CINXE.COM

Matrix iteration algorithms for solving the generalized Lyapunov matrix equation | Advances in Continuous and Discrete Models

<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="robots" content="max-image-preview:large"> <meta name="access" content="Yes"> <meta name="360-site-verification" content="1268d79b5e96aecf3ff2a7dac04ad990" /> <title>Matrix iteration algorithms for solving the generalized Lyapunov matrix equation | Advances in Continuous and Discrete Models</title> <meta name="citation_abstract" content="In this paper, we first recall some well-known results on the solvability of the generalized Lyapunov equation and rewrite this equation into the generalized Stein equation by using Cayley transformation. Then we introduce the matrix versions of biconjugate residual (BICR), biconjugate gradients stabilized (Bi-CGSTAB), and conjugate residual squared (CRS) algorithms. This study&#8217;s primary motivation is to avoid the increase of computational complexity by using the Kronecker product and vectorization operation. Finally, we offer several numerical examples to show the effectiveness of the derived algorithms."/> <meta name="journal_id" content="13662"/> <meta name="dc.title" content="Matrix iteration algorithms for solving the generalized Lyapunov matrix equation"/> <meta name="dc.source" content="Advances in Difference Equations 2021 2021:1"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="SpringerOpen"/> <meta name="dc.date" content="2021-04-28"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2021 The Author(s)"/> <meta name="dc.rights" content="2021 The Author(s)"/> <meta name="dc.rightsAgent" content="reprints@biomedcentral.com"/> <meta name="dc.description" content="In this paper, we first recall some well-known results on the solvability of the generalized Lyapunov equation and rewrite this equation into the generalized Stein equation by using Cayley transformation. Then we introduce the matrix versions of biconjugate residual (BICR), biconjugate gradients stabilized (Bi-CGSTAB), and conjugate residual squared (CRS) algorithms. This study&#8217;s primary motivation is to avoid the increase of computational complexity by using the Kronecker product and vectorization operation. Finally, we offer several numerical examples to show the effectiveness of the derived algorithms."/> <meta name="prism.issn" content="1687-1847"/> <meta name="prism.publicationName" content="Advances in Difference Equations"/> <meta name="prism.publicationDate" content="2021-04-28"/> <meta name="prism.volume" content="2021"/> <meta name="prism.number" content="1"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="1"/> <meta name="prism.endingPage" content="18"/> <meta name="prism.copyright" content="2021 The Author(s)"/> <meta name="prism.rightsAgent" content="reprints@biomedcentral.com"/> <meta name="prism.url" content="https://link.springer.com/articles/10.1186/s13662-021-03381-1"/> <meta name="prism.doi" content="doi:10.1186/s13662-021-03381-1"/> <meta name="citation_pdf_url" content="https://advancesincontinuousanddiscretemodels.springeropen.com/counter/pdf/10.1186/s13662-021-03381-1"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/articles/10.1186/s13662-021-03381-1"/> <meta name="citation_journal_title" content="Advances in Difference Equations"/> <meta name="citation_journal_abbrev" content="Adv Differ Equ"/> <meta name="citation_publisher" content="SpringerOpen"/> <meta name="citation_issn" content="1687-1847"/> <meta name="citation_title" content="Matrix iteration algorithms for solving the generalized Lyapunov matrix equation"/> <meta name="citation_volume" content="2021"/> <meta name="citation_issue" content="1"/> <meta name="citation_publication_date" content="2021/12"/> <meta name="citation_online_date" content="2021/04/28"/> <meta name="citation_firstpage" content="1"/> <meta name="citation_lastpage" content="18"/> <meta name="citation_article_type" content="Research"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1186/s13662-021-03381-1"/> <meta name="DOI" content="10.1186/s13662-021-03381-1"/> <meta name="size" content="488930"/> <meta name="citation_doi" content="10.1186/s13662-021-03381-1"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1186/s13662-021-03381-1&amp;api_key="/> <meta name="description" content="In this paper, we first recall some well-known results on the solvability of the generalized Lyapunov equation and rewrite this equation into the generalized Stein equation by using Cayley transformation. Then we introduce the matrix versions of biconjugate residual (BICR), biconjugate gradients stabilized (Bi-CGSTAB), and conjugate residual squared (CRS) algorithms. This study&#8217;s primary motivation is to avoid the increase of computational complexity by using the Kronecker product and vectorization operation. Finally, we offer several numerical examples to show the effectiveness of the derived algorithms."/> <meta name="dc.creator" content="Zhang, Juan"/> <meta name="dc.creator" content="Kang, Huihui"/> <meta name="dc.creator" content="Li, Shifeng"/> <meta name="dc.subject" content="Difference and Functional Equations"/> <meta name="dc.subject" content="Mathematics, general"/> <meta name="dc.subject" content="Analysis"/> <meta name="dc.subject" content="Functional Analysis"/> <meta name="dc.subject" content="Ordinary Differential Equations"/> <meta name="dc.subject" content="Partial Differential Equations"/> <meta name="citation_reference" content="citation_title=Efficient Low-Rank Solution of Large-Scale Matrix Equations; citation_publication_date=2016; citation_id=CR1; citation_author=P. Kurschner; citation_publisher=Otto von Guericke Universitat"/> <meta name="citation_reference" content="citation_journal_title=SIAM J. Matrix Anal. Appl.; citation_title=Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations; citation_author=V. Simoncini; citation_volume=37; citation_publication_date=2016; citation_pages=1655-1674; citation_doi=10.1137/16M1059382; citation_id=CR2"/> <meta name="citation_reference" content="citation_journal_title=SIAM J. Control Optim.; citation_title=Realization and structure theory of bilinear dynamical systems; citation_author=D.A. Paolo, I. Alberto, R. Antonio; citation_volume=12; citation_publication_date=1974; citation_pages=517-535; citation_doi=10.1137/0312040; citation_id=CR3"/> <meta name="citation_reference" content="citation_journal_title=Int. J. Syst. Sci.; citation_title=New model reduction scheme for bilinear systems; citation_author=A. Samir, A.L. Baiyat, M.A. Bettayeb, M.A.L. Saggaf; citation_volume=25; citation_publication_date=1994; citation_pages=1631-1642; citation_doi=10.1080/00207729408949302; citation_id=CR4"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans. Autom. Control; citation_title=On the stability of linear stochastic systems; citation_author=D.L. Kleinman; citation_volume=14; citation_publication_date=1969; citation_pages=429-430; citation_doi=10.1109/TAC.1969.1099206; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=SIAM J. Control Optim.; citation_title=Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems; citation_author=P. Benner, T. Damm; citation_volume=49; citation_publication_date=2011; citation_pages=686-711; citation_doi=10.1137/09075041X; citation_id=CR6"/> <meta name="citation_reference" content="citation_journal_title=IFAC Proc. Vol.; citation_title=Energy functions and algebraic Gramians for bilinear systems; citation_author=W.S. Gray, J. Mesko; citation_volume=31; citation_publication_date=1998; citation_pages=101-106; citation_doi=10.1016/S1474-6670(17)40318-1; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=Syst. Control Lett.; citation_title=Canonical forms for bilinear systems; citation_author=H. Dorissen; citation_volume=13; citation_publication_date=1989; citation_pages=153-160; citation_doi=10.1016/0167-6911(89)90032-7; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=Numer. Linear Algebra Appl.; citation_title=Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equation; citation_author=T. Damm; citation_volume=15; citation_publication_date=2008; citation_pages=853-871; citation_doi=10.1002/nla.603; citation_id=CR9"/> <meta name="citation_reference" content="citation_journal_title=Numer. Algorithms; citation_title=Numerical solution to generalized Lyapunov, Stein and rational Riccati equations in stochastic control; citation_author=H.Y. Fan, P. Weng, E. Chu; citation_volume=71; citation_publication_date=2016; citation_pages=245-272; citation_doi=10.1007/s11075-015-9991-8; citation_id=CR10"/> <meta name="citation_reference" content="citation_journal_title=Mathematics; citation_title=PHSS iterative method for solving generalized Lyapunov equations; citation_author=S.Y. Li, H.L. Shen, X.H. Shao; citation_volume=7; citation_publication_date=2019; citation_pages=1-13; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=J. Comput. Appl. Math.; citation_title=An extension of the conjugate residual method to nonsymmetric linear systems; citation_author=T. Sogabe, M. Sugihara, S.L. Zhang; citation_volume=226; citation_publication_date=2009; citation_pages=103-113; citation_doi=10.1016/j.cam.2008.05.018; citation_id=CR12"/> <meta name="citation_reference" content="citation_journal_title=Comment. Math. Helv.; citation_title=Relaxationsmethoden bester strategie zur losung linearer gleichungssysteme; citation_author=E.L. Stiefel; citation_volume=29; citation_publication_date=1955; citation_pages=157-179; citation_doi=10.1007/BF02564277; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=Appl. Math. Comput.; citation_title=Converting BiCR method for linear equations with complex symmetric matrices; citation_author=K. Abea, S. Fujino; citation_volume=321; citation_publication_date=2018; citation_pages=564-576; citation_id=CR14"/> <meta name="citation_reference" content="citation_journal_title=SIAM J. Sci. Stat. Comput.; citation_title=CGS, a fast Lanczos-type solver for nonsymmetric linear systems; citation_author=P. Sonneveld; citation_volume=10; citation_publication_date=1989; citation_pages=36-52; citation_doi=10.1137/0910004; citation_id=CR15"/> <meta name="citation_reference" content="citation_journal_title=SIAM J. Sci. Stat. Comput.; citation_title=Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems; citation_author=H.A. Vander; citation_volume=13; citation_publication_date=1992; citation_pages=631-644; citation_doi=10.1137/0913035; citation_id=CR16"/> <meta name="citation_reference" content="citation_journal_title=Int. J. Autom. Comput.; citation_title=Developing Bi-CG and Bi-CR methods to solve generalized Sylvester-transpose matrix equations; citation_author=M. Hajarian; citation_volume=11; citation_publication_date=2014; citation_pages=25-29; citation_doi=10.1007/s11633-014-0762-0; citation_id=CR17"/> <meta name="citation_reference" content="citation_journal_title=J. Sci. Comput.; citation_title=Analysis and practical use of flexible BiCGStab; citation_author=J. Chen, L.C. McInnes, H. Zhang; citation_volume=68; citation_publication_date=2016; citation_pages=803-825; citation_doi=10.1007/s10915-015-0159-4; citation_id=CR18"/> <meta name="citation_reference" content="citation_journal_title=Int. J. Comput. Math.; citation_title=Conjugate residual squared method and its improvement for non-symmetric linear systems; citation_author=L.T. Zhang, X.Y. Zuo, T.X. Gu, T.Z. Huang; citation_volume=87; citation_publication_date=2010; citation_pages=1578-1590; citation_doi=10.1080/00207160802401029; citation_id=CR19"/> <meta name="citation_reference" content="citation_journal_title=Microelectron. Comput.; citation_title=An improved conjugate residual squared algorithm suitable for distributed parallel computing; citation_author=L.T. Zhang, T.Z. Huang, T.X. Gu, X.Y. Zuo; citation_volume=25; citation_publication_date=2008; citation_pages=12-14; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=Adv. Differ. Equ.; citation_title=Developing CRS iterative methods for periodic Sylvester matrix equation; citation_author=L.J. Chen, C.F. Ma; citation_volume=1; citation_publication_date=2019; citation_pages=1-11; citation_id=CR21"/> <meta name="citation_reference" content="citation_title=A smoothed conjugate residual squared algorithm for solving nonsymmetric linear systems; citation_inbook_title=2009 Second Int. Confe. Infor. Comput. Sci.; citation_publication_date=2009; citation_pages=364-367; citation_id=CR22; citation_author=J. Zhao; citation_author=J.H. Zhang"/> <meta name="citation_reference" content="citation_title=Extended conjugate residual methods for solving nonsymmetric linear systems; citation_inbook_title=International Conference on Numerical Optimization and Numerical Linear Algebra; citation_publication_date=2003; citation_pages=88-99; citation_id=CR23; citation_author=T. Sogabe; citation_author=S.L. Zhang"/> <meta name="citation_reference" content="citation_journal_title=J. Comput. Appl. Math.; citation_title=An extension of the conjugate residual method to nonsymmetric linear systems; citation_author=T. Sogabe, M. Sugihara, S.L. Zhang; citation_volume=226; citation_publication_date=2009; citation_pages=103-113; citation_doi=10.1016/j.cam.2008.05.018; citation_id=CR24"/> <meta name="citation_reference" content="citation_journal_title=Linear Algebra Appl.; citation_title=A projection method for model reduction of bilinear dynamical systems; citation_author=Z.J. Bai, D. Skoogh; citation_volume=415; citation_publication_date=2006; citation_pages=406-425; citation_doi=10.1016/j.laa.2005.04.032; citation_id=CR25"/> <meta name="citation_author" content="Zhang, Juan"/> <meta name="citation_author_institution" content="Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, P.R. China"/> <meta name="citation_author" content="Kang, Huihui"/> <meta name="citation_author_institution" content="Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, P.R. China"/> <meta name="citation_author" content="Li, Shifeng"/> <meta name="citation_author_institution" content="Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, P.R. China"/> <meta property="og:url" content="https://link.springer.com/article/10.1186/s13662-021-03381-1"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="Matrix iteration algorithms for solving the generalized Lyapunov matrix equation - Advances in Continuous and Discrete Models"/> <meta property="og:description" content="In this paper, we first recall some well-known results on the solvability of the generalized Lyapunov equation and rewrite this equation into the generalized Stein equation by using Cayley transformation. Then we introduce the matrix versions of biconjugate residual (BICR), biconjugate gradients stabilized (Bi-CGSTAB), and conjugate residual squared (CRS) algorithms. This study&#8217;s primary motivation is to avoid the increase of computational complexity by using the Kronecker product and vectorization operation. Finally, we offer several numerical examples to show the effectiveness of the derived algorithms."