CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 110 results for author: <span class="mathjax">Essinger-Hileman, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Essinger-Hileman%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Essinger-Hileman, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Essinger-Hileman%2C+T&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Essinger-Hileman, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Essinger-Hileman%2C+T&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Essinger-Hileman%2C+T&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Essinger-Hileman%2C+T&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Essinger-Hileman%2C+T&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08811">arXiv:2412.08811</a> <span> [<a href="https://arxiv.org/pdf/2412.08811">pdf</a>, <a href="https://arxiv.org/format/2412.08811">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Evidence of enhanced two-level system loss suppression in high-Q, thin film aluminum microwave resonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Volpert%2C+C+G">Carolyn G. Volpert</a>, <a href="/search/astro-ph?searchtype=author&query=Barrentine%2C+E+M">Emily M. Barrentine</a>, <a href="/search/astro-ph?searchtype=author&query=Bolatto%2C+A+D">Alberto D. Bolatto</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+A">Ari Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J+A">Jake A. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+L+A">Larry A. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=Mikula%2C+V">Vilem Mikula</a>, <a href="/search/astro-ph?searchtype=author&query=Stevenson%2C+T+R">Thomas R. Stevenson</a>, <a href="/search/astro-ph?searchtype=author&query=Switzer%2C+E+R">Eric R. Switzer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08811v1-abstract-short" style="display: inline;"> As superconducting kinetic inductance detectors (KIDs) continue to grow in popularity for sensitive sub-mm detection and other applications, there is a drive to advance toward lower loss devices. We present measurements of diagnostic thin film aluminum coplanar waveguide (CPW) resonators designed to inform ongoing KID development at NASA Goddard Space Flight Center. The resonators span… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08811v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08811v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08811v1-abstract-full" style="display: none;"> As superconducting kinetic inductance detectors (KIDs) continue to grow in popularity for sensitive sub-mm detection and other applications, there is a drive to advance toward lower loss devices. We present measurements of diagnostic thin film aluminum coplanar waveguide (CPW) resonators designed to inform ongoing KID development at NASA Goddard Space Flight Center. The resonators span $\rm f_0 = 3.5 - 4$\,GHz and include both quarter-wave and half-wave resonators with varying coupling capacitor designs. We present measurements of the device film properties and an analysis of the dominant mechanisms of loss in the resonators measured in a dark environment. We demonstrate quality factors of $\rm Q_i^{-1} \approx 3.64 - 8.57 \times10^{-8}$, and observe enhanced suppression of two-level system (TLS) loss in our devices at high internal microwave power levels before the onset of quasiparticle dissipation from microwave heating. We observe deviations from the standard TLS loss model at low powers and temperatures below 60 mK, and use a modified model to describe this behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08811v1-abstract-full').style.display = 'none'; document.getElementById('2412.08811v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, submitted to Physical Review Applied Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12705">arXiv:2411.12705</a> <span> [<a href="https://arxiv.org/pdf/2411.12705">pdf</a>, <a href="https://arxiv.org/format/2411.12705">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> High-Efficiency and Low-Noise Detectors for the Upgraded CLASS 90 GHz Focal Plane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Costen%2C+N">Nick Costen</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Denis%2C+K+L">Kevin L. Denis</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=Mateo%2C+J">Jennette Mateo</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&query=Valle%2C+D+A+N">Deniz A. N. Valle</a>, <a href="/search/astro-ph?searchtype=author&query=Watts%2C+D">Duncan Watts</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&query=Zeng%2C+L">Lingzhen Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12705v1-abstract-short" style="display: inline;"> We present the in-lab and on-sky performance for the upgraded 90 GHz focal plane of the Cosmology Large Angular Scale Surveyor (CLASS), which had four of its seven detector wafers updated during the austral winter of 2022. The update aimed to improve the transition-edge-sensor (TES) stability and bias range and to realize the high optical efficiency of the sensor design. Modifications included rev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12705v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12705v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12705v1-abstract-full" style="display: none;"> We present the in-lab and on-sky performance for the upgraded 90 GHz focal plane of the Cosmology Large Angular Scale Surveyor (CLASS), which had four of its seven detector wafers updated during the austral winter of 2022. The update aimed to improve the transition-edge-sensor (TES) stability and bias range and to realize the high optical efficiency of the sensor design. Modifications included revised circuit terminations, electrical contact between the TES superconductor and the normal metal providing the bulk of the bolometer's heat capacity, and additional filtering on the TES bias lines. The upgrade was successful: 94% of detectors are stable down to 15% of the normal resistance, providing a wide overlapping range of bias voltages for all TESs on a wafer. The median telescope efficiency improved from $0.42^{+0.15}_{-0.22}$ to $0.60^{+0.10}_{-0.32}$ (68% quantiles). For the four upgraded wafers alone, median telescope efficiency increased to $0.65^{+0.06}_{-0.06}$. Given our efficiency estimate for the receiver optics, this telescope efficiency implies a detector efficiency exceeding $0.90$. The overall noise-equivalent temperature of the 90 GHz focal plane improved from 19 $渭$K$\sqrt{s}$ to 11.3 $渭$K$\sqrt{s}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12705v1-abstract-full').style.display = 'none'; document.getElementById('2411.12705v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures.Submitted to ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02080">arXiv:2411.02080</a> <span> [<a href="https://arxiv.org/pdf/2411.02080">pdf</a>, <a href="https://arxiv.org/format/2411.02080">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Requirements on the gain calibration for LiteBIRD polarisation data with blind component separation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Carralot%2C+F">F. Carralot</a>, <a href="/search/astro-ph?searchtype=author&query=Carones%2C+A">A. Carones</a>, <a href="/search/astro-ph?searchtype=author&query=Krachmalnicoff%2C+N">N. Krachmalnicoff</a>, <a href="/search/astro-ph?searchtype=author&query=Ghigna%2C+T">T. Ghigna</a>, <a href="/search/astro-ph?searchtype=author&query=Novelli%2C+A">A. Novelli</a>, <a href="/search/astro-ph?searchtype=author&query=Pagano%2C+L">L. Pagano</a>, <a href="/search/astro-ph?searchtype=author&query=Piacentini%2C+F">F. Piacentini</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Adak%2C+D">D. Adak</a>, <a href="/search/astro-ph?searchtype=author&query=Anand%2C+A">A. Anand</a>, <a href="/search/astro-ph?searchtype=author&query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&query=Azzoni%2C+S">S. Azzoni</a>, <a href="/search/astro-ph?searchtype=author&query=Ballardini%2C+M">M. Ballardini</a>, <a href="/search/astro-ph?searchtype=author&query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&query=Bartolo%2C+N">N. Bartolo</a>, <a href="/search/astro-ph?searchtype=author&query=Basak%2C+S">S. Basak</a>, <a href="/search/astro-ph?searchtype=author&query=Basyrov%2C+A">A. Basyrov</a>, <a href="/search/astro-ph?searchtype=author&query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/astro-ph?searchtype=author&query=Bortolami%2C+M">M. Bortolami</a>, <a href="/search/astro-ph?searchtype=author&query=Brinckmann%2C+T">T. Brinckmann</a>, <a href="/search/astro-ph?searchtype=author&query=Cacciotti%2C+F">F. Cacciotti</a>, <a href="/search/astro-ph?searchtype=author&query=Campeti%2C+P">P. Campeti</a>, <a href="/search/astro-ph?searchtype=author&query=Carinos%2C+E">E. Carinos</a>, <a href="/search/astro-ph?searchtype=author&query=Casas%2C+F+J">F. J. Casas</a> , et al. (84 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02080v1-abstract-short" style="display: inline;"> Future cosmic microwave background (CMB) experiments are primarily targeting a detection of the primordial $B$-mode polarisation. The faintness of this signal requires exquisite control of systematic effects which may bias the measurements. In this work, we derive requirements on the relative calibration accuracy of the overall polarisation gain ($螖g_谓$) for LiteBIRD experiment, through the applic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02080v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02080v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02080v1-abstract-full" style="display: none;"> Future cosmic microwave background (CMB) experiments are primarily targeting a detection of the primordial $B$-mode polarisation. The faintness of this signal requires exquisite control of systematic effects which may bias the measurements. In this work, we derive requirements on the relative calibration accuracy of the overall polarisation gain ($螖g_谓$) for LiteBIRD experiment, through the application of the blind Needlet Internal Linear Combination (NILC) foreground-cleaning method. We find that minimum variance techniques, as NILC, are less affected by gain calibration uncertainties than a parametric approach, which requires a proper modelling of these instrumental effects. The tightest constraints are obtained for frequency channels where the CMB signal is relatively brighter (166 GHz channel, $螖{g}_谓\approx 0.16 \%$), while, with a parametric approach, the strictest requirements were on foreground-dominated channels. We then propagate gain calibration uncertainties, corresponding to the derived requirements, into all frequency channels simultaneously. We find that the overall impact on the estimated $r$ is lower than the required budget for LiteBIRD by almost a factor $5$. The adopted procedure to derive requirements assumes a simple Galactic model. We therefore assess the robustness of obtained results against more realistic scenarios by injecting the gain calibration uncertainties, according to the requirements, into LiteBIRD simulated maps and assuming intermediate- and high-complexity sky models. In this case, we employ the so-called Multi-Clustering NILC (MC-NILC) foreground-cleaning pipeline and obtain that the impact of gain calibration uncertainties on $r$ is lower than the LiteBIRD gain systematics budget for the intermediate-complexity sky model. For the high-complexity case, instead, it would be necessary to tighten the requirements by a factor $1.8$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02080v1-abstract-full').style.display = 'none'; document.getElementById('2411.02080v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02847">arXiv:2409.02847</a> <span> [<a href="https://arxiv.org/pdf/2409.02847">pdf</a>, <a href="https://arxiv.org/format/2409.02847">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.3018577">10.1117/12.3018577 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superfluid-tight cryogenic receiver with continuous sub-Kelvin cooling for EXCLAIM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+C+J">Christopher J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Barlis%2C+A">Alyssa Barlis</a>, <a href="/search/astro-ph?searchtype=author&query=Barrentine%2C+E+M">Emily M. Barrentine</a>, <a href="/search/astro-ph?searchtype=author&query=Beeman%2C+J+W">Jeffrey W. Beeman</a>, <a href="/search/astro-ph?searchtype=author&query=Bellis%2C+N">Nicholas Bellis</a>, <a href="/search/astro-ph?searchtype=author&query=Bolatto%2C+A+D">Alberto D. Bolatto</a>, <a href="/search/astro-ph?searchtype=author&query=Braianova%2C+V">Victoria Braianova</a>, <a href="/search/astro-ph?searchtype=author&query=Breysse%2C+P+C">Patrick C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&query=Bulcha%2C+B+T">Berhanu T. Bulcha</a>, <a href="/search/astro-ph?searchtype=author&query=Cataldo%2C+G">Giuseppe Cataldo</a>, <a href="/search/astro-ph?searchtype=author&query=Colazo%2C+F+A">Felipe A. Colazo</a>, <a href="/search/astro-ph?searchtype=author&query=Chevres-Fernandez%2C+L">Lee-Roger Chevres-Fernandez</a>, <a href="/search/astro-ph?searchtype=author&query=Cho%2C+C">Chullhee Cho</a>, <a href="/search/astro-ph?searchtype=author&query=Chmaytelli%2C+D+S">Danny S. Chmaytelli</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J+A">Jake A. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Costen%2C+N+P">Nicholas P. Costen</a>, <a href="/search/astro-ph?searchtype=author&query=Cursey%2C+P+W">Paul W. Cursey</a>, <a href="/search/astro-ph?searchtype=author&query=Ehsan%2C+N">Negar Ehsan</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T+M">Thomas M. Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Glenn%2C+J">Jason Glenn</a>, <a href="/search/astro-ph?searchtype=author&query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&query=Hays-Wehle%2C+J+P">James P. Hays-Wehle</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+L+A">Larry A. Hess</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02847v1-abstract-short" style="display: inline;"> The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation over cosmological time scales using intensity mapping in the 420 - 540 GHz frequency range. EXCLAIM uses a fully cryogenic telescope coupled to six on-chip spectrometers featuring kinetic inductance detectors (KIDs) to achieve high sensitivity, allowing for fast in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02847v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02847v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02847v1-abstract-full" style="display: none;"> The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation over cosmological time scales using intensity mapping in the 420 - 540 GHz frequency range. EXCLAIM uses a fully cryogenic telescope coupled to six on-chip spectrometers featuring kinetic inductance detectors (KIDs) to achieve high sensitivity, allowing for fast integration in dark atmospheric windows. The telescope receiver is cooled to $\approx$ 1.7 K by immersion in a superfluid helium bath and enclosed in a superfluid-tight shell with a meta-material anti-reflection coated silicon window. In addition to the optics and the spectrometer package, the receiver contains the magnetic shielding, the cryogenic segment of the spectrometer readout, and the sub-Kelvin cooling system. A three-stage continuous adiabatic demagnetization refrigerator (CADR) keeps the detectors at 100 mK while a $^4$He sorption cooler provides a 900 mK thermal intercept for mechanical suspensions and coaxial cables. We present the design of the EXCLAIM receiver and report on the flight-like testing of major receiver components, including the superfluid-tight receiver window and the sub-Kelvin coolers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02847v1-abstract-full').style.display = 'none'; document.getElementById('2409.02847v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII, 131022I (16 August 2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08912">arXiv:2407.08912</a> <span> [<a href="https://arxiv.org/pdf/2407.08912">pdf</a>, <a href="https://arxiv.org/format/2407.08912">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Design and characterization of a 60-cm reflective half-wave plate for the CLASS 90 GHz band telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Chan%2C+C+Y+Y">Carol Yan Yan Chan</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&query=Shukawa%2C+K">Koji Shukawa</a>, <a href="/search/astro-ph?searchtype=author&query=Valle%2C+D+A+N">Deniz A. N. Valle</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08912v1-abstract-short" style="display: inline;"> Front-end polarization modulation enables improved polarization measurement stability by modulating the targeted signal above the low-frequency $1/f$ drifts associated with atmospheric and instrumental instabilities and diminishes the impact of instrumental polarization. In this work, we present the design and characterization of a new 60-cm diameter Reflective Half-Wave Plate (RHWP) polarization… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08912v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08912v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08912v1-abstract-full" style="display: none;"> Front-end polarization modulation enables improved polarization measurement stability by modulating the targeted signal above the low-frequency $1/f$ drifts associated with atmospheric and instrumental instabilities and diminishes the impact of instrumental polarization. In this work, we present the design and characterization of a new 60-cm diameter Reflective Half-Wave Plate (RHWP) polarization modulator for the 90 GHz band telescope of the Cosmology Large Angular Scale Surveyor (CLASS) project. The RHWP consists of an array of parallel wires (diameter $50~\mathrm{渭m}$, $175~\mathrm{渭m}$ pitch) positioned $0.88~\mathrm{mm}$ from an aluminum mirror. In lab tests, it was confirmed that the wire resonance frequency ($f_\mathrm{res}$) profile is consistent with the target, $139~\mathrm{Hz}<f_\mathrm{res}<154~\mathrm{Hz}$ in the optically active region (diameter smaller than $150~\mathrm{mm}$), preventing the wire vibration during operation and reducing the RHWP deformation under the wire tension. The mirror tilt relative to the rotating axis was controlled to be $<15''$, corresponding to an increase in beam width due to beam smearing of $<0.6''$, negligible compared to the beam's full-width half-maximum of $36'$. The median and 16/84th percentile of the wire--mirror separation residual was $0.048^{+0.013}_{-0.014}~\mathrm{mm}$ in the optically active region, achieving a modulation efficiency $蔚=96.2_{+0.5}^{-0.4}\%$ with an estimated bandpass of 34 GHz. The angular velocity of the RHWP was maintained to an accuracy of within $0.005\%$ at the nominal rotation frequency ($2.5~\mathrm{Hz}$). The RHWP has been successfully integrated into the CLASS 90 GHz telescope and started taking data in June 2024, replacing the previous modulator that has been in operation since June 2018. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08912v1-abstract-full').style.display = 'none'; document.getElementById('2407.08912v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 12 figures, 1 table, to appear in Proc. SPIE Astronomical Telescopes and Instrumentation 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02724">arXiv:2406.02724</a> <span> [<a href="https://arxiv.org/pdf/2406.02724">pdf</a>, <a href="https://arxiv.org/format/2406.02724">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The LiteBIRD mission to explore cosmic inflation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ghigna%2C+T">T. Ghigna</a>, <a href="/search/astro-ph?searchtype=author&query=Adler%2C+A">A. Adler</a>, <a href="/search/astro-ph?searchtype=author&query=Aizawa%2C+K">K. Aizawa</a>, <a href="/search/astro-ph?searchtype=author&query=Akamatsu%2C+H">H. Akamatsu</a>, <a href="/search/astro-ph?searchtype=author&query=Akizawa%2C+R">R. Akizawa</a>, <a href="/search/astro-ph?searchtype=author&query=Allys%2C+E">E. Allys</a>, <a href="/search/astro-ph?searchtype=author&query=Anand%2C+A">A. Anand</a>, <a href="/search/astro-ph?searchtype=author&query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Azzoni%2C+S">S. Azzoni</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Ballardini%2C+M">M. Ballardini</a>, <a href="/search/astro-ph?searchtype=author&query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&query=Bartolo%2C+N">N. Bartolo</a>, <a href="/search/astro-ph?searchtype=author&query=Basak%2C+S">S. Basak</a>, <a href="/search/astro-ph?searchtype=author&query=Basyrov%2C+A">A. Basyrov</a>, <a href="/search/astro-ph?searchtype=author&query=Beckman%2C+S">S. Beckman</a>, <a href="/search/astro-ph?searchtype=author&query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/astro-ph?searchtype=author&query=Bortolami%2C+M">M. Bortolami</a>, <a href="/search/astro-ph?searchtype=author&query=Bouchet%2C+F">F. Bouchet</a>, <a href="/search/astro-ph?searchtype=author&query=Brinckmann%2C+T">T. Brinckmann</a>, <a href="/search/astro-ph?searchtype=author&query=Campeti%2C+P">P. Campeti</a>, <a href="/search/astro-ph?searchtype=author&query=Carinos%2C+E">E. Carinos</a>, <a href="/search/astro-ph?searchtype=author&query=Carones%2C+A">A. Carones</a> , et al. (134 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02724v1-abstract-short" style="display: inline;"> LiteBIRD, the next-generation cosmic microwave background (CMB) experiment, aims for a launch in Japan's fiscal year 2032, marking a major advancement in the exploration of primordial cosmology and fundamental physics. Orbiting the Sun-Earth Lagrangian point L2, this JAXA-led strategic L-class mission will conduct a comprehensive mapping of the CMB polarization across the entire sky. During its 3-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02724v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02724v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02724v1-abstract-full" style="display: none;"> LiteBIRD, the next-generation cosmic microwave background (CMB) experiment, aims for a launch in Japan's fiscal year 2032, marking a major advancement in the exploration of primordial cosmology and fundamental physics. Orbiting the Sun-Earth Lagrangian point L2, this JAXA-led strategic L-class mission will conduct a comprehensive mapping of the CMB polarization across the entire sky. During its 3-year mission, LiteBIRD will employ three telescopes within 15 unique frequency bands (ranging from 34 through 448 GHz), targeting a sensitivity of 2.2\,$渭$K-arcmin and a resolution of 0.5$^\circ$ at 100\,GHz. Its primary goal is to measure the tensor-to-scalar ratio $r$ with an uncertainty $未r = 0.001$, including systematic errors and margin. If $r \geq 0.01$, LiteBIRD expects to achieve a $>5蟽$ detection in the $\ell=$2-10 and $\ell=$11-200 ranges separately, providing crucial insight into the early Universe. We describe LiteBIRD's scientific objectives, the application of systems engineering to mission requirements, the anticipated scientific impact, and the operations and scanning strategies vital to minimizing systematic effects. We will also highlight LiteBIRD's synergies with concurrent CMB projects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02724v1-abstract-full').style.display = 'none'; document.getElementById('2406.02724v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 9 figures, 1 table, SPIE Astronomical Telescopes + Instrumentation 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17567">arXiv:2404.17567</a> <span> [<a href="https://arxiv.org/pdf/2404.17567">pdf</a>, <a href="https://arxiv.org/format/2404.17567">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Sensitivity-Improved Polarization Maps at 40 GHz with CLASS and WMAP data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&query=Song%2C+Z">Zeya Song</a>, <a href="/search/astro-ph?searchtype=author&query=Valle%2C+D+A+N">Deniz A. N. Valle</a>, <a href="/search/astro-ph?searchtype=author&query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&query=Weiland%2C+J+L">Janet L. Weiland</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17567v2-abstract-short" style="display: inline;"> Improved polarization measurements at frequencies below 70 GHz with degree-level angular resolution are crucial for advancing our understanding of the Galactic synchrotron radiation and the potential polarized anomalous microwave emission and ultimately benefiting the detection of primordial $B$ modes. In this study, we present sensitivity-improved 40 GHz polarization maps obtained by combining th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17567v2-abstract-full').style.display = 'inline'; document.getElementById('2404.17567v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17567v2-abstract-full" style="display: none;"> Improved polarization measurements at frequencies below 70 GHz with degree-level angular resolution are crucial for advancing our understanding of the Galactic synchrotron radiation and the potential polarized anomalous microwave emission and ultimately benefiting the detection of primordial $B$ modes. In this study, we present sensitivity-improved 40 GHz polarization maps obtained by combining the CLASS 40 GHz and WMAP $Q$-band data through a weighted average in the harmonic domain. The decision to include WMAP $Q$-band data stems from similarities in the bandpasses. Leveraging the accurate large-scale measurements from WMAP $Q$ band and the high-sensitivity information from CLASS 40 GHz band at intermediate scales, the noise level at $\ell\in[30, 100]$ is reduced by a factor of $2-3$ in the map space. A pixel domain analysis of the polarized synchrotron spectral index ($尾_s$) using WMAP $K$ band and the combined maps (mean and 16/84th percentile across the $尾_s$ map: $-3.08_{-0.20}^{+0.20}$) reveals a stronger preference for spatial variation (PTE for a uniform $尾_s$ hypothesis smaller than 0.001) than the results obtained using WMAP $K$ and $Ka$ bands ($-3.08_{-0.14}^{+0.14}$). The cross-power spectra of the combined maps follow the same trend as other low-frequency data, and validation through simulations indicates negligible bias introduced by the combination method (sub-percent level in the power spectra). The products of this work are publicly available on $\mathtt{LAMBDA}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17567v2-abstract-full').style.display = 'none'; document.getElementById('2404.17567v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 16 figures, 1 table, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16364">arXiv:2401.16364</a> <span> [<a href="https://arxiv.org/pdf/2401.16364">pdf</a>, <a href="https://arxiv.org/format/2401.16364">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Fabrication and characterization of optical filters from polymeric aerogels loaded with diamond scattering particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Barlis%2C+A">Alyssa Barlis</a>, <a href="/search/astro-ph?searchtype=author&query=Guo%2C+H">Haiquan Guo</a>, <a href="/search/astro-ph?searchtype=author&query=Helson%2C+K">Kyle Helson</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C">Charles Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Chan%2C+Y+Y">Yan Yan Chan</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T">Tobias Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=Quijada%2C+M">Manuel Quijada</a>, <a href="/search/astro-ph?searchtype=author&query=Tokarz%2C+A">Ariel Tokarz</a>, <a href="/search/astro-ph?searchtype=author&query=Vivod%2C+S">Stephanie Vivod</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E">Edward Wollack</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16364v3-abstract-short" style="display: inline;"> We have developed a suite of infrared-blocking filters made by embedding diamond scattering particles in a polyimide aerogel substrate. We demonstrate the ability to tune the spectral performance of the filters based on both the composition of the base aerogel material and the properties of the scattering particles. We summarize the fabrication, optical modeling, and characterization of these filt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16364v3-abstract-full').style.display = 'inline'; document.getElementById('2401.16364v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16364v3-abstract-full" style="display: none;"> We have developed a suite of infrared-blocking filters made by embedding diamond scattering particles in a polyimide aerogel substrate. We demonstrate the ability to tune the spectral performance of the filters based on both the composition of the base aerogel material and the properties of the scattering particles. We summarize the fabrication, optical modeling, and characterization of these filters. We investigate two polyimide base aerogel formulations and the effects of loading them with diamond scattering particles of varying sizes and relative densities. We describe a model for the filters' behavior using a combination of Maxwell Garnett and Mie Scattering techniques. We present optical characterization results for diamond-loaded aerogel filters with cutoff frequencies (50% transmittance) ranging between 2.5 and 15 THz, and confirm that the measured spectral performance is in agreement with our optical models. We also measure the filters' refractive index in the microwave and report findings in agreement with Maxwell Garnett model predictions (typically n < 1.08). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16364v3-abstract-full').style.display = 'none'; document.getElementById('2401.16364v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures, 3 tables. Submitted to Applied Optics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07656">arXiv:2312.07656</a> <span> [<a href="https://arxiv.org/pdf/2312.07656">pdf</a>, <a href="https://arxiv.org/format/2312.07656">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Optimization of an Optical Testbed for Characterization of EXCLAIM u-Spec Integrated Spectrometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Rahmani%2C+M">Maryam Rahmani</a>, <a href="/search/astro-ph?searchtype=author&query=Barrentine%2C+E+M">Emily M. Barrentine</a>, <a href="/search/astro-ph?searchtype=author&query=Switzer%2C+E+R">Eric R. Switzer</a>, <a href="/search/astro-ph?searchtype=author&query=Barlis%2C+A">Alyssa Barlis</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+A+D">Ari D. Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Cataldo%2C+G">Giuseppe Cataldo</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J+A">Jake A. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Ehsan%2C+N">Negar Ehsan</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T+M">Thomas M. Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Grant%2C+H">Henry Grant</a>, <a href="/search/astro-ph?searchtype=author&query=Hays-Wehle%2C+J">James Hays-Wehle</a>, <a href="/search/astro-ph?searchtype=author&query=Hsieh%2C+W">Wen-Ting Hsieh</a>, <a href="/search/astro-ph?searchtype=author&query=Mikula%2C+V">Vilem Mikula</a>, <a href="/search/astro-ph?searchtype=author&query=Moseley%2C+S+H">S. Harvey Moseley</a>, <a href="/search/astro-ph?searchtype=author&query=Noroozian%2C+O">Omid Noroozian</a>, <a href="/search/astro-ph?searchtype=author&query=Quijada%2C+M+A">Manuel A. Quijada</a>, <a href="/search/astro-ph?searchtype=author&query=Patel%2C+J">Jessica Patel</a>, <a href="/search/astro-ph?searchtype=author&query=Stevenson%2C+T+R">Thomas R. Stevenson</a>, <a href="/search/astro-ph?searchtype=author&query=Tucker%2C+C">Carole Tucker</a>, <a href="/search/astro-ph?searchtype=author&query=U-Yen%2C+K">Kongpop U-Yen</a>, <a href="/search/astro-ph?searchtype=author&query=Volpert%2C+C+G">Carolyn G. Volpert</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07656v1-abstract-short" style="display: inline;"> We describe a testbed to characterize the optical response of compact superconducting on-chip spectrometers in development for the Experiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) mission. EXCLAIM is a balloonborne far-infrared experiment to probe the CO and CII emission lines in galaxies from redshift 3.5 to the present. The spectrometer, called u-Spec, comprises a diffraction… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07656v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07656v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07656v1-abstract-full" style="display: none;"> We describe a testbed to characterize the optical response of compact superconducting on-chip spectrometers in development for the Experiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) mission. EXCLAIM is a balloonborne far-infrared experiment to probe the CO and CII emission lines in galaxies from redshift 3.5 to the present. The spectrometer, called u-Spec, comprises a diffraction grating on a silicon chip coupled to kinetic inductance detectors (KIDs) read out via a single microwave feedline. We use a prototype spectrometer for EXCLAIM to demonstrate our ability to characterize the spectrometers spectral response using a photomixer source. We utilize an on-chip reference detector to normalize relative to spectral structure from the off-chip optics and a silicon etalon to calibrate the absolute frequency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07656v1-abstract-full').style.display = 'none'; document.getElementById('2312.07656v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07221">arXiv:2309.07221</a> <span> [<a href="https://arxiv.org/pdf/2309.07221">pdf</a>, <a href="https://arxiv.org/format/2309.07221">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> CLASS Observations of Atmospheric Cloud Polarization at Millimeter Wavelengths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Reeves%2C+R+A">Rodrigo A. Reeves</a>, <a href="/search/astro-ph?searchtype=author&query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Valle%2C+D+A+N">Deniz A. N. Valle</a>, <a href="/search/astro-ph?searchtype=author&query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&query=Wolff%2C+O+F">Oliver F. Wolff</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07221v1-abstract-short" style="display: inline;"> The dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polarized source in the atmosphere. This scattering-induced polarization is significantly enhanced for ice… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07221v1-abstract-full').style.display = 'inline'; document.getElementById('2309.07221v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07221v1-abstract-full" style="display: none;"> The dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polarized source in the atmosphere. This scattering-induced polarization is significantly enhanced for ice clouds due to the alignment of ice crystals under gravity, which are also the most common clouds seen at the millimeter-astronomy sites at high altitudes. This work presents a multifrequency study of cloud polarization observed by the Cosmology Large Angular Scale Surveyor (CLASS) experiment on Cerro Toco in the Atacama Desert of northern Chile, from 2016 to 2022, at the frequency bands centered around 40, 90, 150, and 220 GHz. Using a machine-learning-assisted cloud classifier, we made connections between the transient polarized emission found in all four frequencies with the clouds imaged by monitoring cameras at the observing site. The polarization angles of the cloud events are found to be mostly $90^\circ$ from the local meridian, which is consistent with the presence of horizontally aligned ice crystals. The 90 and 150 GHz polarization data are consistent with a power law with a spectral index of $3.90\pm0.06$, while an excess/deficit of polarization amplitude is found at 40/220 GHz compared with a Rayleigh scattering spectrum. These results are consistent with Rayleigh-scattering-dominated cloud polarization, with possible effects from supercooled water absorption and/or Mie scattering from a population of large cloud particles that contribute to the 220 GHz polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07221v1-abstract-full').style.display = 'none'; document.getElementById('2309.07221v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 14 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00675">arXiv:2309.00675</a> <span> [<a href="https://arxiv.org/pdf/2309.00675">pdf</a>, <a href="https://arxiv.org/format/2309.00675">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> CLASS Angular Power Spectra and Map-Component Analysis for 40 GHz Observations through 2022 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Denis%2C+K+L">Kevin L. Denis</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Flux%C3%A1%2C+P">Pedro Flux谩</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayer%2C+J">Johannes Hubmayer</a>, <a href="/search/astro-ph?searchtype=author&query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&query=Parker%2C+L">Lucas Parker</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00675v2-abstract-short" style="display: inline;"> Measurement of the largest angular scale ($\ell < 30$) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordial $B$-modes. We present an analysis of maps covering 73.6\% of the sky made from the $40\,\mathrm{GHz}$ channel of the Cosmology Large Angula… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00675v2-abstract-full').style.display = 'inline'; document.getElementById('2309.00675v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00675v2-abstract-full" style="display: none;"> Measurement of the largest angular scale ($\ell < 30$) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordial $B$-modes. We present an analysis of maps covering 73.6\% of the sky made from the $40\,\mathrm{GHz}$ channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range $10 < \ell < 100$. Simulations show the CLASS linear (circular) polarization maps have a white noise level of $125 \,(130)\,\mathrm{渭K\, arcmin}$. We measure the Galaxy-masked $EE$ and $BB$ spectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range $5 < \ell < 125$ with the first bin showing $D_\ell < 0.023$ $\mathrm{渭K^2_{CMB}}$ at 95\% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00675v2-abstract-full').style.display = 'none'; document.getElementById('2309.00675v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 25 figures, 6 tables. Accepted to The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13309">arXiv:2308.13309</a> <span> [<a href="https://arxiv.org/pdf/2308.13309">pdf</a>, <a href="https://arxiv.org/format/2308.13309">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ad50a0">10.3847/1538-4365/ad50a0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmology Large Angular Scale Surveyor (CLASS): 90 GHz Telescope Pointing, Beam Profile, Window Function, and Polarization Performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Espinoza%2C+F">Francisco Espinoza</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Flux%C3%A1%2C+P">Pedro Flux谩</a>, <a href="/search/astro-ph?searchtype=author&query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&query=Helson%2C+K">Kyle Helson</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=Novack%2C+S">Sasha Novack</a>, <a href="/search/astro-ph?searchtype=author&query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&query=Parker%2C+L">Lucas Parker</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13309v2-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background (CMB) over ~75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the large angular scale CMB polarization to constrain the tensor-to-scalar ratio and the optical depth to last scattering. This paper presents the op… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13309v2-abstract-full').style.display = 'inline'; document.getElementById('2308.13309v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13309v2-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background (CMB) over ~75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the large angular scale CMB polarization to constrain the tensor-to-scalar ratio and the optical depth to last scattering. This paper presents the optical characterization of the 90GHz telescope, which has been observing since July 2018. Observations of the Moon establish the pointing while dedicated observations of Jupiter are used for beam calibration. The standard deviations of the pointing error in azimuth, elevation, and boresight angle are 1.3, 2.1, and 2.0 arcminutes, respectively, over the first 3 years of observations. This corresponds to a pointing uncertainty ~7% of the beam's full width at half maximum (FWHM). The effective azimuthally-symmetrized instrument 1D beam estimated at 90 GHz has an FWHM of 0.620+/-0.003 deg and a solid angle of 138.7+/-0.6(stats.)