CINXE.COM

Particular values of the Riemann zeta function - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Particular values of the Riemann zeta function - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"59dfd862-271c-4177-8053-dcd068332738","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Particular_values_of_the_Riemann_zeta_function","wgTitle":"Particular values of the Riemann zeta function","wgCurRevisionId":1258386775,"wgRevisionId":1258386775,"wgArticleId":2334098,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Use American English from March 2019","All Wikipedia articles written in American English","Webarchive template wayback links","Mathematical constants","Zeta and L-functions","Irrational numbers"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName": "Particular_values_of_the_Riemann_zeta_function","wgRelevantArticleId":2334098,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1073118","wgCheckUserClientHintsHeadersJsApi":["brands","architecture", "bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Particular values of the Riemann zeta function - Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Particular_values_of_the_Riemann_zeta_function"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Particular_values_of_the_Riemann_zeta_function"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Particular_values_of_the_Riemann_zeta_function rootpage-Particular_values_of_the_Riemann_zeta_function skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Particular+values+of+the+Riemann+zeta+function" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Particular+values+of+the+Riemann+zeta+function" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Particular+values+of+the+Riemann+zeta+function" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Particular+values+of+the+Riemann+zeta+function" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-The_Riemann_zeta_function_at_0_and_1" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_Riemann_zeta_function_at_0_and_1"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>The Riemann zeta function at 0 and 1</span> </div> </a> <ul id="toc-The_Riemann_zeta_function_at_0_and_1-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Positive_integers" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Positive_integers"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Positive integers</span> </div> </a> <button aria-controls="toc-Positive_integers-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Positive integers subsection</span> </button> <ul id="toc-Positive_integers-sublist" class="vector-toc-list"> <li id="toc-Even_positive_integers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Even_positive_integers"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Even positive integers</span> </div> </a> <ul id="toc-Even_positive_integers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Odd_positive_integers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Odd_positive_integers"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Odd positive integers</span> </div> </a> <ul id="toc-Odd_positive_integers-sublist" class="vector-toc-list"> <li id="toc-ζ(5)" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#ζ(5)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span><i>ζ</i>(5)</span> </div> </a> <ul id="toc-ζ(5)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-ζ(7)" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#ζ(7)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.2</span> <span><i>ζ</i>(7)</span> </div> </a> <ul id="toc-ζ(7)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-ζ(2n_+_1)" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#ζ(2n_+_1)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.3</span> <span><i>ζ</i>(2<i>n</i> + 1)</span> </div> </a> <ul id="toc-ζ(2n_+_1)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Negative_integers" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Negative_integers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Negative integers</span> </div> </a> <ul id="toc-Negative_integers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derivatives" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Derivatives"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Derivatives</span> </div> </a> <ul id="toc-Derivatives-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Series_involving_ζ(n)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Series_involving_ζ(n)"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Series involving <i>ζ</i>(<i>n</i>)</span> </div> </a> <ul id="toc-Series_involving_ζ(n)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nontrivial_zeros" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Nontrivial_zeros"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Nontrivial zeros</span> </div> </a> <ul id="toc-Nontrivial_zeros-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ratios" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ratios"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Ratios</span> </div> </a> <ul id="toc-Ratios-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Particular values of the Riemann zeta function</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 8 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-8" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">8 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%82%D9%8A%D9%85_%D8%AE%D8%A7%D8%B5%D8%A9_%D9%84%D8%AF%D8%A7%D9%84%D8%A9_%D8%B2%D9%8A%D8%AA%D8%A7_%D9%84%D8%B1%D9%8A%D9%85%D8%A7%D9%86" title="قيم خاصة لدالة زيتا لريمان – Arabic" lang="ar" hreflang="ar" data-title="قيم خاصة لدالة زيتا لريمان" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Zeta_sabiti" title="Zeta sabiti – Azerbaijani" lang="az" hreflang="az" data-title="Zeta sabiti" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Spezielle_Werte_der_Riemannschen_Zeta-Funktion" title="Spezielle Werte der Riemannschen Zeta-Funktion – German" lang="de" hreflang="de" data-title="Spezielle Werte der Riemannschen Zeta-Funktion" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Constante_zeta" title="Constante zeta – Spanish" lang="es" hreflang="es" data-title="Constante zeta" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Valeurs_particuli%C3%A8res_de_la_fonction_z%C3%AAta_de_Riemann" title="Valeurs particulières de la fonction zêta de Riemann – French" lang="fr" hreflang="fr" data-title="Valeurs particulières de la fonction zêta de Riemann" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Costanti_zeta" title="Costanti zeta – Italian" lang="it" hreflang="it" data-title="Costanti zeta" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E3%83%9E%E3%83%B3%E3%82%BC%E3%83%BC%E3%82%BF%E9%96%A2%E6%95%B0%E3%81%AE%E7%89%B9%E6%AE%8A%E5%80%A4" title="リーマンゼータ関数の特殊値 – Japanese" lang="ja" hreflang="ja" data-title="リーマンゼータ関数の特殊値" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Zeta_sabiti" title="Zeta sabiti – Turkish" lang="tr" hreflang="tr" data-title="Zeta sabiti" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1073118#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Particular_values_of_the_Riemann_zeta_function" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Particular_values_of_the_Riemann_zeta_function" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Particular_values_of_the_Riemann_zeta_function"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Particular_values_of_the_Riemann_zeta_function"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Particular_values_of_the_Riemann_zeta_function" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Particular_values_of_the_Riemann_zeta_function" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;oldid=1258386775" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Particular_values_of_the_Riemann_zeta_function&amp;id=1258386775&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FParticular_values_of_the_Riemann_zeta_function"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FParticular_values_of_the_Riemann_zeta_function"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Particular_values_of_the_Riemann_zeta_function&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1073118" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Constants of mathematical function</div> <p> In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a> is a function in <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a>, which is also important in <a href="/wiki/Number_theory" title="Number theory">number theory</a>. It is often denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbd45922057e4d7a5718ce5ed703ab493c63897a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.995ex; height:2.843ex;" alt="{\displaystyle \zeta (s)}"></span> and is named after the mathematician <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a>. When the argument <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> is a <a href="/wiki/Real_number" title="Real number">real number</a> greater than one, the zeta function satisfies the equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31583fbf57898a024d5addcfc8ce3a9e02b3b426" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:15.104ex; height:6.843ex;" alt="{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}\,.}"></span> It can therefore provide the sum of various convergent <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">infinite series</a>, such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \zeta (2)={\frac {1}{1^{2}}}+}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \zeta (2)={\frac {1}{1^{2}}}+}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/615fc77641b1b26e7009837477bdb70e44f83b61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:11.463ex; height:4.009ex;" alt="{\textstyle \zeta (2)={\frac {1}{1^{2}}}+}"></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {1}{2^{2}}}+}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {1}{2^{2}}}+}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f80a54ea90f534ea2d056e3c1c91915fcbd4f6ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:4.298ex; height:4.009ex;" alt="{\textstyle {\frac {1}{2^{2}}}+}"></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {1}{3^{2}}}+\ldots \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x2026;<!-- … --></mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {1}{3^{2}}}+\ldots \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a193599c229afd55e8f4ba97dbe9cb88bad842e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:9.474ex; height:4.009ex;" alt="{\textstyle {\frac {1}{3^{2}}}+\ldots \,.}"></span> Explicit or numerically efficient formulae exist for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbd45922057e4d7a5718ce5ed703ab493c63897a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.995ex; height:2.843ex;" alt="{\displaystyle \zeta (s)}"></span> at integer arguments, all of which have real values, including this example. This article lists these formulae, together with tables of values. It also includes derivatives and some series composed of the zeta function at integer arguments. </p><p>The same equation in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> above also holds when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> is a <a href="/wiki/Complex_number" title="Complex number">complex number</a> whose <a href="/wiki/Real_part" class="mw-redirect" title="Real part">real part</a> is greater than one, ensuring that the infinite sum still converges. The zeta function can then be extended to the whole of the <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a> by <a href="/wiki/Analytic_continuation" title="Analytic continuation">analytic continuation</a>, except for a <a href="/wiki/Simple_pole" class="mw-redirect" title="Simple pole">simple pole</a> at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bac386d8f227fb823cede9b3e33d706cad3ed306" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.351ex; height:2.176ex;" alt="{\displaystyle s=1}"></span>. The <a href="/wiki/Complex_derivative" class="mw-redirect" title="Complex derivative">complex derivative</a> exists in this more general region, making the zeta function a <a href="/wiki/Meromorphic_function" title="Meromorphic function">meromorphic function</a>. The above equation no longer applies for these extended values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span>, for which the corresponding summation would diverge. For example, the full zeta function exists at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/999944118796b0e4485e997249775b0d9925772f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.16ex; height:2.343ex;" alt="{\displaystyle s=-1}"></span> (and is therefore finite there), but the corresponding series would be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 1+2+3+\ldots \,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mo>&#x2026;<!-- … --></mo> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle 1+2+3+\ldots \,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6262ddf740efdae5afce53f815e265a40b423c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.153ex; height:2.509ex;" alt="{\textstyle 1+2+3+\ldots \,,}"></span> whose <a href="/wiki/Partial_sum" class="mw-redirect" title="Partial sum">partial sums</a> would grow indefinitely large. </p><p>The zeta function values listed below include function values at the negative even numbers (<span class="texhtml"><i>s</i> = &#8722;2</span>, <span class="nowrap"><span class="texhtml">&#8722;4</span>, etc.