/> <meta property="og:image" content="https://static-content.springer.com/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Figa_HTML.png"/> <meta name="format-detection" content="telephone=no"> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-5272567b64.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-72ba046d97.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script type="text/javascript"> config = { env: 'live', site: 'advancesincontinuousanddiscretemodels.springeropen.com', siteWithPath: 'advancesincontinuousanddiscretemodels.springeropen.com' + window.location.pathname, twitterHashtag: '', cmsPrefix: 'https://studio-cms.springernature.com/studio/', figshareScriptUrl: 'https://widgets.figshare.com/static/figshare.js', hasFigshareInvoked: false, publisherBrand: 'SpringerOpen', mustardcut: false }; </script> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1186/s13662-021-03381-1","Page":"article","springerJournal":false,"Publishing Model":"Open Access","page":{"attributes":{"environment":"live"}},"Country":"HK","japan":false,"doi":"10.1186-s13662-021-03381-1","Journal Id":13662,"Journal Title":"Advances in Difference Equations","imprint":"Springer","Keywords":"Generalized Lyapunov equation, Cayley transformation, BICR algorithm, Bi-CGSTAB algorithm, CRS algorithm","kwrd":["Generalized_Lyapunov_equation","Cayley_transformation","BICR_algorithm","Bi-CGSTAB_algorithm","CRS_algorithm"],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"Y","hasAccess":"Y","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"open","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"vgzm.415900-10.1186-s13662-021-03381-1","Full HTML":"Y","Subject Codes":["SCM","SCM12031","SCM00009","SCM12007","SCM12066","SCM12147","SCM12155"],"pmc":["M","M12031","M00009","M12007","M12066","M12147","M12155"],"session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"1687-1847"},"type":"Article","category":{"pmc":{"primarySubject":"Mathematics","primarySubjectCode":"M","secondarySubjects":{"1":"Difference and Functional Equations","2":"Mathematics, general","3":"Analysis","4":"Functional Analysis","5":"Ordinary Differential Equations","6":"Partial Differential Equations"},"secondarySubjectCodes":{"1":"M12031","2":"M00009","3":"M12007","4":"M12066","5":"M12147","6":"M12155"}},"sucode":"SC10","articleType":"Research"},"attributes":{"deliveryPlatform":"oscar"}},"Event Category":"Article"}]; </script> <script data-test="springer-link-article-datalayer"> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }, { name: 'chapter-books-recs', active: true } ], darwinAvailable: true } } }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = false; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-dad1690b0d.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-e7d03c4cb3.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <link rel="canonical" href="https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-021-03381-1"/> <script type="application/ld+json">{"mainEntity":{"headline":"Matrix iteration algorithms for solving the generalized Lyapunov matrix equation","description":"In this paper, we first recall some well-known results on the solvability of the generalized Lyapunov equation and rewrite this equation into the generalized Stein equation by using Cayley transformation. Then we introduce the matrix versions of biconjugate residual (BICR), biconjugate gradients stabilized (Bi-CGSTAB), and conjugate residual squared (CRS) algorithms. This study’s primary motivation is to avoid the increase of computational complexity by using the Kronecker product and vectorization operation. Finally, we offer several numerical examples to show the effectiveness of the derived algorithms.","datePublished":"2021-04-28T00:00:00Z","dateModified":"2021-04-28T00:00:00Z","pageStart":"1","pageEnd":"18","license":"http://creativecommons.org/licenses/by/4.0/","sameAs":"https://doi.org/10.1186/s13662-021-03381-1","keywords":["Generalized Lyapunov equation","Cayley transformation","BICR algorithm","Bi-CGSTAB algorithm","CRS algorithm","Difference and Functional Equations","Mathematics","general","Analysis","Functional Analysis","Ordinary Differential Equations","Partial Differential Equations"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Figa_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Figb_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Figc_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Figd_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Fige_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Figf_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Fig1_HTML.jpg","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Fig2_HTML.jpg","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Fig3_HTML.jpg"],"isPartOf":{"name":"Advances in Difference Equations","issn":["1687-1847"],"volumeNumber":"2021","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Springer International Publishing","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Juan Zhang","affiliation":[{"name":"Xiangtan University","address":{"name":"Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, P.R. China","@type":"PostalAddress"},"@type":"Organization"}],"email":"zhangjuan@xtu.edu.cn","@type":"Person"},{"name":"Huihui Kang","affiliation":[{"name":"Xiangtan University","address":{"name":"Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, P.R. China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Shifeng Li","affiliation":[{"name":"Xiangtan University","address":{"name":"Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, P.R. China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> </head> <body class="" > <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> <a class="c-skip-link" href="#main">Skip to main content</a> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1186/s13662-021-03381-1?fromPaywallRec=true'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> <article lang="en" id="main" class="app-masthead__colour-9"> <section class="app-masthead " aria-label="article masthead"> <div class="app-masthead__container"> <div class="app-article-masthead u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="article" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs c-breadcrumbs--contrast" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/journal/13662" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">Advances in Difference Equations</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Article</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="article-title" data-article-title="">Matrix iteration algorithms for solving the generalized Lyapunov matrix equation</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item" data-test="article-category">Research</li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item"> Published: <time datetime="2021-04-28">28 April 2021</time> </li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> <span data-test="journal-volume">Volume 2021</span>, article number <span data-test="article-number">221</span>, (<span data-test="article-publication-year">2021</span>) </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this article" data-track-category="article body" data-track-label="link">Cite this article</a> </li> </ul> <div class="app-article-masthead__buttons" data-test="download-article-link-wrapper" data-track-context="masthead"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1186/s13662-021-03381-1.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> <p class="app-article-masthead__access"> <svg width="16" height="16" focusable="false" role="img" aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-check-filled-medium"></use></svg> You have full access to this <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link">open access</a> article</p> </div> </div> <div class="app-article-masthead__brand"> <a href="/journal/13662" class="app-article-masthead__journal-link" data-track="click_journal_home" data-track-action="journal homepage" data-track-context="article page" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="159" srcset="https://media.springernature.com/w120/springer-static/cover-hires/journal/13662?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/journal/13662?as=webp 2x"> <img width="72" height="95" src="https://media.springernature.com/w72/springer-static/cover-hires/journal/13662?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/journal/13662?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title">Advances in Difference Equations</span> </a> <a href="https://www.editorialmanager.com/aide/" class="app-article-masthead__submission-link" data-track="click_submit_manuscript" data-track-context="article masthead on springerlink article page" data-track-action="submit manuscript" data-track-label="link"> Submit manuscript <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> </div> </div> </div> </section> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="u-serif js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container"> <div class="c-context-bar__title"> Matrix iteration algorithms for solving the generalized Lyapunov matrix equation </div> <div data-test="inCoD" data-track-context="sticky banner"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1186/s13662-021-03381-1.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Juan-Zhang-Aff1" data-author-popup="auth-Juan-Zhang-Aff1" data-author-search="Zhang, Juan" data-corresp-id="c1">Juan Zhang<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Huihui-Kang-Aff1" data-author-popup="auth-Huihui-Kang-Aff1" data-author-search="Kang, Huihui">Huihui Kang</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup> &amp; </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Shifeng-Li-Aff1" data-author-popup="auth-Shifeng-Li-Aff1" data-author-search="Li, Shifeng">Shifeng Li</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup> </li></ul> <div data-test="article-metrics"> <ul class="app-article-metrics-bar u-list-reset"> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>1861 <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-citations-medium"></use> </svg>2 <span class="app-article-metrics-bar__label">Citations</span></p> </li> <li class="app-article-metrics-bar__item app-article-metrics-bar__item--metrics"> <p class="app-article-metrics-bar__details"><a href="/article/10.1186/s13662-021-03381-1/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Explore all metrics <svg class="u-icon app-article-metrics-bar__arrow-icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </li> </ul> </div> <div class="u-mt-32"> </div> </header> </div> <div data-article-body="true" data-track-component="article body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>In this paper, we first recall some well-known results on the solvability of the generalized Lyapunov equation and rewrite this equation into the generalized Stein equation by using Cayley transformation. Then we introduce the matrix versions of biconjugate residual (BICR), biconjugate gradients stabilized (Bi-CGSTAB), and conjugate residual squared (CRS) algorithms. This study’s primary motivation is to avoid the increase of computational complexity by using the Kronecker product and vectorization operation. Finally, we offer several numerical examples to show the effectiveness of the derived algorithms.</p></div></div></section> <div data-test="cobranding-download"> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1007%2Fs40314-021-01523-5/MediaObjects/40314_2021_1523_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s40314-021-01523-5?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1007/s40314-021-01523-5">Conjugate gradient-like algorithms for constrained operator equation related to quadratic inverse eigenvalue problems </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">08 May 2021</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3Aplaceholder%2Fimages/placeholder-figure-springernature.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s11075-017-0432-8?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1007/s11075-017-0432-8">Some iterative methods for the largest positive definite solution to a class of nonlinear matrix equation </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">02 November 2017</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3Aplaceholder%2Fimages/placeholder-figure-springernature.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s10255-024-1100-0?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1007/s10255-024-1100-0">A Minimum Residual Based Gradient Iterative Method for a Class of Matrix Equations </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">30 November 2023</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732793069, embedded_user: 'null' } }); </script> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1"><span class="c-article-section__title-number">1 </span>Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>In this paper, we consider the generalized Lyapunov equation as follows: </p><div id="Equ1" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} AX + XA^{T}+\sum_{j=1}^{m}N_{j}XN_{j}^{T}+C = 0, \end{aligned}$$ </span></div><div class="c-article-equation__number"> (1) </div></div><p> where <i>A</i>, <span class="mathjax-tex">\(N_{j}\in \mathbb{R}^{n\times n}\)</span> (<span class="mathjax-tex">\(j=1,2,\ldots ,m\)</span>), <span class="mathjax-tex">\(m\ll n\)</span> and <span class="mathjax-tex">\(C\in \mathbb{R}^{n\times n}\)</span> is symmetric, <span class="mathjax-tex">\(X\in \mathbb{R}^{n\times n}\)</span> is the symmetric solution of (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>).</p><p>The generalized Lyapunov equation (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>) is related to several linear matrix equations displayed in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1186/s13662-021-03381-1#Tab1">1</a>. A large and growing amount of literature has considered the solution for these equations; see [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Kurschner, P.: Efficient Low-Rank Solution of Large-Scale Matrix Equations. Dissertation, Otto von Guericke Universitat, Magdeburg (2016)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR1" id="ref-link-section-d522025e586">1</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Simoncini, V.: Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 37, 1655–1674 (2016)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR2" id="ref-link-section-d522025e589">2</a>] and the references therein for an overview of developments and methods. </p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-1"><figure><figcaption class="c-article-table__figcaption"><b id="Tab1" data-test="table-caption">Table 1 Several linear matrix equations</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1186/s13662-021-03381-1/tables/1" aria-label="Full size table 1"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The generalized Lyapunov equation (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>) often appears in the context of bilinear systems [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Paolo, D.A., Alberto, I., Antonio, R.: Realization and structure theory of bilinear dynamical systems. SIAM J. Control Optim. 