CINXE.COM
Symmetry | Free Full-Text | Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8"><base href="https://www.mdpi.com/2073-8994/14/10/1997"><div style="background:#fff;border:1px solid #999;margin:-1px -1px 0;padding:0;"><div style="background:#ddd;border:1px solid #999;color:#000;font:13px arial,sans-serif;font-weight:normal;margin:12px;padding:8px;text-align:left">This is Google's <a href="//support.google.com/websearch/answer/1687222?hl=en"><font color=blue>cache</font></a> of <a href="https://www.mdpi.com/2073-8994/14/10/1997"><font color=blue>https://www.mdpi.com/2073-8994/14/10/1997</font></a>.<br>Google's cache is the snapshot that we took of the page as we crawled the web.</div></div><div style="position:relative"> <!DOCTYPE html> <html lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="https://www.facebook.com/2008/fbml"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta content="mdpi" name="sso-service" /> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <title>Symmetry | Free Full-Text | Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images</title><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/font-awesome.min.css?eb190a3a77e5e1ee?1704293393"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery.multiselect.css?f56c135cbf4d1483?1704293393"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/chosen.min.css?d7ca5ca9441ef9e1?1704293393"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/main2.css?a31b5ec961a427bc?1704293393"> <link rel="mask-icon" href="https://pub.mdpi-res.com/img/mask-icon-128.svg?c1c7eca266cd7013?1704293393" color="#4f5671"> <link rel="apple-touch-icon" sizes="180x180" href="https://pub.mdpi-res.com/icon/apple-touch-icon-180x180.png?1704293393"> <link rel="apple-touch-icon" sizes="152x152" href="https://pub.mdpi-res.com/icon/apple-touch-icon-152x152.png?1704293393"> <link rel="apple-touch-icon" sizes="144x144" href="https://pub.mdpi-res.com/icon/apple-touch-icon-144x144.png?1704293393"> <link rel="apple-touch-icon" sizes="120x120" href="https://pub.mdpi-res.com/icon/apple-touch-icon-120x120.png?1704293393"> <link rel="apple-touch-icon" sizes="114x114" href="https://pub.mdpi-res.com/icon/apple-touch-icon-114x114.png?1704293393"> <link rel="apple-touch-icon" sizes="76x76" href="https://pub.mdpi-res.com/icon/apple-touch-icon-76x76.png?1704293393"> <link rel="apple-touch-icon" sizes="72x72" href="https://pub.mdpi-res.com/icon/apple-touch-icon-72x72.png?1704293393"> <link rel="apple-touch-icon" sizes="57x57" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1704293393"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1704293393"> <link rel="apple-touch-icon-precomposed" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1704293393"> <link rel="manifest" href="/manifest.json"> <meta name="theme-color" content="#ffffff"> <meta name="application-name" content=" " /> <link rel="apple-touch-startup-image" href="https://pub.mdpi-res.com/img/journals/symmetry-logo-sq.png?2c65edf82f527115"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/img/journals/symmetry-logo-sq.png?2c65edf82f527115"> <meta name="msapplication-TileImage" content="https://pub.mdpi-res.com/img/journals/symmetry-logo-sq.png?2c65edf82f527115"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1704293393"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1704293393"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/xml2html/article-html.css?ef2afd8682e489bc?1704293393"> <style> h2, #abstract .related_suggestion_title { } .batch_articles a { color: #000; } a, .batch_articles .authors a, a:focus, a:hover, a:active, .batch_articles a:focus, .batch_articles a:hover, li.side-menu-li a { } span.label a { color: #fff; } #main-content a.title-link:hover, #main-content a.title-link:focus, #main-content div.generic-item a.title-link:hover, #main-content div.generic-item a.title-link:focus { } #main-content #middle-column .generic-item.article-item a.title-link:hover, #main-content #middle-column .generic-item.article-item a.title-link:focus { } .art-authors a.toEncode { color: #333; font-weight: 700; } #main-content #middle-column ul li::before { } .accordion-navigation.active a.accordion__title, .accordion-navigation.active a.accordion__title::after { } .accordion-navigation li:hover::before, .accordion-navigation li:hover a, .accordion-navigation li:focus a { } .relative-size-container .relative-size-image .relative-size { } .middle-column__help__fixed a:hover i, } input[type="checkbox"]:checked:after { } input[type="checkbox"]:not(:disabled):hover:before { } #main-content .bolded-text { } #main-content .hypothesis-count-container { } #main-content .hypothesis-count-container:before { } .full-size-menu ul li.menu-item .dropdown-wrapper { } .full-size-menu ul li.menu-item > a.open::after { } #title-story .title-story-orbit .orbit-caption { #background: url('/img/design/000000_background.png') !important; background: url('/img/design/ffffff_background.png') !important; color: rgb(51, 51, 51) !important; } #main-content .content__container__orbit { background-color: #000 !important; } #main-content .content__container__journal { color: #fff; } .html-article-menu .row span { } .html-article-menu .row span.active { } .accordion-navigation__journal .side-menu-li.active::before, .accordion-navigation__journal .side-menu-li.active a { color: rgba(0,57,58,0.75) !important; font-weight: 700; } .accordion-navigation__journal .side-menu-li:hover::before , .accordion-navigation__journal .side-menu-li:hover a { color: rgba(0,57,58,0.75) !important; } .side-menu-ul li.active a, .side-menu-ul li.active, .side-menu-ul li.active::before { color: rgba(0,57,58,0.75) !important; } .side-menu-ul li.active a { } .result-selected, .active-result.highlighted, .active-result:hover, .result-selected, .active-result.highlighted, .active-result:focus { } .search-container.search-container__default-scheme { } nav.tab-bar .open-small-search.active:after { } .search-container.search-container__default-scheme .custom-accordion-for-small-screen-link::after { color: #fff; } @media only screen and (max-width: 50em) { #main-content .content__container.journal-info { color: #fff; } #main-content .content__container.journal-info a { color: #fff; } } .button.button--color { } .button.button--color:hover, .button.button--color:focus { } .button.button--color-journal { position: relative; background-color: rgba(0,57,58,0.75); border-color: #fff; color: #fff !important; } .button.button--color-journal:hover::before { content: ''; position: absolute; top: 0; left: 0; height: 100%; width: 100%; background-color: #ffffff; opacity: 0.2; } .button.button--color-journal:visited, .button.button--color-journal:hover, .button.button--color-journal:focus { background-color: rgba(0,57,58,0.75); border-color: #fff; color: #fff !important; } .button.button--color path { } .button.button--color:hover path { fill: #fff; } #main-content #search-refinements .ui-slider-horizontal .ui-slider-range { } .breadcrumb__element:last-of-type a { } #main-header { } #full-size-menu .top-bar, #full-size-menu li.menu-item span.user-email { } .top-bar-section li:not(.has-form) a:not(.button) { } #full-size-menu li.menu-item .dropdown-wrapper li a:hover { } #full-size-menu li.menu-item a:hover, #full-size-menu li.menu.item a:focus, nav.tab-bar a:hover { } #full-size-menu li.menu.item a:active, #full-size-menu li.menu.item a.active { } #full-size-menu li.menu-item a.open-mega-menu.active, #full-size-menu li.menu-item div.mega-menu, a.open-mega-menu.active { } #full-size-menu li.menu-item div.mega-menu li, #full-size-menu li.menu-item div.mega-menu a { border-color: #9a9a9a; } div.type-section h1 { font-size: 20px; line-height: 26px; font-weight: 300; } div.type-section h3 { margin-left: 15px; margin-bottom: 0px; font-weight: 300; } .journal-tabs .tab-title.active a { } </style> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/slick.css?f38b2db10e01b157?1704293393"> <meta name="title" content="Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images"> <meta name="description" content="Tuberculosis is curable, still the world’s second inflectional murderous disease, and ranked 13th (in 2020) by the World Health Organization on the list of leading death causes. One of the reasons for its fatality is the unavailability of modern technology and human experts for early detection. This study represents a precise and reliable machine vision-based approach for Tuberculosis detection in the lung through Symmetry CT scan images. TB spreads irregularly, which means it might not affect both lungs equally, and it might affect only some part of the lung. That’s why regions of interest (ROI’s) from TB infected and normal CT scan images of lungs were selected after pre-processing i.e., selection/cropping, grayscale image conversion, and filtration, Statistical texture features were extracted, and 30 optimized features using F (Fisher) + PA (probability of error + average correlation) + MI (mutual information) were selected for final optimization and only 6 most optimized features were selected. Several supervised learning classifiers were used to classify between normal and infected TB images. Artificial Neural Network (ANN: n class) based classifier Multi-Layer Perceptron (MLP) showed comparatively better and probably best accuracy of 99% with execution time of less than a second, followed by Random Forest 98.83%, J48 98.67%, Log it Boost 98%, AdaBoostM1 97.16% and Bayes Net 96.83%."> <link rel="image_src" href="https://pub.mdpi-res.com/img/journals/symmetry-logo.png?2c65edf82f527115"> <meta name="dc.title" content="Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images"> <meta name="dc.creator" content="Inayatul Haq"> <meta name="dc.creator" content="Tehseen Mazhar"> <meta name="dc.creator" content="Qandeel Nasir"> <meta name="dc.creator" content="Saqib Razzaq"> <meta name="dc.creator" content="Syed Agha Hassnain Mohsan"> <meta name="dc.creator" content="Mohammed H. Alsharif"> <meta name="dc.creator" content="Hend Khalid Alkahtani"> <meta name="dc.creator" content="Ayman Aljarbouh"> <meta name="dc.creator" content="Samih M. Mostafa"> <meta name="dc.type" content="Article"> <meta name="dc.source" content="Symmetry 2022, Vol. 14, Page 1997"> <meta name="dc.date" content="2022-09-23"> <meta name="dc.identifier" content="10.3390/sym14101997"> <meta name="dc.publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf"> <meta name="dc.language" content="en"> <meta name="dc.description" content="Tuberculosis is curable, still the world’s second inflectional murderous disease, and ranked 13th (in 2020) by the World Health Organization on the list of leading death causes. One of the reasons for its fatality is the unavailability of modern technology and human experts for early detection. This study represents a precise and reliable machine vision-based approach for Tuberculosis detection in the lung through Symmetry CT scan images. TB spreads irregularly, which means it might not affect both lungs equally, and it might affect only some part of the lung. That’s why regions of interest (ROI’s) from TB infected and normal CT scan images of lungs were selected after pre-processing i.e., selection/cropping, grayscale image conversion, and filtration, Statistical texture features were extracted, and 30 optimized features using F (Fisher) + PA (probability of error + average correlation) + MI (mutual information) were selected for final optimization and only 6 most optimized features were selected. Several supervised learning classifiers were used to classify between normal and infected TB images. Artificial Neural Network (ANN: n class) based classifier Multi-Layer Perceptron (MLP) showed comparatively better and probably best accuracy of 99% with execution time of less than a second, followed by Random Forest 98.83%, J48 98.67%, Log it Boost 98%, AdaBoostM1 97.16% and Bayes Net 96.83%."> <meta name="dc.subject" content="Tuberculosis"> <meta name="dc.subject" content="Artificial Neural Networks"> <meta name="dc.subject" content="Random Forest"> <meta name="dc.subject" content="computer vision"> <meta name="dc.subject" content="image processing"> <meta name="dc.subject" content="Mazda"> <meta name="dc.subject" content="WEKA"> <meta name="dc.subject" content="Mycobacterium"> <meta name="dc.subject" content="Symmetry"> <meta name="prism.issn" content="2073-8994"> <meta name="prism.publicationName" content="Symmetry"> <meta name="prism.publicationDate" content="2022-09-23"> <meta name="prism.volume" content="14"> <meta name="prism.number" content="10"> <meta name="prism.section" content="Article"> <meta name="prism.startingPage" content="1997"> <meta name="citation_issn" content="2073-8994"> <meta name="citation_journal_title" content="Symmetry"> <meta name="citation_publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="citation_title" content="Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images"> <meta name="citation_publication_date" content="2022/10"> <meta name="citation_online_date" content="2022/09/23"> <meta name="citation_volume" content="14"> <meta name="citation_issue" content="10"> <meta name="citation_firstpage" content="1997"> <meta name="citation_author" content="Haq, Inayatul"> <meta name="citation_author" content="Mazhar, Tehseen"> <meta name="citation_author" content="Nasir, Qandeel"> <meta name="citation_author" content="Razzaq, Saqib"> <meta name="citation_author" content="Mohsan, Syed Agha Hassnain"> <meta name="citation_author" content="Alsharif, Mohammed H."> <meta name="citation_author" content="Alkahtani, Hend Khalid"> <meta name="citation_author" content="Aljarbouh, Ayman"> <meta name="citation_author" content="Mostafa, Samih M."> <meta name="citation_doi" content="10.3390/sym14101997"> <meta name="citation_id" content="mdpi-sym14101997"> <meta name="citation_abstract_html_url" content="https://www.mdpi.com/2073-8994/14/10/1997"> <meta name="citation_pdf_url" content="https://www.mdpi.com/2073-8994/14/10/1997/pdf?version=1666607797"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.mdpi.com/2073-8994/14/10/1997/pdf?version=1666607797"> <meta name="fulltext_pdf" content="https://www.mdpi.com/2073-8994/14/10/1997/pdf?version=1666607797"> <meta name="citation_fulltext_html_url" content="https://www.mdpi.com/2073-8994/14/10/1997/htm"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.mdpi.com/2073-8994/14/10/1997/htm"> <meta name="fulltext_html" content="https://www.mdpi.com/2073-8994/14/10/1997/htm"> <link rel="alternate" type="text/xml" title="XML Full-Text" href="https://www.mdpi.com/2073-8994/14/10/1997/xml"> <meta name="fulltext_xml" content="https://www.mdpi.com/2073-8994/14/10/1997/xml"> <meta name="citation_xml_url" content="https://www.mdpi.com/2073-8994/14/10/1997/xml"> <meta name="twitter:card" content="summary" /> <meta name="twitter:site" content="@MDPIOpenAccess" /> <meta name="twitter:image" content="https://pub.mdpi-res.com/img/journals/symmetry-logo-social.png?2c65edf82f527115" /> <meta property="fb:app_id" content="131189377574" /> <meta property="og:site_name" content="MDPI" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.mdpi.com/2073-8994/14/10/1997" /> <meta property="og:title" content="Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images" /> <meta property="og:description" content="Tuberculosis is curable, still the world’s second inflectional murderous disease, and ranked 13th (in 2020) by the World Health Organization on the list of leading death causes. One of the reasons for its fatality is the unavailability of modern technology and human experts for early detection. This study represents a precise and reliable machine vision-based approach for Tuberculosis detection in the lung through Symmetry CT scan images. TB spreads irregularly, which means it might not affect both lungs equally, and it might affect only some part of the lung. That’s why regions of interest (ROI’s) from TB infected and normal CT scan images of lungs were selected after pre-processing i.e., selection/cropping, grayscale image conversion, and filtration, Statistical texture features were extracted, and 30 optimized features using F (Fisher) + PA (probability of error + average correlation) + MI (mutual information) were selected for final optimization and only 6 most optimized features were selected. Several supervised learning classifiers were used to classify between normal and infected TB images. Artificial Neural Network (ANN: n class) based classifier Multi-Layer Perceptron (MLP) showed comparatively better and probably best accuracy of 99% with execution time of less than a second, followed by Random Forest 98.83%, J48 98.67%, Log it Boost 98%, AdaBoostM1 97.16% and Bayes Net 96.83%." /> <meta property="og:image" content="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g001-550.jpg?1666607873" /> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Latest articles" href="https://www.mdpi.com/rss"> <meta name="google-site-verification" content="PxTlsg7z2S00aHroktQd57fxygEjMiNHydKn3txhvwY"> <meta name="facebook-domain-verification" content="mcoq8dtq6sb2hf7z29j8w515jjoof7" /> <script id="Cookiebot" data-cfasync="false" src="https://consent.cookiebot.com/uc.js" data-cbid="51491ddd-fe7a-4425-ab39-69c78c55829f" type="text/javascript" async></script> <!--[if lt IE 9]> <script>var browserIe8 = true;</script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/ie8foundationfix.css?50273beac949cbf0?1704293393"> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.6.2/html5shiv.js"></script> <script src="//s3.amazonaws.com/nwapi/nwmatcher/nwmatcher-1.2.5-min.js"></script> <script src="//html5base.googlecode.com/svn-history/r38/trunk/js/selectivizr-1.0.3b.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/respond.js/1.1.0/respond.min.js"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8patch.js?9e1d3c689a0471df?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/rem.min.js?94b62787dcd6d2f2?1704293393"></script> <![endif]--> <script type="text/plain" data-cookieconsent="statistics"> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-WPK7SW5'); </script> <script type="text/plain" data-cookieconsent="statistics"> _linkedin_partner_id = "2846186"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); </script><script type="text/javascript"> (function(){var s = document.getElementsByTagName("script")[0]; var b = document.createElement("script"); b.type = "text/javascript";b.async = true; b.src = "https://snap.licdn.com/li.lms-analytics/insight.min.js"; s.parentNode.insertBefore(b, s);})(); </script> <script type="text/plain" data-cookieconsent="statistics" data-cfasync="false" src="//script.crazyegg.com/pages/scripts/0116/4951.js" async="async"></script> </head> <body> <div class="direction direction_right" id="small_right" style="border-right-width: 0px; padding:0;"> <i class="fa fa-caret-right fa-2x"></i> </div> <div class="big_direction direction_right" id="big_right" style="border-right-width: 0px;"> <div style="text-align: right;"> Next Article in Journal<br> <div><a href="/2073-8994/14/10/1998">Stochastic Analysis of Train Running Safety on Bridge with Earthquake-Induced Irregularity under Aftershock</a></div> Next Article in Special Issue<br> <div><a href="/2073-8994/14/10/2098">An Efficient Machine Learning-Based Model to Effectively Classify the Type of Noises in QR Code: A Hybrid Approach</a></div> </div> </div> <div class="direction" id="small_left" style="border-left-width: 0px"> <i class="fa fa-caret-left fa-2x"></i> </div> <div class="big_direction" id="big_left" style="border-left-width: 0px;"> <div> Previous Article in Journal<br> <div><a href="/2073-8994/14/10/1996">Singularity Properties of Timelike Sweeping Surface in Minkowski 3-Space</a></div> </div> </div> <div style="clear: both;"></div> <div id="menuModal" class="reveal-modal reveal-modal-new reveal-modal-menu" aria-hidden="true" data-reveal role="dialog"> <div class="menu-container"> <div class="UI_NavMenu"> <div class="content__container "> <div class="custom-accordion-for-small-screen-link "> <h2>Journals</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about/journals">Active Journals</a> <a href="/about/journalfinder">Find a Journal</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <a href="/topics"> <h2>Topics</h2> </a> <div class="content__container "> <div class="custom-accordion-for-small-screen-link "> <h2>Information</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; max-width: 200px; float: left;"> <a href="/authors">For Authors</a> <a href="/reviewers">For Reviewers</a> <a href="/editors">For Editors</a> <a href="/librarians">For Librarians</a> <a href="/publishing_services">For Publishers</a> <a href="/societies">For Societies</a> <a href="/conference_organizers">For Conference Organizers</a> </div> <div style="width: 100%; max-width: 250px; float: left;"> <a href="/openaccess">Open Access Policy</a> <a href="/ioap">Institutional Open Access Program</a> <a href="/special_issues_guidelines">Special Issues Guidelines</a> <a href="/editorial_process">Editorial Process</a> <a href="/ethics">Research and Publication Ethics</a> <a href="/apc">Article Processing Charges</a> <a href="/awards">Awards</a> <a href="/testimonials">Testimonials</a> </div> </div> </div> </div> <a href="/authors/english"> <h2>Author Services</h2> </a> <div class="content__container "> <div class="custom-accordion-for-small-screen-link "> <h2>Initiatives</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer">Sciforum</a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer">MDPI Books</a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer">Preprints.org</a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer">Scilit</a> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer">SciProfiles</a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer">Encyclopedia</a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer">JAMS</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <div class="content__container "> <div class="custom-accordion-for-small-screen-link "> <h2>About</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about">Overview</a> <a href="/about/contact">Contact</a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer">Careers</a> <a href="/about/announcements">News</a> <a href="/about/press">Press</a> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer">Blog</a> </div> </div> </div> </div> </div> <div class="menu-container__buttons"> <a class="button UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> </div> </div> </div> <div id="captchaModal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-label="Captcha" aria-hidden="true" role="dialog"></div> <div id="actionDisabledModal" class="reveal-modal" data-reveal aria-labelledby="actionDisableModalTitle" aria-hidden="true" role="dialog" style="width: 300px;"> <h2 id="actionDisableModalTitle">Notice</h2> <form action="/email/captcha" method="post" id="emailCaptchaForm"> <div class="row"> <div id="js-action-disabled-modal-text" class="small-12 columns"> </div> <div id="js-action-disabled-modal-submit" class="small-12 columns" style="margin-top: 10px; display: none;"> You can make submissions to other journals <a href="https://susy.mdpi.com/user/manuscripts/upload">here</a>. </div> </div> </form> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="rssNotificationModal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="rssNotificationModalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="rssNotificationModalTitle">Notice</h2> <p> You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader. </p> </div> </div> <div class="row"> <div class="small-12 columns"> <a class="button button--color js-rss-notification-confirm">Continue</a> <a class="button button--grey" onclick="$(this).closest('.reveal-modal').find('.close-reveal-modal').click(); return false;">Cancel</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="drop-article-label-openaccess" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to <a href="https://www.mdpi.com/openaccess">https://www.mdpi.com/openaccess</a>. </p> </div> <div id="drop-article-label-feature" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. </p> <p> Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers. </p> </div> <div id="drop-article-label-choice" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal. <div style="margin-top: -10px;"> <div id="drop-article-label-choice-journal-link" style="display: none; margin-top: -10px; padding-top: 10px;"> </div> </div> </p> </div> <div id="container"> <noscript> <div id="no-javascript"> You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled. </div> </noscript> <div class="fixed"> <nav class="tab-bar show-for-medium-down"> <div class="row full-width collapse"> <div class="medium-3 small-4 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1704293393" style="width: 64px;" title="MDPI Open Access Journals"> </a> </div> <div class="medium-3 small-4 columns right-aligned"> <div class="show-for-medium-down"> <a href="#" style="display: none;"> <i class="material-icons" onclick="$('#menuModal').foundation('reveal', 'close'); return false;">clear</i> </a> <a class="js-toggle-desktop-layout-link" title="Toggle desktop layout" style="display: none;" href="/toggle_desktop_layout_cookie"> <i class="material-icons">zoom_out_map</i> </a> <a href="#" class="js-open-small-search open-small-search"> <i class="material-icons show-for-small only">search</i> </a> <a title="MDPI main page" class="js-open-menu" data-reveal-id="menuModal" href="#"> <i class="material-icons">menu</i> </a> </div> </div> </div> </nav> </div> <section class="main-section"> <header> <div class="full-size-menu show-for-large-up"> <div class="row full-width"> <div class="large-1 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1704293393" title="MDPI Open Access Journals"> </a> </div> <div class="large-8 columns text-right UI_NavMenu"> <ul> <li class="menu-item"> <a href="/about/journals" data-dropdown="journals-dropdown" aria-controls="journals-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Journals</a> <ul id="journals-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about/journals"> Active Journals </a> </li> <li> <a href="/about/journalfinder"> Find a Journal </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/topics">Topics</a> </li> <li class="menu-item"> <a href="/authors" data-dropdown="information-dropdown" aria-controls="information-dropdown" aria-expanded="false" data-options="is_hover:true; hover_timeout:200">Information</a> <ul id="information-dropdown" class="f-dropdown dropdown-wrapper" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-5 columns right-border"> <ul> <li> <a href="/authors">For Authors</a> </li> <li> <a href="/reviewers">For Reviewers</a> </li> <li> <a href="/editors">For Editors</a> </li> <li> <a href="/librarians">For Librarians</a> </li> <li> <a href="/publishing_services">For Publishers</a> </li> <li> <a href="/societies">For Societies</a> </li> <li> <a href="/conference_organizers">For Conference Organizers</a> </li> </ul> </div> <div class="small-7 columns"> <ul> <li> <a href="/openaccess">Open Access Policy</a> </li> <li> <a href="/ioap">Institutional Open Access Program</a> </li> <li> <a href="/special_issues_guidelines">Special Issues Guidelines</a> </li> <li> <a href="/editorial_process">Editorial Process</a> </li> <li> <a href="/ethics">Research and Publication Ethics</a> </li> <li> <a href="/apc">Article Processing Charges</a> </li> <li> <a href="/awards">Awards</a> </li> <li> <a href="/testimonials">Testimonials</a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/authors/english">Author Services</a> </li> <li class="menu-item"> <a href="/about/initiatives" data-dropdown="initiatives-dropdown" aria-controls="initiatives-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Initiatives</a> <ul id="initiatives-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> </li> <li> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> </li> <li> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> </li> <li> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> </li> <li> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer"> SciProfiles </a> </li> <li> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> </li> <li> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/about" data-dropdown="about-dropdown" aria-controls="about-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">About</a> <ul id="about-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about"> Overview </a> </li> <li> <a href="/about/contact"> Contact </a> </li> <li> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Careers </a> </li> <li> <a href="/about/announcements"> News </a> </li> <li> <a href="/about/press"> Press </a> </li> <li> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer"> Blog </a> </li> </ul> </div> </div> </li> </ul> </li> </ul> </div> <div class="large-3 columns text-right full-size-menu__buttons"> <div> <a class="button button--default-inversed UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> <a class="button button--default js-journal-active-only-link js-journal-active-only-submit-link UC_NavSubmitButton" href="https://susy.mdpi.com/user/manuscripts/upload?journal=symmetry" data-disabledmessage="new submissions are not possible.">Submit</a> </div> </div> </div> </div> <div class="header-divider"> </div> <div class="search-container hide-for-small-down row search-container__homepage-scheme"> <form id="basic_search" style="background-color: inherit !important;" class="large-12 medium-12 columns " action="/search" method="get"> <div class="row search-container__main-elements"> <div class="large-2 medium-2 small-12 columns text-right1 small-only-text-left"> <div class="show-for-medium-up"> <div class="search-input-label"> </div> </div> <span class="search-container__title">Search<span class="hide-for-medium"> for Articles</span><span class="hide-for-small">:</span></span> </div> <div class="custom-accordion-for-small-screen-content"> <div class="large-2 medium-2 small-6 columns "> <div class> <div class="search-input-label">Title / Keyword</div> </div> <input type="text" placeholder="Title / Keyword" id="q" tabindex="1" name="q" value /> </div> <div class="large-2 medium-2 small-6 columns "> <div class> <div class="search-input-label">Author / Affiliation / Email</div> </div> <input type="text" id="authors" placeholder="Author / Affiliation / Email" tabindex="2" name="authors" value /> </div> <div class="large-2 medium-2 small-6 columns "> <div class> <div class="search-input-label">Journal</div> </div> <select id="journal" tabindex="3" name="journal" class="chosen-select"> <option value>All Journals</option> <option value="acoustics"> Acoustics </option> <option value="amh"> Acta Microbiologica Hellenica </option> <option value="actuators"> Actuators </option> <option value="admsci"> Administrative Sciences </option> <option value="adolescents"> Adolescents </option> <option value="arm"> Advances in Respiratory Medicine (ARM) </option> <option value="aerobiology"> Aerobiology </option> <option value="aerospace"> Aerospace </option> <option value="agriculture"> Agriculture </option> <option value="agriengineering"> AgriEngineering </option> <option value="agrochemicals"> Agrochemicals </option> <option value="agronomy"> Agronomy </option> <option value="ai"> AI </option> <option value="air"> Air </option> <option value="algorithms"> Algorithms </option> <option value="allergies"> Allergies </option> <option value="alloys"> Alloys </option> <option value="analytica"> Analytica </option> <option value="analytics"> Analytics </option> <option value="anatomia"> Anatomia </option> <option value="anesthres"> Anesthesia Research </option> <option value="animals"> Animals </option> <option value="antibiotics"> Antibiotics </option> <option value="antibodies"> Antibodies </option> <option value="antioxidants"> Antioxidants </option> <option value="applbiosci"> Applied Biosciences </option> <option value="applmech"> Applied Mechanics </option> <option value="applmicrobiol"> Applied Microbiology </option> <option value="applnano"> Applied Nano </option> <option value="applsci"> Applied Sciences </option> <option value="asi"> Applied System Innovation (ASI) </option> <option value="appliedchem"> AppliedChem </option> <option value="appliedmath"> AppliedMath </option> <option value="aquacj"> Aquaculture Journal </option> <option value="architecture"> Architecture </option> <option value="arthropoda"> Arthropoda </option> <option value="arts"> Arts </option> <option value="astronomy"> Astronomy </option> <option value="atmosphere"> Atmosphere </option> <option value="atoms"> Atoms </option> <option value="audiolres"> Audiology Research </option> <option value="automation"> Automation </option> <option value="axioms"> Axioms </option> <option value="bacteria"> Bacteria </option> <option value="batteries"> Batteries </option> <option value="behavsci"> Behavioral Sciences </option> <option value="beverages"> Beverages </option> <option value="BDCC"> Big Data and Cognitive Computing (BDCC) </option> <option value="biochem"> BioChem </option> <option value="bioengineering"> Bioengineering </option> <option value="biologics"> Biologics </option> <option value="biology"> Biology </option> <option value="blsf"> Biology and Life Sciences Forum </option> <option value="biomass"> Biomass </option> <option value="biomechanics"> Biomechanics </option> <option value="biomed"> BioMed </option> <option value="biomedicines"> Biomedicines </option> <option value="biomedinformatics"> BioMedInformatics </option> <option value="biomimetics"> Biomimetics </option> <option value="biomolecules"> Biomolecules </option> <option value="biophysica"> Biophysica </option> <option value="biosensors"> Biosensors </option> <option value="biotech"> BioTech </option> <option value="birds"> Birds </option> <option value="blockchains"> Blockchains </option> <option value="brainsci"> Brain Sciences </option> <option value="buildings"> Buildings </option> <option value="businesses"> Businesses </option> <option value="carbon"> C </option> <option value="cancers"> Cancers </option> <option value="cardiogenetics"> Cardiogenetics </option> <option value="catalysts"> Catalysts </option> <option value="cells"> Cells </option> <option value="ceramics"> Ceramics </option> <option value="challenges"> Challenges </option> <option value="ChemEngineering"> ChemEngineering </option> <option value="chemistry"> Chemistry </option> <option value="chemproc"> Chemistry Proceedings </option> <option value="chemosensors"> Chemosensors </option> <option value="children"> Children </option> <option value="chips"> Chips </option> <option value="civileng"> CivilEng </option> <option value="cleantechnol"> Clean Technologies (Clean Technol.) </option> <option value="climate"> Climate </option> <option value="ctn"> Clinical and Translational Neuroscience (CTN) </option> <option value="clinpract"> Clinics and Practice </option> <option value="clockssleep"> Clocks & Sleep </option> <option value="coasts"> Coasts </option> <option value="coatings"> Coatings </option> <option value="colloids"> Colloids and Interfaces </option> <option value="colorants"> Colorants </option> <option value="commodities"> Commodities </option> <option value="complications"> Complications </option> <option value="compounds"> Compounds </option> <option value="computation"> Computation </option> <option value="csmf"> Computer Sciences & Mathematics Forum </option> <option value="computers"> Computers </option> <option value="condensedmatter"> Condensed Matter </option> <option value="conservation"> Conservation </option> <option value="constrmater"> Construction Materials </option> <option value="cmd"> Corrosion and Materials Degradation (CMD) </option> <option value="cosmetics"> Cosmetics </option> <option value="covid"> COVID </option> <option value="crops"> Crops </option> <option value="cryptography"> Cryptography </option> <option value="crystals"> Crystals </option> <option value="cimb"> Current Issues in Molecular Biology (CIMB) </option> <option value="curroncol"> Current Oncology </option> <option value="dairy"> Dairy </option> <option value="data"> Data </option> <option value="dentistry"> Dentistry Journal </option> <option value="dermato"> Dermato </option> <option value="dermatopathology"> Dermatopathology </option> <option value="designs"> Designs </option> <option value="diabetology"> Diabetology </option> <option value="diagnostics"> Diagnostics </option> <option value="dietetics"> Dietetics </option> <option value="digital"> Digital </option> <option value="disabilities"> Disabilities </option> <option value="diseases"> Diseases </option> <option value="diversity"> Diversity </option> <option value="dna"> DNA </option> <option value="drones"> Drones </option> <option value="ddc"> Drugs and Drug Candidates (DDC) </option> <option value="dynamics"> Dynamics </option> <option value="earth"> Earth </option> <option value="ecologies"> Ecologies </option> <option value="econometrics"> Econometrics </option> <option value="economies"> Economies </option> <option value="education"> Education Sciences </option> <option value="electricity"> Electricity </option> <option value="electrochem"> Electrochem </option> <option value="electronicmat"> Electronic Materials </option> <option value="electronics"> Electronics </option> <option value="ecm"> Emergency Care and Medicine </option> <option value="encyclopedia"> Encyclopedia </option> <option value="endocrines"> Endocrines </option> <option value="energies"> Energies </option> <option value="eng"> Eng </option> <option value="engproc"> Engineering Proceedings </option> <option value="entropy"> Entropy </option> <option value="environsciproc"> Environmental Sciences Proceedings </option> <option value="environments"> Environments </option> <option value="epidemiologia"> Epidemiologia </option> <option value="epigenomes"> Epigenomes </option> <option value="ebj"> European Burn Journal (EBJ) </option> <option value="ejihpe"> European Journal of Investigation in Health, Psychology and Education (EJIHPE) </option> <option value="fermentation"> Fermentation </option> <option value="fibers"> Fibers </option> <option value="fintech"> FinTech </option> <option value="fire"> Fire </option> <option value="fishes"> Fishes </option> <option value="fluids"> Fluids </option> <option value="foods"> Foods </option> <option value="forecasting"> Forecasting </option> <option value="forensicsci"> Forensic Sciences </option> <option value="forests"> Forests </option> <option value="fossstud"> Fossil Studies </option> <option value="foundations"> Foundations </option> <option value="fractalfract"> Fractal and Fractional (Fractal Fract) </option> <option value="fuels"> Fuels </option> <option value="future"> Future </option> <option value="futureinternet"> Future Internet </option> <option value="futurepharmacol"> Future Pharmacology </option> <option value="futuretransp"> Future Transportation </option> <option value="galaxies"> Galaxies </option> <option value="games"> Games </option> <option value="gases"> Gases </option> <option value="gastroent"> Gastroenterology Insights </option> <option value="gastrointestdisord"> Gastrointestinal Disorders </option> <option value="gastronomy"> Gastronomy </option> <option value="gels"> Gels </option> <option value="genealogy"> Genealogy </option> <option value="genes"> Genes </option> <option value="geographies"> Geographies </option> <option value="geohazards"> GeoHazards </option> <option value="geomatics"> Geomatics </option> <option value="geosciences"> Geosciences </option> <option value="geotechnics"> Geotechnics </option> <option value="geriatrics"> Geriatrics </option> <option value="gucdd"> Gout, Urate, and Crystal Deposition Disease (GUCDD) </option> <option value="grasses"> Grasses </option> <option value="hardware"> Hardware </option> <option value="healthcare"> Healthcare </option> <option value="hearts"> Hearts </option> <option value="hemato"> Hemato </option> <option value="hematolrep"> Hematology Reports </option> <option value="heritage"> Heritage </option> <option value="histories"> Histories </option> <option value="horticulturae"> Horticulturae </option> <option value="hospitals"> Hospitals </option> <option value="humanities"> Humanities </option> <option value="humans"> Humans </option> <option value="hydrobiology"> Hydrobiology </option> <option value="hydrogen"> Hydrogen </option> <option value="hydrology"> Hydrology </option> <option value="hygiene"> Hygiene </option> <option value="immuno"> Immuno </option> <option value="idr"> Infectious Disease Reports </option> <option value="informatics"> Informatics </option> <option value="information"> Information </option> <option value="infrastructures"> Infrastructures </option> <option value="inorganics"> Inorganics </option> <option value="insects"> Insects </option> <option value="instruments"> Instruments </option> <option value="ijerph"> International Journal of Environmental Research and Public Health (IJERPH) </option> <option value="ijfs"> International Journal of Financial Studies (IJFS) </option> <option value="ijms"> International Journal of Molecular Sciences (IJMS) </option> <option value="IJNS"> International Journal of Neonatal Screening (IJNS) </option> <option value="ijpb"> International Journal of Plant Biology (IJPB) </option> <option value="ijtm"> International Journal of Translational Medicine (IJTM) </option> <option value="ijtpp"> International Journal of Turbomachinery, Propulsion and Power (IJTPP) </option> <option value="ime"> International Medical Education (IME) </option> <option value="inventions"> Inventions </option> <option value="IoT"> IoT </option> <option value="ijgi"> ISPRS International Journal of Geo-Information (IJGI) </option> <option value="J"> J </option> <option value="jal"> Journal of Ageing and Longevity (JAL) </option> <option value="jcdd"> Journal of Cardiovascular Development and Disease (JCDD) </option> <option value="jcto"> Journal of Clinical & Translational Ophthalmology (JCTO) </option> <option value="jcm"> Journal of Clinical Medicine (JCM) </option> <option value="jcs"> Journal of Composites Science (J. Compos. Sci.) </option> <option value="jcp"> Journal of Cybersecurity and Privacy (JCP) </option> <option value="jdb"> Journal of Developmental Biology (JDB) </option> <option value="jeta"> Journal of Experimental and Theoretical Analyses (JETA) </option> <option value="jfb"> Journal of Functional Biomaterials (JFB) </option> <option value="jfmk"> Journal of Functional Morphology and Kinesiology (JFMK) </option> <option value="jof"> Journal of Fungi (JoF) </option> <option value="jimaging"> Journal of Imaging (J. Imaging) </option> <option value="jintelligence"> Journal of Intelligence (J. Intell.) </option> <option value="jlpea"> Journal of Low Power Electronics and Applications (JLPEA) </option> <option value="jmmp"> Journal of Manufacturing and Materials Processing (JMMP) </option> <option value="jmse"> Journal of Marine Science and Engineering (JMSE) </option> <option value="jmahp"> Journal of Market Access & Health Policy (JMAHP) </option> <option value="jmp"> Journal of Molecular Pathology (JMP) </option> <option value="jnt"> Journal of Nanotheranostics (JNT) </option> <option value="jne"> Journal of Nuclear Engineering (JNE) </option> <option value="ohbm"> Journal of Otorhinolaryngology, Hearing and Balance Medicine (JOHBM) </option> <option value="jpm"> Journal of Personalized Medicine (JPM) </option> <option value="jor"> Journal of Respiration (JoR) </option> <option value="jrfm"> Journal of Risk and Financial Management (JRFM) </option> <option value="jsan"> Journal of Sensor and Actuator Networks (JSAN) </option> <option value="jtaer"> Journal of Theoretical and Applied Electronic Commerce Research (JTAER) </option> <option value="jvd"> Journal of Vascular Diseases (JVD) </option> <option value="jox"> Journal of Xenobiotics (JoX) </option> <option value="jzbg"> Journal of Zoological and Botanical Gardens (JZBG) </option> <option value="journalmedia"> Journalism and Media </option> <option value="kidneydial"> Kidney and Dialysis </option> <option value="kinasesphosphatases"> Kinases and Phosphatases </option> <option value="knowledge"> Knowledge </option> <option value="laboratories"> Laboratories </option> <option value="land"> Land </option> <option value="languages"> Languages </option> <option value="laws"> Laws </option> <option value="life"> Life </option> <option value="limnolrev"> Limnological Review </option> <option value="liquids"> Liquids </option> <option value="literature"> Literature </option> <option value="livers"> Livers </option> <option value="logics"> Logics </option> <option value="logistics"> Logistics </option> <option value="lubricants"> Lubricants </option> <option value="lymphatics"> Lymphatics </option> <option value="make"> Machine Learning and Knowledge Extraction (MAKE) </option> <option value="machines"> Machines </option> <option value="macromol"> Macromol </option> <option value="magnetism"> Magnetism </option> <option value="magnetochemistry"> Magnetochemistry </option> <option value="marinedrugs"> Marine Drugs </option> <option value="materials"> Materials </option> <option value="materproc"> Materials Proceedings </option> <option value="mca"> Mathematical and Computational Applications (MCA) </option> <option value="mathematics"> Mathematics </option> <option value="medsci"> Medical Sciences </option> <option value="msf"> Medical Sciences Forum </option> <option value="medicina"> Medicina </option> <option value="medicines"> Medicines </option> <option value="membranes"> Membranes </option> <option value="merits"> Merits </option> <option value="metabolites"> Metabolites </option> <option value="metals"> Metals </option> <option value="meteorology"> Meteorology </option> <option value="methane"> Methane </option> <option value="mps"> Methods and Protocols (MPs) </option> <option value="metrology"> Metrology </option> <option value="micro"> Micro </option> <option value="microbiolres"> Microbiology Research </option> <option value="micromachines"> Micromachines </option> <option value="microorganisms"> Microorganisms </option> <option value="microplastics"> Microplastics </option> <option value="minerals"> Minerals </option> <option value="mining"> Mining </option> <option value="modelling"> Modelling </option> <option value="molbank"> Molbank </option> <option value="molecules"> Molecules </option> <option value="mti"> Multimodal Technologies and Interaction (MTI) </option> <option value="muscles"> Muscles </option> <option value="nanoenergyadv"> Nanoenergy Advances </option> <option value="nanomanufacturing"> Nanomanufacturing </option> <option value="nanomaterials"> Nanomaterials </option> <option value="ndt"> NDT </option> <option value="network"> Network </option> <option value="neuroglia"> Neuroglia </option> <option value="neurolint"> Neurology International </option> <option value="neurosci"> NeuroSci </option> <option value="nitrogen"> Nitrogen </option> <option value="ncrna"> Non-Coding RNA (ncRNA) </option> <option value="nursrep"> Nursing Reports </option> <option value="nutraceuticals"> Nutraceuticals </option> <option value="nutrients"> Nutrients </option> <option value="obesities"> Obesities </option> <option value="oceans"> Oceans </option> <option value="onco"> Onco </option> <option value="optics"> Optics </option> <option value="oral"> Oral </option> <option value="organics"> Organics </option> <option value="organoids"> Organoids </option> <option value="osteology"> Osteology </option> <option value="oxygen"> Oxygen </option> <option value="parasitologia"> Parasitologia </option> <option value="particles"> Particles </option> <option value="pathogens"> Pathogens </option> <option value="pathophysiology"> Pathophysiology </option> <option value="pediatrrep"> Pediatric Reports </option> <option value="pharmaceuticals"> Pharmaceuticals </option> <option value="pharmaceutics"> Pharmaceutics </option> <option value="pharmacoepidemiology"> Pharmacoepidemiology </option> <option value="pharmacy"> Pharmacy </option> <option value="philosophies"> Philosophies </option> <option value="photochem"> Photochem </option> <option value="photonics"> Photonics </option> <option value="phycology"> Phycology </option> <option value="physchem"> Physchem </option> <option value="psf"> Physical Sciences Forum </option> <option value="physics"> Physics </option> <option value="physiologia"> Physiologia </option> <option value="plants"> Plants </option> <option value="plasma"> Plasma </option> <option value="platforms"> Platforms </option> <option value="pollutants"> Pollutants </option> <option value="polymers"> Polymers </option> <option value="polysaccharides"> Polysaccharides </option> <option value="poultry"> Poultry </option> <option value="powders"> Powders </option> <option value="proceedings"> Proceedings </option> <option value="processes"> Processes </option> <option value="prosthesis"> Prosthesis </option> <option value="proteomes"> Proteomes </option> <option value="psych"> Psych </option> <option value="psychiatryint"> Psychiatry International </option> <option value="psychoactives"> Psychoactives </option> <option value="publications"> Publications </option> <option value="qubs"> Quantum Beam Science (QuBS) </option> <option value="quantumrep"> Quantum Reports </option> <option value="quaternary"> Quaternary </option> <option value="radiation"> Radiation </option> <option value="reactions"> Reactions </option> <option value="realestate"> Real Estate </option> <option value="receptors"> Receptors </option> <option value="recycling"> Recycling </option> <option value="religions"> Religions </option> <option value="remotesensing"> Remote Sensing </option> <option value="reports"> Reports </option> <option value="reprodmed"> Reproductive Medicine (Reprod. Med.) </option> <option value="resources"> Resources </option> <option value="rheumato"> Rheumato </option> <option value="risks"> Risks </option> <option value="robotics"> Robotics </option> <option value="ruminants"> Ruminants </option> <option value="safety"> Safety </option> <option value="sci"> Sci </option> <option value="scipharm"> Scientia Pharmaceutica (Sci. Pharm.) </option> <option value="sclerosis"> Sclerosis </option> <option value="seeds"> Seeds </option> <option value="sensors"> Sensors </option> <option value="separations"> Separations </option> <option value="sexes"> Sexes </option> <option value="signals"> Signals </option> <option value="sinusitis"> Sinusitis </option> <option value="smartcities"> Smart Cities </option> <option value="socsci"> Social Sciences </option> <option value="societies"> Societies </option> <option value="software"> Software </option> <option value="soilsystems"> Soil Systems </option> <option value="solar"> Solar </option> <option value="solids"> Solids </option> <option value="spectroscj"> Spectroscopy Journal </option> <option value="sports"> Sports </option> <option value="standards"> Standards </option> <option value="stats"> Stats </option> <option value="stresses"> Stresses </option> <option value="surfaces"> Surfaces </option> <option value="surgeries"> Surgeries </option> <option value="std"> Surgical Techniques Development </option> <option value="sustainability"> Sustainability </option> <option value="suschem"> Sustainable Chemistry </option> <option value="symmetry" selected="selected"> Symmetry </option> <option value="synbio"> SynBio </option> <option value="systems"> Systems </option> <option value="targets"> Targets </option> <option value="taxonomy"> Taxonomy </option> <option value="technologies"> Technologies </option> <option value="telecom"> Telecom </option> <option value="textiles"> Textiles </option> <option value="thalassrep"> Thalassemia Reports </option> <option value="thermo"> Thermo </option> <option value="tomography"> Tomography </option> <option value="tourismhosp"> Tourism and Hospitality </option> <option value="toxics"> Toxics </option> <option value="toxins"> Toxins </option> <option value="transplantology"> Transplantology </option> <option value="traumacare"> Trauma Care </option> <option value="higheredu"> Trends in Higher Education </option> <option value="tropicalmed"> Tropical Medicine and Infectious Disease (TropicalMed) </option> <option value="universe"> Universe </option> <option value="urbansci"> Urban Science </option> <option value="uro"> Uro </option> <option value="vaccines"> Vaccines </option> <option value="vehicles"> Vehicles </option> <option value="venereology"> Venereology </option> <option value="vetsci"> Veterinary Sciences </option> <option value="vibration"> Vibration </option> <option value="virtualworlds"> Virtual Worlds </option> <option value="viruses"> Viruses </option> <option value="vision"> Vision </option> <option value="waste"> Waste </option> <option value="water"> Water </option> <option value="wind"> Wind </option> <option value="women"> Women </option> <option value="world"> World </option> <option value="wevj"> World Electric Vehicle Journal (WEVJ) </option> <option value="youth"> Youth </option> <option value="zoonoticdis"> Zoonotic Diseases </option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class> <div class="search-input-label">Article Type</div> </div> <select id="article_type" tabindex="4" name="article_type" class="chosen-select"> <option value>All Article Types</option> <option value="research-article">Article</option> <option value="review-article">Review</option> <option value="rapid-communication">Communication</option> <option value="editorial">Editorial</option> <option value="abstract">Abstract</option> <option value="book-review">Book Review</option> <option value="brief-report">Brief Report</option> <option value="case-report">Case Report</option> <option value="article-commentary">Comment</option> <option value="commentary">Commentary</option> <option value="concept-paper">Concept Paper</option> <option value="conference-report">Conference Report</option> <option value="correction">Correction</option> <option value="creative">Creative</option> <option value="data-descriptor">Data Descriptor</option> <option value="discussion">Discussion</option> <option value="Entry">Entry</option> <option value="essay">Essay</option> <option value="expression-of-concern">Expression of Concern</option> <option value="extended-abstract">Extended Abstract</option> <option value="guidelines">Guidelines</option> <option value="hypothesis">Hypothesis</option> <option value="interesting-image">Interesting Images</option> <option value="letter">Letter</option> <option value="books-received">New Book Received</option> <option value="obituary">Obituary</option> <option value="opinion">Opinion</option> <option value="perspective">Perspective</option> <option value="proceedings">Proceeding Paper</option> <option value="project-report">Project Report</option> <option value="protocol">Protocol</option> <option value="registered-report">Registered Report</option> <option value="reply">Reply</option> <option value="retraction">Retraction</option> <option value="note">Short Note</option> <option value="study-protocol">Study Protocol</option> <option value="systematic_review">Systematic Review</option> <option value="technical-note">Technical Note</option> <option value="tutorial">Tutorial</option> <option value="viewpoint">Viewpoint</option> </select> </div> <div class="large-1 medium-1 small-6 end columns small-push-6 medium-reset-order large-reset-order js-search-collapsed-button-container"> <div class="search-input-label"> </div> <input type="submit" id="search" value="Search" class="button button--dark button--full-width searchButton1 US_SearchButton" tabindex="12"> </div> <div class="large-1 medium-1 small-6 end columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-collapsed-link-container"> <div class="search-input-label"> </div> <a class="main-search-clear search-container__link" href="#" onclick="openAdvanced(''); return false;">Advanced<span class="show-for-small-only"> Search</span></a> </div> </div> </div> <div class="search-container__advanced" style="margin-top: 0; padding-top: 0px; background-color: inherit; color: inherit;"> <div class="row"> <div class="large-2 medium-2 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-6 columns "> <div class> <div class="search-input-label">Section</div> </div> <select id="section" tabindex="5" name="section" class="chosen-select"> <option value></option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class> <div class="search-input-label">Special Issue</div> </div> <select id="special_issue" tabindex="6" name="special_issue" class="chosen-select"> <option value></option> </select> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Volume</div> <input type="text" id="volume" tabindex="7" name="volume" placeholder="..." value="14" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Issue</div> <input type="text" id="issue" tabindex="8" name="issue" placeholder="..." value="10" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Number</div> <input type="text" id="number" tabindex="9" name="number" placeholder="..." value /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Page</div> <input type="text" id="page" tabindex="10" name="page" placeholder="..." value /> </div> <div class="large-1 medium-1 small-6 columns small-push-6 medium-reset order large-reset-order medium-reset-order js-search-expanded-button-container"></div> <div class="large-1 medium-1 small-6 columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-expanded-link-container"></div> </div> </div> </form> <form id="advanced-search" class="large-12 medium-12 columns"> <div class="search-container__advanced"> <div id="advanced-search-template" class="row advanced-search-row"> <div class="large-2 medium-2 small-12 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-3 columns connector-div"> <div class="search-input-label"><span class="show-for-medium-up">Logical Operator</span><span class="show-for-small">Operator</span></div> <select class="connector"> <option value="and">AND</option> <option value="or">OR</option> </select> </div> <div class="large-3 medium-3 small-6 columns search-text-div"> <div class="search-input-label">Search Text</div> <input type="text" class="search-text" placeholder="Search text"> </div> <div class="large-2 medium-2 small-6 large-offset-0 medium-offset-0 small-offset-3 columns search-field-div"> <div class="search-input-label">Search Type</div> <select class="search-field"> <option value="all">All fields</option> <option value="title">Title</option> <option value="abstract">Abstract</option> <option value="keywords">Keywords</option> <option value="authors">Authors</option> <option value="affiliations">Affiliations</option> <option value="doi">Doi</option> <option value="full_text">Full Text</option> <option value="references">References</option> </select> </div> <div class="large-1 medium-1 small-3 columns"> <div class="search-input-label"> </div> <div class="search-action-div"> <div class="search-plus"> <i class="material-icons">add_circle_outline</i> </div> </div> <div class="search-action-div"> <div class="search-minus"> <i class="material-icons">remove_circle_outline</i> </div> </div> </div> <div class="large-1 medium-1 small-6 large-offset-0 medium-offset-0 small-offset-3 end columns"> <div class="search-input-label"> </div> <input class="advanced-search-button button button--dark search-submit" type="submit" value="Search"> </div> <div class="large-1 medium-1 small-6 end columns show-for-medium-up"></div> </div> </div> </form> </div> <div class="header-divider"> </div> <div class="breadcrumb row full-row"> <div class="breadcrumb__element"> <a href="/about/journals">Journals</a> </div> <div class="breadcrumb__element"> <a href="/journal/symmetry">Symmetry</a> </div> <div class="breadcrumb__element"> <a href="/2073-8994/14">Volume 14</a> </div> <div class="breadcrumb__element"> <a href="/2073-8994/14/10">Issue 10</a> </div> <div class="breadcrumb__element"> <a href="#">10.3390/sym14101997</a> </div> </div> </header> <div id="main-content" class> <div class="row full-width row-fixed-left-column"> <div id="left-column" class="content__column large-3 medium-3 small-12 columns"> <div class="content__container"> <a href="/journal/symmetry"> <img src="https://pub.mdpi-res.com/img/journals/symmetry-logo.png?2c65edf82f527115" alt="symmetry-logo" title="Symmetry" style="max-height: 60px; margin: 0 0 0 0;"> </a> <div class="generic-item no-border"> <a class="button button--color button--full-width js-journal-active-only-link js-journal-active-only-submit-link UC_ArticleSubmitButton" href="https://susy.mdpi.com/user/manuscripts/upload?form%5Bjournal_id%5D%3D44" data-disabledmessage="creating new submissions is not possible."> Submit to this Journal </a> <a class="button button--color button--full-width js-journal-active-only-link UC_ArticleReviewButton" href="https://susy.mdpi.com/volunteer/journals/review" data-disabledmessage="volunteering as journal reviewer is not possible."> Review for this Journal </a> <a class="button button--color-inversed button--color-journal button--full-width js-journal-active-only-link UC_ArticleEditIssueButton" href="/journalproposal/sendproposalspecialissue/symmetry" data-path="/2073-8994/14/10/1997" data-disabledmessage="proposing new special issue is not possible."> Propose a Special Issue </a> </div> <div class="generic-item link-article-menu show-for-small"> <a href="#" class="link-article-menu show-for-small"> <span class="closed">►</span> <span class="open" style="display: none;">▼</span> Article Menu </a> </div> <div class="hide-small-down-initially UI_ArticleMenu"> <div class="generic-item"> <h2>Article Menu</h2> </div> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#academic_editors" class="accordion__title">Academic Editor</a> <div id="academic_editors" class="content active"> <div class="academic-editor-container " title="Department of Mathematics and Computer Science, University Politehnica of Bucharest, Bucharest, Romania"> <div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/572910?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/profiles/572910/thumb/Postol.jpg" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Mihai Postolache</span></a></div> </div> </div> </li> <li class="accordion-direct-link"> <a href="/2073-8994/14/10/1997/scifeed_display" data-reveal-id="scifeed-modal" data-reveal-ajax="true">Subscribe SciFeed</a> </li> <li class="accordion-direct-link js-article-similarity-container" style="display: none"> <a href="#" class="js-similarity-related-articles">Recommended Articles</a> </li> <li class="accordion-navigation"> <a href="#related" class="accordion__title">Related Info Link</a> <div id="related" class="content UI_ArticleMenu_RelatedLinks"> <ul> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Machine%20Vision%20Approach%20for%20Diagnosing%20Tuberculosis%20%28TB%29%20Based%20on%20Computerized%20Tomography%20%28CT%29%20Scan%20Images" target="_blank" rel="noopener noreferrer">Google Scholar</a> </li> </ul> </div> </li> <li class="accordion-navigation"> <a href="#authors" class="accordion__title">More by Authors Links</a> <div id="authors" class="content UI_ArticleMenu_AuthorsLinks"> <ul class="side-menu-ul"> <li> <a class="expand" onclick="$(this).closest("li").next("div").toggle(); return false;">on DOAJ</a> </li> <div id="AuthorDOAJExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Inayatul%20Haq%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D" target="_blank" rel="noopener noreferrer">Haq, I.</a> <li> </li> <li class="li-link"> <a href="http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Tehseen%20Mazhar%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D" target="_blank" rel="noopener noreferrer">Mazhar, T.</a> <li> </li> <li class="li-link"> <a href="http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Qandeel%20Nasir%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D" target="_blank" rel="noopener noreferrer">Nasir, Q.</a> <li> </li> <li class="li-link"> <a href="http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Saqib%20Razzaq%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D" target="_blank" rel="noopener noreferrer">Razzaq, S.</a> <li> </li> <li class="li-link"> <a href="http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Syed%20Agha%20Hassnain%20Mohsan%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D" target="_blank" rel="noopener noreferrer">Mohsan, S. Agha Hassnain</a> <li> </li> <li class="li-link"> <a href="http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Mohammed%20H.%20Alsharif%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D" target="_blank" rel="noopener noreferrer">Alsharif, M. H.</a> <li> </li> <li class="li-link"> <a href="http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Hend%20Khalid%20Alkahtani%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D" target="_blank" rel="noopener noreferrer">Alkahtani, H. Khalid</a> <li> </li> <li class="li-link"> <a href="http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Ayman%20Aljarbouh%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D" target="_blank" rel="noopener noreferrer">Aljarbouh, A.</a> <li> </li> <li class="li-link"> <a href="http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Samih%20M.%20Mostafa%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D" target="_blank" rel="noopener noreferrer">Mostafa, S. M.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick="$(this).closest("li").next("div").toggle(); return false;">on Google Scholar</a> </li> <div id="AuthorGoogleExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Inayatul%20Haq" target="_blank" rel="noopener noreferrer">Haq, I.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Tehseen%20Mazhar" target="_blank" rel="noopener noreferrer">Mazhar, T.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Qandeel%20Nasir" target="_blank" rel="noopener noreferrer">Nasir, Q.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Saqib%20Razzaq" target="_blank" rel="noopener noreferrer">Razzaq, S.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Syed%20Agha%20Hassnain%20Mohsan" target="_blank" rel="noopener noreferrer">Mohsan, S. Agha Hassnain</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Mohammed%20H.%20Alsharif" target="_blank" rel="noopener noreferrer">Alsharif, M. H.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Hend%20Khalid%20Alkahtani" target="_blank" rel="noopener noreferrer">Alkahtani, H. Khalid</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Ayman%20Aljarbouh" target="_blank" rel="noopener noreferrer">Aljarbouh, A.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Samih%20M.%20Mostafa" target="_blank" rel="noopener noreferrer">Mostafa, S. M.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick="$(this).closest("li").next("div").toggle(); return false;">on PubMed</a> </li> <div id="AuthorPubMedExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Inayatul%20Haq" target="_blank" rel="noopener noreferrer">Haq, I.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Tehseen%20Mazhar" target="_blank" rel="noopener noreferrer">Mazhar, T.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Qandeel%20Nasir" target="_blank" rel="noopener noreferrer">Nasir, Q.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Saqib%20Razzaq" target="_blank" rel="noopener noreferrer">Razzaq, S.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Syed%20Agha%20Hassnain%20Mohsan" target="_blank" rel="noopener noreferrer">Mohsan, S. Agha Hassnain</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Mohammed%20H.%20Alsharif" target="_blank" rel="noopener noreferrer">Alsharif, M. H.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Hend%20Khalid%20Alkahtani" target="_blank" rel="noopener noreferrer">Alkahtani, H. Khalid</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Ayman%20Aljarbouh" target="_blank" rel="noopener noreferrer">Aljarbouh, A.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Samih%20M.%20Mostafa" target="_blank" rel="noopener noreferrer">Mostafa, S. M.</a> <li> </li> </ul> </div> </ul> </div> </li> </ul> <span style="display:none" id="scifeed_hidden_flag"></span> <span style="display:none" id="scifeed_subscribe_url">/ajax/scifeed/subscribe</span> </div> </div> <div class="content__container responsive-moving-container large medium active hidden" data-id="article-counters"> <div id="counts-wrapper" class="row generic-item no-border" data-equalizer> <div id="js-counts-wrapper__views" class="small-12 hide columns count-div-container"> <a href="#metrics"> <div class="count-div" data-equalizer-watch> <span class="name">Article Views</span> <span class="count view-number"></span> </div> </a> </div> <div id="js-counts-wrapper__citations" class="small-12 columns hide count-div-container"> <a href="#metrics"> <div class="count-div" data-equalizer-watch> <span class="name">Citations</span> <span class="count citations-number Var_ArticleMaxCitations">-</span> </div> </a> </div> </div> </div> <div class="content__container"> <div class="hide-small-down-initially"> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#table_of_contents" class="accordion__title">Table of Contents</a> <div id="table_of_contents" class="content active"> <div class="menu-caption" id="html-quick-links-title"></div> </div> </li> </ul> </div> </div> <div id="pbgrd-sky"></div> <script src="https://cdn.pbgrd.com/core-mdpi.js"></script> <style>.content__container { min-width: 300px; }</style> </div> <div id="middle-column" class="content__column large-9 medium-9 small-12 columns end middle-bordered"> <div class="middle-column__help"> <div class="middle-column__help__fixed show-for-medium-up"> <span id="js-altmetrics-donut" href="#" target="_blank" rel="noopener noreferrer" style="display: none;"> <span data-badge-type="donut" class="altmetric-embed" data-doi="10.3390/sym14101997"></span> <span>Altmetric</span> </span> <a href="#" class="UA_ShareButton" data-reveal-id="main-share-modal" title="Share"> <i class="material-icons">share</i> <span>Share</span> </a> <a href="#" data-reveal-id="main-help-modal" title="Help"> <i class="material-icons">announcement</i> <span>Help</span> </a> <a href="javascript:void(0);" data-reveal-id="cite-modal" data-counterslink="https://www.mdpi.com/2073-8994/14/10/1997/cite"> <i class="material-icons">format_quote</i> <span>Cite</span> </a> <a href="https://sciprofiles.com/discussion-groups/public/10.3390/sym14101997?utm_source=mpdi.com&utm_medium=publication&utm_campaign=discuss_in_sciprofiles" target="_blank" rel="noopener noreferrer" title="Discuss in Sciprofiles"> <i class="material-icons">question_answer</i> <span>Discuss in SciProfiles</span> </a> <a href="#" class data-hypothesis-trigger-endorses-tab title="Endorse"> <i data-hypothesis-endorse-trigger class="material-icons">thumb_up</i> <div data-hypothesis-endorsement-count data-hypothesis-trigger-endorses-tab class="hypothesis-count-container"> ... </div> <span>Endorse</span> </a> <a href="#" data-hypothesis-trigger class="js-hypothesis-open UI_ArticleAnnotationsButton" title="Comment"> <i class="material-icons">textsms</i> <div data-hypothesis-annotation-count class="hypothesis-count-container"> ... </div> <span>Comment</span> </a> </div> <div id="main-help-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Need Help?