</span>), for which <span class="texhtml"><i>&#950;</i>(<i>s</i>) = 0</span> and which make up the so-called <b>trivial zeros</b>. The <b><a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a></b> article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane. The successful characterisation of its non-trivial zeros in the wider plane is important in number theory, because of the <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="The_Riemann_zeta_function_at_0_and_1">The Riemann zeta function at 0 and 1</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit&amp;section=1" title="Edit section: The Riemann zeta function at 0 and 1"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>At <a href="/wiki/Zero_(complex_analysis)" class="mw-redirect" title="Zero (complex analysis)">zero</a>, one has <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (0)={B_{1}^{-}}=-{B_{1}^{+}}=-{\tfrac {1}{2}}\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msubsup> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (0)={B_{1}^{-}}=-{B_{1}^{+}}=-{\tfrac {1}{2}}\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d62d1a863cd45383f2efdc1e668eb2c5b1952ddc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; margin-right: -0.108ex; width:24.908ex; height:3.509ex;" alt="{\displaystyle \zeta (0)={B_{1}^{-}}=-{B_{1}^{+}}=-{\tfrac {1}{2}}\!}"></span> </p><p>At 1 there is a <a href="/wiki/Pole_(complex_analysis)" class="mw-redirect" title="Pole (complex analysis)">pole</a>, so <i>ζ</i>(1) is not finite but the left and right limits are: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\varepsilon \to 0^{\pm }}\zeta (1+\varepsilon )=\pm \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00B1;<!-- ± --></mo> </mrow> </msup> </mrow> </munder> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{\varepsilon \to 0^{\pm }}\zeta (1+\varepsilon )=\pm \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa345872c378d415ee557e04b54c420e04580f5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.042ex; height:4.343ex;" alt="{\displaystyle \lim _{\varepsilon \to 0^{\pm }}\zeta (1+\varepsilon )=\pm \infty }"></span> Since it is a pole of first order, it has a <a href="/wiki/Residue_(complex_analysis)" title="Residue (complex analysis)">complex residue</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\varepsilon \to 0}\varepsilon \zeta (1+\varepsilon )=1\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mi>&#x03B5;<!-- ε --></mi> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{\varepsilon \to 0}\varepsilon \zeta (1+\varepsilon )=1\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bedfe836dbc0a5eb3afd5baa6455fd433987159" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.987ex; height:4.009ex;" alt="{\displaystyle \lim _{\varepsilon \to 0}\varepsilon \zeta (1+\varepsilon )=1\,.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Positive_integers">Positive integers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit&amp;section=2" title="Edit section: Positive integers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Even_positive_integers">Even positive integers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit&amp;section=3" title="Edit section: Even positive integers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For the even positive integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, one has the relationship to the <a href="/wiki/Bernoulli_numbers" class="mw-redirect" title="Bernoulli numbers">Bernoulli numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f568bf6d34e97b9fdda0dc7e276d6c4501d2045" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.982ex; height:2.509ex;" alt="{\displaystyle B_{n}}"></span>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (n)=(-1)^{{\tfrac {n}{2}}+1}{\frac {(2\pi )^{n}B_{n}}{2(n!)}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>n</mi> <mo>!</mo> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (n)=(-1)^{{\tfrac {n}{2}}+1}{\frac {(2\pi )^{n}B_{n}}{2(n!)}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75c3bcfad0694d75a37ab0ee17562149e98d42e8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.707ex; height:6.509ex;" alt="{\displaystyle \zeta (n)=(-1)^{{\tfrac {n}{2}}+1}{\frac {(2\pi )^{n}B_{n}}{2(n!)}}\,.}"></span> </p><p>The computation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eff246e5aba5259593186618c576a3b7e14bc3c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (2)}"></span> is known as the <a href="/wiki/Basel_problem" title="Basel problem">Basel problem</a>. The value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (4)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (4)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd0a1bd6700d2dd56b5dad6f817674fdfd1ae43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (4)}"></span> is related to the <a href="/wiki/Stefan%E2%80%93Boltzmann_law" title="Stefan–Boltzmann law">Stefan–Boltzmann law</a> and <a href="/wiki/Wien_approximation" title="Wien approximation">Wien approximation</a> in physics. The first few values are given by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\zeta (2)&amp;=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}\\[4pt]\zeta (4)&amp;=1+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+\cdots ={\frac {\pi ^{4}}{90}}\\[4pt]\zeta (6)&amp;=1+{\frac {1}{2^{6}}}+{\frac {1}{3^{6}}}+\cdots ={\frac {\pi ^{6}}{945}}\\[4pt]\zeta (8)&amp;=1+{\frac {1}{2^{8}}}+{\frac {1}{3^{8}}}+\cdots ={\frac {\pi ^{8}}{9450}}\\[4pt]\zeta (10)&amp;=1+{\frac {1}{2^{10}}}+{\frac {1}{3^{10}}}+\cdots ={\frac {\pi ^{10}}{93555}}\\[4pt]\zeta (12)&amp;=1+{\frac {1}{2^{12}}}+{\frac {1}{3^{12}}}+\cdots ={\frac {691\pi ^{12}}{638512875}}\\[4pt]\zeta (14)&amp;=1+{\frac {1}{2^{14}}}+{\frac {1}{3^{14}}}+\cdots ={\frac {2\pi ^{14}}{18243225}}\\[4pt]\zeta (16)&amp;=1+{\frac {1}{2^{16}}}+{\frac {1}{3^{16}}}+\cdots ={\frac {3617\pi ^{16}}{325641566250}}\,.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.7em 0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mn>90</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>6</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mn>945</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>8</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> <mn>9450</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>10</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mn>93555</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>12</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>691</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msup> </mrow> <mn>638512875</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>14</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>14</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>14</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>14</mn> </mrow> </msup> </mrow> <mn>18243225</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>16</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>16</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>16</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3617</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>16</mn> </mrow> </msup> </mrow> <mn>325641566250</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\zeta (2)&amp;=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}\\[4pt]\zeta (4)&amp;=1+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+\cdots ={\frac {\pi ^{4}}{90}}\\[4pt]\zeta (6)&amp;=1+{\frac {1}{2^{6}}}+{\frac {1}{3^{6}}}+\cdots ={\frac {\pi ^{6}}{945}}\\[4pt]\zeta (8)&amp;=1+{\frac {1}{2^{8}}}+{\frac {1}{3^{8}}}+\cdots ={\frac {\pi ^{8}}{9450}}\\[4pt]\zeta (10)&amp;=1+{\frac {1}{2^{10}}}+{\frac {1}{3^{10}}}+\cdots ={\frac {\pi ^{10}}{93555}}\\[4pt]\zeta (12)&amp;=1+{\frac {1}{2^{12}}}+{\frac {1}{3^{12}}}+\cdots ={\frac {691\pi ^{12}}{638512875}}\\[4pt]\zeta (14)&amp;=1+{\frac {1}{2^{14}}}+{\frac {1}{3^{14}}}+\cdots ={\frac {2\pi ^{14}}{18243225}}\\[4pt]\zeta (16)&amp;=1+{\frac {1}{2^{16}}}+{\frac {1}{3^{16}}}+\cdots ={\frac {3617\pi ^{16}}{325641566250}}\,.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67b4f0484ed43a9fa21c35d835c2ce8ef87939cc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -27.838ex; width:48.154ex; height:56.843ex;" alt="{\displaystyle {\begin{aligned}\zeta (2)&amp;=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}\\[4pt]\zeta (4)&amp;=1+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+\cdots ={\frac {\pi ^{4}}{90}}\\[4pt]\zeta (6)&amp;=1+{\frac {1}{2^{6}}}+{\frac {1}{3^{6}}}+\cdots ={\frac {\pi ^{6}}{945}}\\[4pt]\zeta (8)&amp;=1+{\frac {1}{2^{8}}}+{\frac {1}{3^{8}}}+\cdots ={\frac {\pi ^{8}}{9450}}\\[4pt]\zeta (10)&amp;=1+{\frac {1}{2^{10}}}+{\frac {1}{3^{10}}}+\cdots ={\frac {\pi ^{10}}{93555}}\\[4pt]\zeta (12)&amp;=1+{\frac {1}{2^{12}}}+{\frac {1}{3^{12}}}+\cdots ={\frac {691\pi ^{12}}{638512875}}\\[4pt]\zeta (14)&amp;=1+{\frac {1}{2^{14}}}+{\frac {1}{3^{14}}}+\cdots ={\frac {2\pi ^{14}}{18243225}}\\[4pt]\zeta (16)&amp;=1+{\frac {1}{2^{16}}}+{\frac {1}{3^{16}}}+\cdots ={\frac {3617\pi ^{16}}{325641566250}}\,.\end{aligned}}}"></span> </p><p>Taking the limit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\rightarrow \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\rightarrow \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9702f04f2d0e5b887b99faeeffb0c4cfd8263eee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.333ex; height:1.843ex;" alt="{\displaystyle n\rightarrow \infty }"></span>, one obtains <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (\infty )=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (\infty )=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8a1ffad1424d2cd9abbba10238502170e7b0630" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.489ex; height:2.843ex;" alt="{\displaystyle \zeta (\infty )=1}"></span>. </p> <table class="wikitable"> <caption>Selected values for even integers </caption> <tbody><tr> <th scope="col">Value </th> <th scope="col">Decimal expansion </th> <th scope="col">Source </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eff246e5aba5259593186618c576a3b7e14bc3c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (2)}"></span> </td> <td><span class="nowrap"><span data-sort-value="7000164493406684822♠"></span>1.644<span style="margin-left:.25em;">934</span><span style="margin-left:.25em;">066</span><span style="margin-left:.25em;">848</span><span style="margin-left:.25em;">226</span><span style="margin-left:.25em;">4364</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A013661" class="extiw" title="oeis:A013661">A013661</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (4)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (4)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd0a1bd6700d2dd56b5dad6f817674fdfd1ae43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (4)}"></span> </td> <td><span class="nowrap"><span data-sort-value="7000108232323371113♠"></span>1.082<span style="margin-left:.25em;">323</span><span style="margin-left:.25em;">233</span><span style="margin-left:.25em;">711</span><span style="margin-left:.25em;">138</span><span style="margin-left:.25em;">1915</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A013662" class="extiw" title="oeis:A013662">A013662</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (6)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>6</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (6)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/292726d53a082e54c125574dfe95b577b27487b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (6)}"></span> </td> <td><span class="nowrap"><span data-sort-value="7000101734306198444♠"></span>1.017<span style="margin-left:.25em;">343</span><span style="margin-left:.25em;">061</span><span style="margin-left:.25em;">984</span><span style="margin-left:.25em;">449</span><span style="margin-left:.25em;">1397</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A013664" class="extiw" title="oeis:A013664">A013664</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (8)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>8</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (8)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fcb3f56938a34007cd0abfd4a07fc69cde084a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (8)}"></span> </td> <td><span class="nowrap"><span data-sort-value="7000100407735619794♠"></span>1.004<span style="margin-left:.25em;">077</span><span style="margin-left:.25em;">356</span><span style="margin-left:.25em;">197</span><span style="margin-left:.25em;">944</span><span style="margin-left:.25em;">3393</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A013666" class="extiw" title="oeis:A013666">A013666</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (10)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>10</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (10)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86963197c6359a087e0db008b8c2b07f1b59ddf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.229ex; height:2.843ex;" alt="{\displaystyle \zeta (10)}"></span> </td> <td><span class="nowrap"><span data-sort-value="7000100099457512781♠"></span>1.000<span style="margin-left:.25em;">994</span><span style="margin-left:.25em;">575</span><span style="margin-left:.25em;">127</span><span style="margin-left:.25em;">818</span><span