CINXE.COM
Search results for: frequency identification
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: frequency identification</title> <meta name="description" content="Search results for: frequency identification"> <meta name="keywords" content="frequency identification"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="frequency identification" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="frequency identification"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6740</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: frequency identification</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6740</span> Frequency Identification of Wiener-Hammerstein Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brouri%20Adil">Brouri Adil</a>, <a href="https://publications.waset.org/abstracts/search?q=Giri%20Fouad"> Giri Fouad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of identifying Wiener-Hammerstein systems is addressed in the presence of two linear subsystems of structure totally unknown. Presently, the nonlinear element is allowed to be noninvertible. The system identification problem is dealt by developing a two-stage frequency identification method such a set of points of the nonlinearity are estimated first. Then, the frequency gains of the two linear subsystems are determined at a number of frequencies. The method involves Fourier series decomposition and only requires periodic excitation signals. All involved estimators are shown to be consistent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wiener-Hammerstein%20systems" title="Wiener-Hammerstein systems">Wiener-Hammerstein systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20series%20expansions" title=" Fourier series expansions"> Fourier series expansions</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20identification" title=" frequency identification"> frequency identification</a>, <a href="https://publications.waset.org/abstracts/search?q=automation%20science" title=" automation science"> automation science</a> </p> <a href="https://publications.waset.org/abstracts/7941/frequency-identification-of-wiener-hammerstein-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">536</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6739</span> Speech Identification Test for Individuals with High-Frequency Sloping Hearing Loss in Telugu</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Rathna%20Kumar">S. B. Rathna Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandya%20K.%20Varudhini"> Sandya K. Varudhini</a>, <a href="https://publications.waset.org/abstracts/search?q=Aparna%20Ravichandran"> Aparna Ravichandran </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Telugu is a south central Dravidian language spoken in Andhra Pradesh, a southern state of India. The available speech identification tests in Telugu have been developed to determine the communication problems of individuals having a flat frequency hearing loss. These conventional speech audiometric tests would provide redundant information when used on individuals with high-frequency sloping hearing loss because of better hearing sensitivity in the low- and mid-frequency regions. Hence, conventional speech identification tests do not indicate the true nature of the communication problem of individuals with high-frequency sloping hearing loss. It is highly possible that a person with a high-frequency sloping hearing loss may get maximum scores if conventional speech identification tests are used. Hence, there is a need to develop speech identification test materials that are specifically designed to assess the speech identification performance of individuals with high-frequency sloping hearing loss. The present study aimed to develop speech identification test for individuals with high-frequency sloping hearing loss in Telugu. Individuals with high-frequency sloping hearing loss have difficulty in perception of voiceless consonants whose spectral energy is above 1000 Hz. Hence, the word lists constructed with phonemes having mid- and high-frequency spectral energy will estimate speech identification performance better for such individuals. The phonemes /k/, /g/, /c/, /ṭ/ /t/, /p/, /s/, /ś/, /ṣ/ and /h/are preferred for the construction of words as these phonemes have spectral energy distributed in the frequencies above 1000 KHz predominantly. The present study developed two word lists in Telugu (each word list contained 25 words) for evaluating speech identification performance of individuals with high-frequency sloping hearing loss. The performance of individuals with high-frequency sloping hearing loss was evaluated using both conventional and high-frequency word lists under recorded voice condition. The results revealed that the developed word lists were found to be more sensitive in identifying the true nature of the communication problem of individuals with high-frequency sloping hearing loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speech%20identification%20test" title="speech identification test">speech identification test</a>, <a href="https://publications.waset.org/abstracts/search?q=high-frequency%20sloping%20hearing%20loss" title=" high-frequency sloping hearing loss"> high-frequency sloping hearing loss</a>, <a href="https://publications.waset.org/abstracts/search?q=recorded%20voice%20condition" title=" recorded voice condition"> recorded voice condition</a>, <a href="https://publications.waset.org/abstracts/search?q=Telugu" title=" Telugu "> Telugu </a> </p> <a href="https://publications.waset.org/abstracts/41243/speech-identification-test-for-individuals-with-high-frequency-sloping-hearing-loss-in-telugu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6738</span> Green Sustainability Using Radio Frequency Identification: Technology-Organization-Environment Perspective Using Two Case Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Angeles">Rebecca Angeles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This qualitative case study seeks to understand and explain the deployment of radio frequency identification (RFID) systems in two countries (i.e. in Taiwan for the adoption of electric scooters and in Finland for supporting glass bottle recycling) using the 'Technology-Organization-Environment' theoretical framework. This study also seeks to highlight the relevance and importance of pursuing environmental sustainability in firms and in society in general due to the social urgency of the issues involved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20sustainability" title="environmental sustainability">environmental sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20identification" title=" radio frequency identification"> radio frequency identification</a>, <a href="https://publications.waset.org/abstracts/search?q=technology-organization-environment%20framework" title=" technology-organization-environment framework"> technology-organization-environment framework</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID%20system%20implementation" title=" RFID system implementation"> RFID system implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20analysis" title=" content analysis"> content analysis</a> </p> <a href="https://publications.waset.org/abstracts/32723/green-sustainability-using-radio-frequency-identification-technology-organization-environment-perspective-using-two-case-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6737</span> Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Omorogiuwa">O. S. Omorogiuwa</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20J.