dynamics of nanofluids in a horizontal homocentric annulus using nonhomogeneous dynamic model has been experimented numerically. The simulation is carried out for four different shapes of the inner wall, which is either cylindrical, elliptical, square or triangular. The outer surface of the annulus is maintained at constant low temperature while the inner wall is maintained at a uniform temperature; higher than the outer one. The enclosure is permeated by a uniform magnetic field having variable orientation. The Brownian motion and thermophoretic deposition phenomena of the nanoparticles are taken into account in model construction. The governing nonlinear momentum, energy, and concentration equations are solved numerically using Galerkin weighted residual finite element method. To find the best performer, the local Nusselt number is demonstrated for different shapes of the inner wall. The heat transfer enhancement for different nanofluids for four different shapes of the inner wall is exhibited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title="nanofluids">nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=annulus" title=" annulus"> annulus</a>, <a href="https://publications.waset.org/abstracts/search?q=nonhomogeneous%20dynamic%20model" title=" nonhomogeneous dynamic model"> nonhomogeneous dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/73129/flow-dynamics-of-nanofluids-in-a-horizontal-cylindrical-annulus-using-nonhomogeneous-dynamic-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25382</span> Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Zanj">A. Zanj</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20He"> F. He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-physical%20domain" title="multi-physical domain">multi-physical domain</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction%20model" title=" conduction model"> conduction model</a>, <a href="https://publications.waset.org/abstracts/search?q=port%20based%20modeling" title=" port based modeling"> port based modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20interaction" title=" dynamic interaction"> dynamic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20modeling" title=" physical modeling"> physical modeling</a> </p> <a href="https://publications.waset.org/abstracts/42625/conduction-model-compatible-for-multi-physical-domain-dynamic-investigations-bond-graph-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25381</span> An Online Mastery Learning Method Based on a Dynamic Formative Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeongim%20Kang">Jeongim Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Hee%20Kim"> Moon Hee Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Baeg%20Kim"> Seong Baeg Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a novel e-learning model that is based on a dynamic formative evaluation. On evaluating the existing format of e-learning, conditions regarding repetitive learning to achieve mastery, causes issues for learners to lose tension and become neglectful of learning. The dynamic formative evaluation proposed is able to supplement limitation of the existing approaches. Since a repetitive learning method does not provide a perfect feedback, this paper puts an emphasis on the dynamic formative evaluation that is able to maximize learning achievement. Through the dynamic formative evaluation, the instructor is able to refer to the evaluation result when making estimation about the learner. To show the flow chart of learning, based on the dynamic formative evaluation, the model proves its effectiveness and validity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=online%20learning" title="online learning">online learning</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20formative%20evaluation" title=" dynamic formative evaluation"> dynamic formative evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=mastery%20learning" title=" mastery learning"> mastery learning</a>, <a href="https://publications.waset.org/abstracts/search?q=repetitive%20learning%20method" title=" repetitive learning method"> repetitive learning method</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20achievement" title=" learning achievement"> learning achievement</a> </p> <a href="https://publications.waset.org/abstracts/2483/an-online-mastery-learning-method-based-on-a-dynamic-formative-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25380</span> Simulation of Behaviour Dynamics and Optimization of the Energy System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iva%20Dvornik">Iva Dvornik</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandro%20Bo%C5%BEi%C4%87"> Sandro Božić</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%BDana%20Bo%C5%BEi%C4%87%20Brki%C4%87"> Žana Božić Brkić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> System-dynamic simulating modelling is one of the most appropriate and successful scientific methods of the complex, non-linear, natural, technical and organizational systems. In the recent practice its methodology proved to be efficient in solving the problems of control, behavior, sensitivity and flexibility of the system dynamics behavior having a high degree of complexity, all these by computing simulation i.e. “under laboratory conditions” what means without any danger for observed realities. This essay deals with the research of the gas turbine dynamic process as well as the operating pump units and transformation of gas energy into hydraulic energy has been simulated. In addition, system mathematical model has been also researched (gas turbine- centrifugal pumps – pipeline pressure system – storage vessel). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20dynamics" title="system dynamics">system dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pump" title=" centrifugal pump"> centrifugal pump</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine" title=" turbine"> turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=gases" title=" gases"> gases</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20and%20discrete%20simulation" title=" continuous and discrete simulation"> continuous and discrete simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20optimisation" title=" heuristic optimisation"> heuristic optimisation</a> </p> <a href="https://publications.waset.org/abstracts/157816/simulation-of-behaviour-dynamics-and-optimization-of-the-energy-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25379</span> Surveying Energy Dissipation in Stepped Spillway Using Finite Element Modeling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Fuladipanah">Mehdi Fuladipanah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stepped spillway includes several steps from the crest to the toe. The steps of stepped spillway could cause to decrease the energy with making energy distribution in the longitude mode and also to reduce the outcome speed. The aim of this study was to stimulate the stepped spillway combined with stilling basin-step using Fluent model and the turbulent superficial flow using RNG, K-ε. The free surface of the flow was monitored by VOF model. The velocity and the depth of the flow were measured by tail water depth by the numerical model and then the dissipated energy was calculated along the spillway. The results indicated that the stilling basin-step complex may cause energy dissipation increment in the stepped spillway. Also, the numerical model was suggested as an effective method to predict the circular and complicated flows in the stepped spillways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stepped%20spillway" title="stepped spillway">stepped spillway</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent%20model" title=" fluent model"> fluent model</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF%20model" title=" VOF model"> VOF model</a>, <a href="https://publications.waset.org/abstracts/search?q=K-%CE%B5%20model" title=" K-ε model"> K-ε model</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20distribution" title=" energy distribution"> energy distribution</a> </p> <a href="https://publications.waset.org/abstracts/26972/surveying-energy-dissipation-in-stepped-spillway-using-finite-element-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25378</span> Impact of Economic Globalization on Ecological Footprint in India: Evidenced with Dynamic ARDL Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Ashiq%20Villanthenkodath">Muhammed Ashiq Villanthenkodath</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Pal"> Shreya Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: This study scrutinizes the impact of economic globalization on ecological footprint while endogenizing economic growth and energy consumption from 1990 to 2018 in India. Design/methodology/approach: The standard unit root test has been employed for time series analysis to unveil the integration order. Then, the cointegration was confirmed using autoregressive distributed lag (ARDL) analysis. Further, the study executed the dynamic ARDL simulation model to estimate long-run and short-run results along with simulation and robotic prediction. Findings: The cointegration analysis confirms the existence of a long-run association among variables. Further, economic globalization reduces the ecological footprint in the long run. Similarly, energy consumption decreases the ecological footprint. In contrast, economic growth spurs the ecological footprint in India. Originality/value: This study contributes to the literature in many ways. First, unlike studies that employ CO2 emissions and globalization nexus, this study employs ecological footprint for measuring environmental quality; since it is the broader measure of environmental quality, it can offer a wide range of climate change mitigation policies for India. Second, the study executes a multivariate framework with updated series from 1990 to 2018 in India to explore the link between EF, economic globalization, energy consumption, and economic growth. Third, the dynamic autoregressive distributed lag (ARDL) model has been used to explore the short and long-run association between the series. Finally, to our limited knowledge, this is the first study that uses economic globalization in the EF function of India amid facing a trade-off between sustainable economic growth and the environment in the era of globalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20globalization" title="economic globalization">economic globalization</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20footprint" title=" ecological footprint"> ecological footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model" title=" dynamic ARDL simulation model"> dynamic ARDL simulation model</a> </p> <a href="https://publications.waset.org/abstracts/156005/impact-of-economic-globalization-on-ecological-footprint-in-india-evidenced-with-dynamic-ardl-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25377</span> Integrated Dynamic Analysis of Semi-Submersible Flap Type Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rafiur%20Rahman">M. Rafiur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mezbah%20Uddin"> M. Mezbah Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Irfan%20Uddin"> Mohammad Irfan Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moinul%20Islam"> M. Moinul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With a rapid development of offshore renewable energy industry, the research activities in regards of harnessing power from offshore wind and wave energy are increasing day by day. Integration of wind turbines and wave energy converters into one combined semi-submersible platform might be a cost-economy and beneficial option. In this paper, the coupled integrated dynamic analysis in the time domain (TD) of a simplified semi-submersible flap type concept (SFC) is accomplished via state-of-the-art numerical code referred as Simo-Riflex-Aerodyn (SRA). This concept is a combined platform consisting of a semi-submersible floater supporting a 5 MW horizontal axis wind turbine (WT) and three elliptical shaped flap type wave energy converters (WECs) on three pontoons. The main focus is to validate the numerical model of SFC with experimental results and perform the frequency domain (FD) and TD response analysis. The numerical analysis is performed using potential flow theory for hydrodynamics and blade element momentum (BEM) theory for aerodynamics. A variety of environmental conditions encompassing the functional & survival conditions for short-term sea (1-hour simulation) are tested to evaluate the sustainability of the SFC. The numerical analysis is performed in full scale. Finally, the time domain analysis of heave, pitch & surge motions is performed numerically using SRA and compared with the experimental results. Due to the simplification of the model, there are some discrepancies which are discussed in brief. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coupled%20integrated%20dynamic%20analysis" title="coupled integrated dynamic analysis">coupled integrated dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SFC" title=" SFC"> SFC</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20analysis" title=" time domain analysis"> time domain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy%20converters" title=" wave energy converters"> wave energy converters</a> </p> <a href="https://publications.waset.org/abstracts/81412/integrated-dynamic-analysis-of-semi-submersible-flap-type-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25376</span> Dynamic Model of Automatic Loom on SimulationX</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Jomartov">A. Jomartov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tuleshov"> A. Tuleshov</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Tultaev"> B. Tultaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main tasks in the development of textile machinery is to increase the rapidity of automatic looms, and consequently, their productivity. With increasing automatic loom speeds, the dynamic loads on their separate mechanisms and moving joints sharply increase. Dynamic research allows us to determine the weakest mechanisms of the automatic loom. The modern automatic loom consists of a large number of structurally different mechanisms. These are cam, lever, gear, friction and combined cyclic mechanisms. The modern automatic loom contains various mechatronic devices: A device for the automatic removal of faulty weft, electromechanical drive warp yarns, electronic controllers, servos, etc. In the paper, we consider the multibody dynamic model of the automatic loom on the software complex SimulationX. SimulationX is multidisciplinary software for modeling complex physical and technical facilities and systems. The multibody dynamic model of the automatic loom allows consideration of: The transition processes, backlash at the joints and nodes, the force of resistance and electric motor performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20loom" title="automatic loom">automatic loom</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=multibody" title=" multibody"> multibody</a>, <a href="https://publications.waset.org/abstracts/search?q=SimulationX" title=" SimulationX"> SimulationX</a> </p> <a href="https://publications.waset.org/abstracts/59167/dynamic-model-of-automatic-loom-on-simulationx" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25375</span> Optimal Driving Strategies for a Hybrid Street Type Motorcycle: Modelling and Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jhon%20Vargas">Jhon Vargas</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilberto%20Osorio-Gomez"> Gilberto Osorio-Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20Manrique"> Tatiana Manrique</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents an optimal driving strategy proposal for a 125 c.c. street-type hybrid electric motorcycle with a parallel configuration. The results presented in this article are complementary regarding the control proposal of a hybrid motorcycle. In order to carry out such developments, a representative dynamic model of the motorcycle is used, in which also are described different optimization functionalities for predetermined driving modes. The purpose is to implement an off-line optimal driving strategy which distributes energy to both engines by minimizing an objective torque requirement function. An optimal dynamic contribution is found from the optimization routine, and the optimal percentage contribution for vehicle cruise speed is implemented in the proposed online PID controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title="dynamic model">dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20strategies" title=" driving strategies"> driving strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20hybrid%20motorcycle" title=" parallel hybrid motorcycle"> parallel hybrid motorcycle</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20controller" title=" PID controller"> PID controller</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/133692/optimal-driving-strategies-for-a-hybrid-street-type-motorcycle-modelling-and-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25374</span> Influence of a Company’s Dynamic Capabilities on Its Innovation Capabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lovorka%20Galetic">Lovorka Galetic</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeljko%20Vukelic"> Zeljko Vukelic </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advanced concepts of strategic and innovation management in the sphere of company dynamic and innovation capabilities, and achieving their mutual alignment and a synergy effect, are important elements in business today. This paper analyses the theory and empirically investigates the influence of a company&rsquo;s dynamic capabilities on its innovation capabilities. A new multidimensional model of dynamic capabilities is presented, consisting of five factors appropriate to real time requirements, while innovation capabilities are considered pursuant to the official OECD and Eurostat standards. After examination of dynamic and innovation capabilities indicated their theoretical links, the empirical study testing the model and examining the influence of a company&rsquo;s dynamic capabilities on its innovation capabilities showed significant results. In the study, a research model was posed to relate company dynamic and innovation capabilities. One side of the model features the variables that are the determinants of dynamic capabilities defined through their factors, while the other side features the determinants of innovation capabilities pursuant to the official standards. With