style="margin-left:.25em;">0853</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A013668" class="extiw" title="oeis:A013668">A013668</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (12)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>12</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (12)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/459eff8acef325e77efab102e9c5bb0b2052df7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.229ex; height:2.843ex;" alt="{\displaystyle \zeta (12)}"></span> </td> <td><span class="nowrap"><span data-sort-value="7000100024608655330♠"></span>1.000<span style="margin-left:.25em;">246</span><span style="margin-left:.25em;">086</span><span style="margin-left:.25em;">553</span><span style="margin-left:.25em;">308</span><span style="margin-left:.25em;">0482</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A013670" class="extiw" title="oeis:A013670">A013670</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (14)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>14</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (14)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba314fa73b296d0ee5558ddfdd9a1a9f6aa0e452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.229ex; height:2.843ex;" alt="{\displaystyle \zeta (14)}"></span> </td> <td><span class="nowrap"><span data-sort-value="7000100006124813505♠"></span>1.000<span style="margin-left:.25em;">061</span><span style="margin-left:.25em;">248</span><span style="margin-left:.25em;">135</span><span style="margin-left:.25em;">058</span><span style="margin-left:.25em;">7048</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A013672" class="extiw" title="oeis:A013672">A013672</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (16)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>16</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (16)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a74a27e118f2253842f0d816bc8f865d2cb3a524" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.229ex; height:2.843ex;" alt="{\displaystyle \zeta (16)}"></span> </td> <td><span class="nowrap"><span data-sort-value="7000100001528225940♠"></span>1.000<span style="margin-left:.25em;">015</span><span style="margin-left:.25em;">282</span><span style="margin-left:.25em;">259</span><span style="margin-left:.25em;">408</span><span style="margin-left:.25em;">6518</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A013674" class="extiw" title="oeis:A013674">A013674</a></span> </td></tr></tbody></table> <p>The relationship between zeta at the positive even integers and the Bernoulli numbers may be written as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}\zeta (2n)=\pi ^{2n}B_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}\zeta (2n)=\pi ^{2n}B_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3287788020f1b4ff920368f799ff72ad19217de7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.879ex; height:3.176ex;" alt="{\displaystyle A_{n}\zeta (2n)=\pi ^{2n}B_{n}}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/730f6906700685b6d52f3958b1c2ae659d2d97d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.962ex; height:2.509ex;" alt="{\displaystyle A_{n}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f568bf6d34e97b9fdda0dc7e276d6c4501d2045" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.982ex; height:2.509ex;" alt="{\displaystyle B_{n}}"></span> are integers for all even <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. These are given by the integer sequences <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A002432" class="extiw" title="oeis:A002432">A002432</a></span> and <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A046988" class="extiw" title="oeis:A046988">A046988</a></span>, respectively, in <a href="/wiki/OEIS" class="mw-redirect" title="OEIS">OEIS</a>. Some of these values are reproduced below: </p> <table class="wikitable"> <caption>coefficients </caption> <tbody><tr> <th>n </th> <th>A </th> <th>B </th></tr> <tr> <td>1 </td> <td>6 </td> <td>1 </td></tr> <tr> <td>2 </td> <td>90 </td> <td>1 </td></tr> <tr> <td>3 </td> <td>945 </td> <td>1 </td></tr> <tr> <td>4 </td> <td>9450 </td> <td>1 </td></tr> <tr> <td>5 </td> <td>93555 </td> <td>1 </td></tr> <tr> <td>6 </td> <td>638512875 </td> <td>691 </td></tr> <tr> <td>7 </td> <td>18243225 </td> <td>2 </td></tr> <tr> <td>8 </td> <td>325641566250 </td> <td>3617 </td></tr> <tr> <td>9 </td> <td>38979295480125 </td> <td>43867 </td></tr> <tr> <td>10 </td> <td>1531329465290625 </td> <td>174611 </td></tr> <tr> <td>11 </td> <td>13447856940643125 </td> <td>155366 </td></tr> <tr> <td>12 </td> <td>201919571963756521875 </td> <td>236364091 </td></tr> <tr> <td>13 </td> <td>11094481976030578125 </td> <td>1315862 </td></tr> <tr> <td>14 </td> <td>564653660170076273671875 </td> <td>6785560294 </td></tr> <tr> <td>15 </td> <td>5660878804669082674070015625 </td> <td>6892673020804 </td></tr> <tr> <td>16 </td> <td>62490220571022341207266406250 </td> <td>7709321041217 </td></tr> <tr> <td>17 </td> <td>12130454581433748587292890625 </td> <td>151628697551 </td></tr></tbody></table> <p>If we let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{n}=B_{n}/A_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{n}=B_{n}/A_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d1c1a6d0e103c891a6edb624c5810d7dc37111a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.579ex; height:2.843ex;" alt="{\displaystyle \eta _{n}=B_{n}/A_{n}}"></span> be the coefficient of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi ^{2n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi ^{2n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261707c52558c07f66e3a0a705371c07a1356d8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.375ex; height:2.676ex;" alt="{\displaystyle \pi ^{2n}}"></span> as above, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2n)=\sum _{\ell =1}^{\infty }{\frac {1}{\ell ^{2n}}}=\eta _{n}\pi ^{2n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2n)=\sum _{\ell =1}^{\infty }{\frac {1}{\ell ^{2n}}}=\eta _{n}\pi ^{2n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/424ec541d8571c4b7e7653297e27c1b632589d24" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:24.995ex; height:7.009ex;" alt="{\displaystyle \zeta (2n)=\sum _{\ell =1}^{\infty }{\frac {1}{\ell ^{2n}}}=\eta _{n}\pi ^{2n}}"></span> then we find recursively, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\eta _{1}&amp;=1/6\\\eta _{n}&amp;=\sum _{\ell =1}^{n-1}(-1)^{\ell -1}{\frac {\eta _{n-\ell }}{(2\ell +1)!}}+(-1)^{n+1}{\frac {n}{(2n+1)!}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x2113;<!-- ℓ --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\eta _{1}&amp;=1/6\\\eta _{n}&amp;=\sum _{\ell =1}^{n-1}(-1)^{\ell -1}{\frac {\eta _{n-\ell }}{(2\ell +1)!}}+(-1)^{n+1}{\frac {n}{(2n+1)!}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b535b8937fd611443f38197a3f6b701f505dfcca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:47.596ex; height:10.509ex;" alt="{\displaystyle {\begin{aligned}\eta _{1}&amp;=1/6\\\eta _{n}&amp;=\sum _{\ell =1}^{n-1}(-1)^{\ell -1}{\frac {\eta _{n-\ell }}{(2\ell +1)!}}+(-1)^{n+1}{\frac {n}{(2n+1)!}}\end{aligned}}}"></span> </p><p>This recurrence relation may be derived from that for the <a href="/wiki/Bernoulli_number" title="Bernoulli number">Bernoulli numbers</a>. </p><p>Also, there is another recurrence: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2n)={\frac {1}{n+{\frac {1}{2}}}}\sum _{k=1}^{n-1}\zeta (2k)\zeta (2n-2k)\quad {\text{ for }}\quad n&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mspace width="1em" /> <mi>n</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2n)={\frac {1}{n+{\frac {1}{2}}}}\sum _{k=1}^{n-1}\zeta (2k)\zeta (2n-2k)\quad {\text{ for }}\quad n&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0e6e6e5c084838f3f33b6a2c49f9e111c1327eb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:49.62ex; height:7.676ex;" alt="{\displaystyle \zeta (2n)={\frac {1}{n+{\frac {1}{2}}}}\sum _{k=1}^{n-1}\zeta (2k)\zeta (2n-2k)\quad {\text{ for }}\quad n&gt;1}"></span> which can be proved, using that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\cot(x)=-1-\cot ^{2}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\cot(x)=-1-\cot ^{2}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6427723c63d9661d0bf16b335d25f037a6e1f674" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:26.209ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}\cot(x)=-1-\cot ^{2}(x)}"></span> </p><p>The values of the zeta function at non-negative even integers have the <a href="/wiki/Generating_function" title="Generating function">generating function</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }\zeta (2n)x^{2n}=-{\frac {\pi x}{2}}\cot(\pi x)=-{\frac {1}{2}}+{\frac {\pi ^{2}}{6}}x^{2}+{\frac {\pi ^{4}}{90}}x^{4}+{\frac {\pi ^{6}}{945}}x^{6}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mn>90</mn> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mn>945</mn> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }\zeta (2n)x^{2n}=-{\frac {\pi x}{2}}\cot(\pi x)=-{\frac {1}{2}}+{\frac {\pi ^{2}}{6}}x^{2}+{\frac {\pi ^{4}}{90}}x^{4}+{\frac {\pi ^{6}}{945}}x^{6}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/299515039add35d008819931732e368c53c2f5d4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:67.85ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }\zeta (2n)x^{2n}=-{\frac {\pi x}{2}}\cot(\pi x)=-{\frac {1}{2}}+{\frac {\pi ^{2}}{6}}x^{2}+{\frac {\pi ^{4}}{90}}x^{4}+{\frac {\pi ^{6}}{945}}x^{6}+\cdots }"></span> Since <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\rightarrow \infty }\zeta (2n)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\rightarrow \infty }\zeta (2n)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb723048a1de38913159e64a0df471ef987801ba" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.382ex; height:3.843ex;" alt="{\displaystyle \lim _{n\rightarrow \infty }\zeta (2n)=1}"></span> The formula also shows that for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {N} ,n\rightarrow \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>,</mo> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {N} ,n\rightarrow \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a448c4dfaa644cae2b1f14def3c86150986cb26c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.28ex; height:2.509ex;" alt="{\displaystyle n\in \mathbb {N} ,n\rightarrow \infty }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|B_{2n}\right|\sim {\frac {(2n)!\,2}{\;~(2\pi )^{2n}\,}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <mo>|</mo> </mrow> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> <mspace width="thinmathspace" /> <mn>2</mn> </mrow> <mrow> <mspace width="thickmathspace" /> <mtext>&#xA0;</mtext> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|B_{2n}\right|\sim {\frac {(2n)!\,2}{\;~(2\pi )^{2n}\,}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6376854b86d9a1e191bec6daa4f9325926fc85a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.99ex; height:6.509ex;" alt="{\displaystyle \left|B_{2n}\right|\sim {\frac {(2n)!\,2}{\;~(2\pi )^{2n}\,}}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Odd_positive_integers">Odd positive integers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit&amp;section=4" title="Edit section: Odd positive integers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The sum of the <a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">harmonic series</a> is infinite. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (1)=1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots =\infty \!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (1)=1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots =\infty \!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb69ce11066f1c0113a205a1587740d44fef706e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; margin-right: -0.257ex; width:28.862ex; height:5.176ex;" alt="{\displaystyle \zeta (1)=1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots =\infty \!