</h2> </div> <div class="small-6 columns"> <h3>Support</h3> <p> Find support for a specific problem in the support section of our website. </p> <a target="_blank" href="/about/contactform" class="button button--color button--full-width"> Get Support </a> </div> <div class="small-6 columns"> <h3>Feedback</h3> <p> Please let us know what you think of our products and services. </p> <a target="_blank" href="/feedback/send" class="button button--color button--full-width"> Give Feedback </a> </div> <div class="small-6 columns end"> <h3>Information</h3> <p> Visit our dedicated information section to learn more about MDPI. </p> <a target="_blank" href="/authors" class="button button--color button--full-width"> Get Information </a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div class="middle-column__main "> <div class="page-highlight"> <style type="text/css"> img.review-status { width: 30px; } </style> <div id="jmolModal" class="reveal-modal" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <h2>JSmol Viewer</h2> <div class="row"> <div class="small-12 columns text-center"> <iframe style="width: 520px; height: 520px;" frameborder="0" id="jsmol-content"></iframe> <div class="content"></div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div itemscope itemtype="http://schema.org/ScholarlyArticle" id="abstract" class="abstract_div"> <div class="js-check-update-container"></div> <div class="html-content__container content__container content__container__combined-for-large__first" style="overflow: auto; position: inherit;"> <div class="html-profile-nav"> <div class="top-bar"> <div class="nav-sidebar-btn show-for-large-up" data-status="opened"> <i class="material-icons">first_page</i> </div> <a id="js-button-download" class="button button--color-inversed" style="display: none;" href="/2073-8994/14/10/1997/pdf?version=1666607797" data-name="Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images" data-journal="symmetry"> <i class="material-icons custom-download"></i> Download PDF </a> <div class="nav-btn"> <i class="material-icons">settings</i> </div> <a href="/2073-8994/14/10/1997/reprints" id="js-button-reprints" class="button button--color-inversed"> Order Article Reprints </a> </div> <div class="html-article-menu"> <div class="html-first-step row"> <div class="html-font-family large-6 medium-6 small-12 columns"> <div class="row"> <div class="html-font-label large-4 medium-4 small-12 columns"> Font Type: </div> <div class="large-8 medium-8 small-12 columns"> <span class="html-article-menu-option"><i style="font-family:Arial, Arial, Helvetica, sans-serif;" data-fontfamily="Arial, Arial, Helvetica, sans-serif">Arial</i></span> <span class="html-article-menu-option"><i style="font-family:Georgia1, Georgia, serif;" data-fontfamily="Georgia1, Georgia, serif">Georgia</i></span> <span class="html-article-menu-option"><i style="font-family:Verdana, Verdana, Geneva, sans-serif;" data-fontfamily="Verdana, Verdana, Geneva, sans-serif">Verdana</i></span> </div> </div> </div> <div class="html-font-resize large-6 medium-6 small-12 columns"> <div class="row"> <div class="html-font-label large-4 medium-4 small-12 columns">Font Size:</div> <div class="large-8 medium-8 small-12 columns"> <span class="html-article-menu-option a1" data-percent="100">Aa</span> <span class="html-article-menu-option a2" data-percent="120">Aa</span> <span class="html-article-menu-option a3" data-percent="160">Aa</span> </div> </div> </div> </div> <div class="row"> <div class="html-line-space large-6 medium-6 small-12 columns"> <div class="row"> <div class="html-font-label large-4 medium-4 small-12 columns">Line Spacing:</div> <div class="large-8 medium-8 small-12 columns"> <span class="html-article-menu-option a1" data-line-height="1.5em"> <i class="fa"></i> </span> <span class="html-article-menu-option a2" data-line-height="1.8em"> <i class="fa"></i> </span> <span class="html-article-menu-option a3" data-line-height="2.1em"> <i class="fa"></i> </span> </div> </div> </div> <div class="html-column-width large-6 medium-6 small-12 columns"> <div class="row"> <div class="html-font-label large-4 medium-4 small-12 columns">Column Width:</div> <div class="large-8 medium-8 small-12 columns"> <span class="html-article-menu-option a1" data-column-width="20%"> <i class="fa"></i> </span> <span class="html-article-menu-option a2" data-column-width="10%"> <i class="fa"></i> </span> <span class="html-article-menu-option a3" data-column-width="0%"> <i class="fa"></i> </span> </div> </div> </div> </div> <div class="row"> <div class="html-font-bg large-6 medium-6 small-12 columns end"> <div class="row"> <div class="html-font-label large-4 medium-4 small-12 columns">Background:</div> <div class="large-8 medium-8 small-12 columns"> <div class="html-article-menu-option html-nav-bg html-nav-bright" data-bg="bright"> <i class="fa fa-file-text"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-dark" data-bg="dark"> <i class="fa fa-file-text-o"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-creme" data-bg="creme"> <i class="fa fa-file-text"></i> </div> </div> </div> </div> </div> </div> </div> <article><div class="html-article-content"> <span itemprop="publisher" content="Multidisciplinary Digital Publishing Institute"></span><span itemprop="url" content="https://www.mdpi.com/2073-8994/14/10/1997"></span> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <h1 class="title hypothesis_container" itemprop="name"> Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images </h1> <div class="art-authors hypothesis_container"> by <span class="inlineblock "><div class="sciprofiles-link" style="display: inline-block"><a class="author-card-drop" data-dropdown="author-card-drop9134611" data-options="is_hover:true, hover_timeout:5000" class="sciprofiles-link__link" href="https://sciprofiles.com/profile/2214671?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/profiles/2214671/thumb/629a40c8e816bphoto.jpg" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Inayatul Haq</span></a></div><div id="author-card-drop9134611" data-dropdown-content class="f-dropdown content author-card-content" aria-hidden="true" tabindex="-1"><div class="author-card__title"><div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/2214671?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/profiles/2214671/thumb/629a40c8e816bphoto.jpg" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Inayatul Haq</span></a></div></div><div class="author-card__buttons" style="margin-bottom: 10px;"><a href="https://scilit.net/scholars?q=Inayatul%20Haq" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Inayatul%20Haq&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Inayatul%20Haq" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div><div class="author-card__buttons" style="margin-top: 10px;"><a href="https://sciprofiles.com/profile/2214671?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color" target="_blank"> View Publications </a></div></div><sup> 1</sup><a href="https://orcid.org/0000-0001-7073-733X" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1704293393" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class="sciprofiles-link" style="display: inline-block"><a class="author-card-drop" data-dropdown="author-card-drop9134612" data-options="is_hover:true, hover_timeout:5000" class="sciprofiles-link__link" href="https://sciprofiles.com/profile/2261992?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Tehseen Mazhar</span></a></div><div id="author-card-drop9134612" data-dropdown-content class="f-dropdown content author-card-content" aria-hidden="true" tabindex="-1"><div class="author-card__title"><div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/2261992?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Tehseen Mazhar</span></a></div></div><div class="author-card__buttons" style="margin-bottom: 10px;"><a href="https://scilit.net/scholars?q=Tehseen%20Mazhar" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Tehseen%20Mazhar&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Tehseen%20Mazhar" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div><div class="author-card__buttons" style="margin-top: 10px;"><a href="https://sciprofiles.com/profile/2261992?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color" target="_blank"> View Publications </a></div></div><sup> 2</sup>, </span><span class="inlineblock "><div class="sciprofiles-link" style="display: inline-block"><a class="author-card-drop" data-dropdown="author-card-drop9134613" data-options="is_hover:true, hover_timeout:5000" class="sciprofiles-link__link" href="https://sciprofiles.com/profile/2389133?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Qandeel Nasir</span></a></div><div id="author-card-drop9134613" data-dropdown-content class="f-dropdown content author-card-content" aria-hidden="true" tabindex="-1"><div class="author-card__title"><div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/2389133?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Qandeel Nasir</span></a></div></div><div class="author-card__buttons" style="margin-bottom: 10px;"><a href="https://scilit.net/scholars?q=Qandeel%20Nasir" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Qandeel%20Nasir&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Qandeel%20Nasir" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div><div class="author-card__buttons" style="margin-top: 10px;"><a href="https://sciprofiles.com/profile/2389133?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color" target="_blank"> View Publications </a></div></div><sup> 2</sup>, </span><span class="inlineblock "><div class="sciprofiles-link" style="display: inline-block"><a class="author-card-drop" data-dropdown="author-card-drop9134614" data-options="is_hover:true, hover_timeout:5000" class="sciprofiles-link__link" href="https://sciprofiles.com/profile/author/eEFmMy9pWWtQaS83cmJ1VC9Cb1BCOXArdjFDYXB1aXl4U1pVbFVZRmNIWT0=?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Saqib Razzaq</span></a></div><div id="author-card-drop9134614" data-dropdown-content class="f-dropdown content author-card-content" aria-hidden="true" tabindex="-1"><div class="author-card__title"><div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/author/eEFmMy9pWWtQaS83cmJ1VC9Cb1BCOXArdjFDYXB1aXl4U1pVbFVZRmNIWT0=?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Saqib Razzaq</span></a></div></div><div class="author-card__buttons" style="margin-bottom: 10px;"><a href="https://scilit.net/scholars?q=Saqib%20Razzaq" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Saqib%20Razzaq&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Saqib%20Razzaq" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div><div class="author-card__buttons" style="margin-top: 10px;"><a href="https://sciprofiles.com/profile/author/eEFmMy9pWWtQaS83cmJ1VC9Cb1BCOXArdjFDYXB1aXl4U1pVbFVZRmNIWT0=?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color" target="_blank"> View Publications </a></div></div><sup> 3</sup>, </span><span class="inlineblock "><div class="sciprofiles-link" style="display: inline-block"><a class="author-card-drop" data-dropdown="author-card-drop9134615" data-options="is_hover:true, hover_timeout:5000" class="sciprofiles-link__link" href="https://sciprofiles.com/profile/1155334?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/profiles/1155334/thumb/6260828caa708Photo_-_Copy.jpg" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Syed Agha Hassnain Mohsan</span></a></div><div id="author-card-drop9134615" data-dropdown-content class="f-dropdown content author-card-content" aria-hidden="true" tabindex="-1"><div class="author-card__title"><div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/1155334?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/profiles/1155334/thumb/6260828caa708Photo_-_Copy.jpg" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Syed Agha Hassnain Mohsan</span></a></div></div><div class="author-card__buttons" style="margin-bottom: 10px;"><a href="https://scilit.net/scholars?q=Syed%20Agha%20Hassnain%20Mohsan" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Syed%20Agha%20Hassnain%20Mohsan&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Syed%20Agha%20Hassnain%20Mohsan" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div><div class="author-card__buttons" style="margin-top: 10px;"><a href="https://sciprofiles.com/profile/1155334?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color" target="_blank"> View Publications </a></div></div><sup> 4</sup><a href="https://orcid.org/0000-0002-5810-4983" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1704293393" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class="sciprofiles-link" style="display: inline-block"><a class="author-card-drop" data-dropdown="author-card-drop9134616" data-options="is_hover:true, hover_timeout:5000" class="sciprofiles-link__link" href="https://sciprofiles.com/profile/230262?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/profiles/230262/thumb/IMG_20190712_140852.jpg" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Mohammed H. Alsharif</span></a></div><div id="author-card-drop9134616" data-dropdown-content class="f-dropdown content author-card-content" aria-hidden="true" tabindex="-1"><div class="author-card__title"><div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/230262?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/profiles/230262/thumb/IMG_20190712_140852.jpg" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Mohammed H. Alsharif</span></a></div></div><div class="author-card__buttons" style="margin-bottom: 10px;"><a href="https://scilit.net/scholars?q=Mohammed%20H.%20Alsharif" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Mohammed%20H.%20Alsharif&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Mohammed%20H.%20Alsharif" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div><div class="author-card__buttons" style="margin-top: 10px;"><a href="https://sciprofiles.com/profile/230262?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color" target="_blank"> View Publications </a></div></div><sup> 5</sup><a href="https://orcid.org/0000-0001-8579-5444" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1704293393" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class="sciprofiles-link" style="display: inline-block"><a class="author-card-drop" data-dropdown="author-card-drop9134617" data-options="is_hover:true, hover_timeout:5000" class="sciprofiles-link__link" href="https://sciprofiles.com/profile/1920553?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Hend Khalid Alkahtani</span></a></div><div id="author-card-drop9134617" data-dropdown-content class="f-dropdown content author-card-content" aria-hidden="true" tabindex="-1"><div class="author-card__title"><div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/1920553?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Hend Khalid Alkahtani</span></a></div></div><div class="author-card__buttons" style="margin-bottom: 10px;"><a href="https://scilit.net/scholars?q=Hend%20Khalid%20Alkahtani" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Hend%20Khalid%20Alkahtani&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Hend%20Khalid%20Alkahtani" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div><div class="author-card__buttons" style="margin-top: 10px;"><a href="https://sciprofiles.com/profile/1920553?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color" target="_blank"> View Publications </a></div></div><sup> 6,*</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="9134617" href="mailto:please_login"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0001-7507-5267" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1704293393" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class="sciprofiles-link" style="display: inline-block"><a class="author-card-drop" data-dropdown="author-card-drop9134618" data-options="is_hover:true, hover_timeout:5000" class="sciprofiles-link__link" href="https://sciprofiles.com/profile/1069662?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Ayman Aljarbouh</span></a></div><div id="author-card-drop9134618" data-dropdown-content class="f-dropdown content author-card-content" aria-hidden="true" tabindex="-1"><div class="author-card__title"><div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/1069662?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Ayman Aljarbouh</span></a></div></div><div class="author-card__buttons" style="margin-bottom: 10px;"><a href="https://scilit.net/scholars?q=Ayman%20Aljarbouh" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Ayman%20Aljarbouh&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Ayman%20Aljarbouh" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div><div class="author-card__buttons" style="margin-top: 10px;"><a href="https://sciprofiles.com/profile/1069662?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color" target="_blank"> View Publications </a></div></div><sup> 7</sup> and </span><span class="inlineblock "><div class="sciprofiles-link" style="display: inline-block"><a class="author-card-drop" data-dropdown="author-card-drop9134619" data-options="is_hover:true, hover_timeout:5000" class="sciprofiles-link__link" href="https://sciprofiles.com/profile/655301?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Samih M. Mostafa</span></a></div><div id="author-card-drop9134619" data-dropdown-content class="f-dropdown content author-card-content" aria-hidden="true" tabindex="-1"><div class="author-card__title"><div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/655301?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Samih M. Mostafa</span></a></div></div><div class="author-card__buttons" style="margin-bottom: 10px;"><a href="https://scilit.net/scholars?q=Samih%20M.%20Mostafa" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Samih%20M.%20Mostafa&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Samih%20M.%20Mostafa" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div><div class="author-card__buttons" style="margin-top: 10px;"><a href="https://sciprofiles.com/profile/655301?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color" target="_blank"> View Publications </a></div></div><sup> 8</sup><a href="https://orcid.org/0000-0001-9234-5898" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1704293393" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a></span> </div> <div class="nrm"></div> <span style="display:block; height:6px;"></span> <div></div> <div style="margin: 5px 0 15px 0;" class="hypothesis_container"> <div class="art-affiliations"> <div class="affiliation "> <div class="affiliation-item"><sup>1</sup></div> <div class="affiliation-name ">School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>2</sup></div> <div class="affiliation-name ">Department of Computer Science, Virtual University of Pakistan, Lahore 54000, Pakistan</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>3</sup></div> <div class="affiliation-name ">Department of Computer Science, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>4</sup></div> <div class="affiliation-name ">Ocean College, Zhejiang University, Zhoushan 316021, China</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>5</sup></div> <div class="affiliation-name ">Department of Electrical Engineering, College of Electronics and Information Engineering, Sejong University, Seoul 05006, Korea</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>6</sup></div> <div class="affiliation-name ">Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrhman University, Riyadh 11671, Saudi Arabia</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>7</sup></div> <div class="affiliation-name ">Department of Computer Science, University of Central Asia, Naryn 722600, Kyrgyzstan</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>8</sup></div> <div class="affiliation-name ">Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena 83523, Egypt</div> </div> <div class="affiliation"> <div class="affiliation-item"><sup>*</sup></div> <div class="affiliation-name ">Author to whom correspondence should be addressed. </div> </div> </div> </div> <div class="bib-identity" style="margin-bottom: 10px;"> <em>Symmetry</em> <b>2022</b>, <em>14</em>(10), 1997; <a href="https://doi.org/10.3390/sym14101997">https://doi.org/10.3390/sym14101997</a> </div> <div class="pubhistory" style="font-weight: bold; padding-bottom: 10px;"> <span style="display: inline-block">Submission received: 18 August 2022</span> / <span style="display: inline-block">Revised: 14 September 2022</span> / <span style="display: inline-block">Accepted: 16 September 2022</span> / <span style="display: inline-block">Published: 23 September 2022</span> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/symmetry/special_issues/Machine_Vision_Image_Signals ">Symmetry/Asymmetry in Computer Vision and Image Processing</a>)<br/> </div> <div class="highlight-box1"> <div class="download"> <a class="button button--color-inversed button--drop-down" data-dropdown="drop-download-923280" aria-controls="drop-supplementary-923280" aria-expanded="false"> Download <i class="material-icons">keyboard_arrow_down</i> </a> <div id="drop-download-923280" class="f-dropdown label__btn__dropdown label__btn__dropdown--button" data-dropdown-content aria-hidden="true" tabindex="-1"> <a class="UD_ArticlePDF" href="/2073-8994/14/10/1997/pdf?version=1666607797" data-name="Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images" data-journal="symmetry">Download PDF</a> <br/> <a id="js-pdf-with-cover-access-captcha" href="#" data-target="/2073-8994/14/10/1997/pdf-with-cover" class="accessCaptcha">Download PDF with Cover</a> <br/> <a id="js-xml-access-captcha" href="#" data-target="/2073-8994/14/10/1997/xml" class="accessCaptcha">Download XML</a> <br/> <a href="/2073-8994/14/10/1997/epub" id="epub_link">Download Epub</a> <br/> </div> <div class="js-browse-figures" style="display: inline-block;"> <a href="#" class="button button--color-inversed margin-bottom-10 openpopupgallery UI_BrowseArticleFigures" data-target="article-popup" data-counterslink="https://www.mdpi.com/2073-8994/14/10/1997/browse">Browse Figures</a> </div> <div id="article-popup" class="popupgallery" style="display: inline; line-height: 200%"> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g001.png?1666607872" title=" <strong>Figure 1</strong><br/> <p>Human Lungs [<a href="#B6-symmetry-14-01997" class="html-bibr">6</a>].</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g002.png?1666607878" title=" <strong>Figure 2</strong><br/> <p>(<b>a</b>): Tuberculosis affected lung image and (<b>b</b>): Normal lung CT image.</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g003.png?1666607889" title=" <strong>Figure 3</strong><br/> <p>Proposed system model.</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g004.png?1666607892" title=" <strong>Figure 4</strong><br/> <p>ROIs selection ((<b>a</b>): Abnormal lung’s CT scan image and (<b>b</b>): 3 ROIs).</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g005.png?1666607876" title=" <strong>Figure 5</strong><br/> <p>Types of textures [<a href="#B28-symmetry-14-01997" class="html-bibr">28</a>].</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g006.png?1666607887" title=" <strong>Figure 6</strong><br/> <p>Accuracy of the dataset using MLP Classifier.</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g007.png?1666607874" title=" <strong>Figure 7</strong><br/> <p>Accuracy of the dataset using RF classifier.</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g008.png?1666607869" title=" <strong>Figure 8</strong><br/> <p>Accuracy of Dataset using J48 Classifier.</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g009.png?1666607880" title=" <strong>Figure 9</strong><br/> <p>Accuracy of the dataset using LogitBoost Classifier.</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g010.png?1666607885" title=" <strong>Figure 10</strong><br/> <p>Accuracy of the dataset using AdaBoostM1 Classifier.</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g011.png?1666607882" title=" <strong>Figure 11</strong><br/> <p>Accuracy of Dataset using BayesNet Classifier.</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g012.png?1666607870" title=" <strong>Figure 12</strong><br/> <p>Accuracy Comparison among different ML classifiers.</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g013.png?1666607884" title=" <strong>Figure 13</strong><br/> <p>Accuracy of ANN for one layer having 50 nodes.</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g014.png?1666607893" title=" <strong>Figure 14</strong><br/> <p>The MLP classifier detailed accuracy of one layer having 100 Nodes.</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g015.png?1666607888" title=" <strong>Figure 15</strong><br/> <p>Accuracy of MLP classifier for two layers having 50 and 100 nodes.</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g016.png?1666607881" title=" <strong>Figure 16</strong><br/> <p>The accuracy of MLP classifier.</p> "> </a> <a href="https://pub.mdpi-res.com/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g017.png?1666607873" title=" <strong>Figure 17</strong><br/> <p>The accuracy.</p> "> </a> </div> <a class="button button--color-inversed" href="/2073-8994/14/10/1997/notes">Versions Notes</a> </div> </div> <div class="responsive-moving-container small hidden" data-id="article-counters" style="margin-top: 15px;"></div> <div class="html-dynamic"> <section> <div class="art-abstract art-abstract-new in-tab hypothesis_container"> <p> <div><section class="html-abstract" id="html-abstract"> <h2 id="html-abstract-title">Abstract</h2><b>:</b> <div class="html-p">Tuberculosis is curable, still the world’s second inflectional murderous disease, and ranked 13th (in 2020) by the World Health Organization on the list of leading death causes. One of the reasons for its fatality is the unavailability of modern technology and human experts for early detection. This study represents a precise and reliable machine vision-based approach for Tuberculosis detection in the lung through Symmetry CT scan images. TB spreads irregularly, which means it might not affect both lungs equally, and it might affect only some part of the lung. That’s why regions of interest (ROI’s) from TB infected and normal CT scan images of lungs were selected after pre-processing i.e., selection/cropping, grayscale image conversion, and filtration, Statistical texture features were extracted, and 30 optimized features using F (Fisher) + PA (probability of error + average correlation) + MI (mutual information) were selected for final optimization and only 6 most optimized features were selected. Several supervised learning classifiers were used to classify between normal and infected TB images. Artificial Neural Network (ANN: n class) based classifier Multi-Layer Perceptron (MLP) showed comparatively better and probably best accuracy of 99% with execution time of less than a second, followed by Random Forest 98.83%, J48 98.67%, Log it Boost 98%, AdaBoostM1 97.16% and Bayes Net 96.83%.</div> </section> <div id="html-keywords"> <div class="html-gwd-group"><div id="html-keywords-title">Keywords: </div><a href="/search?q=Tuberculosis">Tuberculosis</a>; <a href="/search?q=Artificial+Neural+Networks">Artificial Neural Networks</a>; <a href="/search?q=Random+Forest">Random Forest</a>; <a href="/search?q=computer+vision">computer vision</a>; <a href="/search?q=image+processing">image processing</a>; <a href="/search?q=Mazda">Mazda</a>; <a href="/search?q=WEKA">WEKA</a>; <a href="/search?q=Mycobacterium">Mycobacterium</a>; <a href="/search?q=Symmetry">Symmetry</a></div> <div> </div> </div> </div> </p> </div> </section> </div> <div class="hypothesis_container"> <ul class="menu html-nav" data-prev-node="#html-quick-links-title"> </ul> <div class="html-body"> <section id="sec1-symmetry-14-01997" type="intro"><h2 data-nested="1"> 1. Introduction</h2><div class="html-p">Tuberculosis is a precarious dysfunction to species of humanity and one of the leading causes of human life expiration in developing countries of Asia like Pakistan, India, and Afghanistan. Mycobacterium Tuberculosis (M. tuberculosis) bacterium is a causative agent of Tuberculosis, its highly aerobic physiology demands a massive amount of Oxygen for survival, making this bacterium a mammalian respiratory system pathogen. This bacterium propagates through the air when a person with a weak immune system remains closer to someone with M. tuberculosis in his lungs for a specific period. The probability of getting Tuberculosis depends on the intensity of exposure to this infectious bacterium. The research aims to use computer-aided techniques for the timely detection of lung tuberculosis while ensuring accuracy [<a href="#B1-symmetry-14-01997" class="html-bibr">1</a>].</div><div class="html-p">Image processing is one of the most progressive subcategories of digital signal processing. It is the use of computer algorithms on digital images. Digital images are usually considered to have two dimensions 2D (can be more than two), 3D, 4D, etc., which is why digital image processing can easily be modelled as multidimensional systems. A much better and broader range of algorithms applies to digital images than analog signals [<a href="#B2-symmetry-14-01997" class="html-bibr">2</a>].</div><div class="html-p">Biomedical image processing allows medical diagnosis and detection through automatic and intelligent systems trained on features extracted from images produced by computer-aided technology like Computerized tomography. Its fundamentals include classical analysis, texture analysis, search, filtering, outlining, and noise cleaning [<a href="#B3-symmetry-14-01997" class="html-bibr">3</a>]. White blood cells analyzer and computerized tomography (CT) are the two most fruitful biomedical imaging devices since 1970. Nowadays, TB detection and diagnostics are possible with any automated system based on biomedical images like chest X-rays (CXR), medical resonance imaging (MRI), digital microscopy, and computerized tomography [<a href="#B4-symmetry-14-01997" class="html-bibr">4</a>].</div><div class="html-p">Every cell in the human body goes through cellular metabolism (which produces carbon dioxide (CO<sub>2</sub>) as waste after utilizing Oxygen (O<sub>2</sub>)) to maintain its life. So, every cell needs Oxygen to live and excrete Carbon dioxide as a waste from the body [<a href="#B5-symmetry-14-01997" class="html-bibr">5</a>]. Humans are gifted with lungs specially designed to exchange gases every time they breathe in and out. The structure of the human lungs is shown in <a href="#symmetry-14-01997-f001" class="html-fig">Figure 1</a>.</div><div class="html-p">The pair of Lungs is the center of the respiratory system. The lung on the right side has three lobes, while the left lung is made up of two lobs along with space for the human heart. The lung starts after the trachea (the tube that carries air in and out) is connected to the bronchus (the lung airway) in a Y shape from upside down in the human chest called the bronchial tree. Each bronchus gets divided into smaller bronchi, even into 30,000 smaller tubes called bronchioles which are spread in every part of the lung. Each bronchioles tube ends with about 600 million grape bunches shaped as tiny air sacs (called alveoli). Bubble shape alveoli create plenty of room for Oxygen to pass into the body [<a href="#B7-symmetry-14-01997" class="html-bibr">7</a>].</div><div class="html-p">Respiration is completed in two phases’ inspiration (inhaling Oxygen) and expiration (exhaling carbon dioxide). When humans breathe, air comes from the nose and mouth and passes through the throats, trachea, right and left bronchi, bronchiole tubes, and finally into the alveoli. Each alveolus is covered with capillaries (tiny blood vessels) responsible for gas exchanges. Deoxygenated blood (blood with excessive carbon dioxide) from the heart passes through veins. It gets Oxygen and Carbon dioxide out through the thin walls of alveoli. Oxygenated blood (blood with concentrated Oxygen) is sent back to the heart, and carbon dioxide is exhaled in the reverse path [<a href="#B8-symmetry-14-01997" class="html-bibr">8</a>].</div><section id="sec1dot1-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 1.1. Related Works</h4><div class="html-p">OlfaHrizi, Karim Gasmi., et al. have investigated that Tuberculosis (TB) is a very contagious disease that directly effects on lungs. Then it is called pulmonary TB” while when it affects the other body organs, it is called extrapulmonary TB. Computer science plays a vital role in the medical field in detecting different diseases. The authors optimized a machine learning-based approach which extracts optimal texture features from Scanned images and selects the classifiers’ hyper-parameters, increasing the accuracy rate.</div><div class="html-p">Zhiheng Xing, et al. discussed in their research that many diseases spread all around the world very rapidly. For this purpose, many computer-based techniques have been used to find accurate results that help cure different diseases. This study explains two main factors: cavitary and bronchiectasis regions in CT images, which elaborate a machine learning approach to lung diseases. This study provides insight into machine learning-based identification of NTM lung diseases from PTB, and more importantly, it makes early and quick diagnosis of NTM lung diseases possible that can facilitate lung disease management and treatment planning.