CINXE.COM
Whole model saving & loading
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="description" content="Keras documentation"> <meta name="author" content="Keras Team"> <link rel="shortcut icon" href="https://keras.io/img/favicon.ico"> <link rel="canonical" href="https://keras.io/api/models/model_saving_apis/model_saving_and_loading/" /> <!-- Social --> <meta property="og:title" content="Keras documentation: Whole model saving & loading"> <meta property="og:image" content="https://keras.io/img/logo-k-keras-wb.png"> <meta name="twitter:title" content="Keras documentation: Whole model saving & loading"> <meta name="twitter:image" content="https://keras.io/img/k-keras-social.png"> <meta name="twitter:card" content="summary"> <title>Whole model saving & loading</title> <!-- Bootstrap core CSS --> <link href="/css/bootstrap.min.css" rel="stylesheet"> <!-- Custom fonts for this template --> <link href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600;700;800&display=swap" rel="stylesheet"> <!-- Custom styles for this template --> <link href="/css/docs.css" rel="stylesheet"> <link href="/css/monokai.css" rel="stylesheet"> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5DNGF4N'); </script> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-175165319-128', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Tag Manager --> <script async defer src="https://buttons.github.io/buttons.js"></script> </head> <body> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5DNGF4N" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <div class='k-page'> <div class="k-nav" id="nav-menu"> <a href='/'><img src='/img/logo-small.png' class='logo-small' /></a> <div class="nav flex-column nav-pills" role="tablist" aria-orientation="vertical"> <a class="nav-link" href="/about/" role="tab" aria-selected="">About Keras</a> <a class="nav-link" href="/getting_started/" role="tab" aria-selected="">Getting started</a> <a class="nav-link" href="/guides/" role="tab" aria-selected="">Developer guides</a> <a class="nav-link" href="/examples/" role="tab" aria-selected="">Code examples</a> <a class="nav-link active" href="/api/" role="tab" aria-selected="">Keras 3 API documentation</a> <a class="nav-sublink active" href="/api/models/">Models API</a> <a class="nav-sublink2" href="/api/models/model/">The Model class</a> <a class="nav-sublink2" href="/api/models/sequential/">The Sequential class</a> <a class="nav-sublink2" href="/api/models/model_training_apis/">Model training APIs</a> <a class="nav-sublink2 active" href="/api/models/model_saving_apis/">Saving & serialization</a> <a class="nav-sublink" href="/api/layers/">Layers API</a> <a class="nav-sublink" href="/api/callbacks/">Callbacks API</a> <a class="nav-sublink" href="/api/ops/">Ops API</a> <a class="nav-sublink" href="/api/optimizers/">Optimizers</a> <a class="nav-sublink" href="/api/metrics/">Metrics</a> <a class="nav-sublink" href="/api/losses/">Losses</a> <a class="nav-sublink" href="/api/data_loading/">Data loading</a> <a class="nav-sublink" href="/api/datasets/">Built-in small datasets</a> <a class="nav-sublink" href="/api/applications/">Keras Applications</a> <a class="nav-sublink" href="/api/mixed_precision/">Mixed precision</a> <a class="nav-sublink" href="/api/distribution/">Multi-device distribution</a> <a class="nav-sublink" href="/api/random/">RNG API</a> <a class="nav-sublink" href="/api/utils/">Utilities</a> <a class="nav-link" href="/2.18/api/" role="tab" aria-selected="">Keras 2 API documentation</a> <a class="nav-link" href="/keras_tuner/" role="tab" aria-selected="">KerasTuner: Hyperparam Tuning</a> <a class="nav-link" href="/keras_hub/" role="tab" aria-selected="">KerasHub: Pretrained Models</a> </div> </div> <div class='k-main'> <div class='k-main-top'> <script> function displayDropdownMenu() { e = document.getElementById("nav-menu"); if (e.style.display == "block") { e.style.display = "none"; } else { e.style.display = "block"; document.getElementById("dropdown-nav").style.display = "block"; } } function resetMobileUI() { if (window.innerWidth <= 840) { document.getElementById("nav-menu").style.display = "none"; document.getElementById("dropdown-nav").style.display = "block"; } else { document.getElementById("nav-menu").style.display = "block"; document.getElementById("dropdown-nav").style.display = "none"; } var navmenu = document.getElementById("nav-menu"); var menuheight = navmenu.clientHeight; var kmain = document.getElementById("k-main-id"); kmain.style.minHeight = (menuheight + 100) + 'px'; } window.onresize = resetMobileUI; window.addEventListener("load", (event) => { resetMobileUI() }); </script> <div id='dropdown-nav' onclick="displayDropdownMenu();"> <svg viewBox="-20 -20 120 120" width="60" height="60"> <rect width="100" height="20"></rect> <rect y="30" width="100" height="20"></rect> <rect y="60" width="100" height="20"></rect> </svg> </div> <form class="bd-search d-flex align-items-center k-search-form" id="search-form"> <input type="search" class="k-search-input" id="search-input" placeholder="Search Keras documentation..." aria-label="Search Keras documentation..." autocomplete="off"> <button class="k-search-btn"> <svg width="13" height="13" viewBox="0 0 13 13"><title>search</title><path d="m4.8495 7.8226c0.82666 0 1.5262-0.29146 2.0985-0.87438 0.57232-0.58292 0.86378-1.2877 0.87438-2.1144 0.010599-0.82666-0.28086-1.5262-0.87438-2.0985-0.59352-0.57232-1.293-0.86378-2.0985-0.87438-0.8055-0.010599-1.5103 0.28086-2.1144 0.87438-0.60414 