12, 517–535 (1974)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR3" id="ref-link-section-d522025e864">3</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Samir, A., Baiyat, A.L., Bettayeb, M.A., Saggaf, M.A.L.: New model reduction scheme for bilinear systems. Int. J. Syst. Sci. 25, 1631–1642 (1994)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR4" id="ref-link-section-d522025e867">4</a>], stability analysis of linear stochastic systems [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Kleinman, D.L.: On the stability of linear stochastic systems. IEEE Trans. Autom. Control 14, 429–430 (1969)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR5" id="ref-link-section-d522025e870">5</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Benner, P., Damm, T.: Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM J. Control Optim. 49, 686–711 (2011)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR6" id="ref-link-section-d522025e873">6</a>], special linear stochastic differential equations [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Gray, W.S., Mesko, J.: Energy functions and algebraic Gramians for bilinear systems. IFAC Proc. Vol. 31, 101–106 (1998)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR7" id="ref-link-section-d522025e877">7</a>] and other areas. For example, we discuss the origin of Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>) in bilinear systems. The bilinear system is an interesting subclass of nonlinear control systems that naturally occurs in some boundary control dynamics [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Benner, P., Damm, T.: Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM J. Control Optim. 49, 686–711 (2011)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR6" id="ref-link-section-d522025e883">6</a>]. The bilinear control system has been studied by scholars for many years and has the following state space representation: </p><div id="Equ2" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \Sigma : \textstyle\begin{cases} \dot{x}(t)=Ax(t)+\sum_{j=1}^{m}N_{j}x(t)u_{j}(t)+Bu(t), \\ y(t)=Cx(t),\qquad x(0)=x_{0}, \end{cases} $$</span></div><div class="c-article-equation__number"> (2) </div></div><p> where <i>t</i> is the time variable, <span class="mathjax-tex">\(x(t)\in \mathbb{R}^{n}\)</span>, <span class="mathjax-tex">\(u(t)\in \mathbb{R}^{m}\)</span>, <span class="mathjax-tex">\(y(t)\in \mathbb{R}^{n}\)</span> are the stable, input and output vectors, respectively, <span class="mathjax-tex">\(u_{j}(t)\)</span> is the <i>j</i>th component of <span class="mathjax-tex">\(u(t)\)</span>. <span class="mathjax-tex">\(B \in \mathbb{R}^{n\times m}\)</span>, and <i>A</i>, <span class="mathjax-tex">\(N_{j}\)</span>, <i>C</i> are defined in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>).</p><p>For the bilinear control system (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ2">2</a>), define </p><div id="Equa" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \begin{aligned} &amp;P_{1}=e^{At_{1}}B, \\ &amp;P_{i}(t_{1}, \ldots , t_{i})=e^{At_{i}}[N_{1}P_{i-1}, \ldots , N_{m}P_{i-1}], \quad i = 2,3,\ldots . \end{aligned} $$</span></div></div><p> Using the concept of reachability in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Paolo, D.A., Alberto, I., Antonio, R.: Realization and structure theory of bilinear dynamical systems. SIAM J. Control Optim. 12, 517–535 (1974)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR3" id="ref-link-section-d522025e1516">3</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Dorissen, H.: Canonical forms for bilinear systems. Syst. Control Lett. 13, 153–160 (1989)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR8" id="ref-link-section-d522025e1519">8</a>], the reachability corresponding to (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ2">2</a>) is </p><div id="Equb" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ P = \sum_{i=1}^{\infty } \int _{0}^{\infty }\cdots \int _{0}^{ \infty }P_{i}P_{i}^{T}\,dt_{1} \cdots dt_{i}, $$</span></div></div><p> where <i>P</i> is the solution of (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>).</p><p>Moreover, the generalized Lyapunov equation (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>) has wide applications in PDEs. Consider the heat equation subjected to mixed boundary conditions [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Damm, T.: Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equation. Numer. Linear Algebra Appl. 15, 853–871 (2008)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR9" id="ref-link-section-d522025e1640">9</a>] </p><div id="Equ3" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \begin{aligned} &amp;x_{t}= \Delta x\quad \text{in } \Omega , \\ &amp;n\cdot \nabla x=u(x-1) \quad \text{on } \Gamma _{1}, \\ &amp;x= 0 \quad \text{on } \Gamma _{2},\Gamma _{3},\Gamma _{4}, \end{aligned} $$</span></div><div class="c-article-equation__number"> (3) </div></div><p> where <span class="mathjax-tex">\(\Gamma _{1}\)</span>, <span class="mathjax-tex">\(\Gamma _{2}\)</span>, <span class="mathjax-tex">\(\Gamma _{3}\)</span> and <span class="mathjax-tex">\(\Gamma _{4}\)</span> are the boundaries of Ω. For example, for a simple <span class="mathjax-tex">\(2\times 2\)</span> mesh, the state vector <span class="mathjax-tex">\(x=[x_{11}, x_{21}, x_{12}, x_{22}]^{T}\)</span> contains the temperatures at the inner points and the Laplacian is approximated via </p><div id="Equc" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} \Delta x_{ij}\thickapprox -\frac{1}{h^{2}} (4x_{ij}-x_{i+1,j}-x_{i,j+1}-x_{i-1,j}-x_{i,j-1}), \end{aligned}$$ </span></div></div><p> with meshsize <span class="mathjax-tex">\(h=1/3\)</span>. If the Robin condition is imposed on the whole boundary, then we have </p><div id="Equd" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &amp;x_{10}\thickapprox x_{11}-h u(x_{11}-1),\qquad x_{20}\thickapprox x_{21}-h u(x_{21}-1), \\ &amp; x_{01}\thickapprox x_{11}-h u(x_{11}-1),\qquad \ldots \end{aligned}$$ </span></div></div><p> Altogether this leads to the bilinear system </p><div id="Equ4" class="c-article-equation"><div class="c-article-equation__content"><math display="block"><mtable xmlns="http://www.w3.org/1998/Math/MathML" columnalign="right left" columnspacing="0.2em"> <mtr> <mtd> <mover accent="true"> <mi>x</mi> <mo>˙</mo> </mover> <mo>=</mo> </mtd> <mtd> <mfrac> <mn>1</mn> <msup> <mi>h</mi> <mn>2</mn> </msup> </mfrac> <mrow> <mo>(</mo> <mtable columnalign="center" columnspacing="1em 1em 1em"> <mtr> <mtd> <mo>−</mo> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>−</mo> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−</mo> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>−</mo> <mn>2</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mi>x</mi> </mtd> </mtr> <mtr> <mtd/> <mtd> <mo>+</mo> <mfrac> <mn>1</mn> <mi>h</mi> </mfrac> <mrow> <mo>(</mo> <mtable columnalign="center"> <mtr> <mtd> <mrow> <mo>(</mo> <mtable columnalign="center"> <mtr> <mtd> <msub> <mi>x</mi> <mn>11</mn> </msub> <mo>−</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mn>21</mn> </msub> <mo>−</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mtable columnalign="center"> <mtr> <mtd> <msub> <mi>x</mi> <mn>11</mn> </msub> <mo>−</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mn>12</mn> </msub> <mo>−</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mtable columnalign="center"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mn>21</mn> </msub> <mo>−</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mn>22</mn> </msub> <mo>−</mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mn>3</mn> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mtable columnalign="center"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mn>21</mn> </msub> <mo>−</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mn>22</mn> </msub> <mo>−</mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mn>4</mn> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> </mtd> <mtd> <mfrac> <mn>1</mn> <msup> <mi>h</mi> <mn>2</mn> </msup> </mfrac> <mi>A</mi> <mi>x</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mi>h</mi> </mfrac> <mrow> <mo maxsize="2.4ex" minsize="2.4ex" stretchy="true">(</mo> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo stretchy="false">)</mo> <msub> <mi>u</mi> <mn>1</mn> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mn>2</mn> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mn>3</mn> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <mo stretchy="false">)</mo> <msub> <mi>u</mi> <mn>3</mn> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mn>4</mn> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>b</mi> <mn>4</mn> </msub> <mo stretchy="false">)</mo> <msub> <mi>u</mi> <mn>4</mn> </msub> <mo maxsize="2.4ex" minsize="2.4ex" stretchy="true">)</mo> </mrow> <mo>,</mo> </mtd> </mtr> </mtable></math></div><div class="c-article-equation__number"> (4) </div></div><p> where <span class="mathjax-tex">\(E_{j}=e_{j}e_{j}^{T}\)</span> with canonical unit vector <span class="mathjax-tex">\(e_{j}\in \mathbb{R}^{2}\)</span>, and </p><div id="Eque" class="c-article-equation"><div class="c-article-equation__content"><math display="block"><mtable xmlns="http://www.w3.org/1998/Math/MathML" columnalign="right left" columnspacing="0.2em"> <mtr> <mtd/> <mtd> <mi>A</mi> <mo>=</mo> <mrow> <mo>(</mo> <mtable columnalign="center" columnspacing="1em 1em 1em"> <mtr> <mtd> <mo>−</mo> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>−</mo> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−</mo> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>−</mo> <mn>2</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="2em"/> <msub> <mi>A</mi> <mn>1</mn> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mo>⊗</mo> <mi>I</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd/> <mtd> <msub> <mi>A</mi> <mn>2</mn> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>⊗</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="2em"/> <msub> <mi>A</mi> <mn>3</mn> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mo>⊗</mo> <mi>I</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="2em"/> <msub> <mi>A</mi> <mn>4</mn> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>⊗</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd/> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mo>⊗</mo> <mi>e</mi> <mo>,</mo> <mspace width="2em"/> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mo>⊗</mo> <mi>e</mi> <mo>,</mo> <mspace width="2em"/> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mo>⊗</mo> <mi>e</mi> <mo>,</mo> <mspace width="2em"/> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mo>⊗</mo> <mi>e</mi> <mo>,</mo> <mspace width="1em"/> <mi>e</mi> <mo>=</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> <mo>.</mo> </mtd> </mtr> </mtable></math></div></div><p> Thus, the optimal control problem of (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ4">4</a>) reduces to the bilinear control system (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ2">2</a>) and we ultimately need solve the generalized Lyapunov equation: </p><div id="Equf" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} AX+XA+\sum_{j=1}^{4} A_{j}XA_{j}=-BB^{T}. \end{aligned}$$ </span></div></div><p>Therefore, considering the important applications of the generalized Lyapunov equation (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>), many researchers pay much attention to study the solution for this equation in recent years. Damm showed the direct method to solve the generalized Lyapunov equation [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Damm, T.: Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equation. Numer. Linear Algebra Appl. 15, 853–871 (2008)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR9" id="ref-link-section-d522025e3532">9</a>]. Fan et al. transformed this equation into the generalized Stein equation by generalized Cayley transformation and solved it using GSM [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Fan, H.Y., Weng, P., Chu, E.: Numerical solution to generalized Lyapunov, Stein and rational Riccati equations in stochastic control. Numer. Algorithms 71, 245–272 (2016)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR10" id="ref-link-section-d522025e3535">10</a>]. Dai et al. proposed the HSS algorithm to solve the generalized Lyapunov equation. Li et al. proposed the PHSS iterative method for solving this equation when <i>A</i> is asymmetric positive definite [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Li, S.Y., Shen, H.L., Shao, X.H.: PHSS iterative method for solving generalized Lyapunov equations. Mathematics 7, 1–13 (2019)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR11" id="ref-link-section-d522025e3541">11</a>]. Based on the recent results, we mainly discuss the matrix iteration algorithms for the generalized Lyapunov equation (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>).</p><p>The rest of the paper is organized as follows. In Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1186/s13662-021-03381-1#Sec2">2</a>, we recall some known results on the generalized Lyapunov equation’s solvability and rewrite this equation into the generalized Stein equation by using Cayley transformation. In Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1186/s13662-021-03381-1#Sec5">3</a>, we present the matrix versions and variant forms of the BICR, Bi-CGSTAB, and CRS algorithms. In Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1186/s13662-021-03381-1#Sec9">4</a>, we offer several numerical examples to test the effectiveness of the derived algorithms. In Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1186/s13662-021-03381-1#Sec10">5</a>, we draw some concluding remarks.</p><p>Throughout this paper, we shall adopt the following notations. <span class="mathjax-tex">\(\mathbb{R}^{m\times n}\)</span> and <span class="mathjax-tex">\(\mathbb{Z}^{+}\)</span> stand for the set of all <span class="mathjax-tex">\(m\times n\)</span> real matrices and positive integers. For <span class="mathjax-tex">\(A = (a_{ij})=(a_{1},a_{2},\ldots , a_{n})\in \mathbb{R}^{m\times n}\)</span>, the symbol <span class="mathjax-tex">\(\text{vec}(A)\)</span> is a vector defined by <span class="mathjax-tex">\(\text{vec}(A) = (a_{1}^{T},a_{2}^{T},\ldots , a_{n}^{T})^{T}\)</span>. <span class="mathjax-tex">\(A^{T}\)</span> and <span class="mathjax-tex">\(\|A\|\)</span> represent the transpose and 2-norm of matrix <i>A</i>, respectively. The symbol <span class="mathjax-tex">\(A\geq 0\)</span> means that <i>A</i> is symmetric positive semi-definite. For <span class="mathjax-tex">\(B\in \mathbb{R}^{m\times n}\)</span>, the Kronecker product and inner product of <i>A</i> and <i>B</i> are defined by <span class="mathjax-tex">\(A\otimes B = (a_{ij}B)\)</span> and <span class="mathjax-tex">\(\langle A, B\rangle = \text{tr}(B^{T}A)\)</span>. The open right-half and left-half planes are denoted by <span class="mathjax-tex">\(\mathbb{C}_{+}\)</span> and <span class="mathjax-tex">\(\mathbb{C}_{-}\)</span>, respectively.