%20Omozusi"> E. J. Omozusi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectrum" title="spectrum">spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=telecommunication" title=" telecommunication"> telecommunication</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title=" cognitive radio"> cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a> </p> <a href="https://publications.waset.org/abstracts/93900/monitoring-of-spectrum-usage-and-signal-identification-using-cognitive-radio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6736</span> Radio Frequency Identification Chips in Colour Preference Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ballard">A. Ballard </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ability to track goods and products en route in the delivery system, in the warehouse, and on the top floor is a huge advantage to shippers and retailers. Recently the emergence of radio frequency identification (RFID) technology has enabled this better than ever before. However, a significant problem exists in that RFID technology depends on the quality of the information stored for each tagged product. Because of the profusion of names for colours, it is very difficult to ascertain that stored values are recognised by all users who view the product visually. This paper reports the findings of a study in which 50 consumers and 50 logistics workers were shown colour swatches and asked to choose the name of the colour from a multiple choice list. They were then asked to match consumer products, including toasters, jumpers, and toothbrushes, with the identifying inventory information available for each one. The findings show that the ability to match colours was significantly stronger with the color swatches than with the consumer products and that while logistics professionals made more frequent correct identification than the consumers, their results were still unsatisfactorily low. Based on these findings, a proposed universal model of colour identification numbers has been developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumer%20preferences" title="consumer preferences">consumer preferences</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20logistics" title=" supply chain logistics"> supply chain logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20identification" title=" radio frequency identification"> radio frequency identification</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID" title=" RFID"> RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=colour%20preference" title=" colour preference"> colour preference</a> </p> <a href="https://publications.waset.org/abstracts/126493/radio-frequency-identification-chips-in-colour-preference-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6735</span> Identification of Nonlinear Systems Structured by Hammerstein-Wiener Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Brouri">A. Brouri</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Giri"> F. Giri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mkhida"> A. Mkhida</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elkarkri"> A. Elkarkri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Chhibat"> M. L. Chhibat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. Presently, the linear subsystem is allowed to be parametric or not, continuous- or discrete-time. The input and output nonlinearities are polynomial and may be noninvertible. A two-stage identification method is developed such the parameters of all nonlinear elements are estimated first using the Kozen-Landau polynomial decomposition algorithm. The obtained estimates are then based upon in the identification of the linear subsystem, making use of suitable pre-ad post-compensators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20system%20identification" title="nonlinear system identification">nonlinear system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammerstein-Wiener%20systems" title=" Hammerstein-Wiener systems"> Hammerstein-Wiener systems</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20identification" title=" frequency identification"> frequency identification</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20decomposition" title=" polynomial decomposition"> polynomial decomposition</a> </p> <a href="https://publications.waset.org/abstracts/7969/identification-of-nonlinear-systems-structured-by-hammerstein-wiener-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6734</span> Tag Impersonation Attack on Ultra-lightweight Radio Frequency Identification Authentication Scheme (ESRAS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reham%20Al-Zahrani">Reham Al-Zahrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Noura%20Aleisa"> Noura Aleisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The proliferation of Radio Frequency Identification (RFID) technology has raised concerns about system security, particularly regarding tag impersonation attacks. Regarding RFID systems, an appropriate authentication protocol must resist active and passive attacks. A tag impersonation occurs when an adversary's tag is used to fool an authenticating reader into believing it is a legitimate tag. This paper analyzed the security of the efficient, secure, and practical ultra-lightweight RFID Authentication Scheme (ESRAS). Then, the paper presents a comprehensive analysis of the Efficient, Secure, and Practical Ultra-Lightweight RFID Authentication Scheme (ESRAS) in the context of radio frequency identification (RFID) systems that employed the Scyther tool to examine the protocol's security against a tag impersonation attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RFID" title="RFID">RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=impersonation%20attack" title=" impersonation attack"> impersonation attack</a>, <a href="https://publications.waset.org/abstracts/search?q=authentication" title=" authentication"> authentication</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-lightweight%20protocols" title=" ultra-lightweight protocols"> ultra-lightweight protocols</a> </p> <a href="https://publications.waset.org/abstracts/183098/tag-impersonation-attack-on-ultra-lightweight-radio-frequency-identification-authentication-scheme-esras" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6733</span> Radio Frequency Identification System and Its Effect on Retailing Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fe%20%C3%87oban">Ayşe Çoban</a>, <a href="https://publications.waset.org/abstracts/search?q=Orhan%20%C3%87oban"> Orhan Çoban</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Birekul"> Murat Birekul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of radio frequency identification system on the retailing sector were theoretically analysed. The technology of Radio Frequency Identification (RFID) is a method enabling to identify the objects individually and automatically, using radio frequency. RFID generally consists of a tag and reader. RFID tags can be programmed to receive, store, and send the information of object such as Electronic Product Code (EPC). Having read the tags placed on product by the reader, the information associated with the management of supply chain can be automatically recorded and replaced. Recently, RFID technology used in many areas has particularly important effects on the businesses that are active in the retailing sector. The most important disadvantage of this technology is that the cost of installation and operation is higher compared to its