regard to the research model, five hypotheses were set. The study was performed in late 2014 on a representative sample of large and very large Croatian enterprises with a minimum of 250 employees. The research instrument was a questionnaire administered to company top management. For both variables, the position of the company was tested in comparison to industry competitors, on a fivepoint scale. In order to test the hypotheses, correlation tests were performed to determine whether there is a correlation between each individual factor of company dynamic capabilities with the existence of its innovation capabilities, in line with the research model. The results indicate a strong correlation between a company&rsquo;s possession of dynamic capabilities in terms of their factors, due to the new multi-dimensional model presented in this paper, with its possession of innovation capabilities. Based on the results, all five hypotheses were accepted. Ultimately, it was concluded that there is a strong association between the dynamic and innovation capabilities of a company.&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20capabilities" title="dynamic capabilities">dynamic capabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20capabilities" title=" innovation capabilities"> innovation capabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=competitive%20advantage" title=" competitive advantage"> competitive advantage</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20results" title=" business results"> business results</a> </p> <a href="https://publications.waset.org/abstracts/46544/influence-of-a-companys-dynamic-capabilities-on-its-innovation-capabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25373</span> Optimal Scheduling for Energy Storage System Considering Reliability Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wook-Won%20Kim">Wook-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Je-Seok%20Shin"> Je-Seok Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-O%20Kim"> Jin-O Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper propose the method for optimal scheduling for battery energy storage system with reliability constraint of energy storage system in reliability aspect. The optimal scheduling problem is solved by dynamic programming with proposed transition matrix. Proposed optimal scheduling method guarantees the minimum fuel cost within specific reliability constraint. For evaluating proposed method, the timely capacity outage probability table (COPT) is used that is calculated by convolution of probability mass function of each generator. This study shows the result of optimal schedule of energy storage system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system%20%28ESS%29" title="energy storage system (ESS)">energy storage system (ESS)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20scheduling" title=" optimal scheduling"> optimal scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20programming" title=" dynamic programming"> dynamic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20constraints" title=" reliability constraints"> reliability constraints</a> </p> <a href="https://publications.waset.org/abstracts/39373/optimal-scheduling-for-energy-storage-system-considering-reliability-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25372</span> Using Finite Element to Predict Failure of Light Weight Bridges Due to Vehicles Impact: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20H.%20Almasria">Amin H. Almasria</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajai%20Z.%20Alrousanb"> Rajai Z. Alrousanb</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Harith%20Manasrah"> Al-Harith Manasrah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The collapse of a light weight pedestrian bridges due to vehicle collision is investigated and studied in detail using a dynamic nonlinear finite element analysis. Typical bridge widely used in Jordan is studied and modeled under truck collision using one dimensional beam finite element in order to minimize analysis time due to the dynamic nature of the problem. Truck collision with the bridge is simulated at different speeds and locations of collisions using dynamic explicit finite element scheme with material nonlinearity taken into account. Energy absorption of bridge is investigated through principle of energy conservation, where truck kinetic energy is assumed to be stored in the bridge as strain energy. Weak failure points in the bridges were identified, and modifications are proposed in order to strengthen the bridge structure and prevent total collapse. The proposed design modifications on bridge structure were successful in allowing the bridge to fail locally rather than globally and expected to help in saving lives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20impact" title=" dynamic impact"> dynamic impact</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridges" title=" pedestrian bridges"> pedestrian bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20energy" title=" strain energy"> strain energy</a>, <a href="https://publications.waset.org/abstracts/search?q=collapse%20failure" title=" collapse failure"> collapse failure</a> </p> <a href="https://publications.waset.org/abstracts/20714/using-finite-element-to-predict-failure-of-light-weight-bridges-due-to-vehicles-impact-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">624</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20model&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20model&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20model&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20model&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20model&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20model&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20model&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20model&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20model&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20model&amp;page=846">846</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20model&amp;page=847">847</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20model&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10