+/-1.1(sys.) usr integrated to a radius of 4 deg. The corresponding beam window function drops to b_ell^2 = 0.93, 0.71, 0.14 at ell = 30, 100, 300, respectively. Far-sidelobes are studied using detector-centered intensity maps of the Moon and measured to be at a level of 10^-3 or below relative to the peak. The polarization angle of Tau A estimated from preliminary survey maps is 149.6+/-0.2(stats.) deg in equatorial coordinates. The instrumental temperature-to-polarization (T-to-P) leakage fraction, inferred from per-detector demodulated Jupiter scan data, has a monopole component at the level of 1.7 x 10^-3, a dipole component with an amplitude of 4.3 x 10^-3, with no evidence of quadrupolar leakage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13309v2-abstract-full').style.display = 'none'; document.getElementById('2308.13309v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 18 figures, submitted to ApJS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Supplement Series, Volume 273, Number 2 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01045">arXiv:2305.01045</a> <span> [<a href="https://arxiv.org/pdf/2305.01045">pdf</a>, <a href="https://arxiv.org/format/2305.01045">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> CLASS Data Pipeline and Maps for 40 GHz Observations through 2022 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Osumi%2C+K">Keisuke Osumi</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J">John Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M">Michael Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C">Charles Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D">David Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J">Jullianna Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Denis%2C+K">Kevin Denis</a>, <a href="/search/astro-ph?searchtype=author&query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&query=Inostroza%2C+F+R+E">Francisco Raul Espinoza Inostroza</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Fluxa%2C+P">Pedro Fluxa</a>, <a href="/search/astro-ph?searchtype=author&query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T">Tobias Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=Miller%2C+N">Nathan Miller</a>, <a href="/search/astro-ph?searchtype=author&query=Novack%2C+S">Sasha Novack</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01045v2-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75\% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220~GHz. This paper describes the CLASS data pipeline and maps for 40~GHz observations conducted from August 2016 to May 2022. We demonstrate how well the CLASS survey strategy, w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01045v2-abstract-full').style.display = 'inline'; document.getElementById('2305.01045v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01045v2-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75\% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220~GHz. This paper describes the CLASS data pipeline and maps for 40~GHz observations conducted from August 2016 to May 2022. We demonstrate how well the CLASS survey strategy, with rapid ($\sim10\,\mathrm{Hz}$) front-end modulation, recovers the large-scale Galactic polarization signal from the ground: the mapping transfer function recovers $\sim75$\% of $EE$, $BB$, and $VV$ power at $\ell=20$ and $\sim45$\% at $\ell=10$. We present linear and circular polarization maps over 75\% of the sky. Simulations based on the data imply the maps have a white noise level of $110\,\mathrm{渭K\, arcmin}$ and correlated noise component rising at low-$\ell$ as $\ell^{-2.2}$. The transfer-function-corrected low-$\ell$ component is comparable to the white noise at the angular knee frequencies of $\ell\approx16$ (linear polarization) and $\ell\approx12$ (circular polarization). Finally, we present simulations of the level at which expected sources of systematic error bias the measurements, finding sub-percent bias for the $螞\mathrm{CDM}$ $EE$ power spectra. Bias from $E$-to-$B$ leakage due to the data reduction pipeline and polarization angle uncertainty approaches the expected level for an $r=0.01$ $BB$ power spectrum. Improvements to the instrument calibration and the data pipeline will decrease this bias. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01045v2-abstract-full').style.display = 'none'; document.getElementById('2305.01045v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 17 figures; submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.07367">arXiv:2304.07367</a> <span> [<a href="https://arxiv.org/pdf/2304.07367">pdf</a>, <a href="https://arxiv.org/format/2304.07367">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/PSJ/acee76">10.3847/PSJ/acee76 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microwave Observations of Venus with CLASS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Akins%2C+A+B">Alex B. Akins</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna D. Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Reeves%2C+R">Rodrigo Reeves</a>, <a href="/search/astro-ph?searchtype=author&query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Valle%2C+D+A+N">Deniz A. N. Valle</a>, <a href="/search/astro-ph?searchtype=author&query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&query=Weiland%2C+J+L">Janet L. Weiland</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.07367v2-abstract-short" style="display: inline;"> We report on the disk-averaged absolute brightness temperatures of Venus measured at four microwave frequency bands with the Cosmology Large Angular Scale Surveyor (CLASS). We measure temperatures of 432.3 $\pm$ 2.8 K, 355.6 $\pm$ 1.3 K, 317.9 $\pm$ 1.7 K, and 294.7 $\pm$ 1.9 K for frequency bands centered at 38.8, 93.7, 147.9, and 217.5 GHz, respectively. We do not observe any dependence of the m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07367v2-abstract-full').style.display = 'inline'; document.getElementById('2304.07367v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.07367v2-abstract-full" style="display: none;"> We report on the disk-averaged absolute brightness temperatures of Venus measured at four microwave frequency bands with the Cosmology Large Angular Scale Surveyor (CLASS). We measure temperatures of 432.3 $\pm$ 2.8 K, 355.6 $\pm$ 1.3 K, 317.9 $\pm$ 1.7 K, and 294.7 $\pm$ 1.9 K for frequency bands centered at 38.8, 93.7, 147.9, and 217.5 GHz, respectively. We do not observe any dependence of the measured brightness temperatures on solar illumination for all four frequency bands. A joint analysis of our measurements with lower frequency Very Large Array (VLA) observations suggests relatively warmer ($\sim$ 7 K higher) mean atmospheric temperatures and lower abundances of microwave continuum absorbers than those inferred from prior radio occultation measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07367v2-abstract-full').style.display = 'none'; document.getElementById('2304.07367v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, published in PSJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Planetary Science Journal, 4:154 (7pp), 2023 August </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01417">arXiv:2301.01417</a> <span> [<a href="https://arxiv.org/pdf/2301.01417">pdf</a>, <a href="https://arxiv.org/format/2301.01417">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2023.3262497">10.1109/TASC.2023.3262497 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On-sky performance of new 90 GHz detectors for the Cosmology Large Angular Scale Surveyor (CLASS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Denis%2C+K+L">Kevin L. Denis</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Helson%2C+K">Kyle Helson</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T">Tobias Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=P%C3%A9rez%2C+C+M">Carolina Morales P茅rez</a>, <a href="/search/astro-ph?searchtype=author&query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01417v2-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert and designed to measure the polarized Cosmic Microwave Background (CMB) over large angular scales. The CLASS array is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01417v2-abstract-full').style.display = 'inline'; document.getElementById('2301.01417v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01417v2-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert and designed to measure the polarized Cosmic Microwave Background (CMB) over large angular scales. The CLASS array is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dichroic system at 150/220 GHz (HF). During the austral winter of 2022, we upgraded the first 90 GHz telescope (W1) by replacing four of the seven focal plane modules. These new modules contain detector wafers with an updated design, aimed at improving the optical efficiency and detector stability. We present a description of the design changes and measurements of on-sky optical efficiencies derived from observations of Jupiter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01417v2-abstract-full').style.display = 'none'; document.getElementById('2301.01417v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, to appear in the IEEE Transactions on Applied Superconductivity. arXiv admin note: text overlap with arXiv:2208.05006</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01370">arXiv:2212.01370</a> <span> [<a href="https://arxiv.org/pdf/2212.01370">pdf</a>, <a href="https://arxiv.org/format/2212.01370">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Characterization of Low-noise Backshort-Under-Grid Kilopixel Transition Edge Sensor Arrays for PIPER </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Switzer%2C+E+R">Eric R. Switzer</a>, <a href="/search/astro-ph?searchtype=author&query=Brekosky%2C+R+P">Regis P. Brekosky</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Fixsen%2C+D+J">Dale J. Fixsen</a>, <a href="/search/astro-ph?searchtype=author&query=Jhabvala%2C+C+A">Christine A. Jhabvala</a>, <a href="/search/astro-ph?searchtype=author&query=Kogut%2C+A+J">Alan J. Kogut</a>, <a href="/search/astro-ph?searchtype=author&query=Miller%2C+T+M">Timothy M. Miller</a>, <a href="/search/astro-ph?searchtype=author&query=Mirel%2C+P">Paul Mirel</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01370v1-abstract-short" style="display: inline;"> We present laboratory characterization of kilo-pixel, filled backshort-under-grid (BUG) transition-edge sensor (TES) arrays developed for the Primordial Inflation Polarization ExploreR (PIPER) balloon-borne instrument. PIPER is designed to map the polarization of the CMB on the largest angular scales and characterize dust foregrounds by observing a large fraction of the sky in four frequency bands… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01370v1-abstract-full').style.display = 'inline'; document.getElementById('2212.01370v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01370v1-abstract-full" style="display: none;"> We present laboratory characterization of kilo-pixel, filled backshort-under-grid (BUG) transition-edge sensor (TES) arrays developed for the Primordial Inflation Polarization ExploreR (PIPER) balloon-borne instrument. PIPER is designed to map the polarization of the CMB on the largest angular scales and characterize dust foregrounds by observing a large fraction of the sky in four frequency bands in the range 200 to 600 GHz. The BUG TES arrays are read out by planar SQUID-based time division multiplexer chips (2dMUX) of matching form factor and hybridized directly with the detector arrays through indium bump bonding. Here, we discuss the performance of the 2dMUX and present measurements of the TES transition temperature, thermal conductance, saturation power, and preliminary noise performance. The detectors achieve saturation power below 1 pW and phonon noise equivalent power (NEP) on the order of a few aW/rtHz. Detector performance is further verified through pre-flight tests in the integrated PIPER receiver, performed in an environment simulating balloon float conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01370v1-abstract-full').style.display = 'none'; document.getElementById('2212.01370v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02497">arXiv:2209.02497</a> <span> [<a href="https://arxiv.org/pdf/2209.02497">pdf</a>, <a href="https://arxiv.org/format/2209.02497">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad916">10.1093/mnras/stad916 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extragalactic Science with the Experiment for Cryogenic Large-aperture Intensity Mapping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pullen%2C+A+R">Anthony R. Pullen</a>, <a href="/search/astro-ph?searchtype=author&query=Breysse%2C+P+C">Patrick C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&query=Oxholm%2C+T">Trevor Oxholm</a>, <a href="/search/astro-ph?searchtype=author&query=Switzer%2C+E+R">Eric R. Switzer</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+C+J">Christopher J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Barrentine%2C+E">Emily Barrentine</a>, <a href="/search/astro-ph?searchtype=author&query=Bolatto%2C+A+D">Alberto D. Bolatto</a>, <a href="/search/astro-ph?searchtype=author&query=Cataldo%2C+G">Giuseppe Cataldo</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Maniyar%2C+A">Abhishek Maniyar</a>, <a href="/search/astro-ph?searchtype=author&query=Stevenson%2C+T">Thomas Stevenson</a>, <a href="/search/astro-ph?searchtype=author&query=Somerville%2C+R+S">Rachel S. Somerville</a>, <a href="/search/astro-ph?searchtype=author&query=Volpert%2C+C">Carrie Volpert</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E">Edward Wollack</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+S">Shengqi Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Yung%2C+L+Y+A">L. Y. Aaron Yung</a>, <a href="/search/astro-ph?searchtype=author&query=Zhou%2C+Z">Zilu Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02497v1-abstract-short" style="display: inline;"> The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne cryogenic telescope that will survey the spectrum of diffuse emission from both the Milky Way and the cosmic web to probe star formation, the interstellar medium, and galaxy evolution across cosmic time. EXCLAIM's primary extragalactic science survey maps 305 deg$^2$ along the celestial equator with an R=512… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02497v1-abstract-full').style.display = 'inline'; document.getElementById('2209.02497v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02497v1-abstract-full" style="display: none;"> The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne cryogenic telescope that will survey the spectrum of diffuse emission from both the Milky Way and the cosmic web to probe star formation, the interstellar medium, and galaxy evolution across cosmic time. EXCLAIM's primary extragalactic science survey maps 305 deg$^2$ along the celestial equator with an R=512 spectrometer over the frequency range 谓=420-540 GHz, targeting emission of the [CII] line over redshifts 2.5<z<3.5 and several CO lines for z<1. Cross-correlation with galaxy redshift catalogs isolates line emission from the large-scale structure at target redshifts. In this paper, we forecast the sensitivity for both the two-point and conditional one-point cross-correlation. We predict that EXCLAIM will detect both the [CII]-QSO cross-power spectrum and the conditional voxel intensity distribution (CVID) at various redshifts under a broad range of [CII] intensity models, allowing it to differentiate among these models in the literature. These forecasts for the power spectra include the effects of line interlopers and continuum foreground contamination. We then convert the joint [CII] constraints from both the cross-power spectrum and the CVID into constraints on the [CII] halo luminosity-mass relation $L_\mathrm{[CII]}(M)$ model parameters and the star formation rate density (SFRD) from [CII] emission. We also develop sensitivity estimates for CO, showing the ability to differentiate between models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02497v1-abstract-full').style.display = 'none'; document.getElementById('2209.02497v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 14 figures, will submit to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.06401">arXiv:2208.06401</a> <span> [<a href="https://arxiv.org/pdf/2208.06401">pdf</a>, <a href="https://arxiv.org/format/2208.06401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Optical Characterization & Testbed Development for 渭-Spec Integrated Spectrometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Rahmani%2C+M">Maryam Rahmani</a>, <a href="/search/astro-ph?searchtype=author&query=Barlis%2C+A">Alyssa Barlis</a>, <a href="/search/astro-ph?searchtype=author&query=Barrentine%2C+E+M">Emily M. Barrentine</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+A+D">Ari D. Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Bulcha%2C+B+T">Berhanu T. Bulcha</a>, <a href="/search/astro-ph?searchtype=author&query=Cataldo%2C+G">Giuseppe Cataldo</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Ehsan%2C+N">Negar Ehsan</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T+M">Thomas M. Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Grant%2C+H">Henry Grant</a>, <a href="/search/astro-ph?searchtype=author&query=Hays-Wehle%2C+J">James Hays-Wehle</a>, <a href="/search/astro-ph?searchtype=author&query=Hsieh%2C+W">Wen-Ting Hsieh</a>, <a href="/search/astro-ph?searchtype=author&query=Mikula%2C+V">Vilem Mikula</a>, <a href="/search/astro-ph?searchtype=author&query=Moseley%2C+S+H">S. Harvey Moseley</a>, <a href="/search/astro-ph?searchtype=author&query=Noroozian%2C+O">Omid Noroozian</a>, <a href="/search/astro-ph?searchtype=author&query=Oxholm%2C+T+R">Trevor R. Oxholm</a>, <a href="/search/astro-ph?searchtype=author&query=Quijada%2C+M+A">Manuel A. Quijada</a>, <a href="/search/astro-ph?searchtype=author&query=Patel%2C+J">Jessica Patel</a>, <a href="/search/astro-ph?searchtype=author&query=Stevenson%2C+T+R">Thomas R. Stevenson</a>, <a href="/search/astro-ph?searchtype=author&query=Switzer%2C+E+R">Eric R. Switzer</a>, <a href="/search/astro-ph?searchtype=author&query=Tucker%2C+C">Carole Tucker</a>, <a href="/search/astro-ph?searchtype=author&query=U-Yen%2C+K">Kongpop U-Yen</a>, <a href="/search/astro-ph?searchtype=author&query=Volpert%2C+C">Carolyn Volpert</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.06401v1-abstract-short" style="display: inline;"> This paper describes a cryogenic optical testbed developed to characterize u-Spec spectrometers in a dedicated dilution refrigerator (DR) system. u-Spec is a far-infrared integrated spectrometer that is an analog to a Rowland-type grating spectrometer. It employs a single-crystal silicon substrate with niobium microstrip lines and aluminum kinetic inductance detectors (KIDs). Current designs with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06401v1-abstract-full').style.display = 'inline'; document.getElementById('2208.06401v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.06401v1-abstract-full" style="display: none;"> This paper describes a cryogenic optical testbed developed to characterize u-Spec spectrometers in a dedicated dilution refrigerator (DR) system. u-Spec is a far-infrared integrated spectrometer that is an analog to a Rowland-type grating spectrometer. It employs a single-crystal silicon substrate with niobium microstrip lines and aluminum kinetic inductance detectors (KIDs). Current designs with a resolution of 512 are in fabrication for the EXCLAIM (Experiment for Cryogenic Large Aperture Intensity Mapping) balloon mission. The primary spectrometer performance and design parameters are efficiency, NEP, inter-channel isolation, spectral resolution, and frequency response for each channel. Here we present the development and design of an optical characterization facility and preliminary validation of that facility with earlier prototype R=64 devices. We have conducted and describe initial optical measurements of R = 64 devices using a swept photomixer line source. We also discuss the test plan for optical characterization of the EXCLAIM R = 512 u-Spec devices in this new testbed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06401v1-abstract-full').style.display = 'none'; document.getElementById('2208.06401v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SPIE conference, Montreal, Ca. July 17-22, 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05022">arXiv:2208.05022</a> <span> [<a href="https://arxiv.org/pdf/2208.05022">pdf</a>, <a href="https://arxiv.org/format/2208.05022">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Cosmology Large Angular Scale Surveyor (CLASS): Pointing Stability and Beam Measurements at 90, 150, and 220 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna D. Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05022v1-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) telescope array surveys 75% of the sky from the Atacama desert in Chile at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the largest-angular-scale CMB polarization with the aim of constraining the tensor-to-scalar ratio, measuring the optical depth to reionization to near the cosmic variance limit, and more. The CLASS Q-ba… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05022v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05022v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05022v1-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) telescope array surveys 75% of the sky from the Atacama desert in Chile at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the largest-angular-scale CMB polarization with the aim of constraining the tensor-to-scalar ratio, measuring the optical depth to reionization to near the cosmic variance limit, and more. The CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic high frequency (150/220 GHz) telescopes have been observing since June 2016, May 2018, and September 2019, respectively. On-sky optical characterization of the 40 GHz instrument has been published. Here, we present preliminary on-sky measurements of the beams at 90, 150, and 220 GHz, and pointing stability of the 90 and 150/220 GHz telescopes. The average 90, 150, and 220 GHz beams measured from dedicated observations of Jupiter have full width at half maximum (FWHM) of 0.615+/-0.019 deg, 0.378+/-0.005 deg, and 0.266+/-0.008 deg, respectively. Telescope pointing variations are within a few percent of the beam FWHM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05022v1-abstract-full').style.display = 'none'; document.getElementById('2208.05022v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Proc. SPIE Astronomical Telescopes and Instrumentation (2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05006">arXiv:2208.05006</a> <span> [<a href="https://arxiv.org/pdf/2208.05006">pdf</a>, <a href="https://arxiv.org/format/2208.05006">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Design and characterization of new 90 GHz detectors for the Cosmology Large Angular Scale Surveyor (CLASS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Denis%2C+K+L">Kevin L. Denis</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Espinoza%2C+F">Francisco Espinoza</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Tom Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Helson%2C+K">Kyle Helson</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=P%C3%A9rez%2C+C+M">Carolina Morales P茅rez</a>, <a href="/search/astro-ph?searchtype=author&query=Valle%2C+D+A+N">Deniz Augusto Nunes Valle</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05006v1-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert. CLASS is designed to measure "E-mode" (even parity) and "B-mode" (odd parity) polarization patterns in the Cosmic Microwave Background (CMB) over large angular scales with the aim of improving our understanding of inflation, reionization, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05006v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05006v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05006v1-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert. CLASS is designed to measure "E-mode" (even parity) and "B-mode" (odd parity) polarization patterns in the Cosmic Microwave Background (CMB) over large angular scales with the aim of improving our understanding of inflation, reionization, and dark matter. CLASS is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dichroic system at 150/220 GHz (G). In these proceedings, we discuss the updated design and in-lab characterization of new 90 GHz detectors. The new detectors include design changes to the transition-edge sensor (TES) bolometer architecture, which aim to improve stability and optical efficiency. We assembled and tested four new detector wafers, to replace four modules of the W1 focal plane. These detectors were installed into the W1 telescope, and will achieve first light in the austral winter of 2022. We present electrothermal parameters and bandpass measurements from in-lab dark and optical testing. From in-lab dark tests, we also measure a median NEP of 12.3 $\mathrm{aW\sqrt{s}}$ across all four wafers about the CLASS signal band, which is below the expected photon NEP of 32 $\mathrm{aW\sqrt{s}}$ from the field. We therefore expect the new detectors to be photon noise limited. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05006v1-abstract-full').style.display = 'none'; document.getElementById('2208.05006v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, to appear in Proc. SPIE Astronomical Telescopes and Instrumentation 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05005">arXiv:2208.05005</a> <span> [<a href="https://arxiv.org/pdf/2208.05005">pdf</a>, <a href="https://arxiv.org/format/2208.05005">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Construction of a Large Diameter Reflective Half-Wave Plate Modulator for Millimeter Wave Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05005v2-abstract-short" style="display: inline;"> Polarization modulation is a powerful technique to increase the stability of measurements by enabling the distinction of a polarized signal from dominant slow system drifts and unpolarized foregrounds. Furthermore, when placed as close to the sky as possible, modulation can reduce systematic errors from instrument polarization. In this work, we introduce the design and preliminary drive system lab… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05005v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05005v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05005v2-abstract-full" style="display: none;"> Polarization modulation is a powerful technique to increase the stability of measurements by enabling the distinction of a polarized signal from dominant slow system drifts and unpolarized foregrounds. Furthermore, when placed as close to the sky as possible, modulation can reduce systematic errors from instrument polarization. In this work, we introduce the design and preliminary drive system laboratory performance of a new 60 cm diameter reflective half-wave plate (RHWP) polarization modulator. The wave plate consists of a wire array situated in front of a flat mirror. Using \mbox{50 $渭$m} diameter wires with \mbox{175 $渭$m} spacing, the wave plate will be suitable for operation in the millimeter wavelength range with flatness of the wires and parallelism to the mirror held to a small fraction of a wavelength. The presented design targets the 77--108 GHz range. Modulation is performed by a rotation of the wave plate with a custom rotary drive utilizing an actively controlled servo motor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05005v2-abstract-full').style.display = 'none'; document.getElementById('2208.05005v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, to appear in Proc. SPIE Astronomical Telescopes and Instrumentation 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.04996">arXiv:2208.04996</a> <span> [<a href="https://arxiv.org/pdf/2208.04996">pdf</a>, <a href="https://arxiv.org/format/2208.04996">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Long-Timescale Stability in CMB Observations at Multiple Frequencies using Front-End Polarization Modulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Espinoza%2C+F">Francisco Espinoza</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=Nunez%2C+C">Carolina Nunez</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Reeves%2C+R+A">Rodrigo A. Reeves</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.04996v1-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array observing the Cosmic Microwave Background (CMB) at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the CMB polarization on the largest angular scales to constrain the inflationary tensor-to-scalar ratio and the optical depth due to reionization. To achieve the long time-scale stability necessary for this… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04996v1-abstract-full').style.display = 'inline'; document.getElementById('2208.04996v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.04996v1-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array observing the Cosmic Microwave Background (CMB) at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the CMB polarization on the largest angular scales to constrain the inflationary tensor-to-scalar ratio and the optical depth due to reionization. To achieve the long time-scale stability necessary for this measurement from the ground, CLASS utilizes a front-end, variable-delay polarization modulator on each telescope. Here we report on the improvements in stability afforded by front-end modulation using data across all four CLASS frequencies. Across one month of modulated linear polarization data in 2021, CLASS achieved median knee frequencies of 9.1, 29.1, 20.4, and 36.4 mHz for the 40, 90, 150, and 220 GHz observing bands. The knee frequencies are approximately an order of magnitude lower than achieved via CLASS pair-differencing orthogonal detector pairs without modulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04996v1-abstract-full').style.display = 'none'; document.getElementById('2208.04996v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to SPIE Astronomical Telescopes + Instrumentation 2022 Conference (AS22)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.04257">arXiv:2208.04257</a> <span> [<a href="https://arxiv.org/pdf/2208.04257">pdf</a>, <a href="https://arxiv.org/format/2208.04257">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Characterization of aerogel scattering filters for astronomical telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Barlis%2C+A">Alyssa Barlis</a>, <a href="/search/astro-ph?searchtype=author&query=Arseneau%2C+S">Stefan Arseneau</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Guo%2C+H">Haiquan Guo</a>, <a href="/search/astro-ph?searchtype=author&query=Helson%2C+K+R">Kyle R. Helson</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T">Tobias Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=Quijada%2C+M+A">Manuel A. Quijada</a>, <a href="/search/astro-ph?searchtype=author&query=Tokarz%2C+A+E">Ariel E. Tokarz</a>, <a href="/search/astro-ph?searchtype=author&query=Vivod%2C+S+L">Stephanie L. Vivod</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.04257v1-abstract-short" style="display: inline;"> We have developed a suite of novel infrared-blocking filters made by embedding scattering particles in a polymer aerogel substrate. Our developments allow us to tune the spectral performance of the filters based on both the composition of the base aerogel material and the properties of the scattering particles. Our filters are targeted for use in a variety of applications, from ground-based CMB ex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04257v1-abstract-full').style.display = 'inline'; document.getElementById('2208.04257v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.04257v1-abstract-full" style="display: none;"> We have developed a suite of novel infrared-blocking filters made by embedding scattering particles in a polymer aerogel substrate. Our developments allow us to tune the spectral performance of the filters based on both the composition of the base aerogel material and the properties of the scattering particles. Our filters are targeted for use in a variety of applications, from ground-based CMB experiments to planetary science probes. We summarize the formulations we have fabricated and tested to date, including several polyimide base aerogel formulations incorporating a range of size distributions of diamond scattering particles. We also describe the spectral characterization techniques used to measure the filters' optical properties, including the development of a mm-wave Fourier transform spectrometer testbed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04257v1-abstract-full').style.display = 'none'; document.getElementById('2208.04257v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at SPIE Astronomical Telescopes & Instrumentation Conference 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03755">arXiv:2208.03755</a> <span> [<a href="https://arxiv.org/pdf/2208.03755">pdf</a>, <a href="https://arxiv.org/format/2208.03755">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Novel infrared-blocking aerogel scattering filters and their applications in astrophysical and planetary science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Helson%2C+K+R">Kyle R. Helson</a>, <a href="/search/astro-ph?searchtype=author&query=Arseneau%2C+S">Stefan Arseneau</a>, <a href="/search/astro-ph?searchtype=author&query=Barlis%2C+A">Alyssa Barlis</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T+M">Thomas M. Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Guo%2C+H">Haiquan Guo</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T">Tobias Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=Quijada%2C+M+A">Manuel A. Quijada</a>, <a href="/search/astro-ph?searchtype=author&query=Tokarz%2C+A+E">Ariel E. Tokarz</a>, <a href="/search/astro-ph?searchtype=author&query=Vivod%2C+S+L">Stephanie L. Vivod</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03755v2-abstract-short" style="display: inline;"> Infrared-blocking scattering aerogel filters have a broad range of potential applications in astrophysics and planetary science observations in the far-infrared, sub-millimeter, and microwave regimes. Successful dielectric modeling of aerogel filters allowed the fabrication of samples to meet the mechanical and science instrument requirements for several experiments, including the Sub-millimeter S… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03755v2-abstract-full').style.display = 'inline'; document.getElementById('2208.03755v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03755v2-abstract-full" style="display: none;"> Infrared-blocking scattering aerogel filters have a broad range of potential applications in astrophysics and planetary science observations in the far-infrared, sub-millimeter, and microwave regimes. Successful dielectric modeling of aerogel filters allowed the fabrication of samples to meet the mechanical and science instrument requirements for several experiments, including the Sub-millimeter Solar Observation Lunar Volatiles Experiment (SSOLVE), the Cosmology Large Angular Scale Surveyor (CLASS), and the Experiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM). Thermal multi-physics simulations of the filters predict their performance when integrated into a cryogenic receiver. Prototype filters have survived cryogenic cycling to 4K with no degradation in mechanical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03755v2-abstract-full').style.display = 'none'; document.getElementById('2208.03755v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02786">arXiv:2208.02786</a> <span> [<a href="https://arxiv.org/pdf/2208.02786">pdf</a>, <a href="https://arxiv.org/format/2208.02786">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Developing a New Generation of Integrated Micro-Spec Far Infrared Spectrometers for the EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Volpert%2C+C+G">Carolyn G. Volpert</a>, <a href="/search/astro-ph?searchtype=author&query=Barrentine%2C+E+M">Emily M. Barrentine</a>, <a href="/search/astro-ph?searchtype=author&query=Mirzaei%2C+M">Mona Mirzaei</a>, <a href="/search/astro-ph?searchtype=author&query=Barlis%2C+A">Alyssa Barlis</a>, <a href="/search/astro-ph?searchtype=author&query=Bolatto%2C+A+D">Alberto D. Bolatto</a>, <a href="/search/astro-ph?searchtype=author&query=Bulcha%2C+B">Berhanu Bulcha</a>, <a href="/search/astro-ph?searchtype=author&query=Cataldo%2C+G">Giuseppe Cataldo</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J+A">Jake A. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Costen%2C+N">Nicholas Costen</a>, <a href="/search/astro-ph?searchtype=author&query=Ehsan%2C+N">Negar Ehsan</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Glenn%2C+J">Jason Glenn</a>, <a href="/search/astro-ph?searchtype=author&query=Hays-Wehle%2C+J+P">James P. Hays-Wehle</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+L+A">Larry A. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=Kogut%2C+A+J">Alan J. Kogut</a>, <a href="/search/astro-ph?searchtype=author&query=Moseley%2C+H">Harvey Moseley</a>, <a href="/search/astro-ph?searchtype=author&query=Mugge-Durum%2C+J">Jonas Mugge-Durum</a>, <a href="/search/astro-ph?searchtype=author&query=Noroozian%2C+O">Omid Noroozian</a>, <a href="/search/astro-ph?searchtype=author&query=Oxholm%2C+T+M">Trevor M. Oxholm</a>, <a href="/search/astro-ph?searchtype=author&query=Rahmani%2C+M">Maryam Rahmani</a>, <a href="/search/astro-ph?searchtype=author&query=Stevenson%2C+T">Thomas Stevenson</a>, <a href="/search/astro-ph?searchtype=author&query=Switzer%2C+E+R">Eric R. Switzer</a>, <a href="/search/astro-ph?searchtype=author&query=Watson%2C+J">Joseph Watson</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02786v1-abstract-short" style="display: inline;"> The current state of far-infrared astronomy drives the need to develop compact, sensitive spectrometers for future space and ground-based instruments. Here we present details of the $\rm 渭$-Spec spectrometers currently in development for the far-infrared balloon mission EXCLAIM. The spectrometers are designed to cover the $\rm 555 - 714\ 渭$m range with a resolution of $\rm R\ =\ 位/ 螖位 =\ 512$ at t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02786v1-abstract-full').style.display = 'inline'; document.getElementById('2208.02786v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02786v1-abstract-full" style="display: none;"> The current state of far-infrared astronomy drives the need to develop compact, sensitive spectrometers for future space and ground-based instruments. Here we present details of the $\rm 渭$-Spec spectrometers currently in development for the far-infrared balloon mission EXCLAIM. The spectrometers are designed to cover the $\rm 555 - 714\ 渭$m range with a resolution of $\rm R\ =\ 位/ 螖位 =\ 512$ at the $\rm 638\ 渭$m band center. The spectrometer design incorporates a Rowland grating spectrometer implemented in a parallel plate waveguide on a low-loss single-crystal Si chip, employing Nb microstrip planar transmission lines and thin-film Al kinetic inductance detectors (KIDs). The EXCLAIM $\rm 渭$-Spec design is an advancement upon a successful $\rm R = 64\ 渭$-Spec prototype, and can be considered a sub-mm superconducting photonic integrated circuit (PIC) that combines spectral dispersion and detection. The design operates in a single $M{=}2$ grating order, allowing one spectrometer to cover the full EXCLAIM band without requiring a multi-order focal plane. The EXCLAIM instrument will fly six spectrometers, which are fabricated on a single 150 mm diameter Si wafer. Fabrication involves a flip-wafer-bonding process with patterning of the superconducting layers on both sides of the Si dielectric. The spectrometers are designed to operate at 100 mK, and will include 355 Al KID detectors targeting a goal of NEP ${\sim}8\times10^{-19}$ $\rm W/\sqrt{Hz}$. We summarize the design, fabrication, and ongoing development of these $\rm 渭$-Spec spectrometers for EXCLAIM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02786v1-abstract-full').style.display = 'none'; document.getElementById('2208.02786v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, to appear in the Proceedings of the SPIE Astronomical Telescopes + Instrumentation (2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.06901">arXiv:2205.06901</a> <span> [<a href="https://arxiv.org/pdf/2205.06901">pdf</a>, <a href="https://arxiv.org/format/2205.06901">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac8cf2">10.3847/1538-4365/ac8cf2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration of Transition-edge Sensor (TES) Bolometer Arrays with Application to CLASS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Chan%2C+M">Manwei Chan</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna D. Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Denis%2C+K">Kevin Denis</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&query=Osumi%2C+K">Keisuke Osumi</a>, <a href="/search/astro-ph?searchtype=author&query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&query=Valle%2C+D+A+N">Deniz A. N. Valle</a>, <a href="/search/astro-ph?searchtype=author&query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&query=Weiland%2C+J+L">Janet L. Weiland</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.06901v2-abstract-short" style="display: inline;"> The current and future cosmic microwave background (CMB) experiments fielding kilo-pixel arrays of transition-edge sensor (TES) bolometers require accurate and robust gain calibration methods. We simplify and refactor the standard TES model to directly relate the detector responsivity calibration and optical time constant to the measured TES current $I$ and the applied bias current… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.06901v2-abstract-full').style.display = 'inline'; document.getElementById('2205.06901v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.06901v2-abstract-full" style="display: none;"> The current and future cosmic microwave background (CMB) experiments fielding kilo-pixel arrays of transition-edge sensor (TES) bolometers require accurate and robust gain calibration methods. We simplify and refactor the standard TES model to directly relate the detector responsivity calibration and optical time constant to the measured TES current $I$ and the applied bias current $I_{\mathrm{b}}$. The calibration method developed for the Cosmology Large Angular Scale Surveyor (CLASS) TES bolometer arrays relies on current versus voltage ($I$-$V$) measurements acquired daily prior to CMB observations. By binning Q-band (40GHz) $I$-$V$ measurements by optical loading, we find that the gain calibration median standard error within a bin is 0.3%. We test the accuracy of this "$I$-$V$ bin" detector calibration method by using the Moon as a photometric standard. The ratio of measured Moon amplitudes between detector pairs sharing the same feedhorn indicates a TES calibration error of 0.5%. We also find that for the CLASS Q-band TES array, calibrating the response of individual detectors based solely on the applied TES bias current accurately corrects TES gain variations across time but introduces a bias in the TES calibration from data counts to power units. Since the TES current bias value is set and recorded before every observation, this calibration method can always be applied to raw TES data and is not subject to $I$-$V$ data quality or processing errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.06901v2-abstract-full').style.display = 'none'; document.getElementById('2205.06901v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures, 5 tables. Submitted to ApJS May 2022. Published ApJS Oct 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJS 262 52 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13593">arXiv:2204.13593</a> <span> [<a href="https://arxiv.org/pdf/2204.13593">pdf</a>, <a href="https://arxiv.org/format/2204.13593">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-022-02760-6">10.1007/s10909-022-02760-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Operational Optimization to Maximize Dynamic Range in EXCLAIM Microwave Kinetic Inductance Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Oxholm%2C+T+M">Trevor M. Oxholm</a>, <a href="/search/astro-ph?searchtype=author&query=Switzer%2C+E+R">Eric R. Switzer</a>, <a href="/search/astro-ph?searchtype=author&query=Barrentine%2C+E+M">Emily M. Barrentine</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Hays-Wehle%2C+J+P">James P. Hays-Wehle</a>, <a href="/search/astro-ph?searchtype=author&query=Mauskopf%2C+P+D">Philip D. Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&query=Noroozian%2C+O">Omid Noroozian</a>, <a href="/search/astro-ph?searchtype=author&query=Rahmani%2C+M">Maryam Rahmani</a>, <a href="/search/astro-ph?searchtype=author&query=Sinclair%2C+A+K">Adrian K. Sinclair</a>, <a href="/search/astro-ph?searchtype=author&query=Stephenson%2C+R">Ryan Stephenson</a>, <a href="/search/astro-ph?searchtype=author&query=Stevenson%2C+T+R">Thomas R. Stevenson</a>, <a href="/search/astro-ph?searchtype=author&query=Timbie%2C+P+T">Peter T. Timbie</a>, <a href="/search/astro-ph?searchtype=author&query=Volpert%2C+C">Carolyn Volpert</a>, <a href="/search/astro-ph?searchtype=author&query=Weeks%2C+E">Eric Weeks</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13593v1-abstract-short" style="display: inline;"> Microwave Kinetic Inductance Detectors (MKIDs) are highly scalable detectors that have demonstrated nearly background-limited sensitivity in the far-infrared from high-altitude balloon-borne telescopes and space-like laboratory environments. In addition, the detectors have a rich design space with many optimizable parameters, allowing highly sensitive measurements over a wide dynamic range. For th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13593v1-abstract-full').style.display = 'inline'; document.getElementById('2204.13593v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13593v1-abstract-full" style="display: none;"> Microwave Kinetic Inductance Detectors (MKIDs) are highly scalable detectors that have demonstrated nearly background-limited sensitivity in the far-infrared from high-altitude balloon-borne telescopes and space-like laboratory environments. In addition, the detectors have a rich design space with many optimizable parameters, allowing highly sensitive measurements over a wide dynamic range. For these reasons, MKIDs were chosen for the Experiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM), a balloon-borne telescope targeting nearly background-limited performance in a high-altitude atmospheric environment from 420-540 GHz. We describe MKID optimization in the specific context of EXCLAIM and provide general results that apply to broader applications. Extending the established approach of tone frequency tracking, we show that readout power optimization enables significant, further improvement in dynamic range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13593v1-abstract-full').style.display = 'none'; document.getElementById('2204.13593v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08024">arXiv:2203.08024</a> <span> [<a href="https://arxiv.org/pdf/2203.08024">pdf</a>, <a href="https://arxiv.org/format/2203.08024">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Snowmass 2021 CMB-S4 White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Abazajian%2C+K">Kevork Abazajian</a>, <a href="/search/astro-ph?searchtype=author&query=Abdulghafour%2C+A">Arwa Abdulghafour</a>, <a href="/search/astro-ph?searchtype=author&query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&query=Adshead%2C+P">Peter Adshead</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Ajello%2C+M">Marco Ajello</a>, <a href="/search/astro-ph?searchtype=author&query=Akerib%2C+D">Daniel Akerib</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+S+W">Steven W. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&query=Alvarez%2C+M">Marcelo Alvarez</a>, <a href="/search/astro-ph?searchtype=author&query=Amin%2C+M+A">Mustafa A. Amin</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+A">Adam Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Ansarinejad%2C+B">Behzad Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&query=Archipley%2C+M">Melanie Archipley</a>, <a href="/search/astro-ph?searchtype=author&query=Arnold%2C+K+S">Kam S. Arnold</a>, <a href="/search/astro-ph?searchtype=author&query=Ashby%2C+M">Matt Ashby</a>, <a href="/search/astro-ph?searchtype=author&query=Aung%2C+H">Han Aung</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Baker%2C+C">Carina Baker</a>, <a href="/search/astro-ph?searchtype=author&query=Bakshi%2C+A">Abhishek Bakshi</a>, <a href="/search/astro-ph?searchtype=author&query=Bard%2C+D">Debbie Bard</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Barron%2C+D">Darcy Barron</a>, <a href="/search/astro-ph?searchtype=author&query=Barry%2C+P+S">Peter S. Barry</a> , et al. (331 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08024v1-abstract-short" style="display: inline;"> This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08024v1-abstract-full" style="display: none;"> This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08024v1-abstract-full').style.display = 'none'; document.getElementById('2203.08024v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021. arXiv admin note: substantial text overlap with arXiv:1908.01062, arXiv:1907.04473</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07638">arXiv:2203.07638</a> <span> [<a href="https://arxiv.org/pdf/2203.07638">pdf</a>, <a href="https://arxiv.org/format/2203.07638">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Snowmass2021 Cosmic Frontier: Cosmic Microwave Background Measurements White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C+L">Clarence L. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Huffenberger%2C+K+M">Kevin M. Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&query=Benson%2C+B+A">Bradford A. Benson</a>, <a href="/search/astro-ph?searchtype=author&query=Bianchini%2C+F">Federico Bianchini</a>, <a href="/search/astro-ph?searchtype=author&query=Chluba%2C+J">Jens Chluba</a>, <a href="/search/astro-ph?searchtype=author&query=Delabrouille%2C+J">Jacques Delabrouille</a>, <a href="/search/astro-ph?searchtype=author&query=Flauger%2C+R">Raphael Flauger</a>, <a href="/search/astro-ph?searchtype=author&query=Hanany%2C+S">Shaul Hanany</a>, <a href="/search/astro-ph?searchtype=author&query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&query=Kogut%2C+A+J">Alan J. Kogut</a>, <a href="/search/astro-ph?searchtype=author&query=McMahon%2C+J+J">Jeffrey J. McMahon</a>, <a href="/search/astro-ph?searchtype=author&query=Meyers%2C+J">Joel Meyers</a>, <a href="/search/astro-ph?searchtype=author&query=Sehgal%2C+N">Neelima Sehgal</a>, <a href="/search/astro-ph?searchtype=author&query=Simon%2C+S+M">Sara M. Simon</a>, <a href="/search/astro-ph?searchtype=author&query=Umilta%2C+C">Caterina Umilta</a>, <a href="/search/astro-ph?searchtype=author&query=Abazajian%2C+K+N">Kevork N. Abazajian</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Akrami%2C+Y">Yashar Akrami</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+A+J">Adam J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Ansarinejad%2C+B">Behzad Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Barron%2C+D">Darcy Barron</a>, <a href="/search/astro-ph?searchtype=author&query=Barry%2C+P+S">Peter S. Barry</a> , et al. (107 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07638v1-abstract-short" style="display: inline;"> This is a solicited whitepaper for the Snowmass 2021 community planning exercise. The paper focuses on measurements and science with the Cosmic Microwave Background (CMB). The CMB is foundational to our understanding of modern physics and continues to be a powerful tool driving our understanding of cosmology and particle physics. In this paper, we outline the broad and unique impact of CMB science… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07638v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07638v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07638v1-abstract-full" style="display: none;"> This is a solicited whitepaper for the Snowmass 2021 community planning exercise. The paper focuses on measurements and science with the Cosmic Microwave Background (CMB). The CMB is foundational to our understanding of modern physics and continues to be a powerful tool driving our understanding of cosmology and particle physics. In this paper, we outline the broad and unique impact of CMB science for the High Energy Cosmic Frontier in the upcoming decade. We also describe the progression of ground-based CMB experiments, which shows that the community is prepared to develop the key capabilities and facilities needed to achieve these transformative CMB measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07638v1-abstract-full').style.display = 'none'; document.getElementById('2203.07638v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05728">arXiv:2203.05728</a> <span> [<a href="https://arxiv.org/pdf/2203.05728">pdf</a>, <a href="https://arxiv.org/format/2203.05728">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Snowmass2021 CMB-HD White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+T+C">The CMB-HD Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&query=Akrami%2C+Y">Yashar Akrami</a>, <a href="/search/astro-ph?searchtype=author&query=Basu%2C+K">Kaustuv Basu</a>, <a href="/search/astro-ph?searchtype=author&query=Boylan-Kolchin%2C+M">Michael Boylan-Kolchin</a>, <a href="/search/astro-ph?searchtype=author&query=Brinckmann%2C+T">Thejs Brinckmann</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S">Sean Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Casey%2C+C+M">Caitlin M. Casey</a>, <a href="/search/astro-ph?searchtype=author&query=Chluba%2C+J">Jens Chluba</a>, <a href="/search/astro-ph?searchtype=author&query=Clesse%2C+S">Sebastien Clesse</a>, <a href="/search/astro-ph?searchtype=author&query=Cyr-Racine%2C+F">Francis-Yan Cyr-Racine</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Farren%2C+G+S">Gerrit S. Farren</a>, <a href="/search/astro-ph?searchtype=author&query=Fedderke%2C+M+A">Michael A. Fedderke</a>, <a href="/search/astro-ph?searchtype=author&query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&query=Fuller%2C+G+M">George M. Fuller</a>, <a href="/search/astro-ph?searchtype=author&query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&query=Gluscevic%2C+V">Vera Gluscevic</a>, <a href="/search/astro-ph?searchtype=author&query=Grin%2C+D">Daniel Grin</a>, <a href="/search/astro-ph?searchtype=author&query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&query=Hlozek%2C+R">Renee Hlozek</a> , et al. (40 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05728v1-abstract-short" style="display: inline;"> CMB-HD is a proposed millimeter-wave survey over half the sky that would be ultra-deep (0.5 uK-arcmin) and have unprecedented resolution (15 arcseconds at 150 GHz). Such a survey would answer many outstanding questions about the fundamental physics of the Universe. Major advances would be 1.) the use of gravitational lensing of the primordial microwave background to map the distribution of matter… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05728v1-abstract-full').style.display = 'inline'; document.getElementById('2203.05728v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05728v1-abstract-full" style="display: none;"> CMB-HD is a proposed millimeter-wave survey over half the sky that would be ultra-deep (0.5 uK-arcmin) and have unprecedented resolution (15 arcseconds at 150 GHz). Such a survey would answer many outstanding questions about the fundamental physics of the Universe. Major advances would be 1.) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k~10 h Mpc^(-1)), which probes dark matter particle properties. It will also allow 2.) measurements of the thermal and kinetic Sunyaev-Zel'dovich effects on small scales to map the gas density and velocity, another probe of cosmic structure. In addition, CMB-HD would allow us to cross critical thresholds: 3.) ruling out or detecting any new, light (< 0.1 eV) particles that were in thermal equilibrium with known particles in the early Universe, 4.) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe, and 5.) ruling out or detecting inflationary magnetic fields. CMB-HD would also provide world-leading constraints on 6.) axion-like particles, 7.) cosmic birefringence, 8.) the sum of the neutrino masses, and 9.) the dark energy equation of state. The CMB-HD survey would be delivered in 7.5 years of observing 20,000 square degrees of sky, using two new 30-meter-class off-axis crossed Dragone telescopes to be located at Cerro Toco in the Atacama Desert. Each telescope would field 800,000 detectors (200,000 pixels), for a total of 1.6 million detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05728v1-abstract-full').style.display = 'none'; document.getElementById('2203.05728v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021. Note some text overlap with CMB-HD Astro2020 APC and RFI (arXiv:1906.10134, arXiv:2002.12714). Science case further broadened and updated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.02773">arXiv:2202.02773</a> <span> [<a href="https://arxiv.org/pdf/2202.02773">pdf</a>, <a href="https://arxiv.org/format/2202.02773">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptac150">10.1093/ptep/ptac150 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=LiteBIRD+Collaboration"> LiteBIRD Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Allys%2C+E">E. Allys</a>, <a href="/search/astro-ph?searchtype=author&query=Arnold%2C+K">K. Arnold</a>, <a href="/search/astro-ph?searchtype=author&query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&query=Aurlien%2C+R">R. Aurlien</a>, <a href="/search/astro-ph?searchtype=author&query=Azzoni%2C+S">S. Azzoni</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&query=Banerji%2C+R">R. Banerji</a>, <a href="/search/astro-ph?searchtype=author&query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&query=Bartolo%2C+N">N. Bartolo</a>, <a href="/search/astro-ph?searchtype=author&query=Bautista%2C+L">L. Bautista</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Beckman%2C+S">S. Beckman</a>, <a href="/search/astro-ph?searchtype=author&query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/astro-ph?searchtype=author&query=Boulanger%2C+F">F. Boulanger</a>, <a href="/search/astro-ph?searchtype=author&query=Brilenkov%2C+M">M. Brilenkov</a>, <a href="/search/astro-ph?searchtype=author&query=Bucher%2C+M">M. Bucher</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Campeti%2C+P">P. Campeti</a>, <a href="/search/astro-ph?searchtype=author&query=Carones%2C+A">A. Carones</a>, <a href="/search/astro-ph?searchtype=author&query=Casas%2C+F+J">F. J. Casas</a>, <a href="/search/astro-ph?searchtype=author&query=Catalano%2C+A">A. Catalano</a>, <a href="/search/astro-ph?searchtype=author&query=Chan%2C+V">V. Chan</a>, <a href="/search/astro-ph?searchtype=author&query=Cheung%2C+K">K. Cheung</a> , et al. (166 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.02773v3-abstract-short" style="display: inline;"> LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02773v3-abstract-full').style.display = 'inline'; document.getElementById('2202.02773v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.02773v3-abstract-full" style="display: none;"> LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD is planned to orbit the Sun-Earth Lagrangian point L2, where it will map the cosmic microwave background (CMB) polarization over the entire sky for three years, with three telescopes in 15 frequency bands between 34 and 448 GHz, to achieve an unprecedented total sensitivity of 2.2$渭$K-arcmin, with a typical angular resolution of 0.5$^\circ$ at 100 GHz. The primary scientific objective of LiteBIRD is to search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. We provide an overview of the LiteBIRD project, including scientific objectives, mission and system requirements, operation concept, spacecraft and payload module design, expected scientific outcomes, potential design extensions and synergies with other projects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02773v3-abstract-full').style.display = 'none'; document.getElementById('2202.02773v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">155 pages, accepted for publication in PTEP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08022">arXiv:2107.08022</a> <span> [<a href="https://arxiv.org/pdf/2107.08022">pdf</a>, <a href="https://arxiv.org/format/2107.08022">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac397c">10.3847/1538-4357/ac397c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Four-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: On-sky Receiver Performance at 40, 90, 150, and 220 GHz Frequency Bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Chan%2C+M">Manwei Chan</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna D. Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Denis%2C+K+L">Kevin L. Denis</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Espinoza%2C+F">Francisco Espinoza</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&query=Helson%2C+K">Kyle Helson</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=McMahon%2C+J+J">Jeffrey J. McMahon</a>, <a href="/search/astro-ph?searchtype=author&query=Miller%2C+N+J">Nathan J. Miller</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08022v2-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) observes the polarized cosmic microwave background (CMB) over the angular scales of 1$^\circ \lesssim 胃\leq$ 90$^\circ$ with the aim of characterizing primordial gravitational waves and cosmic reionization. We report on the on-sky performance of the CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic G-band (150/220 GHz) receivers that have been… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08022v2-abstract-full').style.display = 'inline'; document.getElementById('2107.08022v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08022v2-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) observes the polarized cosmic microwave background (CMB) over the angular scales of 1$^\circ \lesssim 胃\leq$ 90$^\circ$ with the aim of characterizing primordial gravitational waves and cosmic reionization. We report on the on-sky performance of the CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic G-band (150/220 GHz) receivers that have been operational at the CLASS site in the Atacama desert since June 2016, May 2018, and September 2019, respectively. We show that the noise-equivalent power measured by the detectors matches the expected noise model based on on-sky optical loading and lab-measured detector parameters. Using Moon, Venus, and Jupiter observations, we obtain power-to-antenna-temperature calibrations and optical efficiencies for the telescopes. From the CMB survey data, we compute instantaneous array noise-equivalent-temperature sensitivities of 22, 19, 23, and 71 $\mathrm{渭K}_\mathrm{cmb}\sqrt{\mathrm{s}}$ for the 40, 90, 150, and 220 GHz frequency bands, respectively. These noise temperatures refer to white noise amplitudes, which contribute to sky maps at all angular scales. Future papers will assess additional noise sources impacting larger angular scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08022v2-abstract-full').style.display = 'none'; document.getElementById('2107.08022v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures, published in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, 926:33 (9pp), 2022 February 10 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.08734">arXiv:2105.08734</a> <span> [<a href="https://arxiv.org/pdf/2105.08734">pdf</a>, <a href="https://arxiv.org/format/2105.08734">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0048800">10.1063/5.0048800 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superfluid Liquid Helium Control for the Primordial Inflation Polarization Explorer Balloon Payload </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kogut%2C+A">A. Kogut</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">T. Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Fixsen%2C+D">D. Fixsen</a>, <a href="/search/astro-ph?searchtype=author&query=Lowe%2C+L">L. Lowe</a>, <a href="/search/astro-ph?searchtype=author&query=Mirel%2C+P">P. Mirel</a>, <a href="/search/astro-ph?searchtype=author&query=Switzer%2C+E">E. Switzer</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E">E. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.08734v1-abstract-short" style="display: inline;"> The Primordial Inflation Polarization Explorer (PIPER) is a stratospheric balloon payload to measure polarization of the cosmic microwave background. Twin telescopes mounted within an open-aperture bucket dewar couple the sky to bolometric detector arrays. We reduce detector loading and photon noise by cooling the entire optical chain to 1.7 K or colder. A set of fountain-effect pumps sprays super… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.08734v1-abstract-full').style.display = 'inline'; document.getElementById('2105.08734v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.08734v1-abstract-full" style="display: none;"> The Primordial Inflation Polarization Explorer (PIPER) is a stratospheric balloon payload to measure polarization of the cosmic microwave background. Twin telescopes mounted within an open-aperture bucket dewar couple the sky to bolometric detector arrays. We reduce detector loading and photon noise by cooling the entire optical chain to 1.7 K or colder. A set of fountain-effect pumps sprays superfluid liquid helium onto each optical surface, producing helium flows of 50--100 cm^3 / s at heights up to 200 cm above the liquid level. We describe the fountain-effect pumps and the cryogenic performance of the PIPER payload during two flights in 2017 and 2019. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.08734v1-abstract-full').style.display = 'none'; document.getElementById('2105.08734v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages including 14 figures, accepted for publication in Review of Scientific Instruments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.12090">arXiv:2103.12090</a> <span> [<a href="https://arxiv.org/pdf/2103.12090">pdf</a>, <a href="https://arxiv.org/format/2103.12090">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0021483">10.1063/5.0021483 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Balloon-Borne Cryogenic Telescope Testbed Mission: Bulk Cryogen Transfer at 40 km Altitude </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kogut%2C+A">A. Kogut</a>, <a href="/search/astro-ph?searchtype=author&query=Denker%2C+S">S. Denker</a>, <a href="/search/astro-ph?searchtype=author&query=Bellis%2C+N">N. Bellis</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">T. Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Lowe%2C+L">L. Lowe</a>, <a href="/search/astro-ph?searchtype=author&query=Mirel%2C+P">P. Mirel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.12090v1-abstract-short" style="display: inline;"> The Balloon-Borne Cryogenic Telescope Testbed (BOBCAT) is a stratospheric balloon payload to develop technology for a future cryogenic suborbital observatory. A series of flights are intended to establish ultra-light dewar performance and open-aperture observing techniques for large (3--5 meter diameter) cryogenic telescopes at infrared wavelengths. An initial flight in 2019 demonstrated bulk tran… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12090v1-abstract-full').style.display = 'inline'; document.getElementById('2103.12090v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.12090v1-abstract-full" style="display: none;"> The Balloon-Borne Cryogenic Telescope Testbed (BOBCAT) is a stratospheric balloon payload to develop technology for a future cryogenic suborbital observatory. A series of flights are intended to establish ultra-light dewar performance and open-aperture observing techniques for large (3--5 meter diameter) cryogenic telescopes at infrared wavelengths. An initial flight in 2019 demonstrated bulk transfer of liquid nitrogen and liquid helium at stratospheric altitudes. An 827 kg payload carried 14 liters of liquid nitrogen (LN2) and 268 liters of liquid helium (LHe) in pressurized storage dewars to an altitude of 39.7 km. Once at float altitude, liquid nitrogen transfer cooled a separate, unpressurized bucket dewar to a temperature of 65 K, followed by the transfer of 32 liters of liquid helium from the storage dewar into the bucket dewar. Calorimetric tests measured the total heat leak to the LHe bath within bucket dewar. A subsequent flight will replace the receiving bucket dewar with an ultra-light dewar of similar size to compare the performance of the ultra-light design to conventional superinsulated dewars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12090v1-abstract-full').style.display = 'none'; document.getElementById('2103.12090v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages including 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments, 2021, Volume 91, Issue 12, article id.124501 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07936">arXiv:2103.07936</a> <span> [<a href="https://arxiv.org/pdf/2103.07936">pdf</a>, <a href="https://arxiv.org/format/2103.07936">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0029430">10.1063/5.0029430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anti-reflection Coated Vacuum Window for the Primordial Inflation Polarization ExploreR (PIPER) balloon-borne instrument </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Gandilo%2C+N+N">Natalie N. Gandilo</a>, <a href="/search/astro-ph?searchtype=author&query=Helson%2C+K">Kyle Helson</a>, <a href="/search/astro-ph?searchtype=author&query=Kogut%2C+A+J">Alan J. Kogut</a>, <a href="/search/astro-ph?searchtype=author&query=Lowe%2C+L">Luke Lowe</a>, <a href="/search/astro-ph?searchtype=author&query=Mirel%2C+P">Paul Mirel</a>, <a href="/search/astro-ph?searchtype=author&query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&query=Sagliocca%2C+M">Marco Sagliocca</a>, <a href="/search/astro-ph?searchtype=author&query=Sponseller%2C+D">Danielle Sponseller</a>, <a href="/search/astro-ph?searchtype=author&query=Switzer%2C+E+R">Eric R. Switzer</a>, <a href="/search/astro-ph?searchtype=author&query=Taraschi%2C+P+A">Peter A. Taraschi</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07936v1-abstract-short" style="display: inline;"> Measuring the faint polarization signal of the cosmic microwave background (CMB) not only requires high optical throughput and instrument sensitivity but also control over systematic effects. Polarimetric cameras or receivers used in this setting often employ dielectric vacuum windows, filters, or lenses to appropriately prepare light for detection by cooled sensor arrays. These elements in the op… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07936v1-abstract-full').style.display = 'inline'; document.getElementById('2103.07936v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07936v1-abstract-full" style="display: none;"> Measuring the faint polarization signal of the cosmic microwave background (CMB) not only requires high optical throughput and instrument sensitivity but also control over systematic effects. Polarimetric cameras or receivers used in this setting often employ dielectric vacuum windows, filters, or lenses to appropriately prepare light for detection by cooled sensor arrays. These elements in the optical chain are typically designed to minimize reflective losses and hence improve sensitivity while minimizing potential imaging artifacts such as glint and ghosting. The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument designed to measure the polarization of the CMB radiation at the largest angular scales and characterize astrophysical dust foregrounds. PIPER's twin telescopes and detector systems are submerged in an open-aperture liquid helium bucket dewar. A fused-silica window anti-reflection (AR) coated with polytetrafluoroethylene (PTFE) is installed on the vacuum cryostat that houses the cryogenic detector arrays. Light passes from the skyward portions of the telescope to the detector arrays though this window, which utilizes an indium seal to prevent superfluid helium leaks into the vacuum cryostat volume. The AR coating implemented reduces reflections from each interface to <1% compared to ~10% from an uncoated window surface. The AR coating procedure and room temperature optical measurements of the window are presented. The indium vacuum sealing process is also described in detail and test results characterizing its integrity to superfluid helium leaks are provided. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07936v1-abstract-full').style.display = 'none'; document.getElementById('2103.07936v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 92, 035111 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.00809">arXiv:2102.00809</a> <span> [<a href="https://arxiv.org/pdf/2102.00809">pdf</a>, <a href="https://arxiv.org/format/2102.00809">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2562243">10.1117/12.2562243 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Overview of the Medium and High Frequency Telescopes of the LiteBIRD satellite mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Montier%2C+L">L. Montier</a>, <a href="/search/astro-ph?searchtype=author&query=Mot%2C+B">B. Mot</a>, <a href="/search/astro-ph?searchtype=author&query=de+Bernardis%2C+P">P. de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&query=Maffei%2C+B">B. Maffei</a>, <a href="/search/astro-ph?searchtype=author&query=Pisano%2C+G">G. Pisano</a>, <a href="/search/astro-ph?searchtype=author&query=Columbro%2C+F">F. Columbro</a>, <a href="/search/astro-ph?searchtype=author&query=Gudmundsson%2C+J+E">J. E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&query=Henrot-Versill%C3%A9%2C+S">S. Henrot-Versill茅</a>, <a href="/search/astro-ph?searchtype=author&query=Lamagna%2C+L">L. Lamagna</a>, <a href="/search/astro-ph?searchtype=author&query=Montgomery%2C+J">J. Montgomery</a>, <a href="/search/astro-ph?searchtype=author&query=Prouv%C3%A9%2C+T">T. Prouv茅</a>, <a href="/search/astro-ph?searchtype=author&query=Russell%2C+M">M. Russell</a>, <a href="/search/astro-ph?searchtype=author&query=Savini%2C+G">G. Savini</a>, <a href="/search/astro-ph?searchtype=author&query=Stever%2C+S">S. Stever</a>, <a href="/search/astro-ph?searchtype=author&query=Thompson%2C+K+L">K. L. Thompson</a>, <a href="/search/astro-ph?searchtype=author&query=Tsujimoto%2C+M">M. Tsujimoto</a>, <a href="/search/astro-ph?searchtype=author&query=Tucker%2C+C">C. Tucker</a>, <a href="/search/astro-ph?searchtype=author&query=Westbrook%2C+B">B. Westbrook</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Adler%2C+A">A. Adler</a>, <a href="/search/astro-ph?searchtype=author&query=Allys%2C+E">E. Allys</a>, <a href="/search/astro-ph?searchtype=author&query=Arnold%2C+K">K. Arnold</a>, <a href="/search/astro-ph?searchtype=author&query=Auguste%2C+D">D. Auguste</a>, <a href="/search/astro-ph?searchtype=author&query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&query=Aurlien%2C+R">R. Aurlien</a> , et al. (212 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.00809v1-abstract-short" style="display: inline;"> LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.00809v1-abstract-full').style.display = 'inline'; document.getElementById('2102.00809v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.00809v1-abstract-full" style="display: none;"> LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34GHz to 448GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium- and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89-224GHz) and the High-Frequency Telescope (166-448GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.00809v1-abstract-full').style.display = 'none'; document.getElementById('2102.00809v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SPIE Conference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. of SPIE Vol. 11443 14432G (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.12449">arXiv:2101.12449</a> <span> [<a href="https://arxiv.org/pdf/2101.12449">pdf</a>, <a href="https://arxiv.org/format/2101.12449">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2563050">10.1117/12.2563050 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LiteBIRD: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hazumi%2C+M">M. Hazumi</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Adler%2C+A">A. Adler</a>, <a href="/search/astro-ph?searchtype=author&query=Allys%2C+E">E. Allys</a>, <a href="/search/astro-ph?searchtype=author&query=Arnold%2C+K">K. Arnold</a>, <a href="/search/astro-ph?searchtype=author&query=Auguste%2C+D">D. Auguste</a>, <a href="/search/astro-ph?searchtype=author&query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&query=Aurlien%2C+R">R. Aurlien</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&query=Banjeri%2C+R">R. Banjeri</a>, <a href="/search/astro-ph?searchtype=author&query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&query=Basak%2C+S">S. Basak</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J">J. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Beckman%2C+S">S. Beckman</a>, <a href="/search/astro-ph?searchtype=author&query=Bermejo%2C+J">J. Bermejo</a>, <a href="/search/astro-ph?searchtype=author&query=de+Bernardis%2C+P">P. de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/astro-ph?searchtype=author&query=Bonis%2C+J">J. Bonis</a>, <a href="/search/astro-ph?searchtype=author&query=Borrill%2C+J">J. Borrill</a>, <a href="/search/astro-ph?searchtype=author&query=Boulanger%2C+F">F. Boulanger</a>, <a href="/search/astro-ph?searchtype=author&query=Bounissou%2C+S">S. Bounissou</a>, <a href="/search/astro-ph?searchtype=author&query=Brilenkov%2C+M">M. Brilenkov</a> , et al. (213 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.12449v1-abstract-short" style="display: inline;"> LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave backgrou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12449v1-abstract-full').style.display = 'inline'; document.getElementById('2101.12449v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.12449v1-abstract-full" style="display: none;"> LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 micro K-arcmin with a typical angular resolution of 0.5 deg. at 100GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12449v1-abstract-full').style.display = 'none'; document.getElementById('2101.12449v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. of SPIE Vol. 11443 114432F (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.11741">arXiv:2101.11741</a> <span> [<a href="https://arxiv.org/pdf/2101.11741">pdf</a>, <a href="https://arxiv.org/format/2101.11741">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2562446">10.1117/12.2562446 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 渭-Spec Spectrometers for the EXCLAIM Instrument </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Mirzaei%2C+M">Mona Mirzaei</a>, <a href="/search/astro-ph?searchtype=author&query=Barrentine%2C+E+M">Emily M. Barrentine</a>, <a href="/search/astro-ph?searchtype=author&query=Bulcha%2C+B+T">Berhanu T. Bulcha</a>, <a href="/search/astro-ph?searchtype=author&query=Cataldo%2C+G">Giuseppe Cataldo</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J+A">Jake A. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Ehsan%2C+N">Negar Ehsan</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T+M">Thomas M. Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+L+A">Larry A. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=Mugge-Durum%2C+J+W">Jonas W. Mugge-Durum</a>, <a href="/search/astro-ph?searchtype=author&query=Noroozian%2C+O">Omid Noroozian</a>, <a href="/search/astro-ph?searchtype=author&query=Oxholm%2C+T+M">Trevor M. Oxholm</a>, <a href="/search/astro-ph?searchtype=author&query=Stevenson%2C+T+R">Thomas R. Stevenson</a>, <a href="/search/astro-ph?searchtype=author&query=Switzer%2C+E+R">Eric R. Switzer</a>, <a href="/search/astro-ph?searchtype=author&query=Volpert%2C+C+G">Carolyn G. Volpert</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.11741v1-abstract-short" style="display: inline;"> The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a cryogenic balloon-borne instrument that will map carbon monoxide and singly-ionized carbon emission lines across redshifts from 0 to 3.5, using an intensity mapping approach. EXCLAIM will broaden our understanding of these elemental and molecular gases and the role they play in star formation processes across cosmic time… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11741v1-abstract-full').style.display = 'inline'; document.getElementById('2101.11741v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.11741v1-abstract-full" style="display: none;"> The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a cryogenic balloon-borne instrument that will map carbon monoxide and singly-ionized carbon emission lines across redshifts from 0 to 3.5, using an intensity mapping approach. EXCLAIM will broaden our understanding of these elemental and molecular gases and the role they play in star formation processes across cosmic time scales. The focal plane of EXCLAIM's cryogenic telescope features six 渭-Spec spectrometers. 