</div><div class="html-p">Díaz-Huerta, J.L., et al. proposed a segmentation-based method for detecting acid-fast bacilli to diagnose pulmonary Tuberculosis [<a href="#B9-symmetry-14-01997" class="html-bibr">9</a>]. 200 images from 30 oscilloscopes processed using staining were obtained as a dataset. A database was created by collecting RGB values of these selected images, extracted by MATLAB program NetLab3_3library was used to train Bayes classifier + Gaussian mixture for training pf background and bacillus class. A total of ten centers, 6 Gaussians for bacillus and 4 for the environment, were determined by using K mean algorithm. Later, 200 images were classified into the following classes “adequate, little blue and purple, excess of blue or purple, bacilli stained in both blue and purple colors.” This bacilli segmentation has an effectiveness of 92.0% for original images and 98% for normalized images. The presented method is considered reliable due to different images’ significance ranging from 85 to 97%. Pre-processing can help eliminate variability by producing standardized RGB image components, enhancing system robustness. To get adequate segmentation resolution of the image must be considered [<a href="#B10-symmetry-14-01997" class="html-bibr">10</a>]. Rohmah, R.N., et al. proposed a statistical approach for pulmonary tuberculosis detection especially addressing two problems, namely “long waiting time for patients” and “doctor subjectivity.” The dataset consists of 25 regular and 25 TB digital grayscale X-ray images obtained from Sardjito Hospital, Yogyakarta, which were used for training classifiers. Later on, 50 more images were also used for testing system performance. After image acquisition, ROI templates were created through pre-processing, including image cropping, resizing, image averaging, and grey level thresholding technique” five statistical characteristics of image histogram entropy, kurtosis, skewness, mean and standard deviation were calculated. Two feature reduction methods, PCA (principle components analysis and LDA (linear discriminant analysis), were compared. Minimum Euclidean distance and Mahalanobis distance classifier were used for classification by calculating statistical features. Primary and secondary image test results were 94.0 and 83.35% accurate [<a href="#B11-symmetry-14-01997" class="html-bibr">11</a>]. Andayani, U., et al. described a probabilistic neural network-based methodology for the early detection of pulmonary Tuberculosis. 105 standard X-ray and 105 X-ray images with pulmonary Tuberculosis were acquired as data sets for system training. These acquired images have been through resizing, morphological close, Gaussian, thresholding, contrast, and Canny edge detection during pre-processing. Invariant Moment shape characteristics were used for feature extraction, and seven values were taken as features. A probabilistic neural network (PNN) Classifier was imposed to classify features into two classes standard and Tuberculosis infected. PNN successfully identified tuberculosis disease with 96% accuracy [<a href="#B12-symmetry-14-01997" class="html-bibr">12</a>]. Balaji et al. proposed a segmentation algorithm for improving Computer-Aided Diagnosis systems that diagnose chest disorders using Computed Tomography. The improvement was based on development that will identify significant features of an image for differentiation of different lung diseases. Developing the proposed work will assist physicians in better diagnosis and treatment and reduce the mortality rate by improving the analysis of CT slices for diagnoses of lung disorders [<a href="#B13-symmetry-14-01997" class="html-bibr">13</a>].</div><div class="html-p">Hooda, et al. presented a deep learning-based automatic system with significantly high accuracy for TB detection through chest radiographs. The proposed method is a result of successfully assembling three standardized architectures: AlexNet, ResNet, and GoogleNet. The data set of 1133 (499 normal and 634 with TB abnormalities) CXRs were acquired from four countries in the world, namely USA, China, Japan, and Belarus, for training testing and validation. Above mentioned three architectures were adapted for training from scratch. The performance of the trained system was evaluated with four different matrices, and it achieved an accuracy of 88.24%, sensitivity of 88.4%, and area under the curve (AUC) of 0.93 [<a href="#B14-symmetry-14-01997" class="html-bibr">14</a>].</div><div class="html-p">Auwal, N., et al. described an image processing-based technique for determining the severity level of TB. This research is essential because all severity levels of TB, mild, moderate, severe, and very severe treated differently. CXR Images of TB patients acquired from google were enhanced into grayscale color map images (GI) from RGB color map. These images were observed one by one, histogram equalization displaying intensity level and several pixels were created, and expert’s opinions about severity level for comparison later. Image degradation, including decomposition, convolution, compression, and filtration, was performed on GIs. These degraded images were converted to binary and restored with a threshold value greater than 53. The severity level was calculated by indicating an area of infection in the region of interest. Less than 50% of the infected area means mild, 50–70% area moderate, 70–80% severe, and more than 80% of the infected area indicates very severe TB infection [<a href="#B15-symmetry-14-01997" class="html-bibr">15</a>].</div><div class="html-p">Kim, W., et al. proposed that Computerized tomography (CT) is useful in diagnosing pulmonary diseases TB, lung cancer, Pneumonia, bronchiolitis, metastasis, as well as active and inactive states of TB. Initially, 226 patients were kept under observation, but 38 patients were excluded due to the unavailability of patients for follow-up. Out of the remaining 188 patients, 91% (133 of 146) with pulmonary TB and 76% (32 of 42) without TB were correctly identified. The remaining eight patients with lung cancer, three with Pneumonia, one with diffuse panbronchiolitis, and one with pulmonary metastasis were also diagnosed using CT. Out of 146 TB cases, 80% active and 89% inactive cases were correctly identified [<a href="#B16-symmetry-14-01997" class="html-bibr">16</a>].</div><div class="html-p">BulutGökten, D., et al. concluded that in most cases, peritoneal TB mimics ovarian cancer and carcinomatosis. Doctors can save the life of a pulmonary TB patient with a timely and correct diagnosis. However, early diagnosis is challenging for clinicians, but careful follow-up and timely treatment is the only way to save a life. So far, advanced diagnostic tests and techniques are not reliable enough to trust with patient life. Still, other clinical information and diagnosing designs can help improve accuracy and conclusion about disease detection [<a href="#B17-symmetry-14-01997" class="html-bibr">17</a>].</div><div class="html-p">Kant, et al. presented a Tuberculosis detection methodology based on a Deep Learning Neural Network with an accuracy of 83.87% and a precision of 67.55%.</div><div class="html-p">The proposed methodology detects (rod-shaped) bacteria called bacilli in a microscopic image with a specific zoom level. This methodology and TB can also detect other diseases caused by a bacillus. Patch-wise detection strategy was used to classify an image into one of the two classification groups, one with bacillus and the other without bacillus. The architecture of the proposed system was based on five layered, entirely convoluted Neural networks [<a href="#B18-symmetry-14-01997" class="html-bibr">18</a>].</div><div class="html-p">Eddabra et al. after comparing molecular TB diagnostics with traditional TB testing, the former is much better than the latter concerning time, as molecular diagnostics give reliable results within hours. On the other hand, in the case of sensitivity, molecular tests have lower sensitivity than traditional testing. Molecular tests are costly due to the requirement of laboratory infrastructure and expert technicians. Molecular diagnostics cannot wholly replace cultural testing; however, it may assist technically. Revolutionary technique whole genome sequencing (WGS) can be trusted best, but it demands high-cost resources like complicated bioinformatics procedures, sequencing facilities, and technical skills [<a href="#B19-symmetry-14-01997" class="html-bibr">19</a>].</div><div class="html-p">Antony et al. proposed a machine learning classification-based methodology for the detection of pulmonary TB through chest X-rays with an accuracy of 80%. 326 normal and 336 abnormal (total = 662) X-rays images of lungs acquired from the National Library of Medicines were taken as input images. Gaussian and Median filters were applied in the pre-processing phase. These pre-processed images went through two types of segmentations: gray–level threshold and watershed segmentation. Regional properties (like area, eccentricity, major axis, and minor axis) were calculated. Statistical features (like mean, standard deviation, skewness, and kurtoses) were extracted and classified by K-Nearest Neighbor (KNN), simple linear regression, and sequential minimal optimization classification (SMO) with an accuracy of 79%, 80%, and 75% respectively [<a href="#B20-symmetry-14-01997" class="html-bibr">20</a>].</div><div class="html-p">Nachiappan et al. tuberculosis is a universal problem, equally important for developed and developing countries, and awareness of its risk factors is essential to control or slow down its propagation. Imaging is vital in differentiating many patients’ latent infections from inactive and active diseases. Images findings in patients can identify non-tuberculosis mycobacterium pulmonary infections that mimic tuberculosis infections. This finding is significant because non-tuberculosis and tuberculosis infections cannot be treated similarly. Improper treatment of tuberculosis infection may lead this disease to an incurable stage resulting in a valuable life loss [<a href="#B21-symmetry-14-01997" class="html-bibr">21</a>].</div><div class="html-p">Nour-Neamatollahi et al. proposed an advanced methodology named “Patho-TB” for the acid-fast bacilli (AFB) test. Traditionally acid-fast bacilli test was human skills based with low sensitivity, but the proposed new method was claimed to be more sensitive and less human skill-based. The research was conducted in two phases initially, 38 sputa from Zabol city (Iran) and later on, 476 sputa from Tehran (capital of Iran) were examined by four different methodologies (named Patho-TB, AFB microscopy, culture, and PCR), and results were compared. The patho-TB test’s reduction was almost 100 (with a Cohan kappa value between 0.85–1). The detection Patho-TB test was also 100% positive [<a href="#B22-symmetry-14-01997" class="html-bibr">22</a>].</div><div class="html-p">Pai, M. et al. explained that its detection is always challenging due to the paucibacillary nature of extrapulmonary-TB, especially in developing countries. The modern world has created Nucleic Acid Amplification Test (NAAT) to meet the challenge of ensuring rapid and accurate diagnosis; however, it is more complex as compared to traditional diagnostic techniques. NAAT can perform better with conventional methods but cannot completely replace traditional procedures like culture, microscopy, biopsy, etc. [<a href="#B23-symmetry-14-01997" class="html-bibr">23</a>].</div><div class="html-p">Parsons et al. concluded that rapid and accurate methods for detecting TB, and HIV must be made accessible in developing countries to control these fetal diseases. For TB detection, there is no stand-alone test for any patient. Some technique is cost-effective and straightforward but unreliable. At the same time, other complex methods are reliable but more expensive and need technical assistance at their best. Therefore, it is required to ensure that all techniques, especially those recommended by the World health organization (WHO), are available in every country for different kinds of cases. Without proper clinical correlation, only laboratory test results cannot be trusted. For appropriate treatment, laboratory diagnostics and clinical information must be correlated [<a href="#B24-symmetry-14-01997" class="html-bibr">24</a>].</div><div class="html-p">Shuaib et al. proposed a methodology for calculating the positive predictive value of sputum spear for suspected lung tuberculosis patients in (eastern) Sudan. A total of 383 suspected patients were kept under examination, and two samples were collected from suspected patients in duration between June to October 2014 and January 2016 and July 2016. The sample went through repetitive microscopy and culture for results. A total of 196 was found culture positive, where 171 were infected by M. tuberculosis, and 14 by M. intracellular, and only 11 by mixed specie. 56 of 365 had no signs of m. tuberculosis, raising optimistic prediction to 84.4%. All samples were referred to National Research Laboratory, Germany, for better results [<a href="#B25-symmetry-14-01997" class="html-bibr">25</a>].</div><div class="html-p">Singer-Leshinsky, et al. suggested treatments, diagnostics, and prevention for different situations of TB. Patients with latent TB living with a high prevalence of TB need nine-month isoniazid or more prolonged therapy to ensure latent TB does not progress to active TB. It is the priority for any clinician that patients with active TB must not become resistive to anti-TB drugs; active TB treatment consists of two phases and almost has a cure rate of 95%, four drugs (regimen: isoniazid, rifampin, pyrazinamide, and ethambutol) for the duration of two months can kill active bacteria, in almost 90% patients it takes 14–90 days for health recovery. Multidrug-resistant Tb is the most difficult to recover due to its treatment and detection inadequacy. This is when a TB patient shows resistive behavior to rifampicin and isoniazid anti-Tb drugs. First, it is necessary to know the resistance pattern by repeating sputum tests and then decide on the duration of treatment. Initially, 4 second-line drugs on daily bases along with therapy are recommended for eight months.</div><div class="html-p">In some cases, this phase is extended up to 20 months or, in the case of recurrent TB, 28 months. Surgical resection is often recommended if patients do not respond to therapy. Third-line drugs are required in this case (called total drug-resistant TB) [<a href="#B26-symmetry-14-01997" class="html-bibr">26</a>].</div></section><section id="sec1dot2-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 1.2. Literature Review Summary</h4><div class="html-p"><a href="#symmetry-14-01997-t001" class="html-table">Table 1</a> shows the summary of related work, including algorithms, datasets type and size and accuracy they had achieved.</div></section><section id="sec1dot3-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 1.3. Paper Organization</h4><div class="html-p">This paper aims to detect lung TB using a machine learning approach from CT scan images. In the previous section, we discussed the introduction and related work. In <a href="#sec2-symmetry-14-01997" class="html-sec">Section 2</a>, we have discussed the acquisition of datasets, materials, methods, and techniques. The experiment and results are discussed in <a href="#sec4-symmetry-14-01997" class="html-sec">Section 4</a>. The conclusion has discussed in the final section.</div></section></section><section id="sec2-symmetry-14-01997" type><h2 data-nested="1"> 2. Materials and Methods</h2><section id="sec2dot1-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 2.1. Acquisition of CT Scan Images</h4><div class="html-p">Due to the unavailability of expensive CT scan devices and the lack of expert human experts, TB is comparatively in high numbers in developing countries of Asia. In Pakistan, CT scan devices are rarely available in private clinics; however, Govt has facilitated public hospitals. After struggles, 100 abnormal (TB infected) and 100 normal CT scan images of lungs were acquired from Bahawal Victoria Hospital (BVH) Bahawalpur, Department of Radiology. Tuberculosis-affected and normal images are shown in <a href="#symmetry-14-01997-f002" class="html-fig">Figure 2</a>.</div><div class="html-p">CT scan images of lungs affected by TB could be acquired easily from the internet as labeled data. But all images were not of the same size, quality, and origin, and also not taken from the same device; that was why data standardization was not possible for data collected from internet sources. All of data have been acquired from Bahawalpur Victoria Hospital (BVH), Bahawalpur, Punjab, Pakistan.</div></section><section id="sec2dot2-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 2.2. Proposed Solution</h4><div class="html-p">The step-by-step approach is explained below:</div><div class="html-p"><ul class="html-bullet"><li><div class="html-p">The dataset preparation started with the acquisition of 200 CT scan DICOM images from CT scan machine installed in Bahawal Victoria Hospital Bahawalpur, Punjab, Pakistan. And pulmonary disease specialist in Bahawalpur Victoria Hospital visited to label abnormal and normal CT scan images for training and system testing</div></li><li><div class="html-p">Data pre-processing is performed in the second step, including grayscale conversion, selection/cropping, filtering, and cleaning processes on selected labeled images.</div></li><li><div class="html-p">In the third step, statistical/texture features are extracted from pre-processed selected ROIs.</div></li><li><div class="html-p">In the fourth step, the extracted features were optimized to ensure the minimum possible processing time while maintaining accuracy and precision for reliable results.</div></li><li><div class="html-p">In the fifth step, classification algorithms were applied to the training dataset to get the classification results. This step is repeated for cross-validation.</div></li><li><div class="html-p">Now results of various classifications are analysed and compared.</div></li></ul></div><div class="html-p">A proposed system model of our work is presented in <a href="#symmetry-14-01997-f003" class="html-fig">Figure 3</a>.</div></section><section id="sec2dot3-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 2.3. Image Representation</h4><div class="html-p">A 2D digital image can be defined as a function f(x, y) which explains intensity at position (x, y) in a matrix of x rows and y columns. Each pixel in 8-bit greyscale (called black and white) image has 2<sup>8</sup> = 256 intensity levels ranging from 0 to 255, where black and white are two extreme intensities, 0 is black, and 255 is white [<a href="#B27-symmetry-14-01997" class="html-bibr">27</a>].</div><div class="html-p">An RGB-colored image is just a three-function pasted together as a vector-valued function <div class="html-disp-formula-info" id="FD1-symmetry-14-01997"> <div class="f"> <math display="block"><semantics> <mrow> <mi mathvariant="normal">f</mi> <mfenced> <mrow> <mi mathvariant="normal">x</mi> <mo>,</mo> <mi mathvariant="normal">y</mi> </mrow> </mfenced> <mo>=</mo> <mfenced close="]" open="["> <mrow> <mtable equalrows="true" equalcolumns="true"> <mtr> <mtd> <mrow> <mi>r</mi> <mfenced> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> </mfenced> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>g</mi> <mfenced> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> </mfenced> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>b</mi> <mfenced> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> </mfenced> </mrow> </mtd> </mtr> </mtable> </mrow> </mfenced> </mrow> </semantics></math> </div> <div class="l"> <label>(1)</label> </div> </div></div><div class="html-p">A color image shows a variety of different images by mixing up three intensity levels of r (x, y), g (x, y), and b(x, y).</div></section><section id="sec2dot4-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 2.4. Image Pre-Processing</h4><div class="html-p">Pre-Processing is vital in preparing standardized datasets and extracting useful features that directly affect results. In this study, the acquired dataset was DICOM images. Each patient’s data contained a different number of DICOM images, and only a few images showed an actual abnormality, i.e., out of 60 images of a single DICOM, only 7 or 8 images would show abnormality. Before pre-processing, only abnormal images are selected. Further steps are given below:</div><div class="html-p"><ul class="html-bullet"><li><div class="html-p">Selection of interesting abnormal/normal DICOM images out of the complete case</div></li><li><div class="html-p">Cropping selected images for removal of an uninterested region of an image</div></li><li><div class="html-p">Delete the blurred and defected CT scan images</div></li><li><div class="html-p">Resize to 512 × 512 Pixels</div></li><li><div class="html-p">Conversion from RGB to grayscale images in the format of bitmap pixel (.bmp).</div></li></ul></div></section><section id="sec2dot5-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 2.5. Segmentation</h4><div class="html-p">An image taken by CT scan device contains both lungs in almost two halves. Tuberculosis is a bacterial disease that affects the lungs badly; however, it is not necessarily both lungs simultaneously. It might be possible that one lung is infected badly while another lung is functioning normally, or it might be the case that both lungs are infected equally, or sometimes one lung is damaged more rapidly than the other one. Due to the non-linear spread of TB infection, it is impossible to count the whole CT scan image as a region of interest. Choosing only the infected lung area for abnormal and non-infected areas for a normal case study would ensure more precision and accuracy of the developed system for classification. In our research ROI size was kept uniform for both cases was 32 × 32 in a circle shape. Abnormal CT scan images are shown in <a href="#symmetry-14-01997-f004" class="html-fig">Figure 4</a>.</div><div class="html-p">Images of different kinds of textures are shown in <a href="#symmetry-14-01997-f005" class="html-fig">Figure 5</a>.</div><div class="html-fig-wrap" id="symmetry-14-01997-f005"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f005"> <img alt="Symmetry 14 01997 g005 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g005.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g005.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g005-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f005"></a> </div> </div> <div class="html-fig_description"> <b>Figure 5.</b> Types of textures [<a href="#B28-symmetry-14-01997" class="html-bibr">28</a>]. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f005"> <div class="html-caption"> <b>Figure 5.</b> Types of textures [<a href="#B28-symmetry-14-01997" class="html-bibr">28</a>].</div> <div class="html-img"><img alt="Symmetry 14 01997 g005" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g005.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g005.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g005.png" /></div> </div></section><section id="sec2dot6-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 2.6. Statistical Based Texture Features</h4><div class="html-p">Biomedical images contain micro-texture. The best way to read or process micro image is through statistical features. The texture is the distribution of gray levels independent of the size and shape of primitives so that statistical features can discriminate different textures based on different gray level values [<a href="#B29-symmetry-14-01997" class="html-bibr">29</a>]. The approach in this research study deals with tissues having non-regular, non-homogeneous, and random structures. So statistical features are best suited for these medical images.</div><div class="html-p">In a general sense, texture refers to an object’s surface characteristics and appearance given by its elementary parts’ size, shape, density, arrangement, and proportion. Texture feature extraction is an important stage in collecting such features through texture analysis [<a href="#B30-symmetry-14-01997" class="html-bibr">30</a>]. Due to the signification of texture information, texture feature extraction is critical in various image processing applications like remote sensing, medical imaging, and content-based image retrieval. There are four major application domains related to texture analysis: texture classification, segmentation, synthesis, and shape from texture [<a href="#B31-symmetry-14-01997" class="html-bibr">31</a>].</div><div class="html-p">In this research statistical texture features from selected 600 regions of interests (ROI’s) has been extracted by using Mazda version 4.6. It is a well-known software package for 2D and 3D image texture analysis. Initially, Mazda was introduced for the analysis of magnetic resonance images (MRI). Only later on, keeping its effectiveness in mind, it has also been used to analyze X-ray and camera images. It provides a complete path for quantitative analysis of texture features, features extraction and selection procedures, supports image segmentation and data visualization tools, and contains algorithms for data classification. Mazda proved its effectiveness in diverse applications in terms of efficiency and reliability, even in more accurate and objective medical diagnoses [<a href="#B32-symmetry-14-01997" class="html-bibr">32</a>].</div></section><section id="sec2dot7-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 2.7. Features Optimizatin</h4><div class="html-p">Feature optimization results improved processing speed and enhanced results accuracy within a short processing time. It is a process to reduce the number of features and responsible for the removal of unnecessary, least effective, and most repeatedly valued features that slow down processing time for no good use in this research, 30 optimized features from 3 different techniques (10 features per technique) were acquired using Mazda version 4.6. These 30 optimized features using F (Fisher) + PA (probability of error + average correlation) + MI (mutual information) were selected for final optimization, and only the 6 most optimized features were chosen randomly on hit and trail bases.</div></section><section id="sec2dot8-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 2.8. Classification Techniques</h4><div class="html-p">The pattern classification, concerning an analysis of the images, involves the acquisition of the features extracted from the image. And their use to automatically recognize the image. This is completed by developing classification algorithms that utilize feature information. Distance or similar measures are used to compare different objects and their feature vectors. The main uses of pattern classification in image analysis relate to the development of image compression and machine vision applications. It can be considered as part of the analysis of the features or as a subsequent processing phase for the extraction and analysis of the features. Pattern classification is, for the most part, the last step in developing a machine vision algorithm. This kind of use aims to recognize objects and their parts for the computer to perform a few exercises identified with vision. These undertakings go from the computerized conclusion of medicinal images to recognizing the object for automated control. Waikato Environment for Knowledge Analysis” developed in New Zealand, is graphical user interface-based free software (licensed under GNU General Public License) containing a wide range of algorithms and visualization tools for data analysis and predictive modeling.</div><div class="html-p">In this study data set consisting of optimized features was classified by trying supervised learning classifiers, including Artificial Neural Network (ANN: n class) based classifier Multi-Layer Perceptron (MLP), which performed # comparatively better and probably best in terms of accuracy. The other prominent classifiers were Random Forest, J48, Log it Boost, AdaBoostM1, and Bayes Net.</div></section><section id="sec2dot9-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 2.9. Machine Learning (Training and Testing)</h4><div class="html-p">Machine learning involves evaluating procedures that train computers to act as human beings learn logically from experience. Machine learning procedures use automatic methods to “train” facts abstract from data without depending on an encoded equation as a prototypical. The techniques expand their performance, and the number of tasters available for learning increases [<a href="#B33-symmetry-14-01997" class="html-bibr">33</a>].</div><section id="sec2dot9dot1-symmetry-14-01997" type><h4 class data-nested="3"> 2.9.1. Supervised Classification</h4><div class="html-p">Based on the idea, a consumer can choose test Pixels within an image to be a delegate of the specific program and direct the image processing software toward applying this preparation site because the reference is used for categorizing every other pixel in the image. Preparation sites (as well recognized because complex set otherwise contribution program) are select base on top of the knowledge of the user. The user also sets the boundaries for other pixels and groups them jointly. These boundaries are regularly set based on the shadow-like uniqueness of the training region, benefit or lesser amount a sure increase (often based on intensity or force of reflection in the exact spectral band). The user also designates the number of lessons into which the image is classified. Many analysts use a mixture of supervised and unsupervised categorization processes in the direction of buildup absolute production examination and categorizing maps [<a href="#B34-symmetry-14-01997" class="html-bibr">34</a>].</div></section><section id="sec2dot9dot2-symmetry-14-01997" type><h4 class data-nested="3"> 2.9.2. Unsupervised Classification</h4><div class="html-p">Unsupervised classification is wherever the outcome (group of pixels by frequent uniqueness) is based on the software examination of an image without the consumer as long as the test program. The computer uses the technique to conclude which pixels be connected and group them into the program. The user can state which algorithm the software determination utilizes and the preferred digit of output classes but otherwise does not help inside the categorization procedure. However, the user has to contain information about the area being confidential. In contrast, the grouping of pixels by frequent individuality shaped by the computer has to be related to actual features on top of the land (such as swampland, urban areas, coniferous forest, etc.) [<a href="#B34-symmetry-14-01997" class="html-bibr">34</a>].</div></section></section><section id="sec2dot10-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 2.10. Mazda</h4><div class="html-p">Mazda is a well-known software package for 2D and 3D image texture analysis. Initially, Mazda was introduced for the analysis of magnetic resonance images (MRI). Only later on, keeping its effectiveness in mind, it has also been used to analyze X-ray and camera images. It provides a complete path for quantitative analysis of texture features, features extraction and selection procedures, supports image segmentation and data visualization tools, and contains algorithms for data classification. Mazda proved its effectiveness in diverse applications in terms of efficiency and reliability, even in more accurate and objective medical diagnoses [<a href="#B32-symmetry-14-01997" class="html-bibr">32</a>]. Mazda version 4.6 has been used in this research study.</div></section><section id="sec2dot11-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 2.11. WEKA</h4><div class="html-p">Waikato Environment for Knowledge Analysis” developed in New Zealand, is graphical user interface-based free software (licensed under GNU General Public License) containing a wide range of algorithms and visualization tools for data analysis and predictive modeling [<a href="#B35-symmetry-14-01997" class="html-bibr">35</a>,<a href="#B36-symmetry-14-01997" class="html-bibr">36</a>]. Its Java-based (WEKA 3) version is one of the most widely used tools in the research area. It provided the following data mining tasks:</div><div class="html-p"><ul class="html-bullet"><li><div class="html-p">Data pre-processing (CSV file import, filtering algorithms, transformation, facility to delete instances/attributes on specific criteria).</div></li><li><div class="html-p">Data visualization (Scatter plot matrix and many options for further analysis).</div></li><li><div class="html-p">Feature selection (provides algorithms for identification of most predictive features).</div></li><li><div class="html-p">Clustering (K-means algorithm along with expectation maximization algorithms).</div></li><li><div class="html-p">Association panel (provides access to association rule learners for identification of relationships amongst attributes)</div></li><li><div class="html-p">Classification (Naïve-Bayes, J48, Random Forest, Random Tree etc.).</div></li><li><div class="html-p">Regression (Linear regression, Logistic regression, Simple Linear regression, Support Vector regression, etc.</div></li></ul></div></section></section><section id="sec3-symmetry-14-01997" type><h2 data-nested="1"> 3. Experiments and Results</h2><div class="html-p">Image processing techniques are always effective for better results and contribute a lot to improving different measures of results required to define a helpful system. In this research study, image processing has been implemented by Mazda version 4.6 on 2D CT scan images. First, 200 CT scan images of two categories, Normal (100) and Abnormal (100 containing Tuberculosis), were collected. After that, image cropping and resizing (512 × 512) and conversion into 24-bit RGB bitmap (.bmp) were performed using the image editor program. 3 Circle-shaped non-overlapping ROIs (region of interests) of size 32 × 32 per image were identified from these pre-processed images, which resulted in 300 (100 × 3) normal and 300 (100 × 3) abnormal ROIs. 30 optimized features by using feature extraction technique MI (Mutual Information) + PA (Probability of error + Average correlation coefficient) + F (Fisher) techniques were selected in Mazda. After creating a text file, this file is converted into a CSV file, and then an ARFF file is created for WEKA software to generate further results. For classification of normal and Tuberculosis images, WEKA software version 3.8.3 were used, and different classification algorithms, namely Multi-Layer perceptron (MLP), AdaBoostM1, Log it Boost, Random Forest, Bayes Net, and J48, were applied. Other performance measuring parameters were calculated. These parameters are Correctly Classified Instances, Incorrectly Classified Instances, Kappa statistic, Mean absolute error, Root mean squared error, and Relative absolute error, Root relative squared error along with TP Rate, FP Rate, Precision, Recall, F-Measure, MCC, and ROC Area.