alternatives. However, it provides important advantages to the business enterprises in the application process. At present, it is especially adopted by the large sized enterprises and with chain stores in the international areas. The application results point out that RFID technology provides business enterprises with the important competitive advantage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RFID" title="RFID">RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=retailing%20sector" title=" retailing sector"> retailing sector</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID%20technologies" title=" RFID technologies"> RFID technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20product%20code" title=" electronic product code"> electronic product code</a> </p> <a href="https://publications.waset.org/abstracts/6949/radio-frequency-identification-system-and-its-effect-on-retailing-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6732</span> Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ardalan%20Sabamehr">Ardalan Sabamehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Bagchi"> Ashutosh Bagchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20vibration" title="ambient vibration">ambient vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain%20decomposition" title=" frequency domain decomposition"> frequency domain decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20subspace%20identification" title=" stochastic subspace identification"> stochastic subspace identification</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20wavelet%20transform" title=" continuous wavelet transform"> continuous wavelet transform</a> </p> <a href="https://publications.waset.org/abstracts/56951/frequency-domain-decomposition-stochastic-subspace-identification-and-continuous-wavelet-transform-for-operational-modal-analysis-of-three-story-steel-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6731</span> A Supply Chain Traceability Improvement Using RFID</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Miaji">Yaser Miaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sabbagh"> Mohammad Sabbagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radio Frequency Identification (RFID) is a technology which shares a similar concept with bar code. With RFID, the electromagnetic or electrostatic coupling in the RF portion of the electromagnetic spectrum is used to transmit signals. Supply chain management is aimed to keep going long-term performance of individual companies and the overall supply chain by maximizing customer satisfaction with minimum costs. One of the major issues in the supply chain management is product loss or shrinkage. In order to overcome this problem, this system which uses Radio Frequency Identification (RFID) technology will be able to RFID track and identify where losses are occurring and enable effective traceability. RFID brings a new dimension to supply chain management by providing a more efficient way of being able to identify and track items at the various stages throughout the supply chain. This system has been developed and tested to prove that RFID technology can be used to improve traceability in supply chain at low cost. Due to its simplicity in interface program and database management system using Visual Basic and MS Excel or MS Access the system can be more affordable and implemented even by small and medium scale industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title="supply chain">supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID" title=" RFID"> RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=tractability" title=" tractability"> tractability</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20identification" title=" radio frequency identification"> radio frequency identification</a> </p> <a href="https://publications.waset.org/abstracts/26843/a-supply-chain-traceability-improvement-using-rfid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6730</span> Smart Unmanned Parking System Based on Radio Frequency Identification Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Qin">Yu Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to tackle the ever-growing problem of the lack of parking space, this paper presents the design and implementation of a smart unmanned parking system that is based on RFID (radio frequency identification) technology and Wireless communication technology. This system uses RFID technology to achieve the identification function (transmitted by 2.4 G wireless module) and is equipped with an STM32L053 micro controller as the main control chip of the smart vehicle. This chip can accomplish automatic parking (in/out), charging and other functions. On this basis, it can also help users easily query the information that is stored in the database through the Internet. Experimental tests have shown that the system has the features of low power consumption and stable operation, among others. It can effectively improve the level of automation control of the parking lot management system and has enormous application prospects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RFID" title="RFID">RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20system" title=" embedded system"> embedded system</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned" title=" unmanned"> unmanned</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20management" title=" parking management"> parking management</a> </p> <a href="https://publications.waset.org/abstracts/81174/smart-unmanned-parking-system-based-on-radio-frequency-identification-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6729</span> Influence of Radio Frequency Identification Technology at Cost of Supply Chain as a Driver for the Generation of Competitive Advantage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20Baniahmadi">Mona Baniahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saied%20Haghanifar"> Saied Haghanifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radio Frequency Identification (RFID) is regarded as a promising technology for the optimization of supply chain processes since it improves manufacturing and retail operations from forecasting demand for planning, managing inventory, and distribution. This study precisely aims at learning to know the RFID technology and at explaining how it can concretely be used for supply chain management and how it can help improving it in the case of Hejrat Company which is located in Iran and works on the distribution of medical drugs and cosmetics. This study uses some statistical analysis to calculate the expected benefits of an integrated RFID system on supply chain obtained through competitive advantages increases with decreasing cost factor. The study investigates how the cost of storage process, labor cost, the cost of missing goods, inventory management optimization, on-time delivery, order cost, lost sales and supply process optimization affect the performance of the integrated RFID supply chain regarding cost factors and provides a competitive advantage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost" title="cost">cost</a>, <a href="https://publications.waset.org/abstracts/search?q=competitive%20advantage" title=" competitive advantage"> competitive advantage</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20identification" title=" radio frequency identification"> radio frequency identification</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/54109/influence-of-radio-frequency-identification-technology-at-cost-of-supply-chain-as-a-driver-for-the-generation-of-competitive-advantage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6728</span> Structural