0.59352-0.8956 1.293-0.87438 2.0985 0.021197 0.8055 0.31266 1.5103 0.87438 2.1144 0.56172 0.60414 1.2665 0.8956 2.1144 0.87438zm4.4695 0.2115 3.681 3.6819-1.259 1.284-3.6817-3.7 0.0019784-0.69479-0.090043-0.098846c-0.87973 0.76087-1.92 1.1413-3.1207 1.1413-1.3553 0-2.5025-0.46363-3.4417-1.3909s-1.4088-2.0686-1.4088-3.4239c0-1.3553 0.4696-2.4966 1.4088-3.4239 0.9392-0.92727 2.0864-1.3969 3.4417-1.4088 1.3553-0.011889 2.4906 0.45771 3.406 1.4088 0.9154 0.95107 1.379 2.0924 1.3909 3.4239 0 1.2126-0.38043 2.2588-1.1413 3.1385l0.098834 0.090049z"></path></svg> </button> </form> <script> var form = document.getElementById('search-form'); form.onsubmit = function(e) { e.preventDefault(); var query = document.getElementById('search-input').value; window.location.href = '/search.html?query=' + query; return False } </script> </div> <div class='k-main-inner' id='k-main-id'> <div class='k-location-slug'> <span class="k-location-slug-pointer">►</span> <a href='/api/'>Keras 3 API documentation</a> / <a href='/api/models/'>Models API</a> / <a href='/api/models/model_saving_apis/'>Saving & serialization</a> / Whole model saving & loading </div> <div class='k-content'> <h1 id="whole-model-saving-amp-loading">Whole model saving & loading</h1> <p><span style="float:right;"><a href="https://github.com/keras-team/keras/tree/v3.8.0/keras/src/models/model.py#L269">[source]</a></span></p> <h3 id="save-method"><code>save</code> method</h3> <div class="codehilite"><pre><span></span><code><span class="n">Model</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">filepath</span><span class="p">,</span> <span class="n">overwrite</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">zipped</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> </code></pre></div> <p>Saves a model as a <code>.keras</code> file.</p> <p><strong>Arguments</strong></p> <ul> <li><strong>filepath</strong>: <code>str</code> or <code>pathlib.Path</code> object. The path where to save the model. Must end in <code>.keras</code> (unless saving the model as an unzipped directory via <code>zipped=False</code>).</li> <li><strong>overwrite</strong>: Whether we should overwrite any existing model at the target location, or instead ask the user via an interactive prompt.</li> <li><strong>zipped</strong>: Whether to save the model as a zipped <code>.keras</code> archive (default when saving locally), or as an unzipped directory (default when saving on the Hugging Face Hub).</li> </ul> <p><strong>Example</strong></p> <div class="codehilite"><pre><span></span><code><span class="n">model</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span> <span class="p">[</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="n">input_shape</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="p">,)),</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Softmax</span><span class="p">(),</span> <span class="p">],</span> <span class="p">)</span> <span class="n">model</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s2">"model.keras"</span><span class="p">)</span> <span class="n">loaded_model</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">saving</span><span class="o">.</span><span class="n">load_model</span><span class="p">(</span><span class="s2">"model.keras"</span><span class="p">)</span> <span class="n">x</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">((</span><span class="mi">10</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span> <span class="k">assert</span> <span class="n">np</span><span class="o">.</span><span class="n">allclose</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="n">loaded_model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">x</span><span class="p">))</span> </code></pre></div> <p>Note that <code>model.save()</code> is an alias for <code>keras.saving.save_model()</code>.</p> <p>The saved <code>.keras</code> file contains:</p> <ul> <li>The model's configuration (architecture)</li> <li>The model's weights</li> <li>The model's optimizer's state (if any)</li> </ul> <p>Thus models can be reinstantiated in the exact same state.</p> <hr /> <p><span style="float:right;"><a href="https://github.com/keras-team/keras/tree/v3.8.0/keras/src/saving/saving_api.py#L18">[source]</a></span></p> <h3 id="savemodel-function"><code>save_model</code> function</h3> <div class="codehilite"><pre><span></span><code><span class="n">keras</span><span class="o">.</span><span class="n">saving</span><span class="o">.</span><span class="n">save_model</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">filepath</span><span class="p">,</span> <span class="n">overwrite</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">zipped</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> </code></pre></div> <p>Saves a model as a <code>.keras</code> file.</p> <p><strong>Arguments</strong></p> <ul> <li><strong>model</strong>: Keras model instance to be saved.</li> <li><strong>filepath</strong>: <code>str</code> or <code>pathlib.Path</code> object. Path where to save the model.</li> <li><strong>overwrite</strong>: Whether we should overwrite any existing model at the target location, or instead ask the user via an interactive prompt.</li> <li><strong>zipped</strong>: Whether to save the model as a zipped <code>.keras</code> archive (default when saving locally), or as an unzipped directory (default when saving on the Hugging Face Hub).