</div><section id="sec3dot1-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 3.1. Comparative Analysis</h4><div class="html-p">This research study calculates different performance measuring parameters for classification algorithm comparison. Every algorithm has a different approach to calculation, but every parameter has a unique base. These parameters are shortly introduced below:</div><div class="html-p">TP-Rate: </div><div class="html-p">It is known as the True Positive Rate and is calculated as</div><div class="html-p">TP-Rate = TP/(TP + FN)</div><div class="html-p">TN-Rate:</div><div class="html-p">It is known as the True Negative Rate and is calculated as</div><div class="html-p">TN-Rate = TN/(TN + FP)</div><div class="html-p">FP-Rate:</div><div class="html-p">It is known as the False Positive Rate and is calculated as</div><div class="html-p">FP-Rate = FP/(FP + TN)</div><div class="html-p">FN-Rate:</div><div class="html-p">It is known as the False Negative Rate and is calculated as</div><div class="html-p">FN-Rate = 1−TP − Rate</div><div class="html-p">Accuracy:</div><div class="html-p">It measures how close an algorithm is to a true value.</div><div class="html-p">Accuracy = (correctly predicted class/total testing class instance) × 100%</div><div class="html-p">Precision:</div><div class="html-p">Also called positive predictive value is a relevant measurement of how close two measurements are to each other.</div><div class="html-p">PRECISION = TP/(TP + FP)</div><div class="html-p">Recall:</div><div class="html-p">It is also based on relevant measurement can be defined as a measurement of relevant instances that were classified.</div><div class="html-p">RECALL = TP/(TP + FN)</div><div class="html-p">F-Measure:</div><div class="html-p">It is a weighted Harmonic mean of Precision and Recall.</div><div class="html-p">F-MEASURE = 2*Precision*Recall/(Precision + Recall)</div><div class="html-p">ROC Area:</div><div class="html-p">Receiver Operating Characteristic Curve is a graphical plot equating the TP-rates and the FP- rates of a classifier as the refinement threshold of the classifier is different.</div><div class="html-p">Class:</div><div class="html-p">Two different classes, “Normal” and “Tuberculosis,” have been classified. The Normal class contains several instances with no sign of Tuberculosis or any other lung disease, and the Tuberculosis class contains instances affected by Tuberculosis.</div><div class="html-p"><b>Confusion matrix:</b></div><div class="html-p">A binary confusion matrix divides an instance into one of two classes based on its performance on a test data set. Its table may be drawn as follows (see <a href="#symmetry-14-01997-t002" class="html-table">Table 2</a>):</div><div class="html-p"><ul class="html-bullet"><li><div class="html-p">“True A” denotes the number of Tuberculosis class instances successfully categorized as Tuberculosis instances.</div></li><li><div class="html-p">“True B” denotes the number of Normal class instances categorized as Normal instances.</div></li><li><div class="html-p">“False A” denotes the number of cases of the Normal class that were incorrectly categorized as Tuberculosis occurrences.</div></li><li><div class="html-p">The term “False B” refers to the number of Tuberculosis cases incorrectly categorized as Normal cases.</div></li></ul></div></section><section id="sec3dot2-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 3.2. Multilayer Perceptron (MLP) Classifier</h4><div class="html-p">Here we presented the Multi-Layer perceptron algorithm execution time, Cross-validation folds. The MLP Classifier summary is also shown in <a href="#symmetry-14-01997-t003" class="html-table">Table 3</a>.</div><ul class="html-bullet"><li><div class="html-p">Time taken: 0.89 s</div></li><li><div class="html-p">Cross-validation folds: 10</div></li></ul><section id="sec3dot2dot1-symmetry-14-01997" type><h4 class data-nested="3"> 3.2.1. Summary</h4><div class="html-p">The section contains a summary of MLP classifiers, instances, and errors.</div></section><section id="sec3dot2dot2-symmetry-14-01997" type><h4 class data-nested="3"> 3.2.2. Detailed Performance Measuring Parameters by Class</h4><div class="html-p">Here were presented three classes and their accuracies. <a href="#symmetry-14-01997-t004" class="html-table">Table 4</a> shows the detailed accuracy of MLP Classifier.</div></section><section id="sec3dot2dot3-symmetry-14-01997" type><h4 class data-nested="3"> 3.2.3. Confusion Matrix</h4><div class="html-p">This section presents the Classification result using MLP Classifier in <a href="#symmetry-14-01997-t005" class="html-table">Table 5</a>.</div><div class="html-p">The accuracy of the dataset using MLP classifier is shown in <a href="#symmetry-14-01997-f006" class="html-fig">Figure 6</a>.</div></section></section><section id="sec3dot3-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 3.3. Random Forest (RF) Classifier</h4><div class="html-p">Here we show the time is taken and cross-validation of the RandomForest Classifier algorithm. Also, the RF classifier summary, accuracy, and results are presented.</div><ul class="html-bullet"><li><div class="html-p">Time taken: 0.3 s</div></li><li><div class="html-p">Cross-validation folds: 10</div></li></ul><section id="sec3dot3dot1-symmetry-14-01997" type><h4 class data-nested="3"> 3.3.1. Summary</h4><div class="html-p">The summary of RF classifiers’ instances and errors that occurred are presented in <a href="#symmetry-14-01997-t006" class="html-table">Table 6</a>.</div></section><section id="sec3dot3dot2-symmetry-14-01997" type><h4 class data-nested="3"> 3.3.2. Detailed Performance Measuring Parameters by Class</h4><div class="html-p">The detailed accuracy of RF Classifier is shown in <a href="#symmetry-14-01997-t007" class="html-table">Table 7</a>. There are three classes mentioned in the table below.</div></section><section id="sec3dot3dot3-symmetry-14-01997" type><h4 class data-nested="3"> 3.3.3. Confusion Matrix</h4><div class="html-p">Here we presented the classification of the results of RF classifier in <a href="#symmetry-14-01997-t008" class="html-table">Table 8</a>. The dataset is classified as A is Tuberculosis and B is normal.</div><div class="html-p">Also, the accuracy of the dataset using RF classifier is presented as a bar chart in <a href="#symmetry-14-01997-f007" class="html-fig">Figure 7</a>.</div></section></section><section id="sec3dot4-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 3.4. J48 Classifier</h4><div class="html-p">The summary, accuracy, and results of J48 Classifier are presented in the following tables and figures. For J48 Classifier, the time taken and cross-validation are given below:</div><div class="html-p"><ul class="html-bullet"><li><div class="html-p">Time taken: 0.03 s</div></li><li><div class="html-p">Cross-validation folds: 10</div></li></ul></div><section id="sec3dot4dot1-symmetry-14-01997" type><h4 class data-nested="3"> 3.4.1. Summary</h4><div class="html-p">Summary of J48 Classifier having instances and errors occurred are presented in <a href="#symmetry-14-01997-t009" class="html-table">Table 9</a>.</div></section><section id="sec3dot4dot2-symmetry-14-01997" type><h4 class data-nested="3"> 3.4.2. Detailed Performance Measuring Parameters by Class</h4><div class="html-p">The accuracy of J48 Classifier having three classes is presented in <a href="#symmetry-14-01997-t010" class="html-table">Table 10</a>.</div></section><section id="sec3dot4dot3-symmetry-14-01997" type><h4 class data-nested="3"> 3.4.3. Confusion Matrix</h4><div class="html-p">In this section, we presented the results of classes A as Tuberculosis and B as Normal in <a href="#symmetry-14-01997-t011" class="html-table">Table 11</a>. The accuracy of the dataset using J48 classifier is shown in <a href="#symmetry-14-01997-f008" class="html-fig">Figure 8</a>.</div></section></section><section id="sec3dot5-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 3.5. LogitBoost Classifier</h4><div class="html-p">Here we presented the detailed analysis of the LogitBoot Classifier. This section includes a LogitBoot Classifier summary, results, and accuracy in the below tables and a figure. The execution time and cross validity are presented below:</div><div class="html-p"><ul class="html-bullet"><li><div class="html-p">Time taken: 0.08 s</div></li><li><div class="html-p">Cross-validation folds: 10</div></li></ul></div><section id="sec3dot5dot1-symmetry-14-01997" type><h4 class data-nested="3"> 3.5.1. Summary</h4><div class="html-p">The detailed summary of Logit Boot Classifier having different instances and errors is mentioned in <a href="#symmetry-14-01997-t012" class="html-table">Table 12</a>.</div></section><section id="sec3dot5dot2-symmetry-14-01997" type><h4 class data-nested="3"> 3.5.2. Detailed Performance Measuring Parameters by Class</h4><div class="html-p">Here we presented the accuracy of the LogitBoot Classifier by measuring different parameters in <a href="#symmetry-14-01997-t013" class="html-table">Table 13</a>. The table has accuracy for various parameters of the three classes.</div></section><section id="sec3dot5dot3-symmetry-14-01997" type><h4 class data-nested="3"> 3.5.3. Confusion Matrix</h4><div class="html-p"><a href="#symmetry-14-01997-t014" class="html-table">Table 14</a> shows the classification result using LogitBoost Classifier. The data is classified as A and B. A represents Tuberculosis, and B is normal.</div><div class="html-p">The accuracy of the dataset using the LogitBoostClassifier is shown in <a href="#symmetry-14-01997-f009" class="html-fig">Figure 9</a>. Tuberculosis is represented by the blue bar, and normal is characterized by red.</div></section></section><section id="sec3dot6-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 3.6. AdaBoostM1 Classifier</h4><div class="html-p">This section presents the AdaBoostM1 classifier summary, accuracy, and results in the following tables and figures. The execution time and cross-validation are mentioned below:</div><div class="html-p"><ul class="html-bullet"><li><div class="html-p">Time taken: 0.06 s</div></li><li><div class="html-p">Cross-validation folds: 10</div></li></ul></div><section id="sec3dot6dot1-symmetry-14-01997" type><h4 class data-nested="3"> 3.6.1. Summary</h4><div class="html-p">The summary of the AdaBoostM1 Classifier having different instances and errors is mentioned in <a href="#symmetry-14-01997-t015" class="html-table">Table 15</a>.</div></section><section id="sec3dot6dot2-symmetry-14-01997" type><h4 class data-nested="3"> 3.6.2. Detailed Performance Measuring Parameters by Class</h4><div class="html-p">Here we presented the detailed accuracy of AdaBoostM1 having different parameters of three classes in <a href="#symmetry-14-01997-t016" class="html-table">Table 16</a>.</div></section><section id="sec3dot6dot3-symmetry-14-01997" type><h4 class data-nested="3"> 3.6.3. Confusion Matrix</h4><div class="html-p"><a href="#symmetry-14-01997-t017" class="html-table">Table 17</a> shows the results of the AdaBoostM1 Classifier for class A Tuberculosis and B are normal.</div><div class="html-p"><a href="#symmetry-14-01997-f010" class="html-fig">Figure 10</a> shows the accuracy of Tuberculosis in the blue bar and normal data in the red bar of the chart.</div></section></section><section id="sec3dot7-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 3.7. BayesNet Classifier</h4><div class="html-p">This section presents the summary of the BayesNet Classifier in <a href="#symmetry-14-01997-t018" class="html-table">Table 18</a>, accuracy in <a href="#symmetry-14-01997-t019" class="html-table">Table 19</a>, and results in <a href="#symmetry-14-01997-t020" class="html-table">Table 20</a>. The accuracy is also shown as a bar chart in <a href="#symmetry-14-01997-f011" class="html-fig">Figure 11</a>.</div><ul class="html-bullet"><li><div class="html-p">Time taken: 0.03 s</div></li><li><div class="html-p">Cross-validation folds: 10</div></li></ul><section id="sec3dot7dot1-symmetry-14-01997" type><h4 class data-nested="3"> 3.7.1. Summary</h4><div class="html-p">The tables below summarise different instances and errors of the BayesNet Classifier.</div></section><section id="sec3dot7dot2-symmetry-14-01997" type><h4 class data-nested="3"> 3.7.2. Detailed Performance Measuring Parameters by Class</h4><div class="html-p">The table below shows the BayesNet Classifier’s accuracy having different parameters and their three classes.</div></section><section id="sec3dot7dot3-symmetry-14-01997" type><h4 class data-nested="3"> 3.7.3. Confusion Matrix</h4><div class="html-p">The table below shows the results of class A is Tuberculosis, and class B is normal data.</div><div class="html-p"><a href="#symmetry-14-01997-f011" class="html-fig">Figure 11</a> above shows the accuracy of the BayesNet Classifier in the form of a bar chart where Tuberculosis is a blue bar and normal data is a red bar.</div></section></section><section id="sec3dot8-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 3.8. Comparatively Analysis of Applied Pattern Recognition Classifiers</h4><div class="html-p">This section presents the accuracy of all algorithms as a bar chart in <a href="#symmetry-14-01997-f012" class="html-fig">Figure 12</a>, where:</div><div class="html-p"><ul class="html-bullet"><li><div class="html-p">MLP is in the blue color bar,</div></li><li><div class="html-p">RandomForest is an orange color bar,</div></li><li><div class="html-p">J48 is a green color bar,</div></li><li><div class="html-p">LoiyBoost is a red color bar,</div></li><li><div class="html-p">AdBoostM1 is a sky blue color bar,</div></li><li><div class="html-p">BeyesNet is in a purple color bar.</div></li></ul></div><div class="html-p">Finally, Multilayer Perceptron is as most accurate Classifier among Random Forest, J48, LogitBoost, AdaBoostM1, and BayesNet with 99% accuracy, followed by 98.83%, 98.67%, 98%, 97.16%, and 96.83% respectively.</div></section></section><section id="sec4-symmetry-14-01997" type="results"><h2 data-nested="1"> 4. Results of ANN on Different Parameters</h2><div class="html-p">Results have been produced by applying a stochastic optimization algorithm. The primary function of this algorithm is to generate random numbers by seeds. The initial value or weight of the seeds is Zero(0) by default. By applying the random values, multiple results have been generated. From which accuracy level has been measured.</div><section id="sec4dot1-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 4.1. One Layer with 50 Nodes</h4><div class="html-p">MLP classifier summary of one layer with 50 nodes is presented in <a href="#symmetry-14-01997-t021" class="html-table">Table 21</a>.</div><div class="html-p">MLP classifier detailed accuracy of one layer with 50 nodes is presented in <a href="#symmetry-14-01997-t022" class="html-table">Table 22</a>.</div><div class="html-p">Accuracy of ANN for one layer having 50 nodes is presented in <a href="#symmetry-14-01997-f013" class="html-fig">Figure 13</a>.</div></section><section id="sec4dot2-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 4.2. One Layer Having 100 Nodes</h4><div class="html-p">The <a href="#symmetry-14-01997-t023" class="html-table">Table 23</a> below shows the MLP classifier summary when one layer having 100 nodes.</div><div class="html-p">The MLP Classifier Detailed Accuracy of one layer having 100 Nodes is presented in <a href="#symmetry-14-01997-t024" class="html-table">Table 24</a>.</div><div class="html-p"><a href="#symmetry-14-01997-f014" class="html-fig">Figure 14</a> represents the MLP classifier detailed accuracy of one layer having 100 Nodes.</div></section><section id="sec4dot3-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 4.3. Two Layers with 50,100 Nodes</h4><div class="html-p">Results has been updated by using Stochastic Optimization Algorithm. Seeds generate random values having initial weight/value = 0 by default. And we conducted the simulation/test in WEKA. The MLP Classifier Summary is presented in <a href="#symmetry-14-01997-t025" class="html-table">Table 25</a>.</div><div class="html-p">The detailed accuracy of MLP classifier is shown in <a href="#symmetry-14-01997-t026" class="html-table">Table 26</a> and <a href="#symmetry-14-01997-f015" class="html-fig">Figure 15</a> for two layers having 50 and 100 nodes.</div></section><section id="sec4dot4-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 4.4. Three Layers with 50 70 100 Nodes</h4><div class="html-p">Summary of MLP classifier is presented in <a href="#symmetry-14-01997-t027" class="html-table">Table 27</a>.</div><div class="html-p">MLP classifier detailed accuracy for three layers having nodes 50, 70, 100 is presented in <a href="#symmetry-14-01997-t028" class="html-table">Table 28</a> and <a href="#symmetry-14-01997-f016" class="html-fig">Figure 16</a>.</div></section><section id="sec4dot5-symmetry-14-01997" type><h4 class="html-italic" data-nested="2"> 4.5. Comparison of Different Nodes and Layers</h4><div class="html-p">A comparison of different nodes and layers is presented in <a href="#symmetry-14-01997-t029" class="html-table">Table 29</a>.</div><div class="html-p"><a href="#symmetry-14-01997-f017" class="html-fig">Figure 17</a> shows instances, number of hidden layers and accuracy. </div><ul class="html-bullet"><li><div class="html-p">We used different parameters with different numbers of Hidden Layers and Numbers of Nodes.</div></li><li><div class="html-p">We observed our best result with an accuracy of 99.33% occurs when nodes are 100 & 50, and the number of hidden layers is one.</div></li><li><div class="html-p">We also found that as we increase the number of Hidden layers and also the number of nodes, our accuracy decreases to 98%</div></li><li><div class="html-p">The comparison <a href="#symmetry-14-01997-t029" class="html-table">Table 29</a> above shows different numbers of hidden layers, e.g., up to 5 layers, and different numbers of nodes, e.g., 50,100,70,30, and the result is given in that comparison table.</div></li></ul></section></section><section id="sec5-symmetry-14-01997" type="discussion"><h2 data-nested="1"> 5. Discussion</h2><div class="html-p">In this research study, image processing has been implemented by Mazda version 4.6 on 2D CT scan images. First, 200 CT scan images of two categories, Normal (100) and Abnormal (100 containing tuberculosis), were collected. After that, image cropping and resizing (512 × 512) and conversion into 24-bit RGB bitmap (.bmp) were performed using the image editor program. 3 Circle-shaped non-overlapping ROIs (region of interests) of size 32 × 32 per image were identified from these pre-processed images, which resulted in 300 (100 × 3) normal and 300 (100 × 3) abnormal ROIs. 30 optimized features by using feature extraction technique MI (Mutual Information) + PA (Probability of error + Average correlation coefficient) + F (Fisher) techniques were selected in Mazda. After creating a text file, this file is converted into a CSV file, and then an ARFF file is created for WEKA software to generate further results. For classification of normal and Tuberculosis images, WEKA software version 3.8.3 were used, and different classification algorithms, namely Multi-Layer perceptron (MLP), AdaBoostM1, Log it Boost, Random Forest, Bayes Net, and J48, were applied. Other performance measuring parameters were calculated. These parameters are Correctly Classified Instances, Incorrectly Classified Instances, Kappa statistic, Mean absolute error, Root mean squared error, and Absolute relative mistake, Root relative squared error along with TP Rate, FP Rate, Precision, Recall, F-Measure, MCC, and ROC Area. A machine vision-based approach has been used in this study to detect human lung tuberculosis from Symmetry CT (computerized tomography) scan images. The study aims to ensure reliable, precise, and accurate detection of lung tuberculosis using texture features extracted from CT scan images. Pre-processing techniques (grayscale conversion, filtration, and so on) were necessary to remove noise, which could reduce accuracy. The Mazda tool was used to extract features and identify 30 optimised features using three techniques: F (Fisher) + PA (probability of error + average correlation) + MI. Weka, a data mining tool, was used to deploy various classification algorithms, including MLP, AdaBoostM1, Log it Boost, Random Forest (RF), Bayes Net, and J48 with 10 cross-validation folds. It was observed that Multilayer Perceptron is as most accurate Classifier among Random Forest, J48, LogitBoost, AdaBoostM1, and BayesNet with 99% accuracy, followed by 98.83%, 98.67%, 98%, 97.16%, and 96.83% respectively. <a href="#symmetry-14-01997-f012" class="html-fig">Figure 12</a> shows the accuracy of our proposed approach vs. comparison among different ML classifiers. As compared to other approaches, Multilayer Perceptron has the highest accuracy.</div></section><section id="sec6-symmetry-14-01997" type="conclusions"><h2 data-nested="1"> 6. Conclusions</h2><div class="html-p">In this research, machine vision-based methodology has been explained for detecting TB in the human lung by applying different classifiers to the dataset formulated by optimized features extracted from ROIs of CT scan images. This study aimed to develop a more accurate and precise methodology for TB detection by using machine vision. Multilayer perceptron was the most accurate classifier with an outstanding 99% accuracy value and execution time of just 0.98 s for data set of 600 ROIs. The methodology achieved the required target and provided six classifiers with more than 95% accuracy and an execution time of less than a second.</div><div class="html-p">This methodology also forces image pre-processing, and feature optimization plays a vital role in improving the overall performance of classifiers. Feature reduction is also essential for minimizing execution time. The proposed methodology resulted in high accuracy with low execution time. A system based on this research can help developing countries to minimize the need for a Pulomenry human expert as the system can work as an expert with up to 99% accuracy.</div></section><section id="sec7-symmetry-14-01997" type><h2 data-nested="1"> 7. Innovation and Contribution of Our Research</h2><div class="html-p">The availability of resources such as expertise, humans, time, and cost is a significant concern in the TB diagnostic process. As a result, the distinction between tuberculosis and non-tuberculosis objects is critical for the reduction and proper control or cure of this infectious disease. Machine vision techniques have already aided humans in controlling and detecting many diseases. This approach significantly reduced both cost and time. This research will aid in developing a more precise and accurate system for detecting tuberculosis and non-tuberculosis objects. Machine vision approaches will be used to identify objects in CT scan images. Also, this technique will help radiologists and other medical professionals to detect and diagnose TB more precisely. Our proposed approach was the most accurate classifier among Random Forest, J48, LogitBoost, AdaBoostM1, and BayesNet with 99% accuracy, followed by 98.83%, 98.67%, 98%, 97.16%, and 96.83%, respectively.</div></section><section id="sec8-symmetry-14-01997" type><h2 data-nested="1"> 8. Significance of Our Work</h2><div class="html-p">Machine Learning analyses patient data and assists in identifying diseases that may exist in the body but is challenging to detect. Because Machine learning algorithms can process large amounts of radiology and pathology data and make faster decisions, medical imaging becomes incredibly compelling. The Machine Learning approach provides more accuracy and efficiency for detecting and identifying diseases. This approach significantly reduced both cost and time. This research will aid in developing a more precise and accurate system for detecting tuberculosis and non-tuberculosis objects.</div></section><section id="sec9-symmetry-14-01997" type><h2 data-nested="1"> 9. Future Work</h2><div class="html-p">This research study proposed a methodology for TB detection through CT scan 2D images. The same methods can be applied to 3D biomedical images to detect other diseases. It also can be utilized to build an automatic intelligent system for automatic TB detection.</div></section> </div> <div class="html-back"> <section class="html-notes"><h2>Author Contributions</h2><div class="html-p">Conceptualization, I.H.; methodology, I.H.; software, I.H., T.M. and Q.N.; validation, I.H., T.M. and Q.N.; formal analysis, I.H. and S.A.H.M.; investigation, I.H., T.M., M.H.A., H.K.A., A.A. and S.M.M.; resources, I.H. and T.M.; Data curation, T.M. and Q.N.; Writing—original draft preparation, I.H. and S.R.; Writing—review and editing, I.H., M.H.A., S.A.H.M., H.K.A., A.A. and S.M.M.; visualization, I.H. and M.H.A.; Funding, H.K.A., A.A. and S.M.M. All authors have read and agreed to the published version of the manuscript.</div></section><section class="html-notes"><h2>Funding</h2><div class="html-p">This research received no external funding.</div></section><section class="html-notes"><h2>Institutional Review Board Statement</h2><div class="html-p">Not applicable.</div></section><section class="html-notes"><h2>Informed Consent Statement</h2><div class="html-p">Not applicable.</div></section><section class="html-notes"><h2>Data Availability Statement</h2><div class="html-p">Not applicable.</div></section><section id="html-ack" class="html-ack"><h2>Acknowledgments</h2><div class="html-p">The authors are thankful to Yang Xionan, Associate Professor in the School of Information Engineering, Zhengzhou University, China, for his excellent supervision and support.</div></section><section class="html-notes"><h2>Conflicts of Interest</h2><div class="html-p">The authors declare no conflict of interest.</div></section><section id="html-references_list"><h2>References</h2><ol class="html-xx"><li id="B1-symmetry-14-01997" class="html-x" data-content="1.">Chan, M. <span class="html-italic">Ten Years in Public Health 2007–2017: Report by Dr. Margaret Chan, Director-General, World Health Organization</span>; World Health Organization: Geneva, Switzerland, 2018. [<a href="https://scholar.google.com/scholar_lookup?title=Ten+Years+in+Public+Health+2007%E2%80%932017:+Report+by+Dr.+Margaret+Chan,+Director-General,+World+Health+Organization&author=Chan,+M.&publication_year=2018" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li><li id="B2-symmetry-14-01997" class="html-x" data-content="2.">USPATO. U.S. Patent No. 7,844,076, 28 July 2022; U.S. Patent and Trademark Office: Washington, DC, USA. Available online: <a href="https://www.uspto.gov/" target="_blank" rel="noopener noreferrer">https://www.uspto.gov/</a> (accessed on 28 July 2022).</li><li id="B3-symmetry-14-01997" class="html-x" data-content="3.">Alsharif, M.H.; Alsharif, Y.H.; Chaudhry, S.A.; Albreem, M.A.; Jahid, A.; Hwang, E. Artificial intelligence technology for diagnosing COVID-19 cases: A review of substantial issues. <span class="html-italic">Eur. Rev. Med. Pharmacol. Sci.</span> <b>2020</b>, <span class="html-italic">24</span>, 9226–9233. [<a href="https://scholar.google.com/scholar_lookup?title=Artificial+intelligence+technology+for+diagnosing+COVID-19+cases:+A+review+of+substantial+issues&author=Alsharif,+M.H.&author=Alsharif,+Y.H.&author=Chaudhry,+S.A.&author=Albreem,+M.A.&author=Jahid,+A.&author=Hwang,+E.&publication_year=2020&journal=Eur.+Rev.+Med.+Pharmacol.+Sci.&volume=24&pages=9226%E2%80%939233&pmid=32965018" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/32965018" class="cross-ref" data-typ="pmid" target="_blank" rel="noopener noreferrer">PubMed</a>]</li><li id="B4-symmetry-14-01997" class="html-x" data-content="4.">Alsharif, M.H.; Alsharif, Y.H.; Yahya, K.; Alomari, O.A.; Albreem, M.A.; Jahid, A. Deep learning applications to combat the dissemination of COVID-19 disease: A review. <span class="html-italic">Eur. Rev. Med. Pharmacol. Sci.</span> <b>2020</b>, <span class="html-italic">24</span>, 11455–11460. [<a href="https://scholar.google.com/scholar_lookup?title=Deep+learning+applications+to+combat+the+dissemination+of+COVID-19+disease:+A+review&author=Alsharif,+M.H.&author=Alsharif,+Y.H.&author=Yahya,+K.&author=Alomari,+O.A.&author=Albreem,+M.A.&author=Jahid,+A.&publication_year=2020&journal=Eur.+Rev.+Med.+Pharmacol.+Sci.&volume=24&pages=11455%E2%80%9311460&pmid=33215473" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/33215473" class="cross-ref" data-typ="pmid" target="_blank" rel="noopener noreferrer">PubMed</a>]</li><li id="B5-symmetry-14-01997" class="html-x" data-content="5.">Creative Market. Human lungs infographic. 31 July 2018. Available online: <a href="https://creativemarket.com/Double_Brain/2809367-Human-lungs-infographic" target="_blank" rel="noopener noreferrer">https://creativemarket.com/Double_Brain/2809367-Human-lungs-infographic</a> (accessed on 14 July 2022).</li><li id="B6-symmetry-14-01997" class="html-x" data-content="6.">Lumb, A.B.; Thomas, C.R. <span class="html-italic">Nunn’s Applied Respiratory Physiology eBook</span>; Elsevier Health Sciences: Amsterdam, The Netherlands, 2020. [<a href="https://scholar.google.com/scholar_lookup?title=Nunn%E2%80%99s+Applied+Respiratory+Physiology+eBook&author=Lumb,+A.B.&author=Thomas,+C.R.&publication_year=2020" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li><li id="B7-symmetry-14-01997" class="html-x" data-content="7.">Tu, J.; Inthavong, K.; Ahmadi, G. <span class="html-italic">Computational Fluid and Particle Dynamics in the Human Respiratory System</span>; Springer: Berlin/Heidelberg, Germany, 2013; pp. 19–44. [<a href="https://scholar.google.com/scholar_lookup?title=Computational+Fluid+and+Particle+Dynamics+in+the+Human+Respiratory+System&author=Tu,+J.&author=Inthavong,+K.&author=Ahmadi,+G.&publication_year=2013" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li><li id="B8-symmetry-14-01997" class="html-x" data-content="8.">Hrizi, O.; Gasmi, K.; Ltaifa, I.B.; Alshammari, H.; Karamti, H.; Krichen, M.; Ammar, L.B.; Mahmood, M.A. Tuberculosis Disease Diagnosis Based on an Optimized Machine Learning Model. <span class="html-italic">J. Healthc. Eng.</span> <b>2022</b>, <span class="html-italic">5</span>, 1–13. [<a href="https://scholar.google.com/scholar_lookup?title=Tuberculosis+Disease+Diagnosis+Based+on+an+Optimized+Machine+Learning+Model&author=Hrizi,+O.&author=Gasmi,+K.&author=Ltaifa,+I.B.&author=Alshammari,+H.&author=Karamti,+H.&author=Krichen,+M.&author=Ammar,+L.B.&author=Mahmood,+M.A.&publication_year=2022&journal=J.+Healthc.+Eng.&volume=5&pages=1%E2%80%9313&doi=10.1155/2022/8950243&pmid=35494520" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1155/2022/8950243" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/35494520" class="cross-ref" data-typ="pmid" target="_blank" rel="noopener noreferrer">PubMed</a>]</li><li id="B9-symmetry-14-01997" class="html-x" data-content="9.">Xing, Z.; Ding, W.; Zhang, S.; Zhong, L.; Wang, L.; Wang, J.; Wang, K.; Xie, Y.; Zhao, X.; Li, N.; et al. Machine learning-based differentiation of nontuberculous mycobacteria lung disease and pulmonary Tuberculosis using CT images. <span class="html-italic">BioMed Res. Int.</span> <b>2020</b>, <span class="html-italic">2020</span>, 6287545. [<a href="https://scholar.google.com/scholar_lookup?title=Machine+learning-based+differentiation+of+nontuberculous+mycobacteria+lung+disease+and+pulmonary+Tuberculosis+using+CT+images&author=Xing,+Z.&author=Ding,+W.&author=Zhang,+S.&author=Zhong,+L.&author=Wang,+L.&author=Wang,+J.&author=Wang,+K.&author=Xie,+Y.&author=Zhao,+X.&author=Li,+N.&publication_year=2020&journal=BioMed+Res.+Int.&volume=2020&pages=6287545&doi=10.1155/2020/6287545&pmid=33062689" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1155/2020/6287545" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/33062689" class="cross-ref" data-typ="pmid" target="_blank" rel="noopener noreferrer">PubMed</a>]</li><li id="B10-symmetry-14-01997" class="html-xx" data-content="10.">Díaz-Huerta, J.L.; Téllez-Anguiano, A.D.C.; Fraga-Aguilar, M.; Gutierrez-Gnecchi, J.A.; Arellano-Calderón, S. Image processing for AFB segmentation in bacilloscopies of pulmonary tuberculosis diagnosis. <span class="html-italic">PLoS ONE</span> <b>2019</b>, <span class="html-italic">14</span>, e0218861. [<a href="https://scholar.google.com/scholar_lookup?title=Image+processing+for+AFB+segmentation+in+bacilloscopies+of+pulmonary+tuberculosis+diagnosis&author=D%C3%ADaz-Huerta,+J.L.&author=T%C3%A9llez-Anguiano,+A.D.C.&author=Fraga-Aguilar,+M.&author=Gutierrez-Gnecchi,+J.A.&author=Arellano-Calder%C3%B3n,+S.&publication_year=2019&journal=PLoS+ONE&volume=14&pages=e0218861&doi=10.1371/journal.pone.0218861" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1371/journal.pone.0218861" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li><li id="B11-symmetry-14-01997" class="html-xx" data-content="11.">Filho, C.F.F.C.; Pamela Levy, P.; de Matos Xavier, C.; BotinellyMendonça Fujimoto, L.; Fernandes Costa, M.G. Automatic identification of tuberculosis mycobacterium. <span class="html-italic">Res. Biomed. Eng.</span> <b>2015</b>, <span class="html-italic">31</span>, 33–43. [<a href="https://scholar.google.com/scholar_lookup?title=Automatic+identification+of+tuberculosis+mycobacterium&author=Filho,+C.F.F.C.&author=Pamela+Levy,+P.&author=de+Matos+Xavier,+C.&author=BotinellyMendon%C3%A7a+Fujimoto,+L.&author=Fernandes+Costa,+M.G.&publication_year=2015&journal=Res.+Biomed.+Eng.&volume=31&pages=33%E2%80%9343&doi=10.1590/2446-4740.0524" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1590/2446-4740.0524" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li><li id="B12-symmetry-14-01997" class="html-xx" data-content="12.">Rohmah, R.N.; Handaga, B.; Nurokhim, N.; Soesanti, I. A statistical approach on pulmonary tuberculosis detection system based on X-ray image. <span class="html-italic">Telecommun. Comput. Electron. Control.</span> <b>2019</b>, <span class="html-italic">17</span>, 1474–1482. [<a href="https://scholar.google.com/scholar_lookup?title=A+statistical+approach+on+pulmonary+tuberculosis+detection+system+based+on+X-ray+image&author=Rohmah,+R.N.&author=Handaga,+B.&author=Nurokhim,+N.&author=Soesanti,+I.&publication_year=2019&journal=Telecommun.+Comput.+Electron.+Control.