}"></span> </p><p>The value <span class="texhtml"><i>ζ</i>(3)</span> is also known as <a href="/wiki/Ap%C3%A9ry%27s_constant" title="Apéry&#39;s constant">Apéry's constant</a> and has a role in the electron's gyromagnetic ratio. The value <span class="texhtml"><i>ζ</i>(3)</span> also appears in <a href="/wiki/Planck%27s_law#Properties" title="Planck&#39;s law">Planck's law</a>. These and additional values are: </p> <table class="wikitable"> <caption>Selected values for odd integers </caption> <tbody><tr> <th scope="col">Value </th> <th scope="col">Decimal expansion </th> <th scope="col">Source </th></tr> <tr> <td><a href="/wiki/Ap%C3%A9ry%27s_constant" title="Apéry&#39;s constant"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3088978098c7b90b2754a9d9b0b994d873e1755c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (3)}"></span></a> </td> <td><span class="nowrap"><span data-sort-value="7000120205690315959♠"></span>1.202<span style="margin-left:.25em;">056</span><span style="margin-left:.25em;">903</span><span style="margin-left:.25em;">159</span><span style="margin-left:.25em;">594</span><span style="margin-left:.25em;">2853</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A02117" class="extiw" title="oeis:A02117">A02117</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (5)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>5</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (5)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9b398444a2f6ee9e77ada5ad2d9872b43e64c0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (5)}"></span> </td> <td><span class="nowrap"><span data-sort-value="7000103692775514337♠"></span>1.036<span style="margin-left:.25em;">927</span><span style="margin-left:.25em;">755</span><span style="margin-left:.25em;">143</span><span style="margin-left:.25em;">369</span><span style="margin-left:.25em;">9263</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A013663" class="extiw" title="oeis:A013663">A013663</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (7)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>7</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (7)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e478f2bfb33b2a6de3264b6fad460a7310a4baea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (7)}"></span> </td> <td><span class="nowrap"><span data-sort-value="7000100834927738192♠"></span>1.008<span style="margin-left:.25em;">349</span><span style="margin-left:.25em;">277</span><span style="margin-left:.25em;">381</span><span style="margin-left:.25em;">922</span><span style="margin-left:.25em;">8268</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A013665" class="extiw" title="oeis:A013665">A013665</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (9)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>9</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (9)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb448df45deceec4542fe8985b52b5cb408ee3b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (9)}"></span> </td> <td><span class="nowrap"><span data-sort-value="7000100200839282608♠"></span>1.002<span style="margin-left:.25em;">008</span><span style="margin-left:.25em;">392</span><span style="margin-left:.25em;">826</span><span style="margin-left:.25em;">082</span><span style="margin-left:.25em;">2144</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A013667" class="extiw" title="oeis:A013667">A013667</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (11)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>11</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (11)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60dade95776746357920d4428d90a3d4fb5a7eb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.229ex; height:2.843ex;" alt="{\displaystyle \zeta (11)}"></span> </td> <td><span class="nowrap"><span data-sort-value="7000100049418860411♠"></span>1.000<span style="margin-left:.25em;">494</span><span style="margin-left:.25em;">188</span><span style="margin-left:.25em;">604</span><span style="margin-left:.25em;">119</span><span style="margin-left:.25em;">4645</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A013669" class="extiw" title="oeis:A013669">A013669</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (13)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>13</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (13)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b357d5f0c9aeefc1701de6b5d02742d2a52a3bbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.229ex; height:2.843ex;" alt="{\displaystyle \zeta (13)}"></span> </td> <td><span class="nowrap"><span data-sort-value="7000100012271334757♠"></span>1.000<span style="margin-left:.25em;">122</span><span style="margin-left:.25em;">713</span><span style="margin-left:.25em;">347</span><span style="margin-left:.25em;">578</span><span style="margin-left:.25em;">4891</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A013671" class="extiw" title="oeis:A013671">A013671</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (15)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>15</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (15)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75885c7a28cd09a6c2a43aa7dbe70d7b7f22be33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.229ex; height:2.843ex;" alt="{\displaystyle \zeta (15)}"></span> </td> <td><span class="nowrap"><span data-sort-value="7000100003058823630♠"></span>1.000<span style="margin-left:.25em;">030</span><span style="margin-left:.25em;">588</span><span style="margin-left:.25em;">236</span><span style="margin-left:.25em;">307</span><span style="margin-left:.25em;">0204</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A013673" class="extiw" title="oeis:A013673">A013673</a></span> </td></tr></tbody></table> <p>It is known that <span class="texhtml"><i>ζ</i>(3)</span> is irrational (<a href="/wiki/Ap%C3%A9ry%27s_theorem" title="Apéry&#39;s theorem">Apéry's theorem</a>) and that infinitely many of the numbers <span class="texhtml"><i>ζ</i>(2<i>n</i>&#160;+&#160;1)&#160;: <i>n</i> ∈ <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></span> </span>, are irrational.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> There are also results on the irrationality of values of the Riemann zeta function at the elements of certain subsets of the positive odd integers; for example, at least one of <span class="texhtml"><i>ζ</i>(5), <i>ζ</i>(7), <i>ζ</i>(9), or <i>ζ</i>(11)</span> is irrational.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>The positive odd integers of the zeta function appear in physics, specifically <a href="/wiki/Correlation_function_(statistical_mechanics)" title="Correlation function (statistical mechanics)">correlation functions</a> of antiferromagnetic <a href="/wiki/Heisenberg_model_(quantum)" class="mw-redirect" title="Heisenberg model (quantum)">XXX spin chain</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>Most of the identities following below are provided by <a href="/wiki/Simon_Plouffe" title="Simon Plouffe">Simon Plouffe</a>. They are notable in that they converge quite rapidly, giving almost three digits of precision per iteration, and are thus useful for high-precision calculations. </p><p>Plouffe stated the following identities without proof.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Proofs were later given by other authors.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="ζ(5)"><span id=".CE.B6.285.29"></span><i>&#950;</i>(5)</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit&amp;section=5" title="Edit section: ζ(5)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\zeta (5)&amp;={\frac {1}{294}}\pi ^{5}-{\frac {72}{35}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}-1)}}-{\frac {2}{35}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}+1)}}\\\zeta (5)&amp;=12\sum _{n=1}^{\infty }{\frac {1}{n^{5}\sinh(\pi n)}}-{\frac {39}{20}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}-1)}}+{\frac {1}{20}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}+1)}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>5</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>294</mn> </mfrac> </mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>72</mn> <mn>35</mn> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>35</mn> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>5</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>12</mn> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mi>sinh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>39</mn> <mn>20</mn> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>20</mn> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\zeta (5)&amp;={\frac {1}{294}}\pi ^{5}-{\frac {72}{35}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}-1)}}-{\frac {2}{35}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}+1)}}\\\zeta (5)&amp;=12\sum _{n=1}^{\infty }{\frac {1}{n^{5}\sinh(\pi n)}}-{\frac {39}{20}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}-1)}}+{\frac {1}{20}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}+1)}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc60f87aa124685e230dcd10ba212163bb6ecfd7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:73.315ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}\zeta (5)&amp;={\frac {1}{294}}\pi ^{5}-{\frac {72}{35}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}-1)}}-{\frac {2}{35}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}+1)}}\\\zeta (5)&amp;=12\sum _{n=1}^{\infty }{\frac {1}{n^{5}\sinh(\pi n)}}-{\frac {39}{20}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}-1)}}+{\frac {1}{20}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}+1)}}\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="ζ(7)"><span id=".CE.B6.287.29"></span><i>&#950;</i>(7)</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit&amp;section=6" title="Edit section: ζ(7)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (7)={\frac {19}{56700}}\pi ^{7}-2\sum _{n=1}^{\infty }{\frac {1}{n^{7}(e^{2\pi n}-1)}}\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>7</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>19</mn> <mn>56700</mn> </mfrac> </mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (7)={\frac {19}{56700}}\pi ^{7}-2\sum _{n=1}^{\infty }{\frac {1}{n^{7}(e^{2\pi n}-1)}}\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acb736b65b101ba388d7ea4070f257103c9fd519" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; margin-right: -0.108ex; width:37.219ex; height:6.843ex;" alt="{\displaystyle \zeta (7)={\frac {19}{56700}}\pi ^{7}-2\sum _{n=1}^{\infty }{\frac {1}{n^{7}(e^{2\pi n}-1)}}\!}"></span> </p><p>Note that the sum is in the form of a <a href="/wiki/Lambert_series" title="Lambert series">Lambert series</a>. </p> <div class="mw-heading mw-heading4"><h4 id="ζ(2n_+_1)"><span id=".CE.B6.282n_.2B_1.29"></span><i>&#950;</i>(2<i>n</i> + 1)</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit&amp;section=7" title="Edit section: ζ(2n + 1)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By defining the quantities </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{\pm }(s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}(e^{2\pi n}\pm 1)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00B1;<!-- ± --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>n</mi> </mrow> </msup> <mo>&#x00B1;<!-- ± --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{\pm }(s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}(e^{2\pi n}\pm 1)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9043c3c92a7dc74d201343e26840f52383c64e2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:25.788ex; height:6.843ex;" alt="{\displaystyle S_{\pm }(s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}(e^{2\pi n}\pm 1)}}}"></span> </p><p>a series of relationships can be given in the form </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0=A_{n}\zeta (n)-B_{n}\pi ^{n}+C_{n}S_{-}(n)+D_{n}S_{+}(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0=A_{n}\zeta (n)-B_{n}\pi ^{n}+C_{n}S_{-}(n)+D_{n}S_{+}(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97eec87ff84c3abaddd89c67eaef45e66a25497f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.88ex; height:2.843ex;" alt="{\displaystyle 0=A_{n}\zeta (n)-B_{n}\pi ^{n}+C_{n}S_{-}(n)+D_{n}S_{+}(n)}"></span> </p><p>where <i>A</i><sub><i>n</i></sub>, <i>B</i><sub><i>n</i></sub>, <i>C</i><sub><i>n</i></sub> and <i>D</i><sub><i>n</i></sub> are positive integers. Plouffe gives a table of values: </p> <table class="wikitable"> <caption>coefficients </caption> <tbody><tr> <th><i>n</i> </th> <th><i>A</i> </th> <th><i>B</i> </th> <th><i>C</i> </th> <th><i>D</i> </th></tr> <tr> <td>3 </td> <td>180 </td> <td>7 </td> <td>360 </td> <td>0 </td></tr> <tr> <td>5 </td> <td>1470 </td> <td>5 </td> <td>3024 </td> <td>84 </td></tr> <tr> <td>7 </td> <td>56700 </td> <td>19 </td> <td>113400 </td> <td>0 </td></tr> <tr> <td>9 </td> <td>18523890 </td> <td>625 </td> <td>37122624 </td> <td>74844 </td></tr> <tr> <td>11 </td> <td>425675250 </td> <td>1453 </td> <td>851350500 </td> <td>0 </td></tr> <tr> <td>13 </td> <td>257432175 </td> <td>89 </td> <td>514926720 </td> <td>62370 </td></tr> <tr> <td>15 </td> <td>390769879500 </td> <td>13687 </td> <td>781539759000 </td> <td>0 </td></tr> <tr> <td>17 </td> <td>1904417007743250 </td> <td>6758333 </td> <td>3808863131673600 </td> <td>29116187100 </td></tr> <tr> <td>19 </td> <td>21438612514068750 </td> <td>7708537 </td> <td>42877225028137500 </td> <td>0 </td></tr> <tr> <td>21 </td> <td>1881063815762259253125 </td> <td>68529640373 </td> <td>3762129424572110592000 </td> <td>1793047592085750 </td></tr></tbody></table> <p>These integer constants may be expressed as sums over Bernoulli numbers, as given in (Vepstas, 2006) below. </p><p>A fast algorithm for the calculation of Riemann's zeta function for any integer argument is given by E. A. Karatsuba.