Identification for Layered Composite Structures through a Wave and Finite Element Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rilwan%20Kayode%20Apalowo">Rilwan Kayode Apalowo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Chronopoulos"> Dimitrios Chronopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An approach for identifying the geometric and material characteristics of layered composite structures through an inverse wave and finite element methodology is proposed. These characteristics are obtained through multi-frequency single shot measurements. However, it is established that the frequency regime of the measurements does not matter, meaning that both ultrasonic and structural dynamics frequency spectra can be employed. Taking advantage of a full FE (finite elements) description of the periodic composite, the scheme is able to account for arbitrarily complex structures. In order to demonstrate the robustness of the presented scheme, it is applied to a sandwich composite panel and results are compared with that of experimental characterization techniques. Excellent agreement is obtained with the experimental measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20identification" title="structural identification">structural identification</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20evaluation" title=" non-destructive evaluation"> non-destructive evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements" title=" finite elements"> finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title=" wave propagation"> wave propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20structures" title=" layered structures"> layered structures</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/109615/structural-identification-for-layered-composite-structures-through-a-wave-and-finite-element-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6727</span> Chipless RFID Capacity Enhancement Using the E-pulse Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haythem%20H.%20Abdullah">Haythem H. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Elkady"> Hesham Elkady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the fast increase in radio frequency identification (RFID) applications such as medical recording, library management, etc., the limitation of active tags stems from its need to external batteries as well as passive or active chips. The chipless RFID tag reduces the cost to a large extent but at the expense of utilizing the spectrum. The reduction of the cost of chipless RFID is due to the absence of the chip itself. The identification is done by utilizing the spectrum in such a way that the frequency response of the tags consists of some resonance frequencies that represent the bits. The system capacity is decided by the number of resonators within the pre-specified band. It is important to find a solution to enhance the spectrum utilization when using chipless RFID. Target identification is a process that results in a decision that a specific target is present or not. Several target identification schemes are present, but one of the most successful techniques in radar target identification in the oscillatory region is the extinction pulse technique (E-Pulse). The E-Pulse technique is used to identify targets via its characteristics (natural) modes. By introducing an innovative solution for chipless RFID reader and tag designs, the spectrum utilization goes to the optimum case. In this paper, a novel capacity enhancement scheme based on the E-pulse technique is introduced to improve the performance of the chipless RFID system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chipless%20RFID" title="chipless RFID">chipless RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=E-pulse" title=" E-pulse"> E-pulse</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20modes" title=" natural modes"> natural modes</a>, <a href="https://publications.waset.org/abstracts/search?q=resonators" title=" resonators"> resonators</a> </p> <a href="https://publications.waset.org/abstracts/172234/chipless-rfid-capacity-enhancement-using-the-e-pulse-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6726</span> Kuehne + Nagel's PharmaChain: IoT-Enabled Product Monitoring Using Radio Frequency Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Angeles">Rebecca Angeles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This case study features the Kuehne + Nagel PharmaChain solution for ‘cold chain’ pharmaceutical and biologic product shipments with IOT-enabled features for shipment temperature and location tracking. Using the case study method and content analysis, this research project investigates the application of the structurational model of technology theory introduced by Orlikowski in order to interpret the firm’s entry and participation in the IOT-impelled marketplace. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Internet%20of%20Things%20%28IOT%29" title="Internet of Things (IOT)">Internet of Things (IOT)</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20identification%20%28RFID%29" title=" radio frequency identification (RFID)"> radio frequency identification (RFID)</a>, <a href="https://publications.waset.org/abstracts/search?q=structurational%20model%20of%20technology%20%28Orlikowski%29" title=" structurational model of technology (Orlikowski)"> structurational model of technology (Orlikowski)</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a> </p> <a href="https://publications.waset.org/abstracts/52845/kuehne-nagels-pharmachain-iot-enabled-product-monitoring-using-radio-frequency-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6725</span> Radio Frequency Identification Encryption via Modified Two Dimensional Logistic Map</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongmin%20Deng">Hongmin Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=Qionghua%20Wang"> Qionghua Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A modified two dimensional (2D) logistic map based on cross feedback control is proposed. This 2D map exhibits more random chaotic dynamical properties than the classic one dimensional (1D) logistic map in the statistical characteristics analysis. So it is utilized as the pseudo-random (PN) sequence generator, where the obtained real-valued PN sequence is quantized at first, then applied to radio frequency identification (RFID) communication system in this paper. This system is experimentally validated on a cortex-M<sub>0</sub> development board, which shows the effectiveness in key generation, the size of key space and security. At last, further cryptanalysis is studied through the test suite in the National Institute of Standards and Technology (NIST). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaos%20encryption" title="chaos encryption">chaos encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20map" title=" logistic map"> logistic map</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-random%20sequence" title=" pseudo-random sequence"> pseudo-random sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID" title=" RFID"> RFID</a> </p> <a href="https://publications.waset.org/abstracts/46725/radio-frequency-identification-encryption-via-modified-two-dimensional-logistic-map" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6724</span> System Identification of Timber Masonry Walls Using Shaking Table Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timir%20Baran%20Roy">Timir Baran Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Guerreiro"> Luis Guerreiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Bagchi"> Ashutosh Bagchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as bridges, dams, high-rise buildings etc. There had been a substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as natural frequency, modal damping, and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototypes of such walls have been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated, and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain%20decomposition%20%28fdd%29" title="frequency domain decomposition (fdd)">frequency domain decomposition (fdd)</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20parameters" title=" modal parameters"> modal parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20subspace%20identification%20%28ssi%29" title=" stochastic subspace identification (ssi)"> stochastic subspace identification (ssi)</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20decomposition" title=" time domain decomposition "> time domain decomposition </a> </p> <a href="https://publications.waset.org/abstracts/53765/system-identification-of-timber-masonry-walls-using-shaking-table-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6723</span> Methodology for the Integration of Object Identification Processes in Handling and Logistic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Kiefer">L. Kiefer</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Richter"> C. Richter</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Reinhart"> G. Reinhart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The uprising complexity in production systems due to an increasing amount of variants up to customer innovated products leads to requirements that hierarchical control systems are not able to fulfil. Therefore, factory planners can install autonomous manufacturing systems. The fundamental requirement for an autonomous control is the identification of objects within production systems. In this approach an attribute-based identification is focused for avoiding dose-dependent identification costs. Instead of using an identification mark (ID) like a radio frequency identification (RFID)-Tag, an object type is directly identified by its attributes. To facilitate that it’s recommended to include the identification and the corresponding sensors within handling processes, which connect all manufacturing processes and therefore ensure a high identification rate and reduce blind spots. The presented methodology reduces the individual effort to integrate identification processes in handling systems. First, suitable object attributes and sensor systems for object identification in a production environment are defined. By categorising these sensor systems as well as handling systems, it is possible to match them universal within a compatibility matrix. Based on that compatibility further requirements like identification time are analysed, which decide whether the combination of handling and sensor system is well suited for parallel handling and identification within an autonomous control. By analysing a list of more than thousand possible attributes, first investigations have shown, that five main characteristics (weight, form, colour, amount, and position of subattributes as drillings) are sufficient for an integrable identification. This knowledge limits the variety of identification systems and leads to a manageable complexity within the selection process. Besides the procedure, several tools, as an example a sensor pool are presented. These tools include the generated specific expert knowledge and simplify the selection. The primary tool is a pool of preconfigured identification processes depending on the chosen combination of sensor and handling device. By following the defined procedure and using the created tools, even laypeople out of other scientific fields can choose an appropriate combination of handling devices and sensors which enable parallel handling and identification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent%20systems" title="agent systems">agent systems</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20control" title=" autonomous control"> autonomous control</a>, <a href="https://publications.waset.org/abstracts/search?q=handling%20systems" title=" handling systems"> handling systems</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a> </p> <a href="https://publications.waset.org/abstracts/91481/methodology-for-the-integration-of-object-identification-processes-in-handling-and-logistic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6722</span> Biosignal Recognition for Personal Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadri%20Hussain">Hadri Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Nasir%20Ibrahim"> M.Nasir Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chee-Ming%20Ting"> Chee-Ming Ting</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariani%20Idroas"> Mariani Idroas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuad%20Numan"> Fuad Numan</a>, <a href="https://publications.waset.org/abstracts/search?q=Alias%20Mohd%20Noor"> Alias Mohd Noor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A biometric security system has become an important application in client identification and verification system. A conventional biometric system is normally based on unimodal biometric that depends on either behavioural or physiological information for authentication purposes. The behavioural biometric depends on human body biometric signal (such as speech) and biosignal biometric (such as electrocardiogram (ECG) and phonocardiogram or heart sound (HS)). The speech signal is commonly used in a recognition system in biometric, while the ECG and the HS have been used to identify a person’s diseases uniquely related to its cluster. However, the conventional biometric system is liable to spoof attack that will affect the performance of the system. Therefore, a multimodal biometric security system is developed, which is based on biometric signal of ECG, HS, and speech. The biosignal data involved in the biometric system is initially segmented, with each segment Mel Frequency Cepstral Coefficients (MFCC) method is exploited for extracting the feature. The Hidden Markov Model (HMM) is used to model the client and to classify the unknown input with respect to the modal. The recognition system involved training and testing session that is known as client identification (CID). In this project, twenty clients are tested with the developed system. The best overall performance at 44 kHz was 93.92% for ECG and the worst overall performance was ECG at 88.47%. The results were compared to the best overall performance at 44 kHz for (20clients) to increment of clients, which was 90.00% for HS and the worst overall performance falls at ECG at 79.91%. It can be concluded that the difference multimodal biometric has a substantial effect on performance of the biometric system and with the increment of data, even with higher frequency sampling, the performance still decreased slightly as predicted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram" title="electrocardiogram">electrocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=phonocardiogram" title=" phonocardiogram"> phonocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20markov%20model" title=" hidden markov model"> hidden markov model</a>, <a href="https://publications.waset.org/abstracts/search?q=mel%20frequency%20cepstral%20coeffiecients" title=" mel frequency cepstral coeffiecients"> mel frequency cepstral coeffiecients</a>, <a href="https://publications.waset.org/abstracts/search?q=client%20identification" title=" client identification"> client identification</a> </p> <a href="https://publications.waset.org/abstracts/48382/biosignal-recognition-for-personal-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6721</span> Design and Field Programmable Gate Array Implementation of Radio Frequency Identification for Boosting up Tag Data Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Rajeshwari">G. Rajeshwari</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20D.