&volume=17&pages=1474%E2%80%931482&doi=10.12928/telkomnika.v17i3.10546" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.12928/telkomnika.v17i3.10546" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li><li id="B13-symmetry-14-01997" class="html-xx" data-content="13.">Andayani, U.; Rahmat, R.F.; Pasi, N.S.; Siregar, B.; Syahputra, M.F.; Muchtar, M.A. Identification of The Tuberculosis (TB) Disease Based on XRay Images Using Probabilistic Neural Network (PNN). <span class="html-italic">J. Phys. Conf. Series</span> <b>2019</b>, <span class="html-italic">87</span>, e118–e124. [<a href="https://scholar.google.com/scholar_lookup?title=Identification+of+The+Tuberculosis+(TB)+Disease+Based+on+XRay+Images+Using+Probabilistic+Neural+Network+(PNN)&author=Andayani,+U.&author=Rahmat,+R.F.&author=Pasi,+N.S.&author=Siregar,+B.&author=Syahputra,+M.F.&author=Muchtar,+M.A.&publication_year=2019&journal=J.+Phys.+Conf.+Series&volume=87&pages=e118%E2%80%93e124&doi=10.1088/1742-6596/1235/1/012056" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1088/1742-6596/1235/1/012056" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li><li id="B14-symmetry-14-01997" class="html-xx" data-content="14.">Balaji, G.; Subramanian, P. Computer-Aided Lung Parenchyma Segmentation Using Supervised Learning. In <span class="html-italic">Innovations in Computer Science and Engineering</span>; Springer: Berlin/Heidelberg, Germany, 2019; pp. 403–412. [<a href="https://scholar.google.com/scholar_lookup?title=Computer-Aided+Lung+Parenchyma+Segmentation+Using+Supervised+Learning&author=Balaji,+G.&author=Subramanian,+P.&publication_year=2019&pages=403%E2%80%93412" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li><li id="B15-symmetry-14-01997" class="html-xx" data-content="15.">Hooda, R.; Mittal, A.; Sofat, S. Automated TB classification using ensemble of deep architectures. <span class="html-italic">Multimed. Tools Appl.</span> <b>2019</b>, <span class="html-italic">78</span>, 31515–31532. [<a href="https://scholar.google.com/scholar_lookup?title=Automated+TB+classification+using+ensemble+of+deep+architectures&author=Hooda,+R.&author=Mittal,+A.&author=Sofat,+S.&publication_year=2019&journal=Multimed.+Tools+Appl.&volume=78&pages=31515%E2%80%9331532&doi=10.1007/s11042-019-07984-5" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1007/s11042-019-07984-5" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li><li id="B16-symmetry-14-01997" class="html-xx" data-content="16.">Auwal, N.; Goni, I.; Ali, D.; Ngene, U.C.; Manga, I. Image Processing Approach to Determine the Severity Level of Tuberculosis. <span class="html-italic">Curr. J. Appl. Sci. Technol.</span> <b>2019</b>, <span class="html-italic">37</span>, 1–8. [<a href="https://scholar.google.com/scholar_lookup?title=Image+Processing+Approach+to+Determine+the+Severity+Level+of+Tuberculosis&author=Auwal,+N.&author=Goni,+I.&author=Ali,+D.&author=Ngene,+U.C.&author=Manga,+I.&publication_year=2019&journal=Curr.+J.+Appl.+Sci.+Technol.&volume=37&pages=1%E2%80%938&doi=10.9734/cjast/2019/v37i330285" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.9734/cjast/2019/v37i330285" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li><li id="B17-symmetry-14-01997" class="html-xx" data-content="17.">Kim, W.S.; Moon, W.K.; Kim, I.O.; Lee, H.J.; Im, J.G.; Yeon, K.M.; Han, M.C. Pulmonary Tuberculosis in children: Evaluation with CT. <span class="html-italic">AJR Am. J. Enterogenol.</span> <b>1997</b>, <span class="html-italic">168</span>, 1005–1009. [<a href="https://scholar.google.com/scholar_lookup?title=Pulmonary+Tuberculosis+in+children:+Evaluation+with+CT&author=Kim,+W.S.&author=Moon,+W.K.&author=Kim,+I.O.&author=Lee,+H.J.&author=Im,+J.G.&author=Yeon,+K.M.&author=Han,+M.C.&publication_year=1997&journal=AJR+Am.+J.+Enterogenol.&volume=168&pages=1005%E2%80%931009&doi=10.2214/ajr.168.4.9124105&pmid=9124105" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.2214/ajr.168.4.9124105" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/9124105" class="cross-ref" data-typ="pmid" target="_blank" rel="noopener noreferrer">PubMed</a>]</li><li id="B18-symmetry-14-01997" class="html-xx" data-content="18.">BulutGökten, D.; Katipoglu, B.; Basara, E.; Ates, I.; Yılmaz, N. A case report of peritoneal Tuberculosis: A challenging diagnosis. <span class="html-italic">Case Rep. Infect. Dis.</span> <b>2018</b>, <span class="html-italic">2018</span>, 4970836. [<a href="https://scholar.google.com/scholar_lookup?title=A+case+report+of+peritoneal+Tuberculosis:+A+challenging+diagnosis&author=BulutG%C3%B6kten,+D.&author=Katipoglu,+B.&author=Basara,+E.&author=Ates,+I.&author=Y%C4%B1lmaz,+N.&publication_year=2018&journal=Case+Rep.+Infect.+Dis.&volume=2018&pages=4970836" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li><li id="B19-symmetry-14-01997" class="html-xx" data-content="19.">Kant, S.; Srivastava, M.M. TowardsAautomated Tuberculosis Detection Using Deep Learning. In Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; IEEE: New York, NY, USA. [<a href="https://scholar.google.com/scholar_lookup?title=TowardsAautomated+Tuberculosis+Detection+Using+Deep+Learning&conference=Proceedings+of+the+IEEE+Symposium+Series+on+Computational+Intelligence+(SSCI)&author=Kant,+S.&author=Srivastava,+M.M.&publication_year=2018" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li><li id="B20-symmetry-14-01997" class="html-xx" data-content="20.">Eddabra, R.; AitBenhassou, H. Rapid molecular assays for detection of Tuberculosis. <span class="html-italic">Pneumonia</span> <b>2018</b>, <span class="html-italic">10</span>, 4. [<a href="https://scholar.google.com/scholar_lookup?title=Rapid+molecular+assays+for+detection+of+Tuberculosis&author=Eddabra,+R.&author=AitBenhassou,+H.&publication_year=2018&journal=Pneumonia&volume=10&pages=4&doi=10.1186/s41479-018-0049-2&pmid=29876241" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1186/s41479-018-0049-2" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/29876241" class="cross-ref" data-typ="pmid" target="_blank" rel="noopener noreferrer">PubMed</a>]</li><li id="B21-symmetry-14-01997" class="html-xx" data-content="21.">Antony, B.; Nizar Banu, P.K. Lung tuberculosis detection using x-ray images. <span class="html-italic">Int. J. Appl. Eng. Res.</span> <b>2017</b>, <span class="html-italic">12</span>, 15196–15201. [<a href="https://scholar.google.com/scholar_lookup?title=Lung+tuberculosis+detection+using+x-ray+images&author=Antony,+B.&author=Nizar+Banu,+P.K.&publication_year=2017&journal=Int.+J.+Appl.+Eng.+Res.&volume=12&pages=15196%E2%80%9315201" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li><li id="B22-symmetry-14-01997" class="html-xx" data-content="22.">Nachiappan, A.C.; Rahbar, K.; Shi, X.; Guy, E.S.; Mortani Barbosa, E.J., Jr.; Shroff, G.S.; Ocazionez, D.; Schlesinger, A.E.; Katz, S.I.; Hammer, M.M. Pulmonary Tuberculosis: Role of radiology in diagnosis and management. <span class="html-italic">Radiographics</span> <b>2017</b>, <span class="html-italic">37</span>, 52–72. [<a href="https://scholar.google.com/scholar_lookup?title=Pulmonary+Tuberculosis:+Role+of+radiology+in+diagnosis+and+management&author=Nachiappan,+A.C.&author=Rahbar,+K.&author=Shi,+X.&author=Guy,+E.S.&author=Mortani+Barbosa,+E.J.,+Jr.&author=Shroff,+G.S.&author=Ocazionez,+D.&author=Schlesinger,+A.E.&author=Katz,+S.I.&author=Hammer,+M.M.&publication_year=2017&journal=Radiographics&volume=37&pages=52%E2%80%9372&doi=10.1148/rg.2017160032" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1148/rg.2017160032" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li><li id="B23-symmetry-14-01997" class="html-xx" data-content="23.">Nour-Neamatollahi, A.; Siadat, S.D.; Yari, S.; Tasbiti, A.H.; Ebrahimzadeh, N.; Vaziri, F.; Fateh, A.; Ghazanfari, M.; Abdolrahimi, F.; Pourazar, S.; et al. A new diagnostic tool for rapid and accurate detection of Mycobacterium tuberculosis. <span class="html-italic">Saudi J. Biol. Sci.</span> <b>2018</b>, <span class="html-italic">25</span>, 418–425. [<a href="https://scholar.google.com/scholar_lookup?title=A+new+diagnostic+tool+for+rapid+and+accurate+detection+of+Mycobacterium+tuberculosis&author=Nour-Neamatollahi,+A.&author=Siadat,+S.D.&author=Yari,+S.&author=Tasbiti,+A.H.&author=Ebrahimzadeh,+N.&author=Vaziri,+F.&author=Fateh,+A.&author=Ghazanfari,+M.&author=Abdolrahimi,+F.&author=Pourazar,+S.&publication_year=2018&journal=Saudi+J.+Biol.+Sci.&volume=25&pages=418%E2%80%93425&doi=10.1016/j.sjbs.2016.01.026" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1016/j.sjbs.2016.01.026" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li><li id="B24-symmetry-14-01997" class="html-xx" data-content="24.">Pai, M.; Ling, D.I. Rapid diagnosis of extrapulmonary Tuberculosis using nucleic acid amplification tests: What is the evidence? <span class="html-italic">Future Med.</span> <b>2008</b>, <span class="html-italic">3</span>, 1–4. [<a href="https://scholar.google.com/scholar_lookup?title=Rapid+diagnosis+of+extrapulmonary+Tuberculosis+using+nucleic+acid+amplification+tests:+What+is+the+evidence?&author=Pai,+M.&author=Ling,+D.I.&publication_year=2008&journal=Future+Med.&volume=3&pages=1%E2%80%934&doi=10.2217/17460913.3.1.1" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.2217/17460913.3.1.1" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li><li id="B25-symmetry-14-01997" class="html-xx" data-content="25.">Parsons, L.M.; Somoskövi, A.; Gutierrez, C.; Lee, E.; Paramasivan, C.N.; Abimiku, A.; Spector, S.; Roscigno, G.; Nkengasong, J. Laboratory diagnosis of Tuberculosis in resource-poor countries: Challenges and opportunities. <span class="html-italic">Clin. Microbiol. Rev.</span> <b>2011</b>, <span class="html-italic">24</span>, 314–350. [<a href="https://scholar.google.com/scholar_lookup?title=Laboratory+diagnosis+of+Tuberculosis+in+resource-poor+countries:+Challenges+and+opportunities&author=Parsons,+L.M.&author=Somosk%C3%B6vi,+A.&author=Gutierrez,+C.&author=Lee,+E.&author=Paramasivan,+C.N.&author=Abimiku,+A.&author=Spector,+S.&author=Roscigno,+G.&author=Nkengasong,+J.&publication_year=2011&journal=Clin.+Microbiol.+Rev.&volume=24&pages=314%E2%80%93350&doi=10.1128/CMR.00059-10" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1128/CMR.00059-10" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li><li id="B26-symmetry-14-01997" class="html-xx" data-content="26.">Shuaib, Y.A.; Khalil, E.A.G.; Schaible, U.E.; Wieler, L.H.; Bakheit, M.A.M.; Mohamed-Noor, S.E.; Abdalla, M.A.; Homolka, S.; Andres, S.; Hillemann, D.; et al. Smear microscopy for diagnosis of pulmonary tuberculosis in eastern Sudan. <span class="html-italic">Tuberc. Res. Treat.</span> <b>2018</b>, <span class="html-italic">2018</span>, 8038137. [<a href="https://scholar.google.com/scholar_lookup?title=Smear+microscopy+for+diagnosis+of+pulmonary+tuberculosis+in+eastern+Sudan&author=Shuaib,+Y.A.&author=Khalil,+E.A.G.&author=Schaible,+U.E.&author=Wieler,+L.H.&author=Bakheit,+M.A.M.&author=Mohamed-Noor,+S.E.&author=Abdalla,+M.A.&author=Homolka,+S.&author=Andres,+S.&author=Hillemann,+D.&publication_year=2018&journal=Tuberc.+Res.+Treat.&volume=2018&pages=8038137&doi=10.1155/2018/8038137" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1155/2018/8038137" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li><li id="B27-symmetry-14-01997" class="html-xx" data-content="27.">Singer-Leshinsky, S. Pulmonary tuberculosis: Improving diagnosis and management. <span class="html-italic">JAAPA</span> <b>2016</b>, <span class="html-italic">29</span>, 20–25. [<a href="https://scholar.google.com/scholar_lookup?title=Pulmonary+tuberculosis:+Improving+diagnosis+and+management&author=Singer-Leshinsky,+S.&publication_year=2016&journal=JAAPA&volume=29&pages=20%E2%80%9325&doi=10.1097/01.JAA.0000476207.96819.a7" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1097/01.JAA.0000476207.96819.a7" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li><li id="B28-symmetry-14-01997" class="html-xx" data-content="28.">Wang, Y. Digital Picture Taking Optical Reader Having Hybrd Monochrome and Color Image Sensor Array. U.S. Patent No. 7,780,089, 24 August 2010. Available online: <a href="https://www.uspto.gov/patents" target="_blank" rel="noopener noreferrer">https://www.uspto.gov/patents</a> (accessed on 14 July 2022).</li><li id="B29-symmetry-14-01997" class="html-xx" data-content="29.">Srinivasan, G.; Shobha, G. Statistical texture analysis. <span class="html-italic">Int. J. Comput. Inf. Eng.</span> <b>2008</b>, <span class="html-italic">2</span>, 1–6. [<a href="https://scholar.google.com/scholar_lookup?title=Statistical+texture+analysis&author=Srinivasan,+G.&author=Shobha,+G.&publication_year=2008&journal=Int.+J.+Comput.+Inf.+Eng.&volume=2&pages=1%E2%80%936" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li><li id="B30-symmetry-14-01997" class="html-xx" data-content="30.">Umarani, C.; Ganesan, L.; Radhakrishnan, S. Combined statistical and structural approach for unsupervised texture classification. <span class="html-italic">Int. J. Imaging Eng.</span> <b>2008</b>, <span class="html-italic">2</span>, 162–165. [<a href="https://scholar.google.com/scholar_lookup?title=Combined+statistical+and+structural+approach+for+unsupervised+texture+classification&author=Umarani,+C.&author=Ganesan,+L.&author=Radhakrishnan,+S.&publication_year=2008&journal=Int.+J.+Imaging+Eng.&volume=2&pages=162%E2%80%93165" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li><li id="B31-symmetry-14-01997" class="html-xx" data-content="31.">Yuen, C.T.; San, W.S.; Seong, T.C.; Rizon, M. Classification of human emotions from EEG signals using statistical features and neural network. <span class="html-italic">Int. J. Integr. Eng.</span> <b>2009</b>, <span class="html-italic">1</span>, 25–38. [<a href="https://scholar.google.com/scholar_lookup?title=Classification+of+human+emotions+from+EEG+signals+using+statistical+features+and+neural+network&author=Yuen,+C.T.&author=San,+W.S.&author=Seong,+T.C.&author=Rizon,+M.&publication_year=2009&journal=Int.+J.+Integr.+Eng.&volume=1&pages=25%E2%80%9338" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li><li id="B32-symmetry-14-01997" class="html-xx" data-content="32.">Landy, M.S.; Graham, N. 73 visual perception of texture. <span class="html-italic">Vis. Neurosci.</span> <b>2004</b>, <span class="html-italic">2</span>, 1106–1118. [<a href="https://scholar.google.com/scholar_lookup?title=73+visual+perception+of+texture&author=Landy,+M.S.&author=Graham,+N.&publication_year=2004&journal=Vis.+Neurosci.&volume=2&pages=1106%E2%80%931118" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li><li id="B33-symmetry-14-01997" class="html-xx" data-content="33.">Dixit, A.; Hegde, N.P. Image Texture Analysis-Survey. In Proceedings of the 2013 Third International Conference on Advanced Computing and Communication Technologies (ACCT), Rohtak, India, 6–7 April 2013; IEEE: New York, NY, USA. [<a href="https://scholar.google.com/scholar_lookup?title=Image+Texture+Analysis-Survey&conference=Proceedings+of+the+2013+Third+International+Conference+on+Advanced+Computing+and+Communication+Technologies+(ACCT)&author=Dixit,+A.&author=Hegde,+N.P.&publication_year=2013" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li><li id="B34-symmetry-14-01997" class="html-xx" data-content="34.">Szczypinski, P.M.; Strzelecki, M.; Materka, A. Mazda—A software for texture analysis. In Proceedings of the 2007 International Symposium on Information Technology Convergence (ISITC 2007), Jeonju, Korea, 23–24 November 2007; IEEE: New York, NY, USA. [<a href="https://scholar.google.com/scholar_lookup?title=Mazda%E2%80%94A+software+for+texture+analysis&conference=Proceedings+of+the+2007+International+Symposium+on+Information+Technology+Convergence+(ISITC+2007)&author=Szczypinski,+P.M.&author=Strzelecki,+M.&author=Materka,+A.&publication_year=2007" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li><li id="B35-symmetry-14-01997" class="html-xx" data-content="35.">Quinonero-Candela, J.; Sugiyama, M.; Schwaighofer, A.; Lawrence, N.D. <span class="html-italic">Dataset Shift in Machine Learning</span>; Mit Press: Cambridge, MA, USA, 2008. [<a href="https://scholar.google.com/scholar_lookup?title=Dataset+Shift+in+Machine+Learning&author=Quinonero-Candela,+J.&author=Sugiyama,+M.&author=Schwaighofer,+A.&author=Lawrence,+N.D.&publication_year=2008" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li><li id="B36-symmetry-14-01997" class="html-xx" data-content="36.">Guerra, L.; McGarry, L.M.; Robles, V.; Bielza, C.; Larrañaga, P.; Yuste, R. Comparison between supervised and unsupervised classifications of neuronal cell types: A case study. <span class="html-italic">Dev. Neurobiol.</span> <b>2011</b>, <span class="html-italic">71</span>, 71–82. [<a href="https://scholar.google.com/scholar_lookup?title=Comparison+between+supervised+and+unsupervised+classifications+of+neuronal+cell+types:+A+case+study&author=Guerra,+L.&author=McGarry,+L.M.&author=Robles,+V.&author=Bielza,+C.&author=Larra%C3%B1aga,+P.&author=Yuste,+R.&publication_year=2011&journal=Dev.+Neurobiol.&volume=71&pages=71%E2%80%9382&doi=10.1002/dneu.20809" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1002/dneu.20809" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>][<a href="https://core.ac.uk/download/pdf/148657343.pdf" target="_blank" rel="noopener noreferrer">Green Version</a>]</li></ol></section><section id="FiguresandTables" type="display-objects"><div class="html-fig-wrap" id="symmetry-14-01997-f001"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f001"> <img alt="Symmetry 14 01997 g001 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g001.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g001.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g001-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f001"></a> </div> </div> <div class="html-fig_description"> <b>Figure 1.</b> Human Lungs [<a href="#B6-symmetry-14-01997" class="html-bibr">6</a>]. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f001"> <div class="html-caption"> <b>Figure 1.</b> Human Lungs [<a href="#B6-symmetry-14-01997" class="html-bibr">6</a>].</div> <div class="html-img"><img alt="Symmetry 14 01997 g001" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g001.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g001.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g001.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f002"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f002"> <img alt="Symmetry 14 01997 g002 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g002.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g002.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g002-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f002"></a> </div> </div> <div class="html-fig_description"> <b>Figure 2.</b> (<b>a</b>): Tuberculosis affected lung image and (<b>b</b>): Normal lung CT image. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f002"> <div class="html-caption"> <b>Figure 2.</b> (<b>a</b>): Tuberculosis affected lung image and (<b>b</b>): Normal lung CT image.</div> <div class="html-img"><img alt="Symmetry 14 01997 g002" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g002.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g002.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g002.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f003"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f003"> <img alt="Symmetry 14 01997 g003 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g003.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g003.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g003-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f003"></a> </div> </div> <div class="html-fig_description"> <b>Figure 3.</b> Proposed system model. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f003"> <div class="html-caption"> <b>Figure 3.</b> Proposed system model.</div> <div class="html-img"><img alt="Symmetry 14 01997 g003" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g003.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g003.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g003.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f004"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f004"> <img alt="Symmetry 14 01997 g004 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g004.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g004.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g004-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f004"></a> </div> </div> <div class="html-fig_description"> <b>Figure 4.</b> ROIs selection ((<b>a</b>): Abnormal lung’s CT scan image and (<b>b</b>): 3 ROIs). </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f004"> <div class="html-caption"> <b>Figure 4.</b> ROIs selection ((<b>a</b>): Abnormal lung’s CT scan image and (<b>b</b>): 3 ROIs).</div> <div class="html-img"><img alt="Symmetry 14 01997 g004" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g004.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g004.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g004.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f006"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f006"> <img alt="Symmetry 14 01997 g006 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g006.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g006.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g006-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f006"></a> </div> </div> <div class="html-fig_description"> <b>Figure 6.</b> Accuracy of the dataset using MLP Classifier. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f006"> <div class="html-caption"> <b>Figure 6.</b> Accuracy of the dataset using MLP Classifier.</div> <div class="html-img"><img alt="Symmetry 14 01997 g006" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g006.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g006.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g006.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f007"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f007"> <img alt="Symmetry 14 01997 g007 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g007.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g007.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g007-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f007"></a> </div> </div> <div class="html-fig_description"> <b>Figure 7.</b> Accuracy of the dataset using RF classifier. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f007"> <div class="html-caption"> <b>Figure 7.</b> Accuracy of the dataset using RF classifier.</div> <div class="html-img"><img alt="Symmetry 14 01997 g007" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g007.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g007.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g007.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f008"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f008"> <img alt="Symmetry 14 01997 g008 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g008.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g008.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g008-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f008"></a> </div> </div> <div class="html-fig_description"> <b>Figure 8.</b> Accuracy of Dataset using J48 Classifier. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f008"> <div class="html-caption"> <b>Figure 8.</b> Accuracy of Dataset using J48 Classifier.</div> <div class="html-img"><img alt="Symmetry 14 01997 g008" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g008.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g008.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g008.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f009"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f009"> <img alt="Symmetry 14 01997 g009 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g009.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g009.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g009-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f009"></a> </div> </div> <div class="html-fig_description"> <b>Figure 9.</b> Accuracy of the dataset using LogitBoost Classifier. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f009"> <div class="html-caption"> <b>Figure 9.</b> Accuracy of the dataset using LogitBoost Classifier.</div> <div class="html-img"><img alt="Symmetry 14 01997 g009" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g009.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g009.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g009.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f010"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f010"> <img alt="Symmetry 14 01997 g010 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g010.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g010.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g010-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f010"></a> </div> </div> <div class="html-fig_description"> <b>Figure 10.</b> Accuracy of the dataset using AdaBoostM1 Classifier. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f010"> <div class="html-caption"> <b>Figure 10.</b> Accuracy of the dataset using AdaBoostM1 Classifier.</div> <div class="html-img"><img alt="Symmetry 14 01997 g010" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g010.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g010.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g010.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f011"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f011"> <img alt="Symmetry 14 01997 g011 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g011.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g011.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g011-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f011"></a> </div> </div> <div class="html-fig_description"> <b>Figure 11.</b> Accuracy of Dataset using BayesNet Classifier. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f011"> <div class="html-caption"> <b>Figure 11.</b> Accuracy of Dataset using BayesNet Classifier.</div> <div class="html-img"><img alt="Symmetry 14 01997 g011" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g011.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g011.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g011.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f012"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f012"> <img alt="Symmetry 14 01997 g012 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g012.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g012.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g012-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f012"></a> </div> </div> <div class="html-fig_description"> <b>Figure 12.</b> Accuracy Comparison among different ML classifiers. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f012"> <div class="html-caption"> <b>Figure 12.</b> Accuracy Comparison among different ML classifiers.</div> <div class="html-img"><img alt="Symmetry 14 01997 g012" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g012.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g012.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g012.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f013"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f013"> <img alt="Symmetry 14 01997 g013 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g013.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g013.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g013-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f013"></a> </div> </div> <div class="html-fig_description"> <b>Figure 13.</b> Accuracy of ANN for one layer having 50 nodes. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f013"> <div class="html-caption"> <b>Figure 13.</b> Accuracy of ANN for one layer having 50 nodes.</div> <div class="html-img"><img alt="Symmetry 14 01997 g013" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g013.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g013.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g013.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f014"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f014"> <img alt="Symmetry 14 01997 g014 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g014.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g014.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g014-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f014"></a> </div> </div> <div class="html-fig_description"> <b>Figure 14.</b> The MLP classifier detailed accuracy of one layer having 100 Nodes. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f014"> <div class="html-caption"> <b>Figure 14.</b> The MLP classifier detailed accuracy of one layer having 100 Nodes.</div> <div class="html-img"><img alt="Symmetry 14 01997 g014" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g014.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g014.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g014.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f015"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f015"> <img alt="Symmetry 14 01997 g015 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g015.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g015.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g015-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f015"></a> </div> </div> <div class="html-fig_description"> <b>Figure 15.</b> Accuracy of MLP classifier for two layers having 50 and 100 nodes. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f015"> <div class="html-caption"> <b>Figure 15.</b> Accuracy of MLP classifier for two layers having 50 and 100 nodes.</div> <div class="html-img"><img alt="Symmetry 14 01997 g015" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g015.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g015.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g015.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f016"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f016"> <img alt="Symmetry 14 01997 g016 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g016.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g016.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g016-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f016"></a> </div> </div> <div class="html-fig_description"> <b>Figure 16.</b> The accuracy of MLP classifier. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f016"> <div class="html-caption"> <b>Figure 16.</b> The accuracy of MLP classifier.</div> <div class="html-img"><img alt="Symmetry 14 01997 g016" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g016.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g016.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g016.png" /></div> </div><div class="html-fig-wrap" id="symmetry-14-01997-f017"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f017"> <img alt="Symmetry 14 01997 g017 550" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g017.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g017.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g017-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#fig_body_display_symmetry-14-01997-f017"></a> </div> </div> <div class="html-fig_description"> <b>Figure 17.</b> The accuracy. </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_symmetry-14-01997-f017"> <div class="html-caption"> <b>Figure 17.</b> The accuracy.</div> <div class="html-img"><img alt="Symmetry 14 01997 g017" data-large="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g017.png" data-original="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g017.png" data-lsrc="/symmetry/symmetry-14-01997/article_deploy/html/images/symmetry-14-01997-g017.png" /></div> </div><div class="html-table-wrap" id="symmetry-14-01997-t001"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t001"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t001"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 1.</b> Summary of related work. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t001"> <div class="html-caption"><b>Table 1.</b> Summary of related work.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Authors</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Dataset Type and Size</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Approach/Algorithms/Classifiers</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Features</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Results</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">Díaz-Huerta, J. L., et al. (2019)</td><td align="center" valign="middle" class="html-align-center">200 images from bacilloscopes</td><td align="center" valign="middle" class="html-align-center">Bayes classifier + Gaussian mixture</td><td align="center" valign="middle" class="html-align-center">RGB Colored</td><td align="center" valign="middle" class="html-align-center">ACC = 92%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Rohmah, R. N., et al. (2019)</td><td align="center" valign="middle" class="html-align-center">50 X-ray images</td><td align="center" valign="middle" class="html-align-center">Euclidean Distance</td><td align="center" valign="middle" class="html-align-center">Statistical</td><td align="center" valign="middle" class="html-align-center">ACC = 94%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Andayani, U., et al. (2019)</td><td align="center" valign="middle" class="html-align-center">210 X-ray images</td><td align="center" valign="middle" class="html-align-center">Probabilistic neural network (PNN)</td><td align="center" valign="middle" class="html-align-center">Statistical</td><td align="center" valign="middle" class="html-align-center">ACC = 96%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Hooda, R., Mittal, A. & Sofat, S. (2019)</td><td align="center" valign="middle" class="html-align-center">1133 CXRs</td><td align="center" valign="middle" class="html-align-center">AlexNet, ResNet and GoogleNet Assembling</td><td align="center" valign="middle" class="html-align-center">Statistical</td><td align="center" valign="middle" class="html-align-center">ACC = 88.24% Sensitive = 88.4% specificity = 88% AUC = 0.93</td></tr><tr><td align="center" valign="middle" class="html-align-center">Kant, S. & Srivastava, M. M. (2018)</td><td align="center" valign="middle" class="html-align-center">Microscopic Image</td><td align="center" valign="middle" class="html-align-center">Deep Learning</td><td align="center" valign="middle" class="html-align-center">Patch Detection</td><td align="center" valign="middle" class="html-align-center">ACC = 83.87% PRE = 67.55%.