</li> </ul> <p><strong>Example</strong></p> <div class="codehilite"><pre><span></span><code><span class="n">model</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span> <span class="p">[</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="n">input_shape</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="p">,)),</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Softmax</span><span class="p">(),</span> <span class="p">],</span> <span class="p">)</span> <span class="n">model</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s2">"model.keras"</span><span class="p">)</span> <span class="n">loaded_model</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">saving</span><span class="o">.</span><span class="n">load_model</span><span class="p">(</span><span class="s2">"model.keras"</span><span class="p">)</span> <span class="n">x</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">((</span><span class="mi">10</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span> <span class="k">assert</span> <span class="n">np</span><span class="o">.</span><span class="n">allclose</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="n">loaded_model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">x</span><span class="p">))</span> </code></pre></div> <p>Note that <code>model.save()</code> is an alias for <code>keras.saving.save_model()</code>.</p> <p>The saved <code>.keras</code> file is a <code>zip</code> archive that contains:</p> <ul> <li>The model's configuration (architecture)</li> <li>The model's weights</li> <li>The model's optimizer's state (if any)</li> </ul> <p>Thus models can be reinstantiated in the exact same state.</p> <hr /> <p><span style="float:right;"><a href="https://github.com/keras-team/keras/tree/v3.8.0/keras/src/saving/saving_api.py#L124">[source]</a></span></p> <h3 id="loadmodel-function"><code>load_model</code> function</h3> <div class="codehilite"><pre><span></span><code><span class="n">keras</span><span class="o">.</span><span class="n">saving</span><span class="o">.</span><span class="n">load_model</span><span class="p">(</span><span class="n">filepath</span><span class="p">,</span> <span class="n">custom_objects</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="nb">compile</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">safe_mode</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> </code></pre></div> <p>Loads a model saved via <code>model.save()</code>.</p> <p><strong>Arguments</strong></p> <ul> <li><strong>filepath</strong>: <code>str</code> or <code>pathlib.Path</code> object, path to the saved model file.</li> <li><strong>custom_objects</strong>: Optional dictionary mapping names (strings) to custom classes or functions to be considered during deserialization.</li> <li><strong>compile</strong>: Boolean, whether to compile the model after loading.</li> <li><strong>safe_mode</strong>: Boolean, whether to disallow unsafe <code>lambda</code> deserialization. When <code>safe_mode=False</code>, loading an object has the potential to trigger arbitrary code execution. This argument is only applicable to the Keras v3 model format. Defaults to <code>True</code>.</li> </ul> <p><strong>Returns</strong></p> <p>A Keras model instance. If the original model was compiled, and the argument <code>compile=True</code> is set, then the returned model will be compiled. Otherwise, the model will be left uncompiled.</p> <p><strong>Example</strong></p> <div class="codehilite"><pre><span></span><code><span class="n">model</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Sequential</span><span class="p">([</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="n">input_shape</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="p">,)),</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Softmax</span><span class="p">()])</span> <span class="n">model</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s2">"model.keras"</span><span class="p">)</span> <span class="n">loaded_model</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">saving</span><span class="o">.</span><span class="n">load_model</span><span class="p">(</span><span class="s2">"model.keras"</span><span class="p">)</span> <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">10</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span> <span class="k">assert</span> <span class="n">np</span><span class="o">.</span><span class="n">allclose</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="n">loaded_model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">x</span><span class="p">))</span> </code></pre></div> <p>Note that the model variables may have different name values (<code>var.name</code> property, e.g. <code>"dense_1/kernel:0"</code>) after being reloaded. It is recommended that you use layer attributes to access specific variables, e.g. <code>model.get_layer("dense_1").kernel</code>.</p> <hr /> </div> <div class='k-outline'> <div class='k-outline-depth-1'> <a href='#whole-model-saving-amp-loading'>Whole model saving & loading</a> </div> <div class='k-outline-depth-3'> <a href='#save-method'><code>save</code> method</a> </div> <div class='k-outline-depth-3'> <a href='#savemodel-function'><code>save_model</code> function</a> </div> <div class='k-outline-depth-3'> <a href='#loadmodel-function'><code>load_model</code> function</a> </div> </div> </div> </div> </div> </body> <footer style="float: left; width: 100%; padding: 1em; border-top: solid 1px #bbb;"> <a href="https://policies.google.com/terms">Terms</a> | <a href="https://policies.google.com/privacy">Privacy</a> </footer> </html>