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Negative_integers">Negative integers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit&amp;section=8" title="Edit section: Negative integers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In general, for negative integers (and also zero), one has </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (-n)=(-1)^{n}{\frac {B_{n+1}}{n+1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (-n)=(-1)^{n}{\frac {B_{n+1}}{n+1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d8b9aed0ab12081663a4f26be6b76ea5734f657" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.438ex; height:5.509ex;" alt="{\displaystyle \zeta (-n)=(-1)^{n}{\frac {B_{n+1}}{n+1}}}"></span> </p><p>The so-called "trivial zeros" occur at the negative even integers: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (-2n)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (-2n)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37e152822190e076c2cf264b165f9fcc39e996ed" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.531ex; height:2.843ex;" alt="{\displaystyle \zeta (-2n)=0}"></span> (<a href="/wiki/Ramanujan_summation" title="Ramanujan summation">Ramanujan summation</a>) </p><p>The first few values for negative odd integers are </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\zeta (-1)&amp;=-{\frac {1}{12}}\\[4pt]\zeta (-3)&amp;={\frac {1}{120}}\\[4pt]\zeta (-5)&amp;=-{\frac {1}{252}}\\[4pt]\zeta (-7)&amp;={\frac {1}{240}}\\[4pt]\zeta (-9)&amp;=-{\frac {1}{132}}\\[4pt]\zeta (-11)&amp;={\frac {691}{32760}}\\[4pt]\zeta (-13)&amp;=-{\frac {1}{12}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>120</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>252</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>7</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>240</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>9</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>132</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>11</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>691</mn> <mn>32760</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>13</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\zeta (-1)&amp;=-{\frac {1}{12}}\\[4pt]\zeta (-3)&amp;={\frac {1}{120}}\\[4pt]\zeta (-5)&amp;=-{\frac {1}{252}}\\[4pt]\zeta (-7)&amp;={\frac {1}{240}}\\[4pt]\zeta (-9)&amp;=-{\frac {1}{132}}\\[4pt]\zeta (-11)&amp;={\frac {691}{32760}}\\[4pt]\zeta (-13)&amp;=-{\frac {1}{12}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f4a2858bf5436ce8cadf3a5906f64b006d648de" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -21.171ex; width:17.536ex; height:43.509ex;" alt="{\displaystyle {\begin{aligned}\zeta (-1)&amp;=-{\frac {1}{12}}\\[4pt]\zeta (-3)&amp;={\frac {1}{120}}\\[4pt]\zeta (-5)&amp;=-{\frac {1}{252}}\\[4pt]\zeta (-7)&amp;={\frac {1}{240}}\\[4pt]\zeta (-9)&amp;=-{\frac {1}{132}}\\[4pt]\zeta (-11)&amp;={\frac {691}{32760}}\\[4pt]\zeta (-13)&amp;=-{\frac {1}{12}}\end{aligned}}}"></span> </p><p>However, just like the <a href="/wiki/Bernoulli_numbers" class="mw-redirect" title="Bernoulli numbers">Bernoulli numbers</a>, these do not stay small for increasingly negative odd values. For details on the first value, see <a href="/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%C2%B7_%C2%B7_%C2%B7" class="mw-redirect" title="1 + 2 + 3 + 4 + · · ·">1 + 2 + 3 + 4 + · · ·</a>. </p><p>So <i>ζ</i>(<i>m</i>) can be used as the definition of all (including those for index 0 and 1) Bernoulli numbers. </p> <div class="mw-heading mw-heading2"><h2 id="Derivatives">Derivatives</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit&amp;section=9" title="Edit section: Derivatives"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The derivative of the zeta function at the negative even integers is given by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta ^{\prime }(-2n)=(-1)^{n}{\frac {(2n)!}{2(2\pi )^{2n}}}\zeta (2n+1)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta ^{\prime }(-2n)=(-1)^{n}{\frac {(2n)!}{2(2\pi )^{2n}}}\zeta (2n+1)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2719a63fa7e7c54305af11bb7096dee2595bf5b2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:35.916ex; height:6.509ex;" alt="{\displaystyle \zeta ^{\prime }(-2n)=(-1)^{n}{\frac {(2n)!}{2(2\pi )^{2n}}}\zeta (2n+1)\,.}"></span> </p><p>The first few values of which are </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\zeta ^{\prime }(-2)&amp;=-{\frac {\zeta (3)}{4\pi ^{2}}}\\[4pt]\zeta ^{\prime }(-4)&amp;={\frac {3}{4\pi ^{4}}}\zeta (5)\\[4pt]\zeta ^{\prime }(-6)&amp;=-{\frac {45}{8\pi ^{6}}}\zeta (7)\\[4pt]\zeta ^{\prime }(-8)&amp;={\frac {315}{4\pi ^{8}}}\zeta (9)\,.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mrow> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>5</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>6</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>45</mn> <mrow> <mn>8</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>7</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>8</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>315</mn> <mrow> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>9</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\zeta ^{\prime }(-2)&amp;=-{\frac {\zeta (3)}{4\pi ^{2}}}\\[4pt]\zeta ^{\prime }(-4)&amp;={\frac {3}{4\pi ^{4}}}\zeta (5)\\[4pt]\zeta ^{\prime }(-6)&amp;=-{\frac {45}{8\pi ^{6}}}\zeta (7)\\[4pt]\zeta ^{\prime }(-8)&amp;={\frac {315}{4\pi ^{8}}}\zeta (9)\,.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4734f2991ac4b8d15765ec1637a6a93df4841992" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.018ex; margin-bottom: -0.32ex; width:20.695ex; height:25.843ex;" alt="{\displaystyle {\begin{aligned}\zeta ^{\prime }(-2)&amp;=-{\frac {\zeta (3)}{4\pi ^{2}}}\\[4pt]\zeta ^{\prime }(-4)&amp;={\frac {3}{4\pi ^{4}}}\zeta (5)\\[4pt]\zeta ^{\prime }(-6)&amp;=-{\frac {45}{8\pi ^{6}}}\zeta (7)\\[4pt]\zeta ^{\prime }(-8)&amp;={\frac {315}{4\pi ^{8}}}\zeta (9)\,.\end{aligned}}}"></span> </p><p>One also has </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\zeta ^{\prime }(0)&amp;=-{\frac {1}{2}}\ln(2\pi )\\[4pt]\zeta ^{\prime }(-1)&amp;={\frac {1}{12}}-\ln A\\[4pt]\zeta ^{\prime }(2)&amp;={\frac {1}{6}}\pi ^{2}(\gamma +\ln 2-12\ln A+\ln \pi )\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>+</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <mn>12</mn> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>+</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\zeta ^{\prime }(0)&amp;=-{\frac {1}{2}}\ln(2\pi )\\[4pt]\zeta ^{\prime }(-1)&amp;={\frac {1}{12}}-\ln A\\[4pt]\zeta ^{\prime }(2)&amp;={\frac {1}{6}}\pi ^{2}(\gamma +\ln 2-12\ln A+\ln \pi )\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c83b15faa8cfb04ca281721bb4a3069c6a41da27" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.146ex; margin-bottom: -0.192ex; width:40.342ex; height:17.843ex;" alt="{\displaystyle {\begin{aligned}\zeta ^{\prime }(0)&amp;=-{\frac {1}{2}}\ln(2\pi )\\[4pt]\zeta ^{\prime }(-1)&amp;={\frac {1}{12}}-\ln A\\[4pt]\zeta ^{\prime }(2)&amp;={\frac {1}{6}}\pi ^{2}(\gamma +\ln 2-12\ln A+\ln \pi )\end{aligned}}}"></span> </p><p>where <i>A</i> is the <a href="/wiki/Glaisher%E2%80%93Kinkelin_constant" title="Glaisher–Kinkelin constant">Glaisher–Kinkelin constant</a>. The first of these identities implies that the regularized product of the reciprocals of the positive integers is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/{\sqrt {2\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/{\sqrt {2\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7292157fbd787f538eab0aedd2f101441a04aff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.755ex; height:3.176ex;" alt="{\displaystyle 1/{\sqrt {2\pi }}}"></span>, thus the amusing "equation" <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty !={\sqrt {2\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty !={\sqrt {2\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/188517193f182f40b7f51c1182e45b1c80e7cbab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.499ex; height:3.009ex;" alt="{\displaystyle \infty !={\sqrt {2\pi }}}"></span>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>From the logarithmic derivative of the functional equation, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2{\frac {\zeta '(1/2)}{\zeta (1/2)}}=\log(2\pi )+{\frac {\pi \cos(\pi /4)}{2\sin(\pi /4)}}-{\frac {\Gamma '(1/2)}{\Gamma (1/2)}}=\log(2\pi )+{\frac {\pi }{2}}+2\log 2+\gamma \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mn>2</mn> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2{\frac {\zeta '(1/2)}{\zeta (1/2)}}=\log(2\pi )+{\frac {\pi \cos(\pi /4)}{2\sin(\pi /4)}}-{\frac {\Gamma '(1/2)}{\Gamma (1/2)}}=\log(2\pi )+{\frac {\pi }{2}}+2\log 2+\gamma \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de63ece779cb5e040d4c9ce0bc66a99f30836cff" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:73.986ex; height:6.509ex;" alt="{\displaystyle 2{\frac {\zeta &#039;(1/2)}{\zeta (1/2)}}=\log(2\pi )+{\frac {\pi \cos(\pi /4)}{2\sin(\pi /4)}}-{\frac {\Gamma &#039;(1/2)}{\Gamma (1/2)}}=\log(2\pi )+{\frac {\pi }{2}}+2\log 2+\gamma \,.}"></span> </p> <table class="wikitable"> <caption>Selected derivatives </caption> <tbody><tr> <th scope="col">Value </th> <th scope="col">Decimal expansion </th> <th scope="col">Source </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd4f1451d3167ac17ba9f1283ee3fd4a89a88164" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.775ex; height:3.009ex;" alt="{\displaystyle \zeta &#039;(3)}"></span> </td> <td><span class="nowrap"><span data-sort-value="3000801873757114363♠"></span>−0.198<span style="margin-left:.25em;">126</span><span style="margin-left:.25em;">242</span><span style="margin-left:.25em;">885</span><span style="margin-left:.25em;">636</span><span style="margin-left:.25em;">853</span><span style="margin-left:.25em;">33</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A244115" class="extiw" title="oeis:A244115">A244115</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '(2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '(2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ab545c1b3041c8a23ae65a2c62eb1b19e031a44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.775ex; height:3.009ex;" alt="{\displaystyle \zeta &#039;(2)}"></span> </td> <td><span class="nowrap"><span data-sort-value="3000062451745684156♠"></span>−0.937<span style="margin-left:.25em;">548</span><span style="margin-left:.25em;">254</span><span style="margin-left:.25em;">315</span><span style="margin-left:.25em;">843</span><span style="margin-left:.25em;">753</span><span style="margin-left:.25em;">70</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A073002" class="extiw" title="oeis:A073002">A073002</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f5962a899721713a0228943b69378dc87cf45de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.775ex; height:3.009ex;" alt="{\displaystyle \zeta &#039;(0)}"></span> </td> <td><span class="nowrap"><span data-sort-value="3000081061466795327♠"></span>−0.918<span style="margin-left:.25em;">938</span><span style="margin-left:.25em;">533</span><span style="margin-left:.25em;">204</span><span style="margin-left:.25em;">672</span><span style="margin-left:.25em;">741</span><span style="margin-left:.25em;">78</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A075700" class="extiw" title="oeis:A075700">A075700</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '(-{\tfrac {1}{2}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '(-{\tfrac {1}{2}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d41084fe7098f979337ddfb9515af334246ce0f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.078ex; height:3.509ex;" alt="{\displaystyle \zeta &#039;(-{\tfrac {1}{2}})}"></span> </td> <td><span class="nowrap"><span data-sort-value="3000639145660400052♠"></span>−0.360<span style="margin-left:.25em;">854</span><span style="margin-left:.25em;">339</span><span style="margin-left:.25em;">599</span><span style="margin-left:.25em;">947</span><span style="margin-left:.25em;">607</span><span style="margin-left:.25em;">34</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A271854" class="extiw" title="oeis:A271854">A271854</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '(-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '(-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e19c7d418417d128cec908262f2e905dac2b48bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.583ex; height:3.009ex;" alt="{\displaystyle \zeta &#039;(-1)}"></span> </td> <td><span class="nowrap"><span data-sort-value="3000834578856299549♠"></span>−0.165<span style="margin-left:.25em;">421</span><span style="margin-left:.25em;">143</span><span style="margin-left:.25em;">700</span><span style="margin-left:.25em;">450</span><span style="margin-left:.25em;">929</span><span style="margin-left:.25em;">21</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A084448" class="extiw" title="oeis:A084448">A084448</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '(-2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '(-2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cabe7717804766499a2b3221cef63e386da7969" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.583ex; height:3.009ex;" alt="{\displaystyle \zeta &#039;(-2)}"></span> </td> <td><span class="nowrap"><span data-sort-value="3001695515429416067♠"></span>−0.030<span style="margin-left:.25em;">448</span><span style="margin-left:.25em;">457</span><span style="margin-left:.25em;">058</span><span style="margin-left:.25em;">393</span><span style="margin-left:.25em;">270</span><span style="margin-left:.25em;">780</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A240966" class="extiw" title="oeis:A240966">A240966</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '(-3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '(-3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef64de0751004bdb1c5ea2edd0248221141345c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.583ex; height:3.009ex;" alt="{\displaystyle \zeta &#039;(-3)}"></span> </td> <td><span class="nowrap"><span data-sort-value="6997537857635777430♠"></span>+0.005<span style="margin-left:.25em;">378</span><span style="margin-left:.25em;">576</span><span style="margin-left:.25em;">357</span><span style="margin-left:.25em;">774</span><span