</td></tr><tr><td align="center" valign="middle" class="html-align-center">Nour-Neamatollahi, A., et al. (2016)</td><td align="center" valign="middle" class="html-align-center">476 sputum</td><td align="center" valign="middle" class="html-align-center">Patho-TB, AFB Microscopy, Culture and PCR</td><td align="center" valign="middle" class="html-align-center">Visual</td><td align="center" valign="middle" class="html-align-center">ACC = 100% Reducibility (0.85–1)</td></tr><tr><td align="center" valign="middle" class="html-align-center">Shuaib, Y. A., et al. (2018)</td><td align="center" valign="middle" class="html-align-center">383 Sputum</td><td align="center" valign="middle" class="html-align-center">Microscopy and Culture</td><td align="center" valign="middle" class="html-align-center"> </td><td align="center" valign="middle" class="html-align-center">ACC = 84.4%</td></tr><tr><td align="center" valign="middle" class="html-align-center">TANKA, S. et al. (2014)</td><td align="center" valign="middle" class="html-align-center">MDCT images</td><td align="center" valign="middle" class="html-align-center">Image processing</td><td align="center" valign="middle" class="html-align-center">Pixel</td><td align="center" valign="middle" class="html-align-center">TRP = 96.6% FP = 6.45%</td></tr><tr><td align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Purposed Methodology</td><td align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">CT Scans</td><td align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">MLP</td><td align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Multi-Feature Dataset</td><td align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">ACC = 99%</td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t002"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t002"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t002"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 2.</b> A binary confusion matrix. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t002"> <div class="html-caption"><b>Table 2.</b> A binary confusion matrix.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"> </th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">A</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">B</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">A = Tuberculosis class</td><td align="center" valign="middle" class="html-align-center">True A</td><td align="center" valign="middle" class="html-align-center">False A</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">B = Normal class</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">False B</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">True A</td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t003"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t003"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t003"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 3.</b> MLP Classifier Summary. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t003"> <div class="html-caption"><b>Table 3.</b> MLP Classifier Summary.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Total Number of Instances</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">600</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"> </th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">Correctly classified Instances</td><td align="center" valign="middle" class="html-align-center">594</td><td align="center" valign="middle" class="html-align-center">99%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Incorrectly classified Instances</td><td align="center" valign="middle" class="html-align-center">6</td><td align="center" valign="middle" class="html-align-center">1%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Kappa Statistic</td><td align="center" valign="middle" class="html-align-center">0.98</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Mean absolute error</td><td align="center" valign="middle" class="html-align-center">0.015</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Root mean squared error</td><td align="center" valign="middle" class="html-align-center">0.0901</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Relative absolute error</td><td align="center" valign="middle" class="html-align-center">2.9908%</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Root Relative squared error</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">18.0124%</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"> </td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t004"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t004"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t004"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 4.</b> MLP Classifier Detailed Accuracy. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t004"> <div class="html-caption"><b>Table 4.</b> MLP Classifier Detailed Accuracy.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">TP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">FP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Precision</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Recall</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">F-Measure</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">MCC</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">ROC Area</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Class</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">0.983</td><td align="center" valign="middle" class="html-align-center">0.003</td><td align="center" valign="middle" class="html-align-center">0.997</td><td align="center" valign="middle" class="html-align-center">0.983</td><td align="center" valign="middle" class="html-align-center">0.99</td><td align="center" valign="middle" class="html-align-center">0.98</td><td align="center" valign="middle" class="html-align-center">0.996</td><td align="center" valign="middle" class="html-align-center">Normal</td></tr><tr><td align="center" valign="middle" class="html-align-center">0.997</td><td align="center" valign="middle" class="html-align-center">0.017</td><td align="center" valign="middle" class="html-align-center">0.984</td><td align="center" valign="middle" class="html-align-center">0.997</td><td align="center" valign="middle" class="html-align-center">0.99</td><td align="center" valign="middle" class="html-align-center">0.98</td><td align="center" valign="middle" class="html-align-center">0.996</td><td align="center" valign="middle" class="html-align-center">Abnormal</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.99</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.01</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.99</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.99</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.99</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.98</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.996</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Weighted Avg.</td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t005"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t005"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t005"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 5.</b> Classification result using MLP Classifier. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t005"> <div class="html-caption"><b>Table 5.</b> Classification result using MLP Classifier.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Classified as</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">A</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">B</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">A = Tuberculosis</td><td align="center" valign="middle" class="html-align-center">295</td><td align="center" valign="middle" class="html-align-center">5</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">B = Normal</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">1</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">299</td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t006"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t006"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t006"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 6.</b> RF Classifier Summary. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t006"> <div class="html-caption"><b>Table 6.</b> RF Classifier Summary.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Total Number of Instances</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">600</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"> </th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">Correctly classified instances</td><td align="center" valign="middle" class="html-align-center">593</td><td align="center" valign="middle" class="html-align-center">98.8333%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Incorrectly Classified instances</td><td align="center" valign="middle" class="html-align-center">7</td><td align="center" valign="middle" class="html-align-center">1.1667%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Kappa statistic</td><td align="center" valign="middle" class="html-align-center">0.9767</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Mean absolute error</td><td align="center" valign="middle" class="html-align-center">0.0191</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Root mean squared error</td><td align="center" valign="middle" class="html-align-center">0.0914</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Relative absolute error</td><td align="center" valign="middle" class="html-align-center">3.83%</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Root relative squared error</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">18.2773%</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"> </td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t007"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t007"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t007"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 7.</b> RF Classifier Detailed Accuracy. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t007"> <div class="html-caption"><b>Table 7.</b> RF Classifier Detailed Accuracy.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">TP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">FP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Procession</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Recall</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">F-Measure</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">MCC</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">ROC Area</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Class</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">0.977</td><td align="center" valign="middle" class="html-align-center">0</td><td align="center" valign="middle" class="html-align-center">1</td><td align="center" valign="middle" class="html-align-center">0.977</td><td align="center" valign="middle" class="html-align-center">0.988</td><td align="center" valign="middle" class="html-align-center">0.977</td><td align="center" valign="middle" class="html-align-center">1</td><td align="center" valign="middle" class="html-align-center">Normal</td></tr><tr><td align="center" valign="middle" class="html-align-center">1</td><td align="center" valign="middle" class="html-align-center">0.023</td><td align="center" valign="middle" class="html-align-center">0.977</td><td align="center" valign="middle" class="html-align-center">1</td><td align="center" valign="middle" class="html-align-center">0.988</td><td align="center" valign="middle" class="html-align-center">0.977</td><td align="center" valign="middle" class="html-align-center">1</td><td align="center" valign="middle" class="html-align-center">Abnormal</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.988</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.012</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.989</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.988</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.988</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.977</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">1</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Weighted Average</td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t008"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t008"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t008"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 8.</b> Classification result using RF Classifier. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t008"> <div class="html-caption"><b>Table 8.</b> Classification result using RF Classifier.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Classified as</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">A</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">B</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">A = Tuberculosis</td><td align="center" valign="middle" class="html-align-center">293</td><td align="center" valign="middle" class="html-align-center">7</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">B = Normal</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">300</td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t009"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t009"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t009"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 9.</b> J48 Classifier Summary. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t009"> <div class="html-caption"><b>Table 9.</b> J48 Classifier Summary.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Total Number of Instances</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">600</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"> </th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">Correctly Classified Instances</td><td align="center" valign="middle" class="html-align-center">592</td><td align="center" valign="middle" class="html-align-center">98.667%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Incorrectly Classified Instances</td><td align="center" valign="middle" class="html-align-center">8</td><td align="center" valign="middle" class="html-align-center">1.333%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Kappa statistic</td><td align="center" valign="middle" class="html-align-center">0.9733</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Mean absolute error</td><td align="center" valign="middle" class="html-align-center">0.0165</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Root mean squared error</td><td align="center" valign="middle" class="html-align-center">0.1137</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Relative absolute error</td><td align="center" valign="middle" class="html-align-center">3.2964%</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Root relative squared error</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">22.7458%</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"> </td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t010"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t010"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t010"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 10.</b> J48 Classifier Detailed Accuracy. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t010"> <div class="html-caption"><b>Table 10.</b> J48 Classifier Detailed Accuracy.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">TP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">FP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Precision</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Recall</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">F-Measure</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">MCC</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">ROC Area</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Class</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">0.973</td><td align="center" valign="middle" class="html-align-center">0</td><td align="center" valign="middle" class="html-align-center">1</td><td align="center" valign="middle" class="html-align-center">0.973</td><td align="center" valign="middle" class="html-align-center">0.986</td><td align="center" valign="middle" class="html-align-center">0.974</td><td align="center" valign="middle" class="html-align-center">0.985</td><td align="center" valign="middle" class="html-align-center">Normal</td></tr><tr><td align="center" valign="middle" class="html-align-center">1</td><td align="center" valign="middle" class="html-align-center">0.027</td><td align="center" valign="middle" class="html-align-center">0.974</td><td align="center" valign="middle" class="html-align-center">1</td><td align="center" valign="middle" class="html-align-center">0.986</td><td align="center" valign="middle" class="html-align-center">0.974</td><td align="center" valign="middle" class="html-align-center">0.985</td><td align="center" valign="middle" class="html-align-center">Abnormal</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.987</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.013</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.987</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.987</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.986</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.974</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.985</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Weighted Average</td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t011"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t011"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t011"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 11.</b> Classification result using J48 classifier. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t011"> <div class="html-caption"><b>Table 11.</b> Classification result using J48 classifier.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Classified as</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">A</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">B</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">A = Tuberculosis</td><td align="center" valign="middle" class="html-align-center">292</td><td align="center" valign="middle" class="html-align-center">8</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">B = Normal</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">300</td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t012"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t012"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t012"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 12.</b> LogitBoot Classifier Summary. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t012"> <div class="html-caption"><b>Table 12.</b> LogitBoot Classifier Summary.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Total Number of Instances</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">600</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">98.3333%</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">Correctly classified instances</td><td align="center" valign="middle" class="html-align-center">590</td><td align="center" valign="middle" class="html-align-center">1.6667%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Incorrectly Classified instances</td><td align="center" valign="middle" class="html-align-center">10</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Kappa statistic</td><td align="center" valign="middle" class="html-align-center">0.9667</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Mean absolute error</td><td align="center" valign="middle" class="html-align-center">0.0268</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Root mean squared error</td><td align="center" valign="middle" class="html-align-center">0.1089</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Relative absolute error</td><td align="center" valign="middle" class="html-align-center">5.3547%%</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Root relative squared error</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">21.7721%%</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"> </td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t013"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t013"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t013"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 13.</b> LogitBoost Classifier Detailed Accuracy. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t013"> <div class="html-caption"><b>Table 13.</b> LogitBoost Classifier Detailed Accuracy.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">TP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">FP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Precision</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Recall</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">F-Measure</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">MCC</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">ROC Area</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Class</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">0.967</td><td align="center" valign="middle" class="html-align-center">0</td><td align="center" valign="middle" class="html-align-center">1</td><td align="center" valign="middle" class="html-align-center">0.967</td><td align="center" valign="middle" class="html-align-center">0.983</td><td align="center" valign="middle" class="html-align-center">0.967</td><td align="center" valign="middle" class="html-align-center">0.998</td><td align="center" valign="middle" class="html-align-center">Normal</td></tr><tr><td align="center" valign="middle" class="html-align-center">1</td><td align="center" valign="middle" class="html-align-center">0.033</td><td align="center" valign="middle" class="html-align-center">0.968</td><td align="center" valign="middle" class="html-align-center">1</td><td align="center" valign="middle" class="html-align-center">0.984</td><td align="center" valign="middle" class="html-align-center">0.967</td><td align="center" valign="middle" class="html-align-center">0.998</td><td align="center" valign="middle" class="html-align-center">Abnormal</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.983</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.017</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.984</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.983</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.983</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.967</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.998</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Weighted Average</td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t014"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t014"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t014"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 14.</b> Classification result using LogitBoost Classifier. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t014"> <div class="html-caption"><b>Table 14.</b> Classification result using LogitBoost Classifier.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Classified as</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">A</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">B</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">A = Tuberculosis</td><td align="center" valign="middle" class="html-align-center">290</td><td align="center" valign="middle" class="html-align-center">10</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">B = Normal</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">300</td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t015"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t015"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t015"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 15.</b> AdaBoostM1 Classifier Summary. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t015"> <div class="html-caption"><b>Table 15.</b> AdaBoostM1 Classifier Summary.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Total Number of Instances</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">600</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"> </th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">Correctly classified instances</td><td align="center" valign="middle" class="html-align-center">583</td><td align="center" valign="middle" class="html-align-center">97.1667%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Incorrectly Classified instances</td><td align="center" valign="middle" class="html-align-center">17</td><td align="center" valign="middle" class="html-align-center">2.8333%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Kappa statistic</td><td align="center" valign="middle" class="html-align-center">0.9433</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Mean absolute error</td><td align="center" valign="middle" class="html-align-center">0.0313</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Root mean squared error</td><td align="center" valign="middle" class="html-align-center">0.1404</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Relative absolute error</td><td align="center" valign="middle" class="html-align-center">6.2585%</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Root relative squared error</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">28.0711%</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"> </td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t016"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t016"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t016"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 16.</b> AdaBoostM1 Detailed Accuracy. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t016"> <div class="html-caption"><b>Table 16.</b> AdaBoostM1 Detailed Accuracy.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">TP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">FP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Procession</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Recall</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">F-Measure</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">MCC</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">ROC Area</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Class</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">0.953</td><td align="center" valign="middle" class="html-align-center">0.01</td><td align="center" valign="middle" class="html-align-center">0.99</td><td align="center" valign="middle" class="html-align-center">0.953</td><td align="center" valign="middle" class="html-align-center">0.971</td><td align="center" valign="middle" class="html-align-center">0.944</td><td align="center" valign="middle" class="html-align-center">0.998</td><td align="center" valign="middle" class="html-align-center">Normal</td></tr><tr><td align="center" valign="middle" class="html-align-center">0.99</td><td align="center" valign="middle" class="html-align-center">0.047</td><td align="center" valign="middle" class="html-align-center">0.955</td><td align="center" valign="middle" class="html-align-center">0.99</td><td align="center" valign="middle" class="html-align-center">0.972</td><td align="center" valign="middle" class="html-align-center">0.944</td><td align="center" valign="middle" class="html-align-center">0.998</td><td align="center" valign="middle" class="html-align-center">Abnormal</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.972</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.028</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.972</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.972</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.972</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.944</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.998</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Weighted Average</td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t017"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t017"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t017"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 17.</b> Classification result using AdaBoostM1 Classifier. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t017"> <div class="html-caption"><b>Table 17.</b> Classification result using AdaBoostM1 Classifier.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Classified as</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">A</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">B</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">A = Tuberculosis</td><td align="center" valign="middle" class="html-align-center">286</td><td align="center" valign="middle" class="html-align-center">14</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">B = Normal</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">3</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">297</td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t018"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t018"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t018"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 18.</b> BayesNet Classifier Summary. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t018"> <div class="html-caption"><b>Table 18.</b> BayesNet Classifier Summary.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Total Number of Instances</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">600</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"> </th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">Correctly classified instances</td><td align="center" valign="middle" class="html-align-center">581</td><td align="center" valign="middle" class="html-align-center">96.8333%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Incorrectly Classified instances</td><td align="center" valign="middle" class="html-align-center">19</td><td align="center" valign="middle" class="html-align-center">3.1667%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Kappa statistic</td><td align="center" valign="middle" class="html-align-center">0.9367</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Mean absolute error</td><td align="center" valign="middle" class="html-align-center">0.0302</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Root mean squared error</td><td align="center" valign="middle" class="html-align-center">0.1542</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Relative absolute error</td><td align="center" valign="middle" class="html-align-center">6.0474%</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Root relative squared error</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">30.8391%</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"> </td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t019"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t019"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t019"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 19.</b> BayesNet Classifier Detailed Accuracy. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t019"> <div class="html-caption"><b>Table 19.</b> BayesNet Classifier Detailed Accuracy.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">TP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">FP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Procession</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Recall</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">F-Measure</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">MCC</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">ROC Area</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Class</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">0.963</td><td align="center" valign="middle" class="html-align-center">0.027</td><td align="center" valign="middle" class="html-align-center">0.973</td><td align="center" valign="middle" class="html-align-center">0.963</td><td align="center" valign="middle" class="html-align-center">0.968</td><td align="center" valign="middle" class="html-align-center">0.937</td><td align="center" valign="middle" class="html-align-center">0.997</td><td align="center" valign="middle" class="html-align-center">Normal</td></tr><tr><td align="center" valign="middle" class="html-align-center">0.973</td><td align="center" valign="middle" class="html-align-center">0.037</td><td align="center" valign="middle" class="html-align-center">0.964</td><td align="center" valign="middle" class="html-align-center">0.973</td><td align="center" valign="middle" class="html-align-center">0.968</td><td align="center" valign="middle" class="html-align-center">0.937</td><td align="center" valign="middle" class="html-align-center">0.997</td><td align="center" valign="middle" class="html-align-center">Abnormal</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.968</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.032</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.968</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.968</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.968</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.937</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.997</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Weighted Average</td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t020"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t020"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t020"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 20.</b> Classification result using BayesNet Classifier. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t020"> <div class="html-caption"><b>Table 20.</b> Classification result using BayesNet Classifier.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Classified as</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">A</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">B</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">A = Tuberculosis</td><td align="center" valign="middle" class="html-align-center">289</td><td align="center" valign="middle" class="html-align-center">11</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">B = Normal</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">8</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">292</td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t021"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t021"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t021"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 21.</b> The MLP Classifier Summary. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t021"> <div class="html-caption"><b>Table 21.</b> The MLP Classifier Summary.