渭-Spec is a compact, integrated grating-analog spectrometer, which uses meandered superconducting niobium microstrip transmission lines on a single-crystal silicon dielectric to synthesize the grating. It features superconducting aluminum microwave kinetic inductance detectors (MKIDs), also in a microstrip architecture. The spectrometers for EXCLAIM couple to the telescope optics via a hybrid planar antenna coupled to a silicon lenslet. The spectrometers operate from 420 to 540 GHz with a resolving power R=位/螖位=512 and employ an array of 355 MKIDs on each spectrometer. The spectrometer design targets a noise equivalent power (NEP) of 2x10-18W/\sqrt{Hz} (defined at the input to the main lobe of the spectrometer lenslet beam, within a 9-degree half width), enabled by the cryogenic telescope environment, the sensitive MKID detectors, and the low dielectric loss of single-crystal silicon. We report on these spectrometers under development for EXCLAIM, providing an overview of the spectrometer and component designs, the spectrometer fabrication process, fabrication developments since previous prototype demonstrations, and the current status of their development for the EXCLAIM mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11741v1-abstract-full').style.display = 'none'; document.getElementById('2101.11741v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SPIE Astronomical Telescope + Instrumentation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.11734">arXiv:2101.11734</a> <span> [<a href="https://arxiv.org/pdf/2101.11734">pdf</a>, <a href="https://arxiv.org/format/2101.11734">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2576254">10.1117/12.2576254 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Overview and status of EXCLAIM, the experiment for cryogenic large-aperture intensity mapping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Cataldo%2C+G">Giuseppe Cataldo</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P">Peter Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+C">Christopher Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Barlis%2C+A">Alyssa Barlis</a>, <a href="/search/astro-ph?searchtype=author&query=Barrentine%2C+E">Emily Barrentine</a>, <a href="/search/astro-ph?searchtype=author&query=Bellis%2C+N">Nicholas Bellis</a>, <a href="/search/astro-ph?searchtype=author&query=Bolatto%2C+A">Alberto Bolatto</a>, <a href="/search/astro-ph?searchtype=author&query=Breysse%2C+P">Patrick Breysse</a>, <a href="/search/astro-ph?searchtype=author&query=Bulcha%2C+B">Berhanu Bulcha</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cursey%2C+P">Paul Cursey</a>, <a href="/search/astro-ph?searchtype=author&query=Ehsan%2C+N">Negar Ehsan</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Glenn%2C+J">Jason Glenn</a>, <a href="/search/astro-ph?searchtype=author&query=Golec%2C+J">Joseph Golec</a>, <a href="/search/astro-ph?searchtype=author&query=Hays-Wehle%2C+J">James Hays-Wehle</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+L">Larry Hess</a>, <a href="/search/astro-ph?searchtype=author&query=Jahromi%2C+A">Amir Jahromi</a>, <a href="/search/astro-ph?searchtype=author&query=Kimball%2C+M">Mark Kimball</a>, <a href="/search/astro-ph?searchtype=author&query=Kogut%2C+A">Alan Kogut</a>, <a href="/search/astro-ph?searchtype=author&query=Lowe%2C+L">Luke Lowe</a>, <a href="/search/astro-ph?searchtype=author&query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&query=McMahon%2C+J">Jeffrey McMahon</a>, <a href="/search/astro-ph?searchtype=author&query=Mirzaei%2C+M">Mona Mirzaei</a>, <a href="/search/astro-ph?searchtype=author&query=Moseley%2C+H">Harvey Moseley</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.11734v1-abstract-short" style="display: inline;"> The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne far-infrared telescope that will survey star formation history over cosmological time scales to improve our understanding of why the star formation rate declined at redshift z < 2, despite continued clustering of dark matter. Specifically,EXCLAIM will map the emission of redshifted carbon monoxide and singly… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11734v1-abstract-full').style.display = 'inline'; document.getElementById('2101.11734v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.11734v1-abstract-full" style="display: none;"> The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne far-infrared telescope that will survey star formation history over cosmological time scales to improve our understanding of why the star formation rate declined at redshift z < 2, despite continued clustering of dark matter. Specifically,EXCLAIM will map the emission of redshifted carbon monoxide and singly-ionized carbon lines in windows over a redshift range 0 < z < 3.5, following an innovative approach known as intensity mapping. Intensity mapping measures the statistics of brightness fluctuations of cumulative line emissions instead of detecting individual galaxies, thus enabling a blind, complete census of the emitting gas. To detect this emission unambiguously, EXCLAIM will cross-correlate with a spectroscopic galaxy catalog. The EXCLAIM mission uses a cryogenic design to cool the telescope optics to approximately 1.7 K. The telescope features a 90-cm primary mirror to probe spatial scales on the sky from the linear regime up to shot noise-dominated scales. The telescope optical elements couple to six 渭-Spec spectrometer modules, operating over a 420-540 GHz frequency band with a spectral resolution of 512 and featuring microwave kinetic inductance detectors. A Radio Frequency System-on-Chip (RFSoC) reads out the detectors in the baseline design. The cryogenic telescope and the sensitive detectors allow EXCLAIM to reach high sensitivity in spectral windows of low emission in the upper atmosphere. Here, an overview of the mission design and development status since the start of the EXCLAIM project in early 2019 is presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11734v1-abstract-full').style.display = 'none'; document.getElementById('2101.11734v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SPIE Astronomical Telescopes + Instrumentation. arXiv admin note: substantial text overlap with arXiv:1912.07118</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.06342">arXiv:2101.06342</a> <span> [<a href="https://arxiv.org/pdf/2101.06342">pdf</a>, <a href="https://arxiv.org/format/2101.06342">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2561841">10.1117/12.2561841 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Concept Design of Low Frequency Telescope for CMB B-mode Polarization satellite LiteBIRD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sekimoto%2C+Y">Y. Sekimoto</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Adler%2C+A">A. Adler</a>, <a href="/search/astro-ph?searchtype=author&query=Allys%2C+E">E. Allys</a>, <a href="/search/astro-ph?searchtype=author&query=Arnold%2C+K">K. Arnold</a>, <a href="/search/astro-ph?searchtype=author&query=Auguste%2C+D">D. Auguste</a>, <a href="/search/astro-ph?searchtype=author&query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&query=Aurlien%2C+R">R. Aurlien</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&query=Banerji%2C+R">R. Banerji</a>, <a href="/search/astro-ph?searchtype=author&query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&query=Basak%2C+S">S. Basak</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J">J. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Beckman%2C+S">S. Beckman</a>, <a href="/search/astro-ph?searchtype=author&query=Bermejo%2C+J">J. Bermejo</a>, <a href="/search/astro-ph?searchtype=author&query=de+Bernardis%2C+P">P. de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/astro-ph?searchtype=author&query=Bonis%2C+J">J. Bonis</a>, <a href="/search/astro-ph?searchtype=author&query=Borrill%2C+J">J. Borrill</a>, <a href="/search/astro-ph?searchtype=author&query=Boulanger%2C+F">F. Boulanger</a>, <a href="/search/astro-ph?searchtype=author&query=Bounissou%2C+S">S. Bounissou</a>, <a href="/search/astro-ph?searchtype=author&query=Brilenkov%2C+M">M. Brilenkov</a> , et al. (212 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.06342v1-abstract-short" style="display: inline;"> LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray li… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.06342v1-abstract-full').style.display = 'inline'; document.getElementById('2101.06342v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.06342v1-abstract-full" style="display: none;"> LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of $-56$ dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34--161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view ($18^\circ \times 9^\circ$) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90$^\circ$ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at $5\,$K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.06342v1-abstract-full').style.display = 'none'; document.getElementById('2101.06342v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SPIE proceedings 1145310 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.00034">arXiv:2101.00034</a> <span> [<a href="https://arxiv.org/pdf/2101.00034">pdf</a>, <a href="https://arxiv.org/format/2101.00034">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac2235">10.3847/1538-4357/ac2235 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two Year Cosmology Large Angular Scale Surveyor (CLASS) Observations: Long Timescale Stability Achieved with a Front-End Variable-delay Polarization Modulator at 40 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Osumi%2C+K">Keisuke Osumi</a>, <a href="/search/astro-ph?searchtype=author&query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Chan%2C+M">Manwei Chan</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Inostroza%2C+F+R+E">Francisco Raul Espinoza Inostroza</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=Miller%2C+N+J">Nathan J. Miller</a>, <a href="/search/astro-ph?searchtype=author&query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&query=Padilla%2C+I+L">Ivan L. Padilla</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.00034v1-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a four-telescope array observing the largest angular scales ($2 \lesssim \ell \lesssim 200$) of the cosmic microwave background (CMB) polarization. These scales encode information about reionization and inflation during the early universe. The instrument stability necessary to observe these angular scales from the ground is achieved through the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00034v1-abstract-full').style.display = 'inline'; document.getElementById('2101.00034v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.00034v1-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a four-telescope array observing the largest angular scales ($2 \lesssim \ell \lesssim 200$) of the cosmic microwave background (CMB) polarization. These scales encode information about reionization and inflation during the early universe. The instrument stability necessary to observe these angular scales from the ground is achieved through the use of a variable-delay polarization modulator (VPM) as the first optical element in each of the CLASS telescopes. Here we develop a demodulation scheme used to extract the polarization timestreams from the CLASS data and apply this method to selected data from the first two years of observations by the 40 GHz CLASS telescope. These timestreams are used to measure the $1/f$ noise and temperature-to-polarization ($T\rightarrow P$) leakage present in the CLASS data. We find a median knee frequency for the pair-differenced demodulated linear polarization of 15.12 mHz and a $T\rightarrow P$ leakage of $<3.8\times10^{-4}$ (95\% confidence) across the focal plane. We examine the sources of $1/f$ noise present in the data and find the component of $1/f$ due to atmospheric precipitable water vapor (PWV) has an amplitude of $203 \pm 12 \mathrm{渭K_{RJ}\sqrt{s}}$ for 1 mm of PWV when evaluated at 10 mHz; accounting for $\sim32\%$ of the $1/f$ noise in the central pixels of the focal plane. The low level of $T\rightarrow P$ leakage and $1/f$ noise achieved through the use of a front-end polarization modulator enables the observation of the largest scales of the CMB polarization from the ground by the CLASS telescopes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00034v1-abstract-full').style.display = 'none'; document.getElementById('2101.00034v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2021 ApJ 922 212 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.10481">arXiv:2012.10481</a> <span> [<a href="https://arxiv.org/pdf/2012.10481">pdf</a>, <a href="https://arxiv.org/format/2012.10481">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Optical Design of the EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Chmaytelli%2C+D">Danny Chmaytelli</a>, <a href="/search/astro-ph?searchtype=author&query=Oxholm%2C+T">Trevor Oxholm</a>, <a href="/search/astro-ph?searchtype=author&query=Parekh%2C+T">Tatsat Parekh</a>, <a href="/search/astro-ph?searchtype=author&query=Siebert%2C+G">Gage Siebert</a>, <a href="/search/astro-ph?searchtype=author&query=Switzer%2C+E+R">Eric R. Switzer</a>, <a href="/search/astro-ph?searchtype=author&query=Barlis%2C+A">Alyssa Barlis</a>, <a href="/search/astro-ph?searchtype=author&query=Barrentine%2C+E+M">Emily M. Barrentine</a>, <a href="/search/astro-ph?searchtype=author&query=Beeman%2C+J">Jeffrey Beeman</a>, <a href="/search/astro-ph?searchtype=author&query=Chung%2C+C">Christine Chung</a>, <a href="/search/astro-ph?searchtype=author&query=Cursey%2C+P">Paul Cursey</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Ehsan%2C+N">Negar Ehsan</a>, <a href="/search/astro-ph?searchtype=author&query=Glenn%2C+J">Jason Glenn</a>, <a href="/search/astro-ph?searchtype=author&query=Golec%2C+J">Joseph Golec</a>, <a href="/search/astro-ph?searchtype=author&query=Lennon%2C+A">Andrew Lennon</a>, <a href="/search/astro-ph?searchtype=author&query=Lowe%2C+L+N">Luke N. Lowe</a>, <a href="/search/astro-ph?searchtype=author&query=McMahon%2C+J">Jeffrey McMahon</a>, <a href="/search/astro-ph?searchtype=author&query=Rahmani%2C+M">Maryam Rahmani</a>, <a href="/search/astro-ph?searchtype=author&query=Timbie%2C+P">Peter Timbie</a>, <a href="/search/astro-ph?searchtype=author&query=Tretheway%2C+B">Bruce Tretheway</a>, <a href="/search/astro-ph?searchtype=author&query=Tucker%2C+C">Carole Tucker</a>, <a href="/search/astro-ph?searchtype=author&query=Volpert%2C+C">Carolyn Volpert</a>, <a href="/search/astro-ph?searchtype=author&query=Watson%2C+J">Joseph Watson</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.10481v3-abstract-short" style="display: inline;"> This work describes the design and implementation of optics for EXCLAIM, the EXperiment for Cryogenic Large-Aperture Intensity Mapping. EXCLAIM is a balloon-borne telescope that will measure integrated line emission from carbon monoxide (CO) at redshifts $z<1$ and ionized carbon ([CII]) at redshifts $z = 2.5-3.5$ to probe star formation over cosmic time in cross-correlation with galaxy redshift su… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10481v3-abstract-full').style.display = 'inline'; document.getElementById('2012.10481v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.10481v3-abstract-full" style="display: none;"> This work describes the design and implementation of optics for EXCLAIM, the EXperiment for Cryogenic Large-Aperture Intensity Mapping. EXCLAIM is a balloon-borne telescope that will measure integrated line emission from carbon monoxide (CO) at redshifts $z<1$ and ionized carbon ([CII]) at redshifts $z = 2.5-3.5$ to probe star formation over cosmic time in cross-correlation with galaxy redshift surveys. The EXCLAIM instrument is designed to observe at frequencies of $420$--$540$ GHz using six microfabricated silicon integrated spectrometers with spectral resolving power $R = 512$ coupled to kinetic inductance detectors (KIDs). A completely cryogenic telescope cooled to a temperature below 5~K provides low-background observations between narrow atmospheric lines in the stratosphere. Off-axis reflective optics use a $90$-cm primary mirror to provide $4.2^\prime$ full-width at half-maximum (FWHM) resolution at the center of the EXCLAIM band over a field of view of $22.5^\prime$. Illumination of the $1.7$ K cold stop combined with blackened baffling at multiple places in the optical system ensure low ($< -40$ dB) edge illumination of the primary to minimize spill onto warmer elements at the top of the dewar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10481v3-abstract-full').style.display = 'none'; document.getElementById('2012.10481v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08433">arXiv:2012.08433</a> <span> [<a href="https://arxiv.org/pdf/2012.08433">pdf</a>, <a href="https://arxiv.org/format/2012.08433">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2561609">10.1117/12.2561609 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Control and systems software for the Cosmology Large Angular Scale Surveyor (CLASS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Chan%2C+M">Manwei Chan</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Rojas%2C+P+F">Pedro Flux谩 Rojas</a>, <a href="/search/astro-ph?searchtype=author&query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=Miller%2C+N+J">Nathan J. Miller</a>, <a href="/search/astro-ph?searchtype=author&query=Valle%2C+D+A+N">Deniz Augusto Nunes Valle</a>, <a href="/search/astro-ph?searchtype=author&query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08433v1-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is an array of polarization-sensitive millimeter wave telescopes that observes ~70% of the sky at frequency bands centered near 40GHz, 90GHz, 150GHz, and 220GHz from the Atacama desert of northern Chile. Here, we describe the architecture of the software used to control the telescopes, acquire data from the various instruments, schedule observatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08433v1-abstract-full').style.display = 'inline'; document.getElementById('2012.08433v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08433v1-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is an array of polarization-sensitive millimeter wave telescopes that observes ~70% of the sky at frequency bands centered near 40GHz, 90GHz, 150GHz, and 220GHz from the Atacama desert of northern Chile. Here, we describe the architecture of the software used to control the telescopes, acquire data from the various instruments, schedule observations, monitor the status of the instruments and observations, create archival data packages, and transfer data packages to North America for analysis. The computer and network architecture of the CLASS observing site is also briefly discussed. This software and architecture has been in use since 2016, operating the telescopes day and night throughout the year, and has proven successful in fulfilling its design goals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08433v1-abstract-full').style.display = 'none'; document.getElementById('2012.08433v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 figures, to appear in Proc. SPIE</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11452, Software and Cyberinfrastructure for Astronomy VI, 114521O (13 December 2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.12739">arXiv:2010.12739</a> <span> [<a href="https://arxiv.org/pdf/2010.12739">pdf</a>, <a href="https://arxiv.org/format/2010.12739">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/PSJ/abedad">10.3847/PSJ/abedad <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Venus Observations at 40 and 90 GHz with CLASS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Chan%2C+M">Manwei Chan</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna D. Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Denis%2C+K+L">Kevin L. Denis</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Espinoza%2C+F">Francisco Espinoza</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Gothe%2C+D">Dominik Gothe</a>, <a href="/search/astro-ph?searchtype=author&query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=Novack%2C+S">Sasha Novack</a>, <a href="/search/astro-ph?searchtype=author&query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&query=Parker%2C+L">Lucas Parker</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+M+A">Matthew A. Petroff</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.12739v2-abstract-short" style="display: inline;"> Using the Cosmology Large Angular Scale Surveyor, we measure the disk-averaged absolute Venus brightness temperature to be 432.3 $\pm$ 2.8 K and 355.6 $\pm$ 1.3 K in the Q and W frequency bands centered at 38.8 and 93.7 GHz, respectively. At both frequency bands, these are the most precise measurements to date. Furthermore, we observe no phase dependence of the measured temperature in either band.