style="margin-left:.25em;">301</span><span style="margin-left:.25em;">1444</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A259068" class="extiw" title="oeis:A259068">A259068</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '(-4)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '(-4)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d92a8d8c3e332000768327e9af1942a310d5ea1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.583ex; height:3.009ex;" alt="{\displaystyle \zeta &#039;(-4)}"></span> </td> <td><span class="nowrap"><span data-sort-value="6997798381145026862♠"></span>+0.007<span style="margin-left:.25em;">983</span><span style="margin-left:.25em;">811</span><span style="margin-left:.25em;">450</span><span style="margin-left:.25em;">268</span><span style="margin-left:.25em;">624</span><span style="margin-left:.25em;">2806</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A259069" class="extiw" title="oeis:A259069">A259069</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '(-5)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '(-5)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/300797afe0b607c0355ac3e0e543756c60e433ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.583ex; height:3.009ex;" alt="{\displaystyle \zeta &#039;(-5)}"></span> </td> <td><span class="nowrap"><span data-sort-value="3003427014019801364♠"></span>−0.000<span style="margin-left:.25em;">572</span><span style="margin-left:.25em;">985</span><span style="margin-left:.25em;">980</span><span style="margin-left:.25em;">198</span><span style="margin-left:.25em;">635</span><span style="margin-left:.25em;">204</span><span style="margin-left:.25em;">99</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A259070" class="extiw" title="oeis:A259070">A259070</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '(-6)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>6</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '(-6)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e03cf206f58df2bba90dbe033fdfcc026f80cd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.583ex; height:3.009ex;" alt="{\displaystyle \zeta &#039;(-6)}"></span> </td> <td><span class="nowrap"><span data-sort-value="3002410024085648406♠"></span>−0.005<span style="margin-left:.25em;">899</span><span style="margin-left:.25em;">759</span><span style="margin-left:.25em;">143</span><span style="margin-left:.25em;">515</span><span style="margin-left:.25em;">937</span><span style="margin-left:.25em;">4506</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A259071" class="extiw" title="oeis:A259071">A259071</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '(-7)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>7</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '(-7)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/064da155376ad568f4ea85a55f472c1f717f1bd9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.583ex; height:3.009ex;" alt="{\displaystyle \zeta &#039;(-7)}"></span> </td> <td><span class="nowrap"><span data-sort-value="3003271357319840759♠"></span>−0.000<span style="margin-left:.25em;">728</span><span style="margin-left:.25em;">642</span><span style="margin-left:.25em;">680</span><span style="margin-left:.25em;">159</span><span style="margin-left:.25em;">240</span><span style="margin-left:.25em;">652</span><span style="margin-left:.25em;">46</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A259072" class="extiw" title="oeis:A259072">A259072</a></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '(-8)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>8</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '(-8)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff9c306b062165e5216b508b5cbf0e521567fb86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.583ex; height:3.009ex;" alt="{\displaystyle \zeta &#039;(-8)}"></span> </td> <td><span class="nowrap"><span data-sort-value="6997831616198560224♠"></span>+0.008<span style="margin-left:.25em;">316</span><span style="margin-left:.25em;">161</span><span style="margin-left:.25em;">985</span><span style="margin-left:.25em;">602</span><span style="margin-left:.25em;">247</span><span style="margin-left:.25em;">3595</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A259073" class="extiw" title="oeis:A259073">A259073</a></span> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Series_involving_ζ(n)"><span id="Series_involving_.CE.B6.28n.29"></span>Series involving <i>&#950;</i>(<i>n</i>)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit&amp;section=10" title="Edit section: Series involving ζ(n)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following sums can be derived from the generating function: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=2}^{\infty }\zeta (k)x^{k-1}=-\psi _{0}(1-x)-\gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=2}^{\infty }\zeta (k)x^{k-1}=-\psi _{0}(1-x)-\gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6766c608bf100aa433b34559bbe6cdda32f78aea" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:31.095ex; height:6.843ex;" alt="{\displaystyle \sum _{k=2}^{\infty }\zeta (k)x^{k-1}=-\psi _{0}(1-x)-\gamma }"></span> where <span class="texhtml"><i>ψ</i><sub>0</sub></span> is the <a href="/wiki/Digamma_function" title="Digamma function">digamma function</a>. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sum _{k=2}^{\infty }(\zeta (k)-1)&amp;=1\\[4pt]\sum _{k=1}^{\infty }(\zeta (2k)-1)&amp;={\frac {3}{4}}\\[4pt]\sum _{k=1}^{\infty }(\zeta (2k+1)-1)&amp;={\frac {1}{4}}\\[4pt]\sum _{k=2}^{\infty }(-1)^{k}(\zeta (k)-1)&amp;={\frac {1}{2}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sum _{k=2}^{\infty }(\zeta (k)-1)&amp;=1\\[4pt]\sum _{k=1}^{\infty }(\zeta (2k)-1)&amp;={\frac {3}{4}}\\[4pt]\sum _{k=1}^{\infty }(\zeta (2k+1)-1)&amp;={\frac {1}{4}}\\[4pt]\sum _{k=2}^{\infty }(-1)^{k}(\zeta (k)-1)&amp;={\frac {1}{2}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64c161575e1ebb9fcf86ff81945618c698e7c8a0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.005ex; width:25ex; height:31.176ex;" alt="{\displaystyle {\begin{aligned}\sum _{k=2}^{\infty }(\zeta (k)-1)&amp;=1\\[4pt]\sum _{k=1}^{\infty }(\zeta (2k)-1)&amp;={\frac {3}{4}}\\[4pt]\sum _{k=1}^{\infty }(\zeta (2k+1)-1)&amp;={\frac {1}{4}}\\[4pt]\sum _{k=2}^{\infty }(-1)^{k}(\zeta (k)-1)&amp;={\frac {1}{2}}\end{aligned}}}"></span> </p><p>Series related to the <a href="/wiki/Euler%E2%80%93Mascheroni_constant" class="mw-redirect" title="Euler–Mascheroni constant">Euler–Mascheroni constant</a> (denoted by <span class="texhtml"><i>γ</i></span>) are <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k}}&amp;=\gamma \\[4pt]\sum _{k=2}^{\infty }{\frac {\zeta (k)-1}{k}}&amp;=1-\gamma \\[4pt]\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)-1}{k}}&amp;=\ln 2+\gamma -1\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <mi>k</mi> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> </mtd> </mtr> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> </mtd> </mtr> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k}}&amp;=\gamma \\[4pt]\sum _{k=2}^{\infty }{\frac {\zeta (k)-1}{k}}&amp;=1-\gamma \\[4pt]\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)-1}{k}}&amp;=\ln 2+\gamma -1\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8fce86fde721036a8ddf8cd1061cbcbe8b164bb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.005ex; width:33.623ex; height:23.176ex;" alt="{\displaystyle {\begin{aligned}\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k}}&amp;=\gamma \\[4pt]\sum _{k=2}^{\infty }{\frac {\zeta (k)-1}{k}}&amp;=1-\gamma \\[4pt]\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)-1}{k}}&amp;=\ln 2+\gamma -1\end{aligned}}}"></span> </p><p>and using the principal value <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (k)=\lim _{\varepsilon \to 0}{\frac {\zeta (k+\varepsilon )+\zeta (k-\varepsilon )}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (k)=\lim _{\varepsilon \to 0}{\frac {\zeta (k+\varepsilon )+\zeta (k-\varepsilon )}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71ceefd820b66434e9a071b7f3103e9b7de7d8b1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:30.588ex; height:5.843ex;" alt="{\displaystyle \zeta (k)=\lim _{\varepsilon \to 0}{\frac {\zeta (k+\varepsilon )+\zeta (k-\varepsilon )}{2}}}"></span> which of course affects only the value at 1, these formulae can be stated as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sum _{k=1}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k}}&amp;=0\\[4pt]\sum _{k=1}^{\infty }{\frac {\zeta (k)-1}{k}}&amp;=0\\[4pt]\sum _{k=1}^{\infty }(-1)^{k}{\frac {\zeta (k)-1}{k}}&amp;=\ln 2\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <mi>k</mi> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sum _{k=1}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k}}&amp;=0\\[4pt]\sum _{k=1}^{\infty }{\frac {\zeta (k)-1}{k}}&amp;=0\\[4pt]\sum _{k=1}^{\infty }(-1)^{k}{\frac {\zeta (k)-1}{k}}&amp;=\ln 2\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a812f5dc324ba048e1a08c9cd90253ada721735f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.005ex; width:25.517ex; height:23.176ex;" alt="{\displaystyle {\begin{aligned}\sum _{k=1}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k}}&amp;=0\\[4pt]\sum _{k=1}^{\infty }{\frac {\zeta (k)-1}{k}}&amp;=0\\[4pt]\sum _{k=1}^{\infty }(-1)^{k}{\frac {\zeta (k)-1}{k}}&amp;=\ln 2\end{aligned}}}"></span> </p><p>and show that they depend on the principal value of <span class="nowrap"><span class="texhtml"><i>ζ</i>(1) = <i>γ</i></span> .</span> </p> <div class="mw-heading mw-heading2"><h2 id="Nontrivial_zeros">Nontrivial zeros</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit&amp;section=11" title="Edit section: Nontrivial zeros"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a></div> <p>Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a> states that the real part of every nontrivial zero must be <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span>. In other words, all known nontrivial zeros of the Riemann zeta are of the form <span class="texhtml"><i>z</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> + <i>y</i>i</span> where <i>y</i> is a real number. The following table contains the decimal expansion of Im(<i>z</i>) for the first few nontrivial zeros: </p> <table class="wikitable"> <caption>Selected nontrivial zeros </caption> <tbody><tr> <th scope="col">Decimal expansion of Im(<i>z</i>) </th> <th scope="col">Source </th></tr> <tr> <td><span class="nowrap"><span data-sort-value="7001141347251417346♠"></span>14.134<span style="margin-left:.25em;">725</span><span style="margin-left:.25em;">141</span><span style="margin-left:.25em;">734</span><span style="margin-left:.25em;">693</span><span style="margin-left:.25em;">790</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A058303" class="extiw" title="oeis:A058303">A058303</a></span> </td></tr> <tr> <td><span class="nowrap"><span data-sort-value="7001210220396387715♠"></span>21.022<span style="margin-left:.25em;">039</span><span style="margin-left:.25em;">638</span><span style="margin-left:.25em;">771</span><span style="margin-left:.25em;">554</span><span style="margin-left:.25em;">992</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A065434" class="extiw" title="oeis:A065434">A065434</a></span> </td></tr> <tr> <td><span class="nowrap"><span data-sort-value="7001250108575801456♠"></span>25.010<span style="margin-left:.25em;">857</span><span style="margin-left:.25em;">580</span><span style="margin-left:.25em;">145</span><span style="margin-left:.25em;">688</span><span style="margin-left:.25em;">763</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A065452" class="extiw" title="oeis:A065452">A065452</a></span> </td></tr> <tr> <td><span class="nowrap"><span data-sort-value="7001304248761258595♠"></span>30.424<span style="margin-left:.25em;">876</span><span style="margin-left:.25em;">125</span><span style="margin-left:.25em;">859</span><span style="margin-left:.25em;">513</span><span style="margin-left:.25em;">210</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A065453" class="extiw" title="oeis:A065453">A065453</a></span> </td></tr> <tr> <td><span class="nowrap"><span data-sort-value="7001329350615877391♠"></span>32.935<span style="margin-left:.25em;">061</span><span style="margin-left:.25em;">587</span><span style="margin-left:.25em;">739</span><span style="margin-left:.25em;">189</span><span style="margin-left:.25em;">690</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A192492" class="extiw" title="oeis:A192492">A192492</a></span> </td></tr> <tr> <td><span class="nowrap"><span data-sort-value="7001375861781588256♠"></span>37.586<span style="margin-left:.25em;">178</span><span style="margin-left:.25em;">158</span><span style="margin-left:.25em;">825</span><span style="margin-left:.25em;">671</span><span style="margin-left:.25em;">257</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A305741" class="extiw" title="oeis:A305741">A305741</a></span> </td></tr> <tr> <td><span class="nowrap"><span data-sort-value="7001409187190121475♠"></span>40.918<span style="margin-left:.25em;">719</span><span style="margin-left:.25em;">012</span><span style="margin-left:.25em;">147</span><span style="margin-left:.25em;">495</span><span style="margin-left:.25em;">187</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A305742" class="extiw" title="oeis:A305742">A305742</a></span> </td></tr> <tr> <td><span class="nowrap"><span data-sort-value="7001433270732809150♠"></span>43.327<span style="margin-left:.25em;">073</span><span style="margin-left:.25em;">280</span><span style="margin-left:.25em;">914</span><span style="margin-left:.25em;">999</span><span style="margin-left:.25em;">519</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A305743" class="extiw" title="oeis:A305743">A305743</a></span> </td></tr> <tr> <td><span class="nowrap"><span data-sort-value="7001480051508811671♠"></span>48.005<span style="margin-left:.25em;">150</span><span style="margin-left:.25em;">881</span><span style="margin-left:.25em;">167</span><span style="margin-left:.25em;">159</span><span style="margin-left:.25em;">727</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A305744" class="extiw" title="oeis:A305744">A305744</a></span> </td></tr> <tr> <td><span class="nowrap"><span data-sort-value="7001497738324776723♠"></span>49.773<span style="margin-left:.25em;">832</span><span style="margin-left:.25em;">477</span><span style="margin-left:.25em;">672</span><span style="margin-left:.25em;">302</span><span style="margin-left:.25em;">181</span></span>... </td> <td><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A306004" class="extiw" title="oeis:A306004">A306004</a></span> </td></tr></tbody></table> <p><a href="/wiki/Andrew_Odlyzko" title="Andrew Odlyzko">Andrew Odlyzko</a> computed the first 2 million nontrivial zeros accurate to within 4<span style="margin:0 .15em 0 .25em">×</span>10<sup><span class="nowrap"><span data-sort-value="2999100000000000000♠"></span>−9</span></sup>, and the first 100 zeros accurate within 1000 decimal places. See their website for the tables and bibliographies.