%20M.%20Jabez%20Daniel"> V. D. M. Jabez Daniel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radio Frequency Identification systems are used for automated identification in various applications such as automobiles, health care and security. It is also called as the automated data collection technology. RFID readers are placed in any area to scan large number of tags to cover a wide distance. The placement of the RFID elements may result in several types of collisions. A major challenge in RFID system is collision avoidance. In the previous works the collision was avoided by using algorithms such as ALOHA and tree algorithm. This work proposes collision reduction and increased throughput through reading enhancement method with tree algorithm. The reading enhancement is done by improving interrogation procedure and increasing the data handling capacity of RFID reader with parallel processing. The work is simulated using Xilinx ISE 14.5 verilog language. By implementing this in the RFID system, we can able to achieve high throughput and avoid collision in the reader at a same instant of time. The overall system efficiency will be increased by implementing this. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-collision%20protocols" title=" anti-collision protocols"> anti-collision protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20management%20system" title=" data management system"> data management system</a>, <a href="https://publications.waset.org/abstracts/search?q=reader" title=" reader"> reader</a>, <a href="https://publications.waset.org/abstracts/search?q=reading%20enhancement" title=" reading enhancement"> reading enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=tag" title=" tag"> tag</a> </p> <a href="https://publications.waset.org/abstracts/51859/design-and-field-programmable-gate-array-implementation-of-radio-frequency-identification-for-boosting-up-tag-data-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6720</span> Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Che%20Z.%20Zulkifli">Che Z. Zulkifli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nursyahida%20M.%20Noor"> Nursyahida M. Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20N.%20Semunab"> Siti N. Semunab</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafawati%20A.%20Malek"> Shafawati A. Malek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesh%20network" title="mesh network">mesh network</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID" title=" RFID"> RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network"> wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=zigbee" title=" zigbee"> zigbee</a> </p> <a href="https://publications.waset.org/abstracts/36916/design-and-implementation-of-active-radio-frequency-identification-on-wireless-sensor-network-based-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6719</span> Abating the Barriers to the Deployment of RFID for Construction Project Delivery in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20O.%20Ikuabe">Matthew O. Ikuabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayodeji%20E.%20Oke"> Ayodeji E. Oke</a>, <a href="https://publications.waset.org/abstracts/search?q=Clinton%20O.%20Aigbavboa"> Clinton O. Aigbavboa</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas%20O.%20Aghimien"> Douglas O. Aghimien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of technological innovations have been touted to be beneficial in the delivery of construction projects. Particularly, Radio Frequency Identification (RFID) technology is widely regarded to be of immense advantage for the management of construction projects. This study focused on evaluating the barriers to the use of Radio Frequency Identification (RFID) technology for the delivery of construction projects. Using Gauteng Provincein South Africa as the study area, questionnaire was used in eliciting responses from construction professionals, which made up the population of the study. Retrieved data was analysed using Mean Item Score and One-Sample t-test. Findings from the study showed that the most significant barriers to the deployment of RFID for construction project delivery are high cost and lack of awareness. Conclusively, the study made recommendations that would aid in the abatement of the barriers to the use of RFID technology for construction project delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barriers" title="barriers">barriers</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20delivery" title=" project delivery"> project delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID" title=" RFID"> RFID</a> </p> <a href="https://publications.waset.org/abstracts/144074/abating-the-barriers-to-the-deployment-of-rfid-for-construction-project-delivery-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6718</span> Determination of the Thermally Comfortable Air Temperature with Consideration of Individual Clothing and Activity as Preparation for a New Smart Home Heating System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Peikos">Alexander Peikos</a>, <a href="https://publications.waset.org/abstracts/search?q=Carole%20Binsfeld"> Carole Binsfeld</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to determine a thermally comfortable air temperature in an automated living room. This calculated temperature should serve as input for a user-specific and dynamic heating control in such a living space. In addition to the usual physical factors (air temperature, humidity, air velocity, and radiation temperature), individual clothing and activity should be taken into account. The calculation of such a temperature is based on different methods and indices which are usually used for the evaluation of the thermal comfort. The thermal insulation of the worn clothing is determined with a Radio Frequency Identification system. The activity performed is only taken into account indirectly through the generated heart rate. All these methods are ultimately very well suited for use in temperature regulation in an automated home, but still require further research and extensive evaluation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20home" title="smart home">smart home</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=predicted%20mean%20vote" title=" predicted mean vote"> predicted mean vote</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20identification" title=" radio frequency identification"> radio frequency identification</a> </p> <a href="https://publications.waset.org/abstracts/100365/determination-of-the-thermally-comfortable-air-temperature-with-consideration-of-individual-clothing-and-activity-as-preparation-for-a-new-smart-home-heating-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6717</span> Integration of Wireless Sensor Networks and Radio Frequency Identification (RFID): An Assesment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arslan%20Murtaza">Arslan