</p></div></div></section><section data-title="Solvability and Cayley transformation"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2"><span class="c-article-section__title-number">2 </span>Solvability and Cayley transformation</h2><div class="c-article-section__content" id="Sec2-content"><h3 class="c-article__sub-heading" id="Sec3"><span class="c-article-section__title-number">2.1 </span>Solvability of the generalized Lyapunov equation</h3><p>This section introduces the solvability for the generalized Lyapunov equation (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>).</p><p>Denote <span class="mathjax-tex">\(\sigma (T)\in \mathbb{C}\)</span> by the spectrum of a linear operator <i>T</i> and <span class="mathjax-tex">\(\rho (T)=\max \{|\lambda | |\lambda \in \sigma (T)\}\)</span> by the spectral radius. Define the linear matrix operators <span class="mathjax-tex">\(\mathcal{L}_{A}\)</span> and <span class="mathjax-tex">\(\Pi :\mathbb{R}^{n\times n}\rightarrow \mathbb{R}^{n\times n}\)</span> by </p><div id="Equ5" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} \mathcal{L}_{A}=A^{T}X+XA, \qquad \Pi (X)\mapsto \sum _{j=1}^{m}N_{j}XN_{j}^{T}. \end{aligned}$$ </span></div><div class="c-article-equation__number"> (5) </div></div><p> Obviously, <span class="mathjax-tex">\(\Pi (X)\geq 0\)</span> when <span class="mathjax-tex">\(X\geq 0\)</span>.</p><p>Therefore, using Theorem 3.9 in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Benner, P., Damm, T.: Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM J. Control Optim. 49, 686–711 (2011)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR6" id="ref-link-section-d522025e4435">6</a>], we immediately get the generalized Lyapunov equation’s stability result.</p> <h3 class="c-article__sub-heading" id="FPar1">Theorem 2.1</h3> <p><i>Let</i> <span class="mathjax-tex">\(A\in \mathbb{R}^{n\times n}\)</span> <i>and</i> Π <i>be positive</i>. <i>The following conclusions are equivalent</i>:</p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">(a)</span> <p><i>For all</i> <span class="mathjax-tex">\(Y&gt;0\)</span>, <span class="mathjax-tex">\(\exists X&gt;0\)</span> <i>such that</i> <span class="mathjax-tex">\(\mathcal{L}_{A}(X)+\Pi (X)=-Y\)</span>;</p> </li> <li> <span class="u-custom-list-number">(b)</span> <p><span class="mathjax-tex">\(\exists Y, X&gt;0\)</span> <i>such that</i> <span class="mathjax-tex">\(\mathcal{L}_{A}(X)+\Pi (X)=-Y\)</span>;</p> </li> <li> <span class="u-custom-list-number">(c)</span> <p><span class="mathjax-tex">\(\exists Y\geq 0\)</span> <i>with</i> <span class="mathjax-tex">\((A,Y)\)</span> <i>controllable</i>, <span class="mathjax-tex">\(\exists X&gt;0\)</span> <i>such that</i> <span class="mathjax-tex">\(\mathcal{L}(X)+\Pi (X)=-Y\)</span>;</p> </li> <li> <span class="u-custom-list-number">(d)</span> <p><span class="mathjax-tex">\(\sigma (\mathcal{L}_{A}(X)+\Pi (X))\subset \mathbb{C}_{-}\)</span>;</p> </li> <li> <span class="u-custom-list-number">(e)</span> <p><span class="mathjax-tex">\(\sigma (\mathcal{L}_{A}(X))\subset \mathbb{C}_{-}\)</span> <i>and</i> <span class="mathjax-tex">\(\rho (\mathcal{L}^{-1}_{A}(X)\Pi (X))&lt;1\)</span>,</p> </li> </ol><p><i>where the linear matrix operators</i> <span class="mathjax-tex">\(\mathcal{L}_{A}\)</span> <i>and</i> Π <i>are defined by</i> (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ5">5</a>).</p> <h3 class="c-article__sub-heading" id="FPar2">Remark 2.1</h3> <p>For the generalized Lyapunov equation (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>), we often choose <span class="mathjax-tex">\(C=BB^{T}\)</span>, i.e., <i>C</i> is symmetric positive semi-definite. Using Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar1">2.1</a>, Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>) has a positive definite solution <i>X</i> if <i>A</i> is stable, <span class="mathjax-tex">\((A, B)\)</span> is controllable, and the norm of the <span class="mathjax-tex">\(N_{j}\)</span> is sufficiently small.</p> <h3 class="c-article__sub-heading" id="Sec4"><span class="c-article-section__title-number">2.2 </span>Cayley transformation for (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>)</h3><p>In this section, we introduce Cayley transformation for the generalized Lyapunov equation.</p><p>It is well known that Cayley transformation is a link between the classical Lyapunov and Stein equations. Fan et al. have shown that the stability of the Lyapunov and Stein equations is different. Naturally, we wonder if the stability is different and the counterparty method has other effects. It is verified in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1186/s13662-021-03381-1#Sec9">4</a> that our iteration methods are more efficient after applying Cayley transformation to the generalized Lyapunov equation. We first recall the definition of Cayley transformation.</p> <h3 class="c-article__sub-heading" id="FPar3">Definition 2.1</h3> <p>(Cayley transformation)</p> <p>Let <span class="mathjax-tex">\(M\in \mathbb{R}^{n\times n}\)</span> be a skew-symmetric matrix. Then <span class="mathjax-tex">\(\mathcal{N}=(I+M)^{-1}(I-M)\)</span> is called Cayley transformation of <i>M</i>.</p> <p>Next, we show that the generalized Lyapunov equation can be changed to the generalized Setin equation after Cayley transformation.</p> <h3 class="c-article__sub-heading" id="FPar4">Theorem 2.2</h3> <p><i>For the generalized Lyapunov equation</i> (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>), <i>take the positive parameter</i> <i>γ</i> <i>such that the matrices</i> <span class="mathjax-tex">\((\gamma I+A)\)</span> <i>and</i> <span class="mathjax-tex">\((\gamma I+A^{T})\)</span> <i>are both nonsingular</i>. <i>Then</i> (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>) <i>is equivalent to the generalized Stein equation</i> </p><div id="Equ6" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ X-\hat{A}X\hat{A}^{T}+2\gamma \sum_{j=1}^{m} \hat{N_{j}}X \hat{N_{j}^{T}}+2\gamma \hat{C}=0, $$</span></div><div class="c-article-equation__number"> (6) </div></div><p><i>where</i> </p><div id="Equg" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &amp;\hat{A}=(\gamma I+A)^{-1}(\gamma I-A), \\ &amp;\hat{N_{j}}=(\gamma I+A)^{-1}N_{j}, \\ &amp;\hat{C}=(\gamma I+A)^{-1}C(\gamma I+A)^{-T}. \end{aligned}$$ </span></div></div> <h3 class="c-article__sub-heading" id="FPar5">Proof</h3> <p>Introducing the positive parameter <i>γ</i> to (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>), we get </p><div id="Equ7" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} (\gamma I+A)X\bigl(\gamma I+A^{T}\bigr)-(\gamma I-A)X\bigl(\gamma I-A^{T}\bigr)+2\gamma \Biggl( \sum_{j=1}^{m}N_{j}XN_{j}^{T} \Biggr) +2\gamma C=0. \end{aligned}$$ </span></div><div class="c-article-equation__number"> (7) </div></div><p> Since <span class="mathjax-tex">\((\gamma I+A)\)</span> and <span class="mathjax-tex">\((\gamma I+A^{T})\)</span> are both nonsingular, premultiplying <span class="mathjax-tex">\((\gamma I+A)^{-1}\)</span> and postmultiplying <span class="mathjax-tex">\((\gamma I+A^{T})^{-1}\)</span> on both sides to (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ7">7</a>) yield (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ6">6</a>). Thus we complete the proof of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar4">2.2</a>. □</p> <h3 class="c-article__sub-heading" id="FPar6">Remark 2.2</h3> <p>Viewing Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar4">2.2</a>, it involves a positive parameter <i>γ</i>. We offer a practical way to choose <i>γ</i>. Set </p><div id="Equh" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} \gamma = \max_{1\leq i\leq n}a_{ii}, \end{aligned}$$ </span></div></div><p> then <span class="mathjax-tex">\((\gamma I+A)\)</span> and <span class="mathjax-tex">\((\gamma I+A^{T})\)</span> are both nonsingular. Thus the condition of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar4">2.2</a> is satisfied. Appropriate adjustments can be made according to different situations.</p> <h3 class="c-article__sub-heading" id="FPar7">Remark 2.3</h3> <p>Next, we show the relationship between the generalized Lyapunov equation (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>) and the generalized Stein equation (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ6">6</a>) by using the preconditioner method of linear systems.</p> <p>By utilizing the operator vec, the generalized Lyapunov equation can be rewritten as </p><div id="Equi" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} \mathcal{A}_{1}\mathcal{X}= \Biggl(I\otimes A+A\otimes I+\sum _{j=1}^{m}N_{j} \otimes N_{j}\Biggr)\text{vec}(X)=-\text{vec}(C). \end{aligned}$$ </span></div></div><p> The generalized Stein equation can be rewritten as </p><div id="Equj" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} \mathcal{A}_{2}\mathcal{X}= \Biggl(I\otimes I+\hat{A}\otimes \hat{A}+\sum_{j=1}^{m} \hat{N}_{j}\otimes \hat{N}_{j}\Biggr)\text{vec}(X) =-2 \gamma \text{vec}(\hat{C}). \end{aligned}$$ </span></div></div><p> Hence, it is not difficult to derive the following relation between <span class="mathjax-tex">\(\mathcal{A}_{1}\)</span> and <span class="mathjax-tex">\(\mathcal{A}_{2}\)</span>: </p><div id="Equk" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} \mathcal{A}_{2} = 2\gamma \bigl[(\gamma I+A)\otimes (\gamma I+A) \bigr]^{-1} \mathcal{A}_{1}, \end{aligned}$$ </span></div></div><p> where </p><div id="Equl" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ P_{pre}=\frac{1}{2\gamma }\bigl[(\gamma I+A)\otimes (\gamma I+A) \bigr] $$</span></div></div><p> is the preconditioning matrix and the corresponding generalized Stein equation is the preconditioning system.</p> <p>By Remark <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar6">2.2</a>, the operator <span class="mathjax-tex">\(\mathcal{P}\)</span> can be defined as </p><div id="Equm" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \mathcal{P}(X) = X-\hat{A}X\hat{A}^{T}+2\gamma \sum _{j=1}^{m} \hat{N_{j}}X \hat{N_{j}^{T}}. $$</span></div></div><p>In Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1186/s13662-021-03381-1#Sec5">3</a>, we apply this operator to derive the variant forms of the BICR, Bi-CGSTAB, and CRS algorithms, respectively. The iteration methods are efficient. Numerical examples address this point in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1186/s13662-021-03381-1#Sec9">4</a>.</p></div></div></section><section data-title="Iteration algorithms"><div class="c-article-section" id="Sec5-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec5"><span class="c-article-section__title-number">3 </span>Iteration algorithms</h2><div class="c-article-section__content" id="Sec5-content"><p>This section presents the matrix versions and variant forms of the BICR, Bi-CGSTAB, and CRS algorithms in three subsections, respectively.</p><h3 class="c-article__sub-heading" id="Sec6"><span class="c-article-section__title-number">3.1 </span>BICR algorithm</h3><p>The BiCR method [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Sogabe, T., Sugihara, M., Zhang, S.L.: An extension of the conjugate residual method to nonsymmetric linear systems. J. Comput. Appl. Math. 226, 103–113 (2009)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR12" id="ref-link-section-d522025e6906">12</a>] has been proposed as a generalization of the conjugate residual (CR) [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Stiefel, E.L.: Relaxationsmethoden bester strategie zur losung linearer gleichungssysteme. Comment. Math. Helv. 29, 157–179 (1955)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR13" id="ref-link-section-d522025e6909">13</a>] method for nonsymmetric matrices. Recently, Abe et al. designed BiCR for symmetric complex matrices (SCBiCR) and analyzed the factor in the loss of convergence speed [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Abea, K., Fujino, S.: Converting BiCR method for linear equations with complex symmetric matrices. Appl. Math. Comput. 321, 564–576 (2018)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR14" id="ref-link-section-d522025e6912">14</a>]. It is easy to see that the BICR algorithm cannot be directly used to solve the generalized Lyapunov equation. Naturally, one can convert this matrix equation into the linear system through Kronecker product and vectorization operators. However, this makes the computational cost especially expensive. When the matrix order becomes larger, as the computer memory is limited, it is hard to implement in practice.</p><p>Therefore, we need to modify the BICR algorithm and ensure that the calculation cost is relatively cheap. In this subsection, we propose the matrix version of the BICR algorithm (Algorithm 1). Then we show the variant version of the BICR algorithm (Algorithm 2). </p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-a" data-title="Algorithm 1"><figure><figcaption><b id="Figa" class="c-article-section__figure-caption" data-test="figure-caption-text">Algorithm 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/a" rel="nofollow"><picture><img aria-describedby="Figa" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Figa_HTML.png" alt="figure a" loading="lazy" width="685" height="673"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-a-desc"><p>Matrix form of the BICR algorithm</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/a" data-track-dest="link:Figurea Full size image" aria-label="Full size image figure a" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-b" data-title="Algorithm 2"><figure><figcaption><b id="Figb" class="c-article-section__figure-caption" data-test="figure-caption-text">Algorithm 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/b" rel="nofollow"><picture><img aria-describedby="Figb" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Figb_HTML.png" alt="figure b" loading="lazy" width="685" height="495"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-b-desc"><p>The variant form of the BICR algorithm</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/b" data-track-dest="link:Figureb Full size image" aria-label="Full size image figure b" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Using the iteration schemes of Algorithm 1 and Algorithm 2, we can directly solve the generalized Lyapunov equation. Further, we show the bi-orthogonal properties and convergent analysis of Algorithm 1 by Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar8">3.1</a> and Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar9">3.2</a>.