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> A table of about 103 billion zeros with high precision (of ±2<sup>-102</sup>≈±2·10<sup>-31</sup>) is available for interactive access and download (although in a very inconvenient compressed format) via <b>LMFDB</b>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Ratios">Ratios</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit&amp;section=12" title="Edit section: Ratios"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although evaluating particular values of the zeta function is difficult, often certain ratios can be found by inserting <a href="/wiki/Particular_values_of_the_gamma_function" title="Particular values of the gamma function">particular values of the gamma function</a> into the functional equation </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\sin \left({\frac {\pi s}{2}}\right)\Gamma (1-s)\zeta (1-s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>s</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mo stretchy="false">)</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\sin \left({\frac {\pi s}{2}}\right)\Gamma (1-s)\zeta (1-s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16c0dcb4535d0e42b3e09cff1736643170ad9e71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:39.327ex; height:4.843ex;" alt="{\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\sin \left({\frac {\pi s}{2}}\right)\Gamma (1-s)\zeta (1-s)}"></span> </p><p>We have simple relations for half-integer arguments </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\zeta (3/2)}{\zeta (-1/2)}}&amp;=-4\pi \\{\frac {\zeta (5/2)}{\zeta (-3/2)}}&amp;=-{\frac {16\pi ^{2}}{3}}\\{\frac {\zeta (7/2)}{\zeta (-5/2)}}&amp;={\frac {64\pi ^{3}}{15}}\\{\frac {\zeta (9/2)}{\zeta (-7/2)}}&amp;={\frac {256\pi ^{4}}{105}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>16</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>7</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>64</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>15</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>9</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>7</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>256</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mn>105</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\zeta (3/2)}{\zeta (-1/2)}}&amp;=-4\pi \\{\frac {\zeta (5/2)}{\zeta (-3/2)}}&amp;=-{\frac {16\pi ^{2}}{3}}\\{\frac {\zeta (7/2)}{\zeta (-5/2)}}&amp;={\frac {64\pi ^{3}}{15}}\\{\frac {\zeta (9/2)}{\zeta (-7/2)}}&amp;={\frac {256\pi ^{4}}{105}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c04c81ae2e3285930cc14a01dd55851dbe040e6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.505ex; width:20.244ex; height:26.176ex;" alt="{\displaystyle {\begin{aligned}{\frac {\zeta (3/2)}{\zeta (-1/2)}}&amp;=-4\pi \\{\frac {\zeta (5/2)}{\zeta (-3/2)}}&amp;=-{\frac {16\pi ^{2}}{3}}\\{\frac {\zeta (7/2)}{\zeta (-5/2)}}&amp;={\frac {64\pi ^{3}}{15}}\\{\frac {\zeta (9/2)}{\zeta (-7/2)}}&amp;={\frac {256\pi ^{4}}{105}}\end{aligned}}}"></span> </p><p>Other examples follow for more complicated evaluations and relations of the gamma function. For example a consequence of the relation </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma \left({\tfrac {3}{4}}\right)=\left({\tfrac {\pi }{2}}\right)^{\tfrac {1}{4}}{\operatorname {AGM} \left({\sqrt {2}},1\right)}^{\tfrac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>AGM</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>,</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma \left({\tfrac {3}{4}}\right)=\left({\tfrac {\pi }{2}}\right)^{\tfrac {1}{4}}{\operatorname {AGM} \left({\sqrt {2}},1\right)}^{\tfrac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce23d21b0796d1d91b122eb161bf246222c0a17f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:30.184ex; height:5.676ex;" alt="{\displaystyle \Gamma \left({\tfrac {3}{4}}\right)=\left({\tfrac {\pi }{2}}\right)^{\tfrac {1}{4}}{\operatorname {AGM} \left({\sqrt {2}},1\right)}^{\tfrac {1}{2}}}"></span> </p><p>is the zeta ratio relation </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\zeta (3/4)}{\zeta (1/4)}}=2{\sqrt {\frac {\pi }{(2-{\sqrt {2}})\operatorname {AGM} \left({\sqrt {2}},1\right)}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> <mi>AGM</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>,</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\zeta (3/4)}{\zeta (1/4)}}=2{\sqrt {\frac {\pi }{(2-{\sqrt {2}})\operatorname {AGM} \left({\sqrt {2}},1\right)}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/620ba9393b0c0de0e9a2fbdee132e66e7b5e2b74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:37.069ex; height:7.843ex;" alt="{\displaystyle {\frac {\zeta (3/4)}{\zeta (1/4)}}=2{\sqrt {\frac {\pi }{(2-{\sqrt {2}})\operatorname {AGM} \left({\sqrt {2}},1\right)}}}}"></span> </p><p>where AGM is the <a href="/wiki/Arithmetic%E2%80%93geometric_mean" title="Arithmetic–geometric mean">arithmetic–geometric mean</a>. In a similar vein, it is possible to form radical relations, such as from </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Gamma \left({\frac {1}{5}}\right)^{2}}{\Gamma \left({\frac {1}{10}}\right)\Gamma \left({\frac {3}{10}}\right)}}={\frac {\sqrt {1+{\sqrt {5}}}}{2^{\tfrac {7}{10}}{\sqrt[{4}]{5}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>10</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>10</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> </msqrt> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>7</mn> <mn>10</mn> </mfrac> </mstyle> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </mroot> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Gamma \left({\frac {1}{5}}\right)^{2}}{\Gamma \left({\frac {1}{10}}\right)\Gamma \left({\frac {3}{10}}\right)}}={\frac {\sqrt {1+{\sqrt {5}}}}{2^{\tfrac {7}{10}}{\sqrt[{4}]{5}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13c849db6b4d10213e21b6f070927b56d2e7148e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:28.774ex; height:10.676ex;" alt="{\displaystyle {\frac {\Gamma \left({\frac {1}{5}}\right)^{2}}{\Gamma \left({\frac {1}{10}}\right)\Gamma \left({\frac {3}{10}}\right)}}={\frac {\sqrt {1+{\sqrt {5}}}}{2^{\tfrac {7}{10}}{\sqrt[{4}]{5}}}}}"></span></dd></dl> <p>the analogous zeta relation is </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\zeta (1/5)^{2}\zeta (7/10)\zeta (9/10)}{\zeta (1/10)\zeta (3/10)\zeta (4/5)^{2}}}={\frac {(5-{\sqrt {5}})\left({\sqrt {10}}+{\sqrt {5+{\sqrt {5}}}}\right)}{10\cdot 2^{\tfrac {3}{10}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>5</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>7</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>10</mn> <mo stretchy="false">)</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>9</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>10</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>10</mn> <mo stretchy="false">)</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>10</mn> <mo stretchy="false">)</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>5</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>5</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>10</mn> </msqrt> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>10</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>10</mn> </mfrac> </mstyle> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\zeta (1/5)^{2}\zeta (7/10)\zeta (9/10)}{\zeta (1/10)\zeta (3/10)\zeta (4/5)^{2}}}={\frac {(5-{\sqrt {5}})\left({\sqrt {10}}+{\sqrt {5+{\sqrt {5}}}}\right)}{10\cdot 2^{\tfrac {3}{10}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f65201fb88bc3fb6c34974d3aae1a268ee02c91e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:56.57ex; height:10.843ex;" alt="{\displaystyle {\frac {\zeta (1/5)^{2}\zeta (7/10)\zeta (9/10)}{\zeta (1/10)\zeta (3/10)\zeta (4/5)^{2}}}={\frac {(5-{\sqrt {5}})\left({\sqrt {10}}+{\sqrt {5+{\sqrt {5}}}}\right)}{10\cdot 2^{\tfrac {3}{10}}}}}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit&amp;section=13" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 25em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFRivoal2000" class="citation journal cs1"><a href="/wiki/Tanguy_Rivoal" title="Tanguy Rivoal">Rivoal, T.</a> (2000). "La fonction zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs". <i>Comptes Rendus de l'Académie des Sciences, Série I</i>. <b>331</b> (4): 267–270. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0008051">math/0008051</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000CRASM.331..267R">2000CRASM.331..267R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0764-4442%2800%2901624-4">10.1016/S0764-4442(00)01624-4</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119678120">119678120</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Comptes+Rendus+de+l%27Acad%C3%A9mie+des+Sciences%2C+S%C3%A9rie+I&amp;rft.atitle=La+fonction+zeta+de+Riemann+prend+une+infinit%C3%A9+de+valeurs+irrationnelles+aux+entiers+impairs&amp;rft.volume=331&amp;rft.issue=4&amp;rft.pages=267-270&amp;rft.date=2000&amp;rft_id=info%3Aarxiv%2Fmath%2F0008051&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119678120%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2FS0764-4442%2800%2901624-4&amp;rft_id=info%3Abibcode%2F2000CRASM.331..267R&amp;rft.aulast=Rivoal&amp;rft.aufirst=T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParticular+values+of+the+Riemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFW._Zudilin2001" class="citation journal cs1">W. Zudilin (2001). "One of the numbers <i>ζ</i>(5), <i>ζ</i>(7), <i>ζ</i>(9), <i>ζ</i>(11) is irrational". <i>Russ. Math. Surv</i>. <b>56</b> (4): 774–776. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001RuMaS..56..774Z">2001RuMaS..56..774Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1070%2Frm2001v056n04abeh000427">10.1070/rm2001v056n04abeh000427</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250734661">250734661</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Russ.+Math.+Surv.&amp;rft.atitle=One+of+the+numbers+%CE%B6%285%29%2C+%CE%B6%287%29%2C+%CE%B6%289%29%2C+%CE%B6%2811%29+is+irrational&amp;rft.volume=56&amp;rft.issue=4&amp;rft.pages=774-776&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250734661%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1070%2Frm2001v056n04abeh000427&amp;rft_id=info%3Abibcode%2F2001RuMaS..56..774Z&amp;rft.au=W.+Zudilin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParticular+values+of+the+Riemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoosKorepinNishiyamaShiroishi2002" class="citation journal cs1">Boos, H.E.; Korepin, V.E.; Nishiyama, Y.; Shiroishi, M. (2002). "Quantum correlations and number theory". <i>J. Phys. A</i>. <b>35</b> (20): 4443–4452. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cond-mat/0202346">cond-mat/0202346</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002JPhA...35.4443B">2002JPhA...35.4443B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0305-4470%2F35%2F20%2F305">10.1088/0305-4470/35/20/305</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119143600">119143600</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Phys.+A&amp;rft.atitle=Quantum+correlations+and+number+theory&amp;rft.volume=35&amp;rft.issue=20&amp;rft.pages=4443-4452&amp;rft.date=2002&amp;rft_id=info%3Aarxiv%2Fcond-mat%2F0202346&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119143600%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0305-4470%2F35%2F20%2F305&amp;rft_id=info%3Abibcode%2F2002JPhA...35.4443B&amp;rft.aulast=Boos&amp;rft.aufirst=H.E.&amp;rft.au=Korepin%2C+V.E.&amp;rft.au=Nishiyama%2C+Y.&amp;rft.au=Shiroishi%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParticular+values+of+the+Riemann+zeta+function" class="Z3988"></span>.