Murtaza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> RFID (Radio Frequency Identification) and WSN (Wireless sensor network) are two significant wireless technologies that have extensive diversity of applications and provide limitless forthcoming potentials. RFID is used to identify existence and location of objects whereas WSN is used to intellect and monitor the environment. Incorporating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. It can be widely used in stock management, asset tracking, asset counting, security, military, environmental monitoring and forecasting, healthcare, intelligent home, intelligent transport vehicles, warehouse management, and precision agriculture. This assessment presents a brief introduction of RFID, WSN, and integration of WSN and RFID, and then applications related to both RFID and WSN. This assessment also deliberates status of the projects on RFID technology carried out in different computing group projects to be taken on WSN and RFID technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title="wireless sensor network">wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID" title=" RFID"> RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20sensor" title=" embedded sensor"> embedded sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Wi-Fi" title=" Wi-Fi"> Wi-Fi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bluetooth" title=" Bluetooth"> Bluetooth</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20saving" title=" time saving"> time saving</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20efficient" title=" cost efficient "> cost efficient </a> </p> <a href="https://publications.waset.org/abstracts/52194/integration-of-wireless-sensor-networks-and-radio-frequency-identification-rfid-an-assesment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6716</span> Identification of Outliers in Flood Frequency Analysis: Comparison of Original and Multiple Grubbs-Beck Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20S.%20Rahman">Ayesha S. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Haddad"> Khaled Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ataur%20Rahman"> Ataur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At-site flood frequency analysis is used to estimate flood quantiles when at-site record length is reasonably long. In Australia, FLIKE software has been introduced for at-site flood frequency analysis. The advantage of FLIKE is that, for a given application, the user can compare a number of most commonly adopted probability distributions and parameter estimation methods relatively quickly using a windows interface. The new version of FLIKE has been incorporated with the multiple Grubbs and Beck test which can identify multiple numbers of potentially influential low flows. This paper presents a case study considering six catchments in eastern Australia which compares two outlier identification tests (original Grubbs and Beck test and multiple Grubbs and Beck test) and two commonly applied probability distributions (Generalized Extreme Value (GEV) and Log Pearson type 3 (LP3)) using FLIKE software. It has been found that the multiple Grubbs and Beck test when used with LP3 distribution provides more accurate flood quantile estimates than when LP3 distribution is used with the original Grubbs and Beck test. Between these two methods, the differences in flood quantile estimates have been found to be up to 61% for the six study catchments. It has also been found that GEV distribution (with L moments) and LP3 distribution with the multiple Grubbs and Beck test provide quite similar results in most of the cases; however, a difference up to 38% has been noted for flood quantiles for annual exceedance probability (AEP) of 1 in 100 for one catchment. These findings need to be confirmed with a greater number of stations across other Australian states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floods" title="floods">floods</a>, <a href="https://publications.waset.org/abstracts/search?q=FLIKE" title=" FLIKE"> FLIKE</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20distributions" title=" probability distributions"> probability distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20frequency" title=" flood frequency"> flood frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=outlier" title=" outlier"> outlier</a> </p> <a href="https://publications.waset.org/abstracts/11632/identification-of-outliers-in-flood-frequency-analysis-comparison-of-original-and-multiple-grubbs-beck-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6715</span> Disability, Stigma and In-Group Identification: An Exploration across Different Disability Subgroups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharmila%20Rathee">Sharmila Rathee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Individuals with disability/ies often face negative attitudes, discrimination, exclusion, and inequality of treatment due to stigmatization and stigmatized treatment. While a significant number of studies in field of stigma suggest that group-identification has positive consequences for stigmatized individuals, ironically very miniscule empirical work in sight has attempted to investigate in-group identification as a coping measure against stigma, humiliation and related experiences among disability group. In view of death of empirical research on in-group identification among disability group, through present work, an attempt has been made to examine the experiences of stigma, humiliation, and in-group identification among disability group. Results of the study suggest that use of in-group identification as a coping strategy is not uniform across members of disability group and degree of in-group identification differs across different sub-groups of disability groups. Further, in-group identification among members of disability group depends on variables like degree and impact of disability, factors like onset of disability, nature, and visibility of disability, educational experiences and resources available to deal with disabling conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disability" title="disability">disability</a>, <a href="https://publications.waset.org/abstracts/search?q=stigma" title=" stigma"> stigma</a>, <a href="https://publications.waset.org/abstracts/search?q=in-group%20identification" title=" in-group identification"> in-group identification</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20identity" title=" social identity"> social identity</a> </p> <a href="https://publications.waset.org/abstracts/48888/disability-stigma-and-in-group-identification-an-exploration-across-different-disability-subgroups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6714</span> An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Soltane%20Cheima">Ben Soltane Cheima</a>, <a href="https://publications.waset.org/abstracts/search?q=Ittansa%20Yonas%20Kelbesa"> Ittansa Yonas Kelbesa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title="feature extraction">feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=speaker%20modeling" title=" speaker modeling"> speaker modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20matching" title=" feature matching"> feature matching</a>, <a href="https://publications.waset.org/abstracts/search?q=Mel%20frequency%20cepstrum%20coefficient%20%28MFCC%29" title=" Mel frequency cepstrum coefficient (MFCC)"> Mel frequency cepstrum coefficient (MFCC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20mixture%20model%20%28GMM%29" title=" Gaussian