</p> <h3 class="c-article__sub-heading" id="FPar8">Theorem 3.1</h3> <p><i>For Algorithm</i> 1, <i>we assume that there exists a positive integer number such that</i> <span class="mathjax-tex">\(W(k)\neq 0\)</span> <i>and</i> <span class="mathjax-tex">\(R(k)\neq 0\)</span> <i>for all</i> <span class="mathjax-tex">\(k=1, 2, \ldots , r\)</span>. <i>Then we get</i> </p><div id="Equ8" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned}&amp; \operatorname{tr}\bigl(R(v)^{T}W(u)\bigr)= 0, \quad \textit{for } u,v = 1, 2, \ldots , r, u&lt; v, \end{aligned}$$ </span></div><div class="c-article-equation__number"> (8) </div></div><div id="Equ9" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned}&amp; \operatorname{tr}\bigl(S(v)^{T}Z(u)\bigr) = 0,\quad \textit{for } u,v = 1, 2, \ldots , r, u&lt; v, \end{aligned}$$ </span></div><div class="c-article-equation__number"> (9) </div></div><div id="Equ10" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned}&amp; \operatorname{tr}\bigl(Z(v)^{T}Z(u)\bigr) = 0,\quad \textit{for } u,v = 1, 2, \ldots , r, u \neq v, \end{aligned}$$ </span></div><div class="c-article-equation__number"> (10) </div></div><div id="Equ11" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned}&amp; \operatorname{tr}\bigl(W(v)^{T}W(u)\bigr) = 0, \quad \textit{for } u,v = 1, 2, \ldots , r u\neq v. \end{aligned}$$ </span></div><div class="c-article-equation__number"> (11) </div></div> <p>For the proof of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar8">3.1</a>, refer to the <a data-track="click" data-track-label="link" data-track-action="appendix anchor" href="/article/10.1186/s13662-021-03381-1#App1">Appendix</a>.</p> <h3 class="c-article__sub-heading" id="FPar9">Theorem 3.2</h3> <p><i>For Algorithm</i> 1, <i>the relative residual error has the following property</i>: </p><div id="Equn" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \bigl\Vert R(k+1) \bigr\Vert ^{2}\leq \bigl\Vert R(k) \bigr\Vert ^{2}. $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar10">Proof</h3> <p>Using Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar8">3.1</a>, we have </p><div id="Equo" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \begin{aligned} \bigl\Vert R(k+1) \bigr\Vert ^{2} &amp;= \operatorname{tr}\bigl(R(k+1)^{T}R(k+1)\bigr) \\ &amp;=\operatorname{tr}\bigl(\bigl(R(k)-\alpha (k)W(k)\bigr)^{T} \bigl(R(k)-\alpha (k)W(k)\bigr)\bigr) \\ &amp;= \bigl\Vert R(k) \bigr\Vert ^{2}+ \alpha (k)^{2} \bigl\Vert W(k) \bigr\Vert ^{2}-2\alpha (k)\operatorname{tr} \bigl(W(k)^{T}R(k)\bigr) \\ &amp;= \bigl\Vert R(k) \bigr\Vert ^{2}-\alpha (k)\operatorname{tr} \bigl(W(k)^{T}R(k)\bigr) \\ &amp;= \bigl\Vert R(k) \bigr\Vert ^{2}-\frac{\operatorname{tr}(W(k)^{T}R(k))^{2}}{\operatorname{tr}(W(k)^{T}W(k))} \\ &amp;\leq \bigl\Vert R(k) \bigr\Vert ^{2}. \end{aligned} $$</span></div></div><p> Hence, the proof of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar9">3.2</a> is completed. □</p> <h3 class="c-article__sub-heading" id="FPar11">Remark 3.1</h3> <p>In terms of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar9">3.2</a>, the property <span class="mathjax-tex">\(\|R(k+1)\|\leq \|R(k)\|\)</span> ensures that Algorithm 1 possesses fast and smooth convergence.</p> <h3 class="c-article__sub-heading" id="Sec7"><span class="c-article-section__title-number">3.2 </span>Bi-CGSTAB algorithm</h3><p>Sonneveld [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 10, 36–52 (1989)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR15" id="ref-link-section-d522025e8275">15</a>] has shown a variant of BiCG, referred to the conjugate gradient squared (CGS). Van der Vorst [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Vander, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR16" id="ref-link-section-d522025e8278">16</a>] has derived one of the most successful variants of BiCG, known as the Bi-CGSTAB method. The Bi-CGSTAB algorithm is an effective algorithm for solving large sparse linear systems [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Vander, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR16" id="ref-link-section-d522025e8281">16</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Hajarian, M.: Developing Bi-CG and Bi-CR methods to solve generalized Sylvester-transpose matrix equations. Int. J. Autom. Comput. 11, 25–29 (2014)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR17" id="ref-link-section-d522025e8284">17</a>]. Chen et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Chen, J., McInnes, L.C., Zhang, H.: Analysis and practical use of flexible BiCGStab. J. Sci. Comput. 68, 803–825 (2016)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR18" id="ref-link-section-d522025e8287">18</a>] proposed a flexible version of the BiCGStab algorithm for solving the linear system. It is easy to see that the Bi-CGSTAB algorithm cannot be directly used to solve the generalized Lyapunov equation. Similarly, we need to modify the Bi-CGSTAB algorithm to the matrix version. The matrix version of the Bi-CGSTAB algorithm is summarized in Algorithm 3. The variant form of the BICR algorithm is shown in Algorithm 4. </p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-c" data-title="Algorithm 3"><figure><figcaption><b id="Figc" class="c-article-section__figure-caption" data-test="figure-caption-text">Algorithm 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/c" rel="nofollow"><picture><img aria-describedby="Figc" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Figc_HTML.png" alt="figure c" loading="lazy" width="685" height="616"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-c-desc"><p>Matrix form of the Bi-CGSTAB algorithm</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/c" data-track-dest="link:Figurec Full size image" aria-label="Full size image figure c" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-d" data-title="Algorithm 4"><figure><figcaption><b id="Figd" class="c-article-section__figure-caption" data-test="figure-caption-text">Algorithm 4</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/d" rel="nofollow"><picture><img aria-describedby="Figd" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Figd_HTML.png" alt="figure d" loading="lazy" width="685" height="471"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-d-desc"><p>The variant form of the Bi-CGSTAB algorithm</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/d" data-track-dest="link:Figured Full size image" aria-label="Full size image figure d" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Viewing the iteration schemes, we can be seen that Algorithm 3 is a simple matrix form of the Bi-CGSTAB algorithm. Hence, Algorithm 3 has the same properties as the Bi-CGSTAB algorithm. Algorithm 4 is an improved version of the Bi-CGSTAB algorithm, which has high computing efficiency. This point has been addressed by numerical examples in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1186/s13662-021-03381-1#Sec9">4</a>.</p><h3 class="c-article__sub-heading" id="Sec8"><span class="c-article-section__title-number">3.3 </span>CRS algorithm</h3><p>Zhang et al. proposed the conjugate residual squared (CRS) method in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Zhang, L.T., Zuo, X.Y., Gu, T.X., Huang, T.Z.: Conjugate residual squared method and its improvement for non-symmetric linear systems. Int. J. Comput. Math. 87, 1578–1590 (2010)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR19" id="ref-link-section-d522025e8339">19</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Zhang, L.T., Huang, T.Z., Gu, T.X., Zuo, X.Y.: An improved conjugate residual squared algorithm suitable for distributed parallel computing. Microelectron. Comput. 25, 12–14 (2008) (in Chinese)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR20" id="ref-link-section-d522025e8342">20</a>] to solve the linear system. The CRS algorithm is mainly aimed to avoid using the transpose of <i>A</i> in the BiCR algorithm and get faster convergence for the same computational cost [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Zhang, L.T., Zuo, X.Y., Gu, T.X., Huang, T.Z.: Conjugate residual squared method and its improvement for non-symmetric linear systems. Int. J. Comput. Math. 87, 1578–1590 (2010)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR19" id="ref-link-section-d522025e8348">19</a>]. Recently, Ma et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Chen, L.J., Ma, C.F.: Developing CRS iterative methods for periodic Sylvester matrix equation. Adv. Differ. Equ. 1, 1–11 (2019)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR21" id="ref-link-section-d522025e8351">21</a>] used the matrix CRS iteration method to solve a class of coupled Sylvester-transpose matrix equations. Later, they extended two mathematical equivalent forms of the CRS algorithm to solve the periodic Sylvester matrix equation by applying Kronecker product and vectorization operator [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Chen, L.J., Ma, C.F.: Developing CRS iterative methods for periodic Sylvester matrix equation. Adv. Differ. Equ. 1, 1–11 (2019)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR21" id="ref-link-section-d522025e8355">21</a>]. In fact, in many cases, the CRS algorithm converges twice as fast as the BiCR algorithm [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Zhao, J., Zhang, J.H.: A smoothed conjugate residual squared algorithm for solving nonsymmetric linear systems. In: 2009 Second Int. Confe. Infor. Comput. Sci., vol. 4, pp. 364–367 (2009)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR22" id="ref-link-section-d522025e8358">22</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Sogabe, T., Zhang, S.L.: Extended conjugate residual methods for solving nonsymmetric linear systems. In: International Conference on Numerical Optimization and Numerical Linear Algebra, pp. 88–99 (2003)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR23" id="ref-link-section-d522025e8361">23</a>]. The BiCR method can be derived from the preconditioned conjugate residual (CR) algorithm [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Sogabe, T., Sugihara, M., Zhang, S.L.: An extension of the conjugate residual method to nonsymmetric linear systems. J. Comput. Appl. Math. 226, 103–113 (2009)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR24" id="ref-link-section-d522025e8364">24</a>]. In exact arithmetic, they terminate after a limited number of iterations. In short, we can expect that the CRS algorithm will work well in many cases. The numerical examples in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1186/s13662-021-03381-1#Sec9">4</a> are shown to address this point.</p><p>It is easy to see that the CRS algorithm cannot be directly used to solve the generalized Lyapunov equation. Similarly, we need to modify the CRS algorithm to the matrix version. The matrix version of the CRS algorithm is summarized in Algorithm 5. The variant version of the CRS algorithm is shown in Algorithm 6. </p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-e" data-title="Algorithm 5"><figure><figcaption><b id="Fige" class="c-article-section__figure-caption" data-test="figure-caption-text">Algorithm 5</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/e" rel="nofollow"><picture><img aria-describedby="Fige" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Fige_HTML.png" alt="figure e" loading="lazy" width="685" height="437"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-e-desc"><p>Matrix form of the CRS algorithm</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/e" data-track-dest="link:Figuree Full size image" aria-label="Full size image figure e" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-f" data-title="Algorithm 6"><figure><figcaption><b id="Figf" class="c-article-section__figure-caption" data-test="figure-caption-text">Algorithm 6</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/f" rel="nofollow"><picture><img aria-describedby="Figf" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Figf_HTML.png" alt="figure f" loading="lazy" width="685" height="389"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-f-desc"><p>The variant form of the CRS algorithm</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/f" data-track-dest="link:Figuref Full size image" aria-label="Full size image figure f" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Viewing the iteration schemes, it can be seen that Algorithm 5 is a simple matrix form of the CRS algorithm. Hence, Algorithm 5 has the same properties as the CRS algorithm. Algorithm 6 is the variant version of the CRS algorithm, which has high computing efficiency. The numerical examples have verified the validity of the iteration algorithms in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1186/s13662-021-03381-1#Sec9">4</a>.</p> <h3 class="c-article__sub-heading" id="FPar12">Remark 3.2</h3> <p>The BICGSTAB and CRS algorithms have an orthogonality property similar to that of BICR and thus are omitted.</p> <p>The convergence result of Algorithms 2 to 6 has been summarized in Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar13">3.3</a>.</p> <h3 class="c-article__sub-heading" id="FPar13">Theorem 3.3</h3> <p><i>For the generalized Lyapunov equation</i> (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>), <i>if Algorithms</i> 2 <i>to</i> 6 <i>do not break down by zero division</i>, <i>for any initial matrix</i> <span class="mathjax-tex">\(X(1)\in \mathbb{R}^{n\times n}\)</span>, <i>Algorithms</i> 2 <i>to</i> 6 <i>can compute the solution of</i> (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>) <i>within a finite number of iterations in the absence of the roundoff error</i>.</p> </div></div></section><section data-title="Numerical experiments"><div class="c-article-section" id="Sec9-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec9"><span class="c-article-section__title-number">4 </span>Numerical experiments</h2><div class="c-article-section__content" id="Sec9-content"><p>In this section, we give several examples to show the numerical feasibility and effectiveness of Algorithm 1 (BICR), Algorithm 3 (Bi-CGSTAB algorithm), Algorithm 5 (CRS algorithm) and their improved algorithms, including Algorithm 2 (Var-BICR algorithm), Algorithm 4 (Var-Bi-CGSTAB algorithm), Algorithm 6 (Var-CRS algorithm). Set <span class="mathjax-tex">\(tol=1.0e-8\)</span>. The numerical behavior of iteration methods will be listed with respect to the number of iteration steps (ITs), the computing time (CPU)(s) and relative residual error (Error). All experiments are performed in Matlab (version R2017a) with double precision on a personal computer with 3.20 GHz central processing unit (Inter(R) Core(TM) i5-6500 CPU), 6.00G memory and Windows 7 operating system.