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12739v2-abstract-full').style.display = 'inline'; document.getElementById('2010.12739v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.12739v2-abstract-full" style="display: none;"> Using the Cosmology Large Angular Scale Surveyor, we measure the disk-averaged absolute Venus brightness temperature to be 432.3 $\pm$ 2.8 K and 355.6 $\pm$ 1.3 K in the Q and W frequency bands centered at 38.8 and 93.7 GHz, respectively. At both frequency bands, these are the most precise measurements to date. Furthermore, we observe no phase dependence of the measured temperature in either band. Our measurements are consistent with a CO$_2$-dominant atmospheric model that includes trace amounts of additional absorbers like SO$_2$ and H$_2$SO$_4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12739v2-abstract-full').style.display = 'none'; document.getElementById('2010.12739v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, published in PSJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Planetary Science Journal, 2:71 (6pp), 2021 April 12 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.12619">arXiv:2008.12619</a> <span> [<a href="https://arxiv.org/pdf/2008.12619">pdf</a>, <a href="https://arxiv.org/format/2008.12619">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac1596">10.3847/1538-4357/ac1596 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CMB-S4: Forecasting Constraints on Primordial Gravitational Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+C">CMB-S4 Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Abazajian%2C+K">Kevork Abazajian</a>, <a href="/search/astro-ph?searchtype=author&query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&query=Adshead%2C+P">Peter Adshead</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Akerib%2C+D">Daniel Akerib</a>, <a href="/search/astro-ph?searchtype=author&query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+S+W">Steven W. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&query=Alvarez%2C+M">Marcelo Alvarez</a>, <a href="/search/astro-ph?searchtype=author&query=Amin%2C+M+A">Mustafa A. Amin</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+A">Adam Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Arnold%2C+K+S">Kam S. Arnold</a>, <a href="/search/astro-ph?searchtype=author&query=Ashton%2C+P">Peter Ashton</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Bard%2C+D">Debbie Bard</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Barron%2C+D">Darcy Barron</a>, <a href="/search/astro-ph?searchtype=author&query=Barry%2C+P+S">Peter S. Barry</a>, <a href="/search/astro-ph?searchtype=author&query=Bartlett%2C+J+G">James G. Bartlett</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">Ritoban Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&query=Bebek%2C+C">Chris Bebek</a> , et al. (212 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.12619v1-abstract-short" style="display: inline;"> CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12619v1-abstract-full').style.display = 'inline'; document.getElementById('2008.12619v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.12619v1-abstract-full" style="display: none;"> CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, $r$, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for $r > 0.003$ at greater than $5蟽$, or, in the absence of a detection, of reaching an upper limit of $r < 0.001$ at $95\%$ CL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12619v1-abstract-full').style.display = 'none'; document.getElementById('2008.12619v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.04473</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07289">arXiv:2007.07289</a> <span> [<a href="https://arxiv.org/pdf/2007.07289">pdf</a>, <a href="https://arxiv.org/format/2007.07289">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/12/045">10.1088/1475-7516/2020/12/045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectra at 98 and 150 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&query=Koopman%2C+B">Brian Koopman</a>, <a href="/search/astro-ph?searchtype=author&query=Lungu%2C+M">Marius Lungu</a>, <a href="/search/astro-ph?searchtype=author&query=Abitbol%2C+M+H">Maximilian H. Abitbol</a>, <a href="/search/astro-ph?searchtype=author&query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&query=Angile%2C+E">Elio Angile</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Baildon%2C+T">Taylor Baildon</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Calafut%2C+V">Victoria Calafut</a>, <a href="/search/astro-ph?searchtype=author&query=Campusano%2C+L+E">Luis E. Campusano</a>, <a href="/search/astro-ph?searchtype=author&query=Carrero%2C+F">Felipe Carrero</a> , et al. (114 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07289v2-abstract-short" style="display: inline;"> We present the temperature and polarization angular power spectra of the CMB measured by the Atacama Cosmology Telescope (ACT) from 5400 deg$^2$ of the 2013-2016 survey, which covers $>$15000 deg$^2$ at 98 and 150 GHz. For this analysis we adopt a blinding strategy to help avoid confirmation bias and, related to this, show numerous checks for systematic error done before unblinding. Using the like… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07289v2-abstract-full').style.display = 'inline'; document.getElementById('2007.07289v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07289v2-abstract-full" style="display: none;"> We present the temperature and polarization angular power spectra of the CMB measured by the Atacama Cosmology Telescope (ACT) from 5400 deg$^2$ of the 2013-2016 survey, which covers $>$15000 deg$^2$ at 98 and 150 GHz. For this analysis we adopt a blinding strategy to help avoid confirmation bias and, related to this, show numerous checks for systematic error done before unblinding. Using the likelihood for the cosmological analysis we constrain secondary sources of anisotropy and foreground emission, and derive a "CMB-only" spectrum that extends to $\ell=4000$. At large angular scales, foreground emission at 150 GHz is $\sim$1% of TT and EE within our selected regions and consistent with that found by Planck. Using the same likelihood, we obtain the cosmological parameters for $螞$CDM for the ACT data alone with a prior on the optical depth of $蟿=0.065\pm0.015$. $螞$CDM is a good fit. The best-fit model has a reduced $蠂^2$ of 1.07 (PTE=0.07) with $H_0=67.9\pm1.5$ km/s/Mpc. We show that the lensing BB signal is consistent with $螞$CDM and limit the celestial EB polarization angle to $蠄_P =-0.07^{\circ}\pm0.09^{\circ}$. We directly cross correlate ACT with Planck and observe generally good agreement but with some discrepancies in TE. All data on which this analysis is based will be publicly released. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07289v2-abstract-full').style.display = 'none'; document.getElementById('2007.07289v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 27 figures, products available on the NASA LAMBDA website, version accepted for publication in JCAP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07288">arXiv:2007.07288</a> <span> [<a href="https://arxiv.org/pdf/2007.07288">pdf</a>, <a href="https://arxiv.org/format/2007.07288">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/12/047">10.1088/1475-7516/2020/12/047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Maurin%2C+L">Lo茂c Maurin</a>, <a href="/search/astro-ph?searchtype=author&query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&query=Schmitt%2C+B+L">Benjamin L. Schmitt</a>, <a href="/search/astro-ph?searchtype=author&query=Abitbol%2C+M+H">Maximilian H. Abitbol</a>, <a href="/search/astro-ph?searchtype=author&query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&query=Angile%2C+E">Elio Angile</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Baildon%2C+T">Taylor Baildon</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&query=Calafut%2C+V">Victoria Calafut</a>, <a href="/search/astro-ph?searchtype=author&query=Campusano%2C+L+E">Luis E. Campusano</a>, <a href="/search/astro-ph?searchtype=author&query=Carrero%2C+F">Felipe Carrero</a>, <a href="/search/astro-ph?searchtype=author&query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&query=Cho%2C+H">Hsiao-mei Cho</a> , et al. (116 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07288v2-abstract-short" style="display: inline;"> We present new arcminute-resolution maps of the Cosmic Microwave Background temperature and polarization anisotropy from the Atacama Cosmology Telescope, using data taken from 2013-2016 at 98 and 150 GHz. The maps cover more than 17,000 deg$^2$, the deepest 600 deg$^2$ with noise levels below 10 $渭$K-arcmin. We use the power spectrum derived from almost 6,000 deg$^2$ of these maps to constrain cos… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07288v2-abstract-full').style.display = 'inline'; document.getElementById('2007.07288v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07288v2-abstract-full" style="display: none;"> We present new arcminute-resolution maps of the Cosmic Microwave Background temperature and polarization anisotropy from the Atacama Cosmology Telescope, using data taken from 2013-2016 at 98 and 150 GHz. The maps cover more than 17,000 deg$^2$, the deepest 600 deg$^2$ with noise levels below 10 $渭$K-arcmin. We use the power spectrum derived from almost 6,000 deg$^2$ of these maps to constrain cosmology. The ACT data enable a measurement of the angular scale of features in both the divergence-like polarization and the temperature anisotropy, tracing both the velocity and density at last-scattering. From these one can derive the distance to the last-scattering surface and thus infer the local expansion rate, $H_0$. By combining ACT data with large-scale information from WMAP we measure $H_0 = 67.6 \pm 1.1$ km/s/Mpc, at 68% confidence, in excellent agreement with the independently-measured Planck satellite estimate (from ACT alone we find $H_0 = 67.9 \pm 1.5$ km/s/Mpc). The $螞$CDM model provides a good fit to the ACT data, and we find no evidence for deviations: both the spatial curvature, and the departure from the standard lensing signal in the spectrum, are zero to within 1$蟽$; the number of relativistic species, the primordial Helium fraction, and the running of the spectral index are consistent with $螞$CDM predictions to within $1.5 - 2.2蟽$. We compare ACT, WMAP, and Planck at the parameter level and find good consistency; we investigate how the constraints on the correlated spectral index and baryon density parameters readjust when adding CMB large-scale information that ACT does not measure. The DR4 products presented here will be publicly released on the NASA Legacy Archive for Microwave Background Data Analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07288v2-abstract-full').style.display = 'none'; document.getElementById('2007.07288v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 24 figures, products available on the NASA LAMBDA website, version accepted for publication in JCAP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.12714">arXiv:2002.12714</a> <span> [<a href="https://arxiv.org/pdf/2002.12714">pdf</a>, <a href="https://arxiv.org/format/2002.12714">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> CMB-HD: Astro2020 RFI Response </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sehgal%2C+N">Neelima Sehgal</a>, <a href="/search/astro-ph?searchtype=author&query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&query=Akrami%2C+Y">Yashar Akrami</a>, <a href="/search/astro-ph?searchtype=author&query=Basu%2C+K+m">Kaustuv moni Basu</a>, <a href="/search/astro-ph?searchtype=author&query=Boylan-Kolchin%2C+M">Michael Boylan-Kolchin</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S">Sean Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Casey%2C+C+M">Caitlin M Casey</a>, <a href="/search/astro-ph?searchtype=author&query=Clesse%2C+S">S茅bastien Clesse</a>, <a href="/search/astro-ph?searchtype=author&query=Cyr-Racine%2C+F">Francis-Yan Cyr-Racine</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&query=Fuller%2C+G">George Fuller</a>, <a href="/search/astro-ph?searchtype=author&query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&query=Holder%2C+G">Gil Holder</a>, <a href="/search/astro-ph?searchtype=author&query=Jain%2C+B">Bhuvnesh Jain</a>, <a href="/search/astro-ph?searchtype=author&query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&query=Johnson%2C+M">Matthew Johnson</a>, <a href="/search/astro-ph?searchtype=author&query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&query=MacInnis%2C+A">Amanda MacInnis</a>, <a href="/search/astro-ph?searchtype=author&query=Madhavacheril%2C+M">Mathew Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&query=Mauskopf%2C+P">Philip Mauskopf</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.12714v1-abstract-short" style="display: inline;"> CMB-HD is a proposed ultra-deep (0.5 uk-arcmin), high-resolution (15 arcseconds) millimeter-wave survey over half the sky that would answer many outstanding questions in both fundamental physics of the Universe and astrophysics. This survey would be delivered in 7.5 years of observing 20,000 square degrees, using two new 30-meter-class off-axis cross-Dragone telescopes to be located at Cerro Toco… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.12714v1-abstract-full').style.display = 'inline'; document.getElementById('2002.12714v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.12714v1-abstract-full" style="display: none;"> CMB-HD is a proposed ultra-deep (0.5 uk-arcmin), high-resolution (15 arcseconds) millimeter-wave survey over half the sky that would answer many outstanding questions in both fundamental physics of the Universe and astrophysics. This survey would be delivered in 7.5 years of observing 20,000 square degrees, using two new 30-meter-class off-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. Each telescope would field 800,000 detectors (200,000 pixels), for a total of 1.6 million detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.12714v1-abstract-full').style.display = 'none'; document.getElementById('2002.12714v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Response to request for information (RFI) by the Panel of Radio, Millimeter, and Submillimeter Observations from the Ground (RMS) of the Astro2020 Decadal Survey regarding the CMB-HD APC (arXiv:1906.10134). Note some text overlap with original APC. Note also detector count and cost have been reduced by 1/3, and observing time increased by 1/3 compared to original APC; science goals expanded</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.05717">arXiv:2002.05717</a> <span> [<a href="https://arxiv.org/pdf/2002.05717">pdf</a>, <a href="https://arxiv.org/format/2002.05717">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/09/010">10.1088/1475-7516/2020/09/010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The cross correlation of the ABS and ACT maps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+Z">Zack Li</a>, <a href="/search/astro-ph?searchtype=author&query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Dunkley%2C+J">Joanna Dunkley</a>, <a href="/search/astro-ph?searchtype=author&query=Fowler%2C+J+W">J. W. Fowler</a>, <a href="/search/astro-ph?searchtype=author&query=Gallardo%2C+P">Patricio Gallardo</a>, <a href="/search/astro-ph?searchtype=author&query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Kusaka%2C+A">Akito Kusaka</a>, <a href="/search/astro-ph?searchtype=author&query=Louis%2C+T">Thibaut Louis</a>, <a href="/search/astro-ph?searchtype=author&query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&query=McMahon%2C+J">Jeffrey McMahon</a>, <a href="/search/astro-ph?searchtype=author&query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&query=Page%2C+L">Lyman Page</a>, <a href="/search/astro-ph?searchtype=author&query=Parker%2C+L">Lucas Parker</a>, <a href="/search/astro-ph?searchtype=author&query=Partridge%2C+B">Bruce Partridge</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.05717v2-abstract-short" style="display: inline;"> One of the most important checks for systematic errors in CMB studies is the cross correlation of maps made by independent experiments. In this paper we report on the cross correlation between maps from the Atacama B-mode Search (ABS) and Atacama Cosmology Telescope (ACT) experiments in both temperature and polarization. These completely different measurements have a clear correlation with each ot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05717v2-abstract-full').style.display = 'inline'; document.getElementById('2002.05717v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.05717v2-abstract-full" style="display: none;"> One of the most important checks for systematic errors in CMB studies is the cross correlation of maps made by independent experiments. In this paper we report on the cross correlation between maps from the Atacama B-mode Search (ABS) and Atacama Cosmology Telescope (ACT) experiments in both temperature and polarization. These completely different measurements have a clear correlation with each other and with the Planck satellite in both the EE and TE spectra at $\ell<400$ over the roughly $1100$ deg$^2$ common to all three. The TB, EB, and BB cross spectra are consistent with noise. Exploiting such cross-correlations will be important for future experiments operating in Chile that aim to probe the $30<\ell<8,000$ range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05717v2-abstract-full').style.display = 'none'; document.getElementById('2002.05717v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures. For an interactive demonstration of the methods, see https://colab.research.google.com/drive/1CnMGLn-J3pySv8A9ffNWDSlXlJWMrp2W</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Cosmology and Astroparticle Physics, Volume 2020, September 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.01724">arXiv:2001.01724</a> <span> [<a href="https://arxiv.org/pdf/2001.01724">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-019-02329-w">10.1007/s10909-019-02329-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Updated design of the CMB polarization experiment satellite LiteBIRD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sugai%2C+H">H. Sugai</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso%2C+D">D. Alonso</a>, <a href="/search/astro-ph?searchtype=author&query=Arnold%2C+K">K. Arnold</a>, <a href="/search/astro-ph?searchtype=author&query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&query=Banerji%2C+R">R. Banerji</a>, <a href="/search/astro-ph?searchtype=author&query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&query=Basak%2C+S">S. Basak</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J">J. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Beckman%2C+S">S. Beckman</a>, <a href="/search/astro-ph?searchtype=author&query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/astro-ph?searchtype=author&query=Borrill%2C+J">J. Borrill</a>, <a href="/search/astro-ph?searchtype=author&query=Boulanger%2C+F">F. Boulanger</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+M+L">M. L. Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Bucher%2C+M">M. Bucher</a>, <a href="/search/astro-ph?searchtype=author&query=Buzzelli%2C+A">A. Buzzelli</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Casas%2C+F+J">F. J. Casas</a>, <a href="/search/astro-ph?searchtype=author&query=Challinor%2C+A">A. Challinor</a>, <a href="/search/astro-ph?searchtype=author&query=Chan%2C+V">V. Chan</a>, <a href="/search/astro-ph?searchtype=author&query=Chinone%2C+Y">Y. Chinone</a> , et al. (196 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.01724v1-abstract-short" style="display: inline;"> Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite CMB polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA's H3 rocket. It will ac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01724v1-abstract-full').style.display = 'inline'; document.getElementById('2001.01724v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.01724v1-abstract-full" style="display: none;"> Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite CMB polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA's H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the cosmic microwave background (CMB) by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34GHz and 448GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy's foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5Kelvin for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun-Earth Lagrangian point, L2, are planned for three years. An international collaboration between Japan, USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science (ISAS), JAXA selected LiteBIRD as the strategic large mission No. 2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01724v1-abstract-full').style.display = 'none'; document.getElementById('2001.01724v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Journal of Low Temperature Physics, in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Low Temperature Physics 199, 1107 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Essinger-Hileman%2C+T&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Essinger-Hileman%2C+T&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Essinger-Hileman%2C+T&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Essinger-Hileman%2C+T&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>