mixture model (GMM)"> Gaussian mixture model (GMM)</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20quantization%20%28VQ%29" title=" vector quantization (VQ)"> vector quantization (VQ)</a>, <a href="https://publications.waset.org/abstracts/search?q=Linde-Buzo-Gray%20%28LBG%29" title=" Linde-Buzo-Gray (LBG)"> Linde-Buzo-Gray (LBG)</a>, <a href="https://publications.waset.org/abstracts/search?q=expectation%20maximization%20%28EM%29" title=" expectation maximization (EM)"> expectation maximization (EM)</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-processing" title=" pre-processing"> pre-processing</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20activity%20detection%20%28VAD%29" title=" voice activity detection (VAD)"> voice activity detection (VAD)</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20time%20energy%20%28STE%29" title=" short time energy (STE)"> short time energy (STE)</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20noise%20statistical%20modeling" title=" background noise statistical modeling"> background noise statistical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=closed-set%20tex-independent%20speaker%20identification%20system%20%28CISI%29" title=" closed-set tex-independent speaker identification system (CISI)"> closed-set tex-independent speaker identification system (CISI)</a> </p> <a href="https://publications.waset.org/abstracts/16253/an-intelligent-text-independent-speaker-identification-using-vq-gmm-model-based-multiple-classifier-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6713</span> Forensic Challenges in Source Device Identification for Digital Videos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Aminu%20Bagiwa">Mustapha Aminu Bagiwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ainuddin%20Wahid%20Abdul%20Wahab"> Ainuddin Wahid Abdul Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Yamani%20Idna%20Idris"> Mohd Yamani Idna Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=Suleman%20Khan"> Suleman Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Video source device identification has become a problem of concern in numerous domains especially in multimedia security and digital investigation. This is because videos are now used as evidence in legal proceedings. Source device identification aim at identifying the source of digital devices using the content they produced. However, due to affordable processing tools and the influx in digital content generating devices, source device identification is still a major problem within the digital forensic community. In this paper, we discuss source device identification for digital videos by identifying techniques that were proposed in the literature for model or specific device identification. This is aimed at identifying salient open challenges for future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20forgery" title="video forgery">video forgery</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20camcorder" title=" source camcorder"> source camcorder</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20identification" title=" device identification"> device identification</a>, <a href="https://publications.waset.org/abstracts/search?q=forgery%20detection" title=" forgery detection "> forgery detection </a> </p> <a href="https://publications.waset.org/abstracts/21641/forensic-challenges-in-source-device-identification-for-digital-videos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">631</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6712</span> Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wittawat%20Wasusathien">Wittawat Wasusathien</a>, <a href="https://publications.waset.org/abstracts/search?q=Samran%20Santalunai"> Samran Santalunai</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanaset%20Thosdeekoraphat"> Thanaset Thosdeekoraphat</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanchai%20Thongsopa"> Chanchai Thongsopa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=specific%20absorption%20rate%20%28SAR%29" title="specific absorption rate (SAR)">specific absorption rate (SAR)</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20wideband%20%28UWB%29" title=" ultra wideband (UWB)"> ultra wideband (UWB)</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinates" title=" coordinates"> coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20detection" title=" cancer detection"> cancer detection</a> </p> <a href="https://publications.waset.org/abstracts/10465/ultra-wideband-breast-cancer-detection-by-using-sar-for-indication-the-tumor-location" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6711</span> Unified Public Transportation System for Mumbai Using Radio Frequency Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Parkhedkar">Saurabh Parkhedkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajanikant%20Tenguria"> Rajanikant Tenguria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper proposes revamping the public transportation system in Mumbai with the use of Radio Frequency Identification (RFID) technology in order to provide better integration and compatibility across various modes of transport. In Mumbai, mass transport system suffers from poor inter-compatible ticketing system, subpar money collection techniques, and lack of planning for optimum utilization of resources. Development of suburbs and growth in population will result in growing demand for mass transportation networks. Hence, the growing demand for the already overburdened public transportation system is only going to worsen the scenario. Thus, a superior system is essential in order to regulate, manage and supervise future transportation needs. The proposed RFID based system integrates Mumbai Suburban Railway, BEST (Brihanmumbai Electric Supply and Transport Undertaking transport wing) Bus, Mumbai Monorail and Mumbai Metro systems into a Unified Public Transportation System (UPTS). The UTPS takes into account various drawbacks of the present day system and offers solution, suitable for the modern age Mumbai. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urbanization" title="urbanization">urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID" title=" RFID"> RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=Mumbai" title=" Mumbai"> Mumbai</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20transportation" title=" public transportation"> public transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20city." title=" smart city."> smart city.</a> </p> <a href="https://publications.waset.org/abstracts/64545/unified-public-transportation-system-for-mumbai-using-radio-frequency-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20identification&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20identification&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20identification&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20identification&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20identification&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20identification&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20identification&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20identification&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20identification&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20identification&page=224">224</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20identification&page=225">225</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20identification&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>