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.plouffe.fr/simon/identities.html">"Identities for Zeta(2*n+1)"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Identities+for+Zeta%282%2An%2B1%29&amp;rft_id=http%3A%2F%2Fwww.plouffe.fr%2Fsimon%2Fidentities.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParticular+values+of+the+Riemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Lopatto/lopatto2.html">"Formulas for Odd Zeta Values and Powers of Pi"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Formulas+for+Odd+Zeta+Values+and+Powers+of+Pi&amp;rft_id=https%3A%2F%2Fcs.uwaterloo.ca%2Fjournals%2FJIS%2FVOL14%2FLopatto%2Flopatto2.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParticular+values+of+the+Riemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaratsuba1995" class="citation journal cs1">Karatsuba, E. A. (1995). <a rel="nofollow" class="external text" href="https://www.mathnet.ru/php/archive.phtml?wshow=paper&amp;jrnid=ppi&amp;paperid=294&amp;option_lang=eng">"Fast calculation of the Riemann zeta function <i>ζ</i>(<i>s</i>) for integer values of the argument&#160;<i>s</i>"</a>. <i>Probl. Perdachi Inf</i>. <b>31</b> (4): 69–80. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1367927">1367927</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Probl.+Perdachi+Inf.&amp;rft.atitle=Fast+calculation+of+the+Riemann+zeta+function+%CE%B6%28s%29+for+integer+values+of+the+argument+s&amp;rft.volume=31&amp;rft.issue=4&amp;rft.pages=69-80&amp;rft.date=1995&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1367927%23id-name%3DMR&amp;rft.aulast=Karatsuba&amp;rft.aufirst=E.+A.&amp;rft_id=http%3A%2F%2Fwww.mathnet.ru%2Fphp%2Farchive.phtml%3Fwshow%3Dpaper%26jrnid%3Dppi%26paperid%3D294%26option_lang%3Deng&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParticular+values+of+the+Riemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">E. A. Karatsuba: Fast computation of the Riemann zeta function for integer argument. Dokl. Math. Vol.54, No.1, p. 626 (1996).</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">E. A. Karatsuba: Fast evaluation of <i>ζ</i>(3). Probl. Inf. Transm. Vol.29, No.1, pp. 58–62 (1993).</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMuñoz_García,_E.Pérez_Marco,_R.2008" class="citation cs2">Muñoz García, E.; Pérez Marco, R. (2008), "The Product Over All Primes is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4\pi ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4\pi ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d921970f084831fbf0fadb909ec20bd850787fca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.551ex; height:2.676ex;" alt="{\displaystyle 4\pi ^{2}}"></span>", <i>Commun. Math. Phys.</i> (277): 69–81</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Commun.+Math.+Phys.&amp;rft.atitle=The+Product+Over+All+Primes+is+MATH+RENDER+ERROR&amp;rft.issue=277&amp;rft.pages=69-81&amp;rft.date=2008&amp;rft.au=Mu%C3%B1oz+Garc%C3%ADa%2C+E.&amp;rft.au=P%C3%A9rez+Marco%2C+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParticular+values+of+the+Riemann+zeta+function" class="Z3988"></span>.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOdlyzko" class="citation web cs1">Odlyzko, Andrew. <a rel="nofollow" class="external text" href="http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html">"Tables of zeros of the Riemann zeta function"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">7 September</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Tables+of+zeros+of+the+Riemann+zeta+function&amp;rft.aulast=Odlyzko&amp;rft.aufirst=Andrew&amp;rft_id=http%3A%2F%2Fwww.dtc.umn.edu%2F~odlyzko%2Fzeta_tables%2Findex.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParticular+values+of+the+Riemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOdlyzko" class="citation web cs1">Odlyzko, Andrew. <a rel="nofollow" class="external text" href="http://www.dtc.umn.edu/~odlyzko/doc/zeta.html">"Papers on Zeros of the Riemann Zeta Function and Related Topics"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">7 September</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Papers+on+Zeros+of+the+Riemann+Zeta+Function+and+Related+Topics&amp;rft.aulast=Odlyzko&amp;rft.aufirst=Andrew&amp;rft_id=http%3A%2F%2Fwww.dtc.umn.edu%2F~odlyzko%2Fdoc%2Fzeta.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParticular+values+of+the+Riemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.lmfdb.org/zeros/zeta/">LMFDB: Zeros of ζ(<i>s</i>)</a></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;action=edit&amp;section=14" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCiaurriNavasRuizVarona2015" class="citation journal cs1">Ciaurri, Óscar; Navas, Luis M.; Ruiz, Francisco J.; Varona, Juan L. (May 2015). "A Simple Computation of <i>ζ</i>(2<i>k</i>)". <i>The American Mathematical Monthly</i>. <b>122</b> (5): 444–451. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4169%2Famer.math.monthly.122.5.444">10.4169/amer.math.monthly.122.5.444</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/10.4169/amer.math.monthly.122.5.444">10.4169/amer.math.monthly.122.5.444</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:207521195">207521195</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=A+Simple+Computation+of+%CE%B6%282k%29&amp;rft.volume=122&amp;rft.issue=5&amp;rft.pages=444-451&amp;rft.date=2015-05&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A207521195%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F10.4169%2Famer.math.monthly.122.5.444%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.4169%2Famer.math.monthly.122.5.444&amp;rft.aulast=Ciaurri&amp;rft.aufirst=%C3%93scar&amp;rft.au=Navas%2C+Luis+M.&amp;rft.au=Ruiz%2C+Francisco+J.&amp;rft.au=Varona%2C+Juan+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParticular+values+of+the+Riemann+zeta+function" class="Z3988"></span></li> <li><a href="/wiki/Simon_Plouffe" title="Simon Plouffe">Simon Plouffe</a>, "<a rel="nofollow" class="external text" href="http://www.lacim.uqam.ca/~plouffe/identities.html">Identities inspired from Ramanujan Notebooks</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090130142844/http://www.lacim.uqam.ca/~plouffe/identities.html">Archived</a> 2009-01-30 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>", (1998).</li> <li><a href="/wiki/Simon_Plouffe" title="Simon Plouffe">Simon Plouffe</a>, "<a rel="nofollow" class="external text" href="http://www.lacim.uqam.ca/~plouffe/inspired22.html">Identities inspired by Ramanujan Notebooks part 2</a> <a rel="nofollow" class="external text" href="http://www.lacim.uqam.ca/~plouffe/inspired2.pdf">PDF</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110926231624/http://www.lacim.uqam.ca/~plouffe/inspired2.pdf">Archived</a> 2011-09-26 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>" (2006).</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVepstas2006" class="citation journal cs1">Vepstas, Linas (2006). <a rel="nofollow" class="external text" href="http://www.linas.org/math/plouffe-ram.pdf">"On Plouffe's Ramanujan identities"</a> <span class="cs1-format">(PDF)</span>. <i>The Ramanujan Journal</i>. <b>27</b> (3): 387–408. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math.NT/0609775">math.NT/0609775</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11139-011-9335-9">10.1007/s11139-011-9335-9</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8789411">8789411</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Ramanujan+Journal&amp;rft.atitle=On+Plouffe%27s+Ramanujan+identities&amp;rft.volume=27&amp;rft.issue=3&amp;rft.pages=387-408&amp;rft.date=2006&amp;rft_id=info%3Aarxiv%2Fmath.NT%2F0609775&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8789411%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs11139-011-9335-9&amp;rft.aulast=Vepstas&amp;rft.aufirst=Linas&amp;rft_id=http%3A%2F%2Fwww.linas.org%2Fmath%2Fplouffe-ram.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParticular+values+of+the+Riemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZudilin2001" class="citation journal cs1"><a href="/wiki/Wadim_Zudilin" title="Wadim Zudilin">Zudilin, Wadim</a> (2001). "One of the Numbers <i>ζ</i>(5), <i>ζ</i>(7), <i>ζ</i>(9), <i>ζ</i>(11) Is Irrational". <i><a href="/wiki/Russian_Mathematical_Surveys" title="Russian Mathematical Surveys">Russian Mathematical Surveys</a></i>. <b>56</b> (4): 774–776. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001RuMaS..56..774Z">2001RuMaS..56..774Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1070%2FRM2001v056n04ABEH000427">10.1070/RM2001v056n04ABEH000427</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1861452">1861452</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250734661">250734661</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Russian+Mathematical+Surveys&amp;rft.atitle=One+of+the+Numbers+%CE%B6%285%29%2C+%CE%B6%287%29%2C+%CE%B6%289%29%2C+%CE%B6%2811%29+Is+Irrational&amp;rft.volume=56&amp;rft.issue=4&amp;rft.pages=774-776&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1070%2FRM2001v056n04ABEH000427&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1861452%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250734661%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2001RuMaS..56..774Z&amp;rft.aulast=Zudilin&amp;rft.aufirst=Wadim&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParticular+values+of+the+Riemann+zeta+function" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://wain.mi-ras.ru/PS/zeta5-11$.pdf">PDF</a> <a rel="nofollow" class="external text" href="https://wain.mi-ras.ru/PS/zeta5-11.pdf">PDF Russian</a> <a rel="nofollow" class="external text" href="https://wain.mi-ras.ru/PS/zeta5-11.ps.gz">PS Russian</a></li> <li>Nontrival zeros reference by <a href="/wiki/Andrew_Odlyzko" title="Andrew Odlyzko">Andrew Odlyzko</a>: <ul><li><a rel="nofollow" class="external text" href="http://www.dtc.umn.edu/~odlyzko/doc/zeta.html">Bibliography</a></li> <li><a rel="nofollow" class="external text" href="http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html">Tables</a></li></ul></li></ul> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐m9dr4 Cached time: 20241122141905 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.418 seconds Real time usage: 0.598 seconds Preprocessor visited node count: 2931/1000000 Post‐expand include size: 61176/2097152 bytes Template argument size: 2703/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 45669/5000000 bytes Lua time usage: 0.192/10.000 seconds Lua memory usage: 7436676/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 369.470 1 -total 34.25% 126.551 1 Template:Reflist 28.26% 104.419 7 Template:Cite_journal 22.29% 82.348 1 Template:Short_description 14.83% 54.784 38 Template:Val 14.22% 52.532 2 Template:Pagetype 5.87% 21.671 1 Template:Main 5.74% 21.193 15 Template:Main_other 4.71% 17.400 1 Template:SDcat 3.95% 14.576 4 Template:Cite_web --> <!-- Saved in parser cache with key enwiki:pcache:idhash:2334098-0!canonical and timestamp 20241122141905 and revision id 1258386775. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;oldid=1258386775">https://en.wikipedia.org/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;oldid=1258386775</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Mathematical_constants" title="Category:Mathematical constants">Mathematical constants</a></li><li><a href="/wiki/Category:Zeta_and_L-functions" title="Category:Zeta and L-functions">Zeta and L-functions</a></li><li><a href="/wiki/Category:Irrational_numbers" title="Category:Irrational numbers">Irrational numbers</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_American_English_from_March_2019" title="Category:Use American English from March 2019">Use American English from March 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 19 November 2024, at 12:26<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Particular_values_of_the_Riemann_zeta_function&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-vkl22","wgBackendResponseTime":127,"wgPageParseReport":{"limitreport":{"cputime":"0.418","walltime":"0.598","ppvisitednodes":{"value":2931,"limit":1000000},"postexpandincludesize":{"value":61176,"limit":2097152},"templateargumentsize":{"value":2703,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":45669,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 369.470 1 -total"," 34.25% 126.551 1 Template:Reflist"," 28.26% 104.419 7 Template:Cite_journal"," 22.29% 82.348 1 Template:Short_description"," 14.83% 54.784 38 Template:Val"," 14.22% 52.532 2 Template:Pagetype"," 5.87% 21.671 1 Template:Main"," 5.74% 21.193 15 Template:Main_other"," 4.71% 17.400 1 Template:SDcat"," 3.95% 14.576 4 Template:Cite_web"]},"scribunto":{"limitreport-timeusage":{"value":"0.192","limit":"10.000"},"limitreport-memusage":{"value":7436676,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-m9dr4","timestamp":"20241122141905","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Particular values of the Riemann zeta function","url":"https:\/\/en.wikipedia.org\/wiki\/Particular_values_of_the_Riemann_zeta_function","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1073118","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1073118","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-07-29T14:20:56Z","dateModified":"2024-11-19T12:26:53Z","headline":"numerical constants"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10