</p> <h3 class="c-article__sub-heading" id="FPar14">Example 4.1</h3> <p>Consider the generalized Lyapunov equation (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>) with </p><div id="Equp" class="c-article-equation"><div class="c-article-equation__content"><math display="block"><mtable xmlns="http://www.w3.org/1998/Math/MathML"> <mtr> <mtd columnalign="left"> <mi>A</mi> <mo>=</mo> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>×</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>{</mo> <mtable> <mtr> <mtd columnalign="left"> <mn>1.6</mn> </mtd> <mtd columnalign="left"> <mi>i</mi> <mo>=</mo> <mi>j</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd columnalign="left"> <mn>0.3</mn> </mtd> <mtd columnalign="left"> <mo stretchy="false">|</mo> <mi>i</mi> <mo>−</mo> <mi>j</mi> <mo stretchy="false">|</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd columnalign="left"> <mn>0</mn> </mtd> <mtd columnalign="left"> <mi mathvariant="normal">else</mi> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> <mspace width="2em"/> <mi>N</mi> <mo>=</mo> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>×</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>{</mo> <mtable> <mtr> <mtd columnalign="left"> <mn>0.05</mn> </mtd> <mtd columnalign="left"> <mi>i</mi> <mo>=</mo> <mi>j</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd columnalign="left"> <mo>−</mo> <mn>0.01</mn> </mtd> <mtd columnalign="left"> <mo stretchy="false">|</mo> <mi>i</mi> <mo>−</mo> <mi>j</mi> <mo stretchy="false">|</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd columnalign="left"> <mn>0</mn> </mtd> <mtd columnalign="left"> <mi mathvariant="normal">else</mi> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd columnalign="left"> <mi>B</mi> <mo>=</mo> <mo>−</mo> <msup> <mi>A</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mtable columnalign="center" columnspacing="1em"> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> <mo>×</mo> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> <mo>×</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>×</mo> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>I</mi> <msub> <mi>n</mi> <mn>2</mn> </msub> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <msup> <mi>A</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> <mspace width="2em"/> <mi>C</mi> <mo>=</mo> <mi>B</mi> <msup> <mi>B</mi> <mi>T</mi> </msup> <mo>,</mo> <mspace width="2em"/> <msub> <mi>N</mi> <mi>j</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>×</mo> <mi>j</mi> <mo>×</mo> <mi>N</mi> <mspace width="1em"/> <mo stretchy="false">(</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable></math></div></div> <p>Set the initial value </p><div id="Equq" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ X(1) = 0,\qquad S(1) = I. $$</span></div></div><p> We use Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1186/s13662-021-03381-1#Tab2">2</a> to show the error analysis for this example. </p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-2"><figure><figcaption class="c-article-table__figcaption"><b id="Tab2" data-test="table-caption">Table 2 Numerical results for Example <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar14">4.1</a></b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1186/s13662-021-03381-1/tables/2" aria-label="Full size table 2"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Moreover, when <span class="mathjax-tex">\(n=600\)</span>, we use Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1186/s13662-021-03381-1#Fig1">1</a> to show the error analysis of Algorithms 1 to 6. </p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Figure 1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/1" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Fig1_HTML.jpg?as=webp"><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Fig1_HTML.jpg" alt="figure 1" loading="lazy" width="685" height="462"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>Comparison between the residual error of Algorithms 1 to 6 for Example <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar14">4.1</a></p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>By comparing with these algorithms, it is clear that the algorithms’ efficiency will greatly be improved after using a Cayley transformation. The variant versions of the Bi-CGSTAB and CRS algorithms have the best efficiency.</p> <h3 class="c-article__sub-heading" id="FPar15">Example 4.2</h3> <p>Let <i>P</i> be the block tridiagonal sparse <span class="mathjax-tex">\(m^{2}\times m^{2}\)</span> matrix, given by a finite difference disretization of the heat equation (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ3">3</a>) on an <span class="mathjax-tex">\(m\times m\)</span>-mesh, i.e., </p><div id="Equr" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ P = I\otimes T_{m} + T_{m}\otimes I\in \mathbb{R}^{n\times n} ,\qquad T_{k}= \begin{bmatrix} -2&amp; 1&amp;&amp;\\ 1&amp;-2&amp;\ddots &amp;\\ &amp; \ddots &amp;\ddots &amp;1 \\ &amp;&amp;1&amp;-2 \end{bmatrix}. $$</span></div></div> <p>If the Robin condition is imposed on the whole boundary, then we have </p><div id="Equs" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ A = P+E_{1}\otimes I + I \otimes E_{1} + E_{m}\otimes I+ I\otimes E_{m}, $$</span></div></div><p> where <span class="mathjax-tex">\(E_{j} = e_{j}e_{j}^{T}\)</span> with canonical unit vector <span class="mathjax-tex">\(e_{j}\)</span>. The coefficient matrices <span class="mathjax-tex">\(N_{j}\)</span> and the columns <span class="mathjax-tex">\(b_{j}\)</span> of <i>B</i> corresponding to the left, upper, lower, and right boundaries are given by </p><div id="Equt" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \begin{aligned} &amp;N_{1}=E_{1}\otimes I,\qquad N_{2} = I\otimes E_{1}, \qquad N_{3}=E_{m} \otimes I, \qquad N_{4} = I\otimes E_{m}, \\ &amp;b_{1} = E_{1}\otimes e,\qquad b_{2} = e\otimes E_{1},\qquad b_{3}=E_{m} \otimes e,\qquad b_{4} = e\otimes E_{m}. \end{aligned} $$</span></div></div><p> Then the above heat equation’s optimal control problem reduces to solving the generalized Lyapunov equation (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>).</p><p>We use Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1186/s13662-021-03381-1#Tab3">3</a> to show the residual error analysis. It is obvious that the effect of the Var-Bi-CGSTAB algorithm is optimal compared with other algorithms. </p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-3"><figure><figcaption class="c-article-table__figcaption"><b id="Tab3" data-test="table-caption">Table 3 Numerical results for Example <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar15">4.2</a></b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1186/s13662-021-03381-1/tables/3" aria-label="Full size table 3"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Further, we use Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1186/s13662-021-03381-1#Fig2">2</a> to show the error analysis when <span class="mathjax-tex">\(n = 64\)</span>. It can be seen that the variant versions of the algorithms perform better. </p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Figure 2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/2" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Fig2_HTML.jpg?as=webp"><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Fig2_HTML.jpg" alt="figure 2" loading="lazy" width="685" height="462"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>Comparison between the residual error of Algorithms 1 to 6 for Example <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar15">4.2</a></p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="FPar16">Example 4.3</h3> <p>Consider the RC trapezoidal circuit with <i>m</i> resistors with <i>g</i> extensions </p><div id="Equu" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \textstyle\begin{cases} \dot{x}(t)=Ax(t)+Nx(t)u(t)+bu(t), \\ y(t)=c^{T}x(t). \end{cases} $$</span></div></div><p> Since the original system is nonlinear, it is linearized by the second-order Carleman bilinear method to obtain a system of order <span class="mathjax-tex">\(n= m+m^{2}\)</span>.</p> <p>The matrices <i>A</i>, <i>N</i> and <i>b</i> can be referred to [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 25" title="&#xA;&#x9;&#x9;&#x9;&#x9;&#x9;Bai, Z.J., Skoogh, D.: A projection method for model reduction of bilinear dynamical systems. Linear Algebra Appl. 415, 406–425 (2006)&#xA;&#x9;&#x9;&#x9;&#x9;" href="/article/10.1186/s13662-021-03381-1#ref-CR25" id="ref-link-section-d522025e10826">25</a>]. The corresponding generalized Lyapunov equation is </p><div id="Equv" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} AX + XA^{T}+NXN^{T}+C = 0. \end{aligned}$$ </span></div></div><p>We use Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1186/s13662-021-03381-1#Tab4">4</a> to show the residual error analysis. Further, we use Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1186/s13662-021-03381-1#Fig3">3</a> to show the error analysis when <span class="mathjax-tex">\(n = 8\)</span>. It can be seen that the Var-Bi-CGSTAB algorithm performs best. </p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="Figure 3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/3" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Fig3_HTML.jpg?as=webp"><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13662-021-03381-1/MediaObjects/13662_2021_3381_Fig3_HTML.jpg" alt="figure 3" loading="lazy" width="685" height="459"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p>Comparison between the residual error of Algorithms 3 to 6 for Example <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar16">4.3</a></p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1186/s13662-021-03381-1/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-4"><figure><figcaption class="c-article-table__figcaption"><b id="Tab4" data-test="table-caption">Table 4 Numerical results for Example <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar16">4.3</a></b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1186/s13662-021-03381-1/tables/4" aria-label="Full size table 4"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="FPar17">Remark 4.1</h3> <p>From the three numerical examples above, it can be seen that the variant algorithms proposed in this paper will greatly improve the operating efficiency. In other words, the conjugate gradient-like methods are more efficient than the generalized Setin equation.</p> </div></div></section><section data-title="Conclusions"><div class="c-article-section" id="Sec10-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec10"><span class="c-article-section__title-number">5 </span>Conclusions</h2><div class="c-article-section__content" id="Sec10-content"><p>This paper has proposed the matrix versions of the BICR algorithm, Bi-CGSTAB algorithm, and CRS algorithm to solve the generalized Lyapunov equation (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ1">1</a>). Then we have introduced the variant versions of these three algorithms. Finally, we have provided numerical examples to illustrate the feasibility and effectiveness of the derived algorithms.</p></div></div></section> </div> <section data-title="Availability of data and materials"><div class="c-article-section" id="availability-of-data-and-materials-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="availability-of-data-and-materials">Availability of data and materials</h2><div class="c-article-section__content" id="availability-of-data-and-materials-content"> <p>Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.</p> </div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1"> Kurschner, P.: Efficient Low-Rank Solution of Large-Scale Matrix Equations. Dissertation, Otto von Guericke Universitat, Magdeburg (2016) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&amp;title=Efficient%20Low-Rank%20Solution%20of%20Large-Scale%20Matrix%20Equations&amp;publication_year=2016&amp;author=Kurschner%2CP."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2"> Simoncini, V.: Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations. SIAM J. Matrix Anal. Appl. <b>37</b>, 1655–1674 (2016) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1137/16M1059382" data-track-item_id="10.1137/16M1059382" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1137%2F16M1059382" aria-label="Article reference 2" data-doi="10.1137/16M1059382">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3570279" aria-label="MathSciNet reference 2">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&amp;title=Analysis%20of%20the%20rational%20Krylov%20subspace%20projection%20method%20for%20large-scale%20algebraic%20Riccati%20equations&amp;journal=SIAM%20J.%20Matrix%20Anal.%20Appl.&amp;doi=10.1137%2F16M1059382&amp;volume=37&amp;pages=1655-1674&amp;publication_year=2016&amp;author=Simoncini%2CV."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3"> Paolo, D.A., Alberto, I., Antonio, R.: Realization and structure theory of bilinear dynamical systems. SIAM J. Control Optim. <b>12</b>, 517–535 (1974) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1137/0312040" data-track-item_id="10.1137/0312040" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1137%2F0312040" aria-label="Article reference 3" data-doi="10.1137/0312040">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=424307" aria-label="MathSciNet reference 3">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&amp;title=Realization%20and%20structure%20theory%20of%20bilinear%20dynamical%20systems&amp;journal=SIAM%20J.%20Control%20Optim.&amp;doi=10.1137%2F0312040&amp;volume=12&amp;pages=517-535&amp;publication_year=1974&amp;author=Paolo%2CD.A.&amp;author=Alberto%2CI.&amp;author=Antonio%2CR."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4"> Samir, A., Baiyat, A.L., Bettayeb, M.A., Saggaf, M.A.L.: New model reduction scheme for bilinear systems. Int. J. Syst. Sci. <b>25</b>, 1631–1642 (1994) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/00207729408949302" data-track-item_id="10.1080/00207729408949302" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F00207729408949302" aria-label="Article reference 4" data-doi="10.1080/00207729408949302">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1293469" aria-label="MathSciNet reference 4">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&amp;title=New%20model%20reduction%20scheme%20for%20bilinear%20systems&amp;journal=Int.%20J.%20Syst.%20Sci.&amp;doi=10.1080%2F00207729408949302&amp;volume=25&amp;pages=1631-1642&amp;publication_year=1994&amp;author=Samir%2CA.&amp;author=Baiyat%2CA.L.&amp;author=Bettayeb%2CM.A.&amp;author=Saggaf%2CM.A.L."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5"> Kleinman, D.L.: On the stability of linear stochastic systems. IEEE Trans. Autom. Control <b>14</b>, 429–430 (1969) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TAC.1969.1099206" data-track-item_id="10.1109/TAC.1969.1099206" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTAC.1969.1099206" aria-label="Article reference 5" data-doi="10.1109/TAC.1969.1099206">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=252067" aria-label="MathSciNet reference 5">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&amp;title=On%20the%20stability%20of%20linear%20stochastic%20systems&amp;journal=IEEE%20Trans.%20Autom.%20Control&amp;doi=10.1109%2FTAC.1969.1099206&amp;volume=14&amp;pages=429-430&amp;publication_year=1969&amp;author=Kleinman%2CD.L."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6"> Benner, P., Damm, T.: Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM J. Control Optim. <b>49</b>, 686–711 (2011) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1137/09075041X" data-track-item_id="10.1137/09075041X" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1137%2F09075041X" aria-label="Article reference 6" data-doi="10.1137/09075041X">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2801215" aria-label="MathSciNet reference 6">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&amp;title=Lyapunov%20equations%2C%20energy%20functionals%2C%20and%20model%20order%20reduction%20of%20bilinear%20and%20stochastic%20systems&amp;journal=SIAM%20J.%20Control%20Optim.&amp;doi=10.1137%2F09075041X&amp;volume=49&amp;pages=686-711&amp;publication_year=2011&amp;author=Benner%2CP.&amp;author=Damm%2CT."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7"> Gray, W.S., Mesko, J.: Energy functions and algebraic Gramians for bilinear systems. IFAC Proc. Vol. <b>31</b>, 101–106 (1998) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/S1474-6670(17)40318-1" data-track-item_id="10.1016/S1474-6670(17)40318-1" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2FS1474-6670%2817%2940318-1" aria-label="Article reference 7" data-doi="10.1016/S1474-6670(17)40318-1">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&amp;title=Energy%20functions%20and%20algebraic%20Gramians%20for%20bilinear%20systems&amp;journal=IFAC%20Proc.%20Vol.&amp;doi=10.1016%2FS1474-6670%2817%2940318-1&amp;volume=31&amp;pages=101-106&amp;publication_year=1998&amp;author=Gray%2CW.S.&amp;author=Mesko%2CJ."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8"> Dorissen, H.: Canonical forms for bilinear systems. Syst. Control Lett. <b>13</b>, 153–160 (1989) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0167-6911(89)90032-7" data-track-item_id="10.1016/0167-6911(89)90032-7" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0167-6911%2889%2990032-7" aria-label="Article reference 8" data-doi="10.1016/0167-6911(89)90032-7">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1014241" aria-label="MathSciNet reference 8">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&amp;title=Canonical%20forms%20for%20bilinear%20systems&amp;journal=Syst.%20Control%20Lett.&amp;doi=10.1016%2F0167-6911%2889%2990032-7&amp;volume=13&amp;pages=153-160&amp;publication_year=1989&amp;author=Dorissen%2CH."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9"> Damm, T.: Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equation. Numer. Linear Algebra Appl. <b>15</b>, 853–871 (2008) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/nla.603" data-track-item_id="10.1002/nla.603" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fnla.603" aria-label="Article reference 9" data-doi="10.1002/nla.603">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2464173" aria-label="MathSciNet reference 9">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&amp;title=Direct%20methods%20and%20ADI-preconditioned%20Krylov%20subspace%20methods%20for%20generalized%20Lyapunov%20equation&amp;journal=Numer.%20Linear%20Algebra%20Appl.&amp;doi=10.1002%2Fnla.603&amp;volume=15&amp;pages=853-871&amp;publication_year=2008&amp;author=Damm%2CT."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10"> Fan, H.Y., Weng, P., Chu, E.: Numerical solution to generalized Lyapunov, Stein and rational Riccati equations in stochastic control. Numer. Algorithms <b>71</b>, 245–272 (2016) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11075-015-9991-8" data-track-item_id="10.1007/s11075-015-9991-8" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11075-015-9991-8" aria-label="Article reference 10" data-doi="10.1007/s11075-015-9991-8">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3452930" aria-label="MathSciNet reference 10">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&amp;title=Numerical%20solution%20to%20generalized%20Lyapunov%2C%20Stein%20and%20rational%20Riccati%20equations%20in%20stochastic%20control&amp;journal=Numer.%20Algorithms&amp;doi=10.1007%2Fs11075-015-9991-8&amp;volume=71&amp;pages=245-272&amp;publication_year=2016&amp;author=Fan%2CH.Y.&amp;author=Weng%2CP.&amp;author=Chu%2CE."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11"> Li, S.Y., Shen, H.L., Shao, X.H.: PHSS iterative method for solving generalized Lyapunov equations. Mathematics <b>7</b>, 1–13 (2019) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&amp;title=PHSS%20iterative%20method%20for%20solving%20generalized%20Lyapunov%20equations&amp;journal=Mathematics&amp;volume=7&amp;pages=1-13&amp;publication_year=2019&amp;author=Li%2CS.Y.&amp;author=Shen%2CH.L.&amp;author=Shao%2CX.H."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12"> Sogabe, T., Sugihara, M., Zhang, S.L.: An extension of the conjugate residual method to nonsymmetric linear systems. J. Comput. Appl. Math. <b>226</b>, 103–113 (2009) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cam.2008.05.018" data-track-item_id="10.1016/j.cam.2008.05.018" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cam.2008.05.018" aria-label="Article reference 12" data-doi="10.1016/j.cam.2008.05.018">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2501885" aria-label="MathSciNet reference 12">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20extension%20of%20the%20conjugate%20residual%20method%20to%20nonsymmetric%20linear%20systems&amp;journal=J.%20Comput.%20Appl.%20Math.&amp;doi=10.1016%2Fj.cam.2008.05.018&amp;volume=226&amp;pages=103-113&amp;publication_year=2009&amp;author=Sogabe%2CT.&amp;author=Sugihara%2CM.&amp;author=Zhang%2CS.L."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13"> Stiefel, E.L.: Relaxationsmethoden bester strategie zur losung linearer gleichungssysteme. Comment. Math. Helv. <b>29</b>, 157–179 (1955) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/BF02564277" data-track-item_id="10.1007/BF02564277" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/BF02564277" aria-label="Article reference 13" data-doi="10.1007/BF02564277">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=71119" aria-label="MathSciNet reference 13">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&amp;title=Relaxationsmethoden%20bester%20strategie%20zur%20losung%20linearer%20gleichungssysteme&amp;journal=Comment.%20Math.%20Helv.&amp;doi=10.1007%2FBF02564277&amp;volume=29&amp;pages=157-179&amp;publication_year=1955&amp;author=Stiefel%2CE.L."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14"> Abea, K., Fujino, S.: Converting BiCR method for linear equations with complex symmetric matrices. Appl. Math. Comput. <b>321</b>, 564–576 (2018) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3732398" aria-label="MathSciNet reference 14">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1426.65045" aria-label="MATH reference 14">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&amp;title=Converting%20BiCR%20method%20for%20linear%20equations%20with%20complex%20symmetric%20matrices&amp;journal=Appl.%20Math.%20Comput.&amp;volume=321&amp;pages=564-576&amp;publication_year=2018&amp;author=Abea%2CK.&amp;author=Fujino%2CS."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15"> Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. <b>10</b>, 36–52 (1989) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1137/0910004" data-track-item_id="10.1137/0910004" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1137%2F0910004" aria-label="Article reference 15" data-doi="10.1137/0910004">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=976160" aria-label="MathSciNet reference 15">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&amp;title=CGS%2C%20a%20fast%20Lanczos-type%20solver%20for%20nonsymmetric%20linear%20systems&amp;journal=SIAM%20J.%20Sci.%20Stat.%20Comput.&amp;doi=10.1137%2F0910004&amp;volume=10&amp;pages=36-52&amp;publication_year=1989&amp;author=Sonneveld%2CP."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16"> Vander, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. <b>13</b>, 631–644 (1992) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1137/0913035" data-track-item_id="10.1137/0913035" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1137%2F0913035" aria-label="Article reference 16" data-doi="10.1137/0913035">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1149111" aria-label="MathSciNet reference 16">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&amp;title=Bi-CGSTAB%3A%20a%20fast%20and%20smoothly%20converging%20variant%20of%20Bi-CG%20for%20the%20solution%20of%20nonsymmetric%20linear%20systems&amp;journal=SIAM%20J.%20Sci.%20Stat.%20Comput.&amp;doi=10.1137%2F0913035&amp;volume=13&amp;pages=631-644&amp;publication_year=1992&amp;author=Vander%2CH.A."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17"> Hajarian, M.: Developing Bi-CG and Bi-CR methods to solve generalized Sylvester-transpose matrix equations. Int. J. Autom. Comput. <b>11</b>, 25–29 (2014) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11633-014-0762-0" data-track-item_id="10.1007/s11633-014-0762-0" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11633-014-0762-0" aria-label="Article reference 17" data-doi="10.1007/s11633-014-0762-0">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&amp;title=Developing%20Bi-CG%20and%20Bi-CR%20methods%20to%20solve%20generalized%20Sylvester-transpose%20matrix%20equations&amp;journal=Int.%20J.%20Autom.%20Comput.&amp;doi=10.1007%2Fs11633-014-0762-0&amp;volume=11&amp;pages=25-29&amp;publication_year=2014&amp;author=Hajarian%2CM."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18"> Chen, J., McInnes, L.C., Zhang, H.: Analysis and practical use of flexible BiCGStab. J. Sci. Comput. <b>68</b>, 803–825 (2016) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10915-015-0159-4" data-track-item_id="10.1007/s10915-015-0159-4" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10915-015-0159-4" aria-label="Article reference 18" data-doi="10.1007/s10915-015-0159-4">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3519201" aria-label="MathSciNet reference 18">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 18" href="http://scholar.google.com/scholar_lookup?&amp;title=Analysis%20and%20practical%20use%20of%20flexible%20BiCGStab&amp;journal=J.%20Sci.%20Comput.&amp;doi=10.1007%2Fs10915-015-0159-4&amp;volume=68&amp;pages=803-825&amp;publication_year=2016&amp;author=Chen%2CJ.&amp;author=McInnes%2CL.C.&amp;author=Zhang%2CH."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19"> Zhang, L.T., Zuo, X.Y., Gu, T.X., Huang, T.Z.: Conjugate residual squared method and its improvement for non-symmetric linear systems. Int. J. Comput. Math. <b>87</b>, 1578–1590 (2010) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/00207160802401029" data-track-item_id="10.1080/00207160802401029" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F00207160802401029" aria-label="Article reference 19" data-doi="10.1080/00207160802401029">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2665576" aria-label="MathSciNet reference 19">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&amp;title=Conjugate%20residual%20squared%20method%20and%20its%20improvement%20for%20non-symmetric%20linear%20systems&amp;journal=Int.%20J.%20Comput.%20Math.&amp;doi=10.1080%2F00207160802401029&amp;volume=87&amp;pages=1578-1590&amp;publication_year=2010&amp;author=Zhang%2CL.T.&amp;author=Zuo%2CX.Y.&amp;author=Gu%2CT.X.&amp;author=Huang%2CT.Z."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20"> Zhang, L.T., Huang, T.Z., Gu, T.X., Zuo, X.Y.: An improved conjugate residual squared algorithm suitable for distributed parallel computing. Microelectron. Comput. <b>25</b>, 12–14 (2008) (in Chinese) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20improved%20conjugate%20residual%20squared%20algorithm%20suitable%20for%20distributed%20parallel%20computing&amp;journal=Microelectron.%20Comput.&amp;volume=25&amp;pages=12-14&amp;publication_year=2008&amp;author=Zhang%2CL.T.&amp;author=Huang%2CT.Z.&amp;author=Gu%2CT.X.&amp;author=Zuo%2CX.Y."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21"> Chen, L.J., Ma, C.F.: Developing CRS iterative methods for periodic Sylvester matrix equation. Adv. Differ. Equ. <b>1</b>, 1–11 (2019) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3919491" aria-label="MathSciNet reference 21">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?07040256" aria-label="MATH reference 21">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&amp;title=Developing%20CRS%20iterative%20methods%20for%20periodic%20Sylvester%20matrix%20equation&amp;journal=Adv.%20Differ.%20Equ.&amp;volume=1&amp;pages=1-11&amp;publication_year=2019&amp;author=Chen%2CL.J.&amp;author=Ma%2CC.F."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22"> Zhao, J., Zhang, J.H.: A smoothed conjugate residual squared algorithm for solving nonsymmetric linear systems. In: 2009 Second Int. Confe. Infor. Comput. Sci., vol. 4, pp. 364–367 (2009) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20smoothed%20conjugate%20residual%20squared%20algorithm%20for%20solving%20nonsymmetric%20linear%20systems&amp;pages=364-367&amp;publication_year=2009&amp;author=Zhao%2CJ.&amp;author=Zhang%2CJ.H."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23"> Sogabe, T., Zhang, S.L.: Extended conjugate residual methods for solving nonsymmetric linear systems. In: International Conference on Numerical Optimization and Numerical Linear Algebra, pp. 88–99 (2003) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="http://scholar.google.com/scholar_lookup?&amp;title=Extended%20conjugate%20residual%20methods%20for%20solving%20nonsymmetric%20linear%20systems&amp;pages=88-99&amp;publication_year=2003&amp;author=Sogabe%2CT.&amp;author=Zhang%2CS.L."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24"> Sogabe, T., Sugihara, M., Zhang, S.L.: An extension of the conjugate residual method to nonsymmetric linear systems. J. Comput. Appl. Math. <b>226</b>, 103–113 (2009) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cam.2008.05.018" data-track-item_id="10.1016/j.cam.2008.05.018" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cam.2008.05.018" aria-label="Article reference 24" data-doi="10.1016/j.cam.2008.05.018">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2501885" aria-label="MathSciNet reference 24">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20extension%20of%20the%20conjugate%20residual%20method%20to%20nonsymmetric%20linear%20systems&amp;journal=J.%20Comput.%20Appl.%20Math.&amp;doi=10.1016%2Fj.cam.2008.05.018&amp;volume=226&amp;pages=103-113&amp;publication_year=2009&amp;author=Sogabe%2CT.&amp;author=Sugihara%2CM.&amp;author=Zhang%2CS.L."> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="25."><p class="c-article-references__text" id="ref-CR25"> Bai, Z.J., Skoogh, D.: A projection method for model reduction of bilinear dynamical systems. Linear Algebra Appl. <b>415</b>, 406–425 (2006) </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.laa.2005.04.032" data-track-item_id="10.1016/j.laa.2005.04.032" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.laa.2005.04.032" aria-label="Article reference 25" data-doi="10.1016/j.laa.2005.04.032">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2227782" aria-label="MathSciNet reference 25">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20projection%20method%20for%20model%20reduction%20of%20bilinear%20dynamical%20systems&amp;journal=Linear%20Algebra%20Appl.&amp;doi=10.1016%2Fj.laa.2005.04.032&amp;volume=415&amp;pages=406-425&amp;publication_year=2006&amp;author=Bai%2CZ.J.&amp;author=Skoogh%2CD."> Google Scholar</a>  </p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1186/s13662-021-03381-1?format=refman&amp;flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>The research is supported by Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University.</p></div></div></section><section data-title="Funding"><div class="c-article-section" id="Fun-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Fun">Funding</h2><div class="c-article-section__content" id="Fun-content"><p>The work was supported in part by National Natural Science Foundation of China (11771368, 11771370) and the Project of Education Department of Hunan Province (19A500).</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan, 411105, P.R. China</p><p class="c-article-author-affiliation__authors-list">Juan Zhang, Huihui Kang &amp; Shifeng Li</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Juan-Zhang-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Juan Zhang</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Juan%20Zhang" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Juan%20Zhang" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Juan%20Zhang%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Huihui-Kang-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Huihui Kang</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Huihui%20Kang" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Huihui%20Kang" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Huihui%20Kang%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Shifeng-Li-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Shifeng Li</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Shifeng%20Li" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Shifeng%20Li" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Shifeng%20Li%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="contributions">Contributions</h3><p>All authors read and approved the final manuscript.</p><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:zhangjuan@xtu.edu.cn">Juan Zhang</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar18">Competing interests</h3> <p>The authors declare that they have no competing interests.</p> </div></div></section><section aria-labelledby="appendices"><div class="c-article-section" id="appendices-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="appendices">Appendix:  Proof of Theorem 3.1 </h2><div class="c-article-section__content" id="appendices-content"><h3 class="c-article__sub-heading u-visually-hidden" id="App1">Appendix:  Proof of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar8">3.1</a> </h3><p>We prove Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1186/s13662-021-03381-1#FPar8">3.1</a> by mathematical induction to <i>v</i> and <i>u</i>. It is enough to prove (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ8">8</a>)–(<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ11">11</a>) for <span class="mathjax-tex">\(1\leq u &lt; v \leq r\)</span>. </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">(i)</span> <p>If <span class="mathjax-tex">\(v=2\)</span>, <span class="mathjax-tex">\(u=1\)</span>, then we have </p><div id="Equw" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &amp;\operatorname{tr}\bigl(R(2)^{T}W(1)\bigr)=\operatorname{tr}\bigl( \bigl(R(1)-\alpha (1)-W(1)\bigr)^{T}W(1)\bigr) \\ &amp;\hphantom{\operatorname{tr}\bigl(R(2)^{T}W(1)\bigr)}=\operatorname{tr}\bigl(R(1)^{T}W(1)\bigr)-\operatorname{tr} \bigl(W(1)^{T}R(1)\bigr) \\ &amp;\hphantom{\operatorname{tr}\bigl(R(2)^{T}W(1)\bigr)}=0, \\ &amp;\operatorname{tr}\bigl(S(2)^{T}Z(1)\bigr)=\operatorname{tr}\bigl( \bigl(S(1)-\beta (1)Z(1)\bigr)^{T}Z(1)\bigr) \\ &amp;\hphantom{\operatorname{tr}\bigl(S(2)^{T}Z(1)\bigr)}=\operatorname{tr}\bigl(S(1)^{T}Z(1)\bigr)-\operatorname{tr} \bigl(Z(1)^{T}S(1)\bigr) \\ &amp;\hphantom{\operatorname{tr}\bigl(S(2)^{T}Z(1)\bigr)}=0, \\ &amp;\operatorname{tr}\bigl(Z(2)^{T}Z(1)\bigr) \\ &amp;\quad =\operatorname{tr}\Biggl( \Biggl(A^{T}R(2)+R(2)A+\sum_{j=1}^{m}N_{j}^{T}R(2)N_{j}- \eta (1)Z(1)\Biggr)^{T}Z(1)\Biggr) \\ &amp;\quad =\operatorname{tr}\bigl(\bigl(A^{T}R(2)\bigr)^{T}Z(1) \bigr) + \operatorname{tr}\bigl(\bigl(R(2) A\bigr)^{T} Z(1)\bigr) + \operatorname{tr}\Biggl(\Biggl( \sum_{j=1}^{m}N_{j}^{T}R(2)N_{j} \Biggr)^{T}Z(1)\Biggr) \\ &amp;\qquad {}-\operatorname{tr}\bigl(Z(1)^{T}\bigl(A^{T}R(2)\bigr) \bigr)-\operatorname{tr}\bigl(Z(1)^{T}\bigl(R(2)A\bigr)\bigr)- \operatorname{tr}\Biggl(Z(1)^{T}\Biggl( \sum _{j=1}^{m}N_{j}^{T}R(2)N_{j} \Biggr)\Biggr) \\ &amp;\quad =0, \end{aligned}$$ </span></div></div><p> and </p><div id="Equx" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} \operatorname{tr}\bigl(W(2)^{T}W(1)\bigr)={}&amp;\operatorname{tr}\Biggl( \Biggl(AS(2)+S(2)A^{T}+\sum_{j=1}^{m}N_{j}S(2)N_{j}^{T}- \gamma (1)W(1)\Biggr)^{T}W(1)\Biggr) \\ ={}&amp;\Biggl(\Biggl(AS(2)+S(2)A^{T}+\sum_{j=1}^{m}N_{j}S(2)N_{j}^{T} \Biggr)^{T}W(1)\Biggr) \\ &amp;{}-\operatorname{tr}\Biggl(W(1)^{T}\Biggl(AS(2)+S(2)A^{T}+ \sum_{j=1}^{m}N_{j}S(2)N_{j}^{T} \Biggr)\Biggr) \\ ={}&amp;0. \end{aligned}$$ </span></div></div><p> Thus when <span class="mathjax-tex">\(u=1\)</span>, <span class="mathjax-tex">\(v=2\)</span>, (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ8">8</a>)–(<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ11">11</a>) is true.</p> </li> <li> <span class="u-custom-list-number">(ii)</span> <p>Now for <span class="mathjax-tex">\(u&lt; w&lt; r\)</span>, we assume that </p><div id="Equy" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned}&amp; \operatorname{tr}\bigl(R(w)^{T}W(u)\bigr)=0, \\&amp; \operatorname{tr}\bigl(S(w)^{T}Z(u)\bigr)=0, \\&amp; \operatorname{tr}\bigl(Z(w)^{T}Z(u)\bigr)=0, \\&amp; \operatorname{tr}\bigl(W(w)^{T}W(u)\bigr)=0. \end{aligned}$$ </span></div></div> </li> <li> <span class="u-custom-list-number">(iii)</span> <p>Next, we will prove (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ8">8</a>)–(<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ11">11</a>) for <span class="mathjax-tex">\(w+1\)</span>. Using the induction hypothesis, we get </p><div id="Equz" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned}&amp; \operatorname{tr}\bigl(R(w+1)^{T}W(u)\bigr)= \operatorname{tr}\bigl( \bigl(R(w)-\alpha (w)W(w)\bigr)^{T}W(u)\bigr)=0 \\&amp; \operatorname{tr}\bigl(S(w+1)^{T}Z(u)\bigr)= \operatorname{tr}\bigl( \bigl(S(w)-\beta (w)Z(w)\bigr)^{T}Z(u)\bigr)=0, \end{aligned}$$ </span></div></div><p> and </p><div id="Equ12" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &amp;\operatorname{tr}\bigl(Z(w+1)^{T}Z(u)\bigr) \\ &amp;\quad =\operatorname{tr}\Biggl(\Biggl(A^{T}R(w+1)+R(w+1)A+\sum _{j=1}^{m}N_{j}^{T}R(w+1)N_{j}- \eta (w)Z(w)\Biggr)^{T}Z(u)\Biggr) \\ &amp;\quad = \frac{1}{\beta (u)}\Biggl[\operatorname{tr}\bigl(R(w+1)^{T} \bigl(A\bigl(S(u)-S(u+1)\bigr)\bigr)\bigr) \\ &amp;\qquad {}+\operatorname{tr}\bigl(R(w+1)^{T} \bigl(S(u)-S(u+1)A^{T}\bigr)\bigr) \\ &amp;\qquad {}+\operatorname{tr}\Biggl(R(w+1)^{T}\Biggl(\sum _{j=1}^{m}N_{j}^{T} \bigl(S(u)-S(u+1)\bigr)N_{j}\Biggr)\Biggr)\Biggr] \\ &amp;\quad =\frac{1}{\beta (u)}\bigl[\operatorname{tr}\bigl(R(w+1)^{T} \bigl(W(u)+\gamma (u-1)W(u-1)\bigr)\bigr) \\ &amp;\qquad {}-\operatorname{tr}(R(w+1)^{T}\bigl(W(u+1)+\gamma (u)W(u) \bigr)\bigr] \\ &amp;\quad =-\frac{1}{\beta (u)}\bigl[\operatorname{tr}\bigl(R(w+1)^{T}W(u+1) \bigr)\bigr], \end{aligned}$$ </span></div><div class="c-article-equation__number"> (12) </div></div><div id="Equ13" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &amp;\operatorname{tr}\bigl(W(w+1)^{T}W(u)\bigr) \\ &amp;\quad =\operatorname{tr}\Biggl(\Biggl(AS(w+1)+S(w+1)A^{T}+\sum _{j=1}^{m}N_{j}S(w+1)N_{j}^{T} \\ &amp;\qquad {}-\gamma (w)W(w)\Biggr)^{T}w(u)\Biggr) \\ &amp;\quad =\operatorname{tr}\bigl(S(w+1)^{T}\bigl(AS(w+1) \bigr)^{T}\bigr)+\operatorname{tr}\bigl(S(w+1)^{T} \bigl(S(w+1)A^{T}\bigr)^{T}\bigr) \\ &amp;\qquad {}+\operatorname{tr}\Biggl(S(w+1)^{T}\Biggl(\sum _{j=1}^{m}N_{j}S(w+1)N_{j}^{T} \Biggr)^{T}\Biggr) \\ &amp;\quad = \frac{1}{\alpha (u)}\Bigg[\operatorname{tr}\bigl(S(w+1)^{T} \bigl(A\bigl(R(u)-R(u+1)\bigr)\bigr)\bigr) \\ &amp;\qquad {}+\operatorname{tr}\bigl(S(w+1)^{T} \bigl(R(u)-R(u+1)A^{T}\bigr)\bigr) \\ &amp;\qquad {}+\operatorname{tr}\Biggl(S(w+1)^{T}\Biggl(\sum _{j=1}^{m}N_{j}^{T} \bigl(R(u)-R(u+1)\bigr)N_{j}\Biggr)\Biggr)\Bigg] \\ &amp;\quad =\frac{1}{\alpha (u)}[\operatorname{tr}\bigl(S(w+1)^{T} \bigl(Z(u)+\eta (u-1)Z(u-1)\bigr)-Z(u+1)- \eta (u)Z(u)\bigr) \\ &amp;\quad =-\frac{1}{\alpha (u)}\bigl[\operatorname{tr}\bigl(S(w+1)^{T}Z(u+1) \bigr)\bigr]. \end{aligned}$$ </span></div><div class="c-article-equation__number"> (13) </div></div><p> For <span class="mathjax-tex">\(u=w\)</span>, again from the induction hypothesis we can obtain </p><div id="Equaa" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &amp;\operatorname{tr}\bigl(R(w+1)^{T}W(w)\bigr) = \operatorname{tr} \bigl(\bigl(R(w)-\alpha (w)W(w)^{T}\bigr)W(w)\bigr), \\ &amp;\operatorname{tr}\bigl(R(w)^{T}W(w)\bigr)-\operatorname{tr} \bigl(W(w)^{T}R(w)\bigr)= 0, \\ &amp;\operatorname{tr}\bigl(S(w+1)^{T}Z(w)\bigr) = \operatorname{tr} \bigl(\bigl(S(w)-\beta (w)Z(w)\bigr)^{T} Z(w)\bigr) \\ &amp; \hphantom{\operatorname{tr}\bigl(S(w+1)^{T}Z(w)\bigr)}= \operatorname{tr}\bigl(S(w)^{T}Z(w)\bigr)-\operatorname{tr} \bigl(Z(w)^{T}S(w)\bigr) \\ &amp;\hphantom{\operatorname{tr}\bigl(S(w+1)^{T}Z(w)\bigr)} =0, \end{aligned}$$ </span></div></div><p> and </p><div id="Equab" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} &amp;\operatorname{tr}\bigl(Z(w+1)^{T}Z(w)\bigr)=\operatorname{tr} \Biggl(\Biggl(A^{T}R(w+1)+R(w+1)A \\ &amp;\hphantom{\operatorname{tr}\bigl(Z(w+1)^{T}Z(w)\bigr)=}{}+\sum_{j=1}^{m}N_{j}^{T}R(w+1)N_{j}- \eta (w)Z(w)\Biggr)^{T}Z(w)\Biggr) \\ &amp;\hphantom{\operatorname{tr}\bigl(Z(w+1)^{T}Z(w)\bigr)}=\operatorname{tr}\bigl(\bigl(A^{T}R(w+1)\bigr)^{T}Z(w) \bigr) + \operatorname{tr}\bigl(\bigl(R(w+1) A\bigr)^{T} Z(w)\bigr) \\ &amp;\hphantom{\operatorname{tr}\bigl(Z(w+1)^{T}Z(w)\bigr)=}{}+\operatorname{tr}\Biggl(\Biggl(\sum_{j=1}^{m}N_{j}^{T}R(w+1)N_{j} \Biggr)^{T}Z(w)\Biggr) \\ &amp;\hphantom{\operatorname{tr}\bigl(Z(w+1)^{T}Z(w)\bigr)=}{}-\operatorname{tr}\bigl(Z(w)^{T}\bigl(A^{T}R(w+1)\bigr) \bigr)-\operatorname{tr}\bigl(Z(w)^{T}\bigl(R(w+1)A\bigr)\bigr) \\ &amp;\hphantom{\operatorname{tr}\bigl(Z(w+1)^{T}Z(w)\bigr)=}{}-\operatorname{tr}\Biggl(Z(w)^{T}\Biggl(\sum _{j=1}^{m}N_{j}^{T}R(w+1)N_{j} \Biggr)\Biggr) \\ &amp;\hphantom{\operatorname{tr}\bigl(Z(w+1)^{T}Z(w)\bigr)}=0, \\ &amp;\operatorname{tr}\bigl(W(w+1)^{T}W(w)\bigr) \\ &amp;\quad =\operatorname{tr} \Biggl(\Biggl(AS(w+1)+S(w+1)A^{T} \\ &amp;\qquad {}+\sum_{j=1}^{m}N_{j}S(w+1)N_{j}^{T}- \gamma (w)W(w)\Biggr)^{T}W(w)\Biggr) \\ &amp;\quad =\Biggl(\Biggl(AS(w+1)+S(w+1)A^{T}+\sum _{j=1}^{m}N_{j}S(w+1)N_{j}^{T} \Biggr)^{T}W(w)\Biggr) \\ &amp;\qquad {}-\operatorname{tr}\Biggl(W(w)^{T}\Biggl(AS(w+1)+S(w+1)A^{T}+ \sum_{j=1}^{m}N_{j}S(w+1)N_{j}^{T} \Biggr)\Biggr) \\ &amp;\quad =0. \end{aligned}$$ </span></div></div> </li> </ol><p>Noting that <span class="mathjax-tex">\(\operatorname{tr}(Z(w)^{T}Z(u)) = 0\)</span>, <span class="mathjax-tex">\(\operatorname{tr}(R(w+1)^{T}W(w)) = 0\)</span> with (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ12">12</a>) we deduce that </p><div id="Equac" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \operatorname{tr}\bigl(Z(w+1)^{T}Z(u)\bigr)=0. $$</span></div></div><p> Similarly from <span class="mathjax-tex">\(\operatorname{tr}(W(w)^{T}W(u))=0\)</span>, <span class="mathjax-tex">\(\operatorname{tr}(S(w)^{T}Z(w))=0\)</span> and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ13">13</a>), it can be seen that </p><div id="Equad" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex"> $$\begin{aligned} \operatorname{tr}\bigl(W(w+1)^{T}W(u)\bigr)= 0. \end{aligned}$$ </span></div></div><p> Hence, (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ8">8</a>)–(<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1186/s13662-021-03381-1#Equ11">11</a>) hold true for <span class="mathjax-tex">\(w+1\)</span>. Using mathematical induction, we complete the proof.</p></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">http://creativecommons.org/licenses/by/4.0/</a>.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=Matrix%20iteration%20algorithms%20for%20solving%20the%20generalized%20Lyapunov%20matrix%20equation&amp;author=Juan%20Zhang%20et%20al&amp;contentID=10.1186%2Fs13662-021-03381-1&amp;copyright=The%20Author%28s%29&amp;publication=1687-1847&amp;publicationDate=2021-04-28&amp;publisherName=SpringerNature&amp;orderBeanReset=true&amp;oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1186/s13662-021-03381-1" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03381-1" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Zhang, J., Kang, H. &amp; Li, S. Matrix iteration algorithms for solving the generalized Lyapunov matrix equation. <i>Adv Differ Equ</i> <b>2021</b>, 221 (2021). https://doi.org/10.1186/s13662-021-03381-1</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1186/s13662-021-03381-1?format=refman&amp;flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2020-09-23">23 September 2020</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2021-04-15">15 April 2021</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2021-04-28">28 April 2021</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1186/s13662-021-03381-1</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><h3 class="c-article__sub-heading">Keywords</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Generalized%20Lyapunov%20equation&amp;facet-discipline=&#34;Mathematics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Generalized Lyapunov equation</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Cayley%20transformation&amp;facet-discipline=&#34;Mathematics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Cayley transformation</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=BICR%20algorithm&amp;facet-discipline=&#34;Mathematics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">BICR algorithm</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Bi-CGSTAB%20algorithm&amp;facet-discipline=&#34;Mathematics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Bi-CGSTAB algorithm</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=CRS%20algorithm&amp;facet-discipline=&#34;Mathematics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">CRS algorithm</a></span></li></ul><div data-component="article-info-list"></div></div></div></div></div></section> </div> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside> <div data-test="collections"> </div> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu><div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-MPU1" class="div-gpt-ad grade-c-hide" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springerlink/13662/article" data-gpt-sizes="300x250" data-test="MPU1-ad" data-gpt-targeting="pos=MPU1;articleid=s13662-021-03381-1;"> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> </article> <div class="app-elements"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our imprints</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">&copy; 2024 Springer Nature</p> </div> </div> </footer> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10