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Parameters</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Values</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Accuracy</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">Total Number of Instances</td><td align="center" valign="middle" class="html-align-center">600</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Correctly Classified Instances</td><td align="center" valign="middle" class="html-align-center">596</td><td align="center" valign="middle" class="html-align-center">99.33%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Incorrectly Classified Instances</td><td align="center" valign="middle" class="html-align-center">4</td><td align="center" valign="middle" class="html-align-center">0.66%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Kappa statistic</td><td align="center" valign="middle" class="html-align-center">0.79</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Mean absolute error</td><td align="center" valign="middle" class="html-align-center">0.009</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Root mean squared error</td><td align="center" valign="middle" class="html-align-center">0.0823</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Relative absolute error</td><td align="center" valign="middle" class="html-align-center">22.25%</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Root relative squared error</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">58.81%</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"> </td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t022"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t022"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t022"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 22.</b> The MLP Classifier Detailed Accuracy. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t022"> <div class="html-caption"><b>Table 22.</b> The MLP Classifier Detailed Accuracy.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">TP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">FP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Precision</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Recall</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">F-Measure</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">MCC</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">ROC Area</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">PRC Area</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Class</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">0.667</td><td align="center" valign="middle" class="html-align-center">0.000</td><td align="center" valign="middle" class="html-align-center">1.000</td><td align="center" valign="middle" class="html-align-center">0.667</td><td align="center" valign="middle" class="html-align-center">0.800</td><td align="center" valign="middle" class="html-align-center">0.814</td><td align="center" valign="middle" class="html-align-center">0.816</td><td align="center" valign="middle" class="html-align-center">0.682</td><td align="center" valign="middle" class="html-align-center">Active</td></tr><tr><td align="center" valign="middle" class="html-align-center">1.000</td><td align="center" valign="middle" class="html-align-center">0.333</td><td align="center" valign="middle" class="html-align-center">0.993</td><td align="center" valign="middle" class="html-align-center">1.000</td><td align="center" valign="middle" class="html-align-center">0.997</td><td align="center" valign="middle" class="html-align-center">0.814</td><td align="center" valign="middle" class="html-align-center">0.815</td><td align="center" valign="middle" class="html-align-center">0.989</td><td align="center" valign="middle" class="html-align-center">Inactive</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.009</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.327</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.993</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.993</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.993</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.814</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.815</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.983</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"> </td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t023"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t023"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t023"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 23.</b> The MLP Classifier Summary. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t023"> <div class="html-caption"><b>Table 23.</b> The MLP Classifier Summary.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Parameters</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Values</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Accuracy</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">Total Number of Instances</td><td align="center" valign="middle" class="html-align-center">600</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Correctly Classified Instances</td><td align="center" valign="middle" class="html-align-center">596</td><td align="center" valign="middle" class="html-align-center">99.33%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Incorrectly Classified Instances</td><td align="center" valign="middle" class="html-align-center">4</td><td align="center" valign="middle" class="html-align-center">0.66%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Kappa statistic</td><td align="center" valign="middle" class="html-align-center">0.79</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Mean absolute error</td><td align="center" valign="middle" class="html-align-center">0.0092</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Root mean squared error</td><td align="center" valign="middle" class="html-align-center">0.0824</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Relative absolute error</td><td align="center" valign="middle" class="html-align-center">22.46%</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Root relative squared error</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">58.85%</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"> </td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t024"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t024"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t024"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 24.</b> The MLP Classifier Detailed Accuracy. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t024"> <div class="html-caption"><b>Table 24.</b> The MLP Classifier Detailed Accuracy.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">TP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">FP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Precision</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Recall</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">F-Measure</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">MCC</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">ROC Area</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">PRC Area</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Class</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">0.667</td><td align="center" valign="middle" class="html-align-center">0.000</td><td align="center" valign="middle" class="html-align-center">1.000</td><td align="center" valign="middle" class="html-align-center">0.667</td><td align="center" valign="middle" class="html-align-center">0.800</td><td align="center" valign="middle" class="html-align-center">0.814</td><td align="center" valign="middle" class="html-align-center">0.819</td><td align="center" valign="middle" class="html-align-center">0.686</td><td align="center" valign="middle" class="html-align-center">Active</td></tr><tr><td align="center" valign="middle" class="html-align-center">1.000</td><td align="center" valign="middle" class="html-align-center">0.333</td><td align="center" valign="middle" class="html-align-center">0.993</td><td align="center" valign="middle" class="html-align-center">1.000</td><td align="center" valign="middle" class="html-align-center">0.997</td><td align="center" valign="middle" class="html-align-center">0.814</td><td align="center" valign="middle" class="html-align-center">0.821</td><td align="center" valign="middle" class="html-align-center">0.991</td><td align="center" valign="middle" class="html-align-center">Inactive</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.993</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.327</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.993</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.993</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.993</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.814</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.821</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.984</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"> </td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t025"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t025"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t025"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 25.</b> Shows the MLP Classifier Summary. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t025"> <div class="html-caption"><b>Table 25.</b> Shows the MLP Classifier Summary.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Parameters</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Values</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Accuracy</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">Total Number of Instances</td><td align="center" valign="middle" class="html-align-center">600</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Correctly Classified Instances</td><td align="center" valign="middle" class="html-align-center">590</td><td align="center" valign="middle" class="html-align-center">98.33%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Incorrectly Classified Instances</td><td align="center" valign="middle" class="html-align-center">10</td><td align="center" valign="middle" class="html-align-center">1.66%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Kappa statistic</td><td align="center" valign="middle" class="html-align-center">0.281</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Mean absolute error</td><td align="center" valign="middle" class="html-align-center">0.030</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Root mean squared error</td><td align="center" valign="middle" class="html-align-center">0.119</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Relative absolute error</td><td align="center" valign="middle" class="html-align-center">73.97%</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Root relative squared error</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">85.60%</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"> </td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t026"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t026"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t026"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 26.</b> Shows the MLP Classifier Detailed Accuracy. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t026"> <div class="html-caption"><b>Table 26.</b> Shows the MLP Classifier Detailed Accuracy.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">TP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">FP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Precision</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Recall</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">F-Measure</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">MCC</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">ROC Area</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">PRC Area</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Class</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">0.667</td><td align="center" valign="middle" class="html-align-center">0.000</td><td align="center" valign="middle" class="html-align-center">1.000</td><td align="center" valign="middle" class="html-align-center">0.167</td><td align="center" valign="middle" class="html-align-center">0.286</td><td align="center" valign="middle" class="html-align-center">0.405</td><td align="center" valign="middle" class="html-align-center">0.878</td><td align="center" valign="middle" class="html-align-center">0.492</td><td align="center" valign="middle" class="html-align-center">Active</td></tr><tr><td align="center" valign="middle" class="html-align-center">1.000</td><td align="center" valign="middle" class="html-align-center">0.833</td><td align="center" valign="middle" class="html-align-center">0.983</td><td align="center" valign="middle" class="html-align-center">1.000</td><td align="center" valign="middle" class="html-align-center">0.992</td><td align="center" valign="middle" class="html-align-center">0.405</td><td align="center" valign="middle" class="html-align-center">0.878</td><td align="center" valign="middle" class="html-align-center">0.994</td><td align="center" valign="middle" class="html-align-center">Inactive</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.983</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.817</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.984</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.983</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.977</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.405</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.878</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.984</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"> </td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t027"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t027"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t027"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 27.</b> MLP Classifier Summary. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t027"> <div class="html-caption"><b>Table 27.</b> MLP Classifier Summary.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Parameters</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Values</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Accuracy</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">Total Number of Instances</td><td align="center" valign="middle" class="html-align-center">600</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Correctly Classified Instances</td><td align="center" valign="middle" class="html-align-center">588</td><td align="center" valign="middle" class="html-align-center">98%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Incorrectly Classified Instances</td><td align="center" valign="middle" class="html-align-center">12</td><td align="center" valign="middle" class="html-align-center">2%</td></tr><tr><td align="center" valign="middle" class="html-align-center">Kappa statistic</td><td align="center" valign="middle" class="html-align-center">0</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Mean absolute error</td><td align="center" valign="middle" class="html-align-center">0.040</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Root mean squared error</td><td align="center" valign="middle" class="html-align-center">0.14</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" class="html-align-center">Relative absolute error</td><td align="center" valign="middle" class="html-align-center">98.35%</td><td align="center" valign="middle" class="html-align-center"> </td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">Root relative squared error</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">99.99%</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"> </td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t028"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t028"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t028"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 28.</b> MLP Classifier Detailed Accuracy. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t028"> <div class="html-caption"><b>Table 28.</b> MLP Classifier Detailed Accuracy.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">TP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">FP Rate</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Precision</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Recall</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">F-Measure</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">MCC</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">ROC Area</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">PRC Area</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Class</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">0.000</td><td align="center" valign="middle" class="html-align-center">0.000</td><td align="center" valign="middle" class="html-align-center">1.000</td><td align="center" valign="middle" class="html-align-center">0.000</td><td align="center" valign="middle" class="html-align-center">0.286</td><td align="center" valign="middle" class="html-align-center">0.402</td><td align="center" valign="middle" class="html-align-center">0.777</td><td align="center" valign="middle" class="html-align-center">0.061</td><td align="center" valign="middle" class="html-align-center">Active</td></tr><tr><td align="center" valign="middle" class="html-align-center">1.000</td><td align="center" valign="middle" class="html-align-center">1.000</td><td align="center" valign="middle" class="html-align-center">0.980</td><td align="center" valign="middle" class="html-align-center">1.000</td><td align="center" valign="middle" class="html-align-center">0.998</td><td align="center" valign="middle" class="html-align-center">0.402</td><td align="center" valign="middle" class="html-align-center">0.777</td><td align="center" valign="middle" class="html-align-center">0.994</td><td align="center" valign="middle" class="html-align-center">Inactive</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.980</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.980</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.982</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.980</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.997</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.402</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.777</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.975</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"> </td></tr></tbody> </table> </div><div class="html-table-wrap" id="symmetry-14-01997-t029"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t029"> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual="https://www.mdpi.com/2073-8994/14/10/1997/display" href="#table_body_display_symmetry-14-01997-t029"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 29.</b> Shows the comparison of different Numbers of Hidden layers and Nodes. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_symmetry-14-01997-t029"> <div class="html-caption"><b>Table 29.</b> Shows the comparison of different Numbers of Hidden layers and Nodes.</div> <table> <thead><tr><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Total No of Instances</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Correct Instances</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Incorrect Instances</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Numbers of Hidden Layers</th><th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center">Accuracy Level</th></tr></thead><tbody><tr><td align="center" valign="middle" class="html-align-center">600</td><td align="center" valign="middle" class="html-align-center">596</td><td align="center" valign="middle" class="html-align-center">4</td><td align="center" valign="middle" class="html-align-center">1</td><td align="center" valign="middle" class="html-align-center">99.33</td></tr><tr><td align="center" valign="middle" class="html-align-center">600</td><td align="center" valign="middle" class="html-align-center">596</td><td align="center" valign="middle" class="html-align-center">4</td><td align="center" valign="middle" class="html-align-center">1</td><td align="center" valign="middle" class="html-align-center">99.33</td></tr><tr><td align="center" valign="middle" class="html-align-center">600</td><td align="center" valign="middle" class="html-align-center">590</td><td align="center" valign="middle" class="html-align-center">10</td><td align="center" valign="middle" class="html-align-center">2</td><td align="center" valign="middle" class="html-align-center">98.33</td></tr><tr><td align="center" valign="middle" class="html-align-center">600</td><td align="center" valign="middle" class="html-align-center">588</td><td align="center" valign="middle" class="html-align-center">12</td><td align="center" valign="middle" class="html-align-center">3</td><td align="center" valign="middle" class="html-align-center">98.00</td></tr><tr><td align="center" valign="middle" class="html-align-center">600</td><td align="center" valign="middle" class="html-align-center">588</td><td align="center" valign="middle" class="html-align-center">12</td><td align="center" valign="middle" class="html-align-center">4</td><td align="center" valign="middle" class="html-align-center">98.00</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">600</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">588</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">12</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">5</td><td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">98.00</td></tr></tbody> </table> </div></section><section class="html-fn_group"><table><tr id><td></td><td><div class="html-p"><b>Publisher’s Note:</b> MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.</div></td></tr></table></section> <section id="html-copyright"><br>© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" rel="noopener noreferrer">https://creativecommons.org/licenses/by/4.0/</a>).</section> </div> </div> <div class="additional-content"> <h2><a name="cite"></a>Share and Cite</h2> <div class="social-media-links" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#714e57101c014a0204131b1412054c37031e1c5443413c3521385442305443415443433c101219181f14544341271802181e1f544341300101031e101219544341171e03544341351810161f1e02181f16544341250413140312041d1e021802544341544349253354434854434133100214155443411e1f544341321e1c0104051403180b1415544341251e1c1e16031001190854434154434932255443485443412212101f544341381c101614025700041e054a57101c014a131e15084c19050501024b5e5e0606065f1c1501185f121e1c5e404945474447415442305441305441303c101219181f14544341271802181e1f544341300101031e101219544341171e03544341351810161f1e02181f16544341250413140312041d1e021802544341544349253354434854434133100214155443411e1f544341321e1c0104051403180b1415544341251e1c1e16031001190854434154434932255443485443412212101f544341381c101614025441305441303013020503101205544230544341250413140312041d1e021802544341180254434112040310131d145443325443410205181d1d544341051914544341061e031d15544347030200041e544233025443410214121e1f15544341181f171d141205181e1f101d5443411c04031514031e040254434115180214100214544332544341101f1554434103101f1a141554434140420519544341544349181f544341434143415443485443411308544341051914544341261e031d155443413914101d05195443413e0316101f180b1005181e1f5443411e1f5443410519145443411d1802055443411e175443411d141015181f1654434115141005195443411210040214025f5443413e1f145443411e17544341051914544341031410021e1f02544341171e03544341180502544341171005101d1805085443411802544341051914544341041f100710181d1013181d1805085443411e175443411c1e1514031f544341051412191f1e1d1e1608544341101f1554434119041c101f54434114090114030502544341171e035443411410031d08544341151405141205181e1f5f544341251918025443410205041508544341031401031402141f05025443411054434101031412180214544341101f1554434103141d1810131d145443411c101219181f14544341071802181e1f5c1310021415544341100101031e101219544341171e03544341250413140312041d1e021802544341151405141205181e1f544341181f5443410519145443411d041f165443410519031e04161954434122081c1c1405030854434132255443410212101f544341181c101614025f5443412533544341020103141015025443411803031416041d10031d0854433254434106191812195443411c14101f0254434118055443411c181619055443411f1e05544341101717141205544341131e05195443411d041f1602544341140004101d1d08544332544341101f1554434118055443411c181619055443411017171412055443411e1f1d08544341021e1c14544341011003055443411e175443410519145443411d041f165f54434125191005544347030200041e54423302544341061908544341031416181e1f025443411e17544341181f051403140205544341544349233e38544347030200041e5442330254434854434117031e1c5443412533544341181f171412051415544341101f155443411f1e031c101d54434132255443410212101f544341181c101614025443411e175443411d041f16025443410614031454434102141d141205141554434110170514035443410103145c01031e12140202181f16544341185f145f54433254434102141d141205181e1f54433712031e0101181f16544332544341160310080212101d14544341181c101614544341121e1f07140302181e1f544332544341101f1554434117181d05031005181e1f544332544341220510051802051812101d54434105140905040314544341171410050403140254434106140314544341140905031012051415544332544341101f1554434142415443411e0105181c180b141554434117141005040314025443410402181f1654434137544341544349371802191403544348544341544333544341213054434154434901031e131013181d1805085443411e175443411403031e0354434154433354434110071403101614544341121e0303141d1005181e1f5443485443415443335443413c385443415443491c040504101d544341181f171e031c1005181e1f5443485443410614031454434102141d1412051415544341171e0354434117181f101d5443411e0105181c180b1005181e1f544341101f155443411e1f1d08544341475443411c1e02055443411e0105181c180b141554434117141005040314025443410614031454434102141d14120514155f5443412214071403101d544341020401140307180214155443411d1410031f181f16544341121d1002021817181403025443410614031454434104021415544341051e544341121d1002021817085443411314050614141f5443411f1e031c101d544341101f15544341181f1714120514155443412533544341181c101614025f5443413003051817181218101d5443413f140403101d5443413f1405061e031a2a5f5f5f2c" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Machine+Vision+Approach+for+Diagnosing+Tuberculosis+%28TB%29+Based+on+Computerized+Tomography+%28CT%29+Scan+Images&hashtags=mdpisymmetry&url=https%3A%2F%2Fwww.mdpi.com%2F1846560&via=Symmetry_MDPI" onclick="windowOpen(this.href,600,800); return false" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2F1846560&title=Machine%20Vision%20Approach%20for%20Diagnosing%20Tuberculosis%20%28TB%29%20Based%20on%20Computerized%20Tomography%20%28CT%29%20Scan%20Images%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DTuberculosis%20is%20curable%2C%20still%20the%20world%E2%80%99s%20second%20inflectional%20murderous%20disease%2C%20and%20ranked%2013th%20%28in%202020%29%20by%20the%20World%20Health%20Organization%20on%20the%20list%20of%20leading%20death%20causes.%20One%20of%20the%20reasons%20for%20its%20fatality%20is%20the%20unavailability%20of%20modern%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/1846560" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/1846560" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/1846560" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> </div> <div class="in-tab" style="padding-top: 0px!important; margin-top: 15px;"> <div><b>MDPI and ACS Style</b></div> <p> Haq, I.; Mazhar, T.; Nasir, Q.; Razzaq, S.; Mohsan, S.A.H.; Alsharif, M.H.; Alkahtani, H.K.; Aljarbouh, A.; Mostafa, S.M. Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images. <em>Symmetry</em> <b>2022</b>, <em>14</em>, 1997. https://doi.org/10.3390/sym14101997 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Haq I, Mazhar T, Nasir Q, Razzaq S, Mohsan SAH, Alsharif MH, Alkahtani HK, Aljarbouh A, Mostafa SM. Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images. <em>Symmetry</em>. 2022; 14(10):1997. https://doi.org/10.3390/sym14101997 </p> <b>Chicago/Turabian Style</b><br> <p> Haq, Inayatul, Tehseen Mazhar, Qandeel Nasir, Saqib Razzaq, Syed Agha Hassnain Mohsan, Mohammed H. Alsharif, Hend Khalid Alkahtani, Ayman Aljarbouh, and Samih M. Mostafa. 2022. "Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images" <em>Symmetry</em> 14, no. 10: 1997. https://doi.org/10.3390/sym14101997 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> <h2><a name="metrics"></a>Article Metrics</h2> <div class="row"> <div class="small-12 columns"> <div id="loaded_cite_count" style="display:none">No</div> <div id="framed_div_cited_count" class="in-tab" style="display: none; overflow: auto;"></div> <div id="loaded" style="display:none">No</div> <div id="framed_div" class="in-tab" style="display: none; margin-top: 10px;"></div> </div> <div class="small-12 columns"> <div id="article_stats_div" style="display: none; margin-bottom: 1em;"> <h3>Article Access Statistics</h3> <div id="article_stats_swf"></div> For more information on the journal statistics, click <a href="/journal/symmetry/stats">here</a>. <div class="info-box"> Multiple requests from the same IP address are counted as one view. </div> </div> </div> </div> </div> </div> </article> </div> </div></div> <div class="webpymol-controls webpymol-controls-template" style="margin-top: 10px; display: none;"> <a class="bzoom">Zoom</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="borient"> Orient </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="blines"> As Lines </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsticks"> As Sticks </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bcartoon"> As Cartoon </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsurface"> As Surface </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bprevscene">Previous Scene</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bnextscene">Next Scene</a> </div> <div id="scifeed-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="recommended-articles-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="author-biographies-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="cite-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Cite</h2> </div> <div class="small-12 columns"> <form style="margin:0; padding:0; display:inline;" name="export-bibtex" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="923280"> <input type="hidden" name="export_format_top" value="bibtex"> <input type="hidden" name="export_submit_top" value> </form> <form style="margin:0; padding:0; display:inline;" name="export-endnote" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="923280"> <input type="hidden" name="export_format_top" value="endnote_no_abstract"> <input type="hidden" name="export_submit_top" value> </form> <form style="margin:0; padding:0; display:inline;" name="export-ris" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="923280"> <input type="hidden" name="export_format_top" value="ris"> <input type="hidden" name="export_submit_top" value> </form> <div> Export citation file: <a href="javascript:window.document.forms['export-bibtex'].submit()">BibTeX</a> | <a href="javascript:window.document.forms['export-endnote'].submit()">EndNote</a> | <a href="javascript:window.document.forms['export-ris'].submit()">RIS</a> </div> </div> <div class="small-12 columns"> <div class="in-tab"> <div><b>MDPI and ACS Style</b></div> <p> Haq, I.; Mazhar, T.; Nasir, Q.; Razzaq, S.; Mohsan, S.A.H.; Alsharif, M.H.; Alkahtani, H.K.; Aljarbouh, A.; Mostafa, S.M. Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images. <em>Symmetry</em> <b>2022</b>, <em>14</em>, 1997. https://doi.org/10.3390/sym14101997 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Haq I, Mazhar T, Nasir Q, Razzaq S, Mohsan SAH, Alsharif MH, Alkahtani HK, Aljarbouh A, Mostafa SM. Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images. <em>Symmetry</em>. 2022; 14(10):1997. https://doi.org/10.3390/sym14101997 </p> <b>Chicago/Turabian Style</b><br> <p> Haq, Inayatul, Tehseen Mazhar, Qandeel Nasir, Saqib Razzaq, Syed Agha Hassnain Mohsan, Mohammed H. Alsharif, Hend Khalid Alkahtani, Ayman Aljarbouh, and Samih M. Mostafa. 2022. "Machine Vision Approach for Diagnosing Tuberculosis (TB) Based on Computerized Tomography (CT) Scan Images" <em>Symmetry</em> 14, no. 10: 1997. https://doi.org/10.3390/sym14101997 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> </div> </div> </div> </section> <div id="footer"> <div class="journal-info"> <span> <em><a class="Var_JournalInfo" href="/journal/symmetry">Symmetry</a></em>, EISSN 2073-8994, Published by MDPI </span> <div class="large-right"> <span> <a href="/rss/journal/symmetry" class="rss-link">RSS</a> </span> <span> <a href="/journal/symmetry/toc-alert">Content Alert</a> </span> </div> </div> <div class="row full-width footer-links" data-equalizer="footer" data-equalizer-mq="small"> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Further Information </h3> <a href="/apc"> Article Processing Charges </a> <a href="/about/payment"> Pay an Invoice </a> <a href="/openaccess"> Open Access Policy </a> <a href="/about/contact"> Contact MDPI </a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Jobs at MDPI </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Guidelines </h3> <a href="/authors"> For Authors </a> <a href="/reviewers"> For Reviewers </a> <a href="/editors"> For Editors </a> <a href="/librarians"> For Librarians </a> <a href="/publishing_services"> For Publishers </a> <a href="/societies"> For Societies </a> <a href="/conference_organizers"> For Conference Organizers </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns"> <h3> MDPI Initiatives </h3> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> <a href="https://sciprofiles.com?utm_source=mpdi.com&utm_medium=bottom_menu&utm_campaign=initiative" target="_blank" rel="noopener noreferrer"> SciProfiles </a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> <a href="/about/proceedings"> Proceedings Series </a> </div> <div class="large-2 large-push-4 medium-3 small-6 right-border-large-without columns UA_FooterFollowMDPI"> <h3> Follow MDPI </h3> <a href="https://www.linkedin.com/company/mdpi" target="_blank" rel="noopener noreferrer"> LinkedIn </a> <a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"> Facebook </a> <a href="https://twitter.com/MDPIOpenAccess" target="_blank" rel="noopener noreferrer"> Twitter </a> </div> <div id="footer-subscribe" class="large-4 large-pull-8 medium-12 small-12 left-border-large columns"> <div class="footer-subscribe__container"> <img class="show-for-large-up" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-white-small.png?71d18e5f805839ab?1704293393" alt="MDPI" title="MDPI Open Access Journals" style="height: 50px; margin-bottom: 10px;"> <form id="newsletter" method="POST" action="/subscribe"> <p> Subscribe to receive issue release notifications and newsletters from MDPI journals </p> <select multiple id="newsletter-journal" class="foundation-select" name="journals[]"> <option value="acoustics">Acoustics</option> <option value="amh">Acta Microbiologica Hellenica</option> <option value="actuators">Actuators</option> <option value="admsci">Administrative Sciences</option> <option value="adolescents">Adolescents</option> <option value="arm">Advances in Respiratory Medicine</option> <option value="aerobiology">Aerobiology</option> <option value="aerospace">Aerospace</option> <option value="agriculture">Agriculture</option> <option value="agriengineering">AgriEngineering</option> <option value="agrochemicals">Agrochemicals</option> <option value="agronomy">Agronomy</option> <option value="ai">AI</option> <option value="air">Air</option> <option value="algorithms">Algorithms</option> <option value="allergies">Allergies</option> <option value="alloys">Alloys</option> <option value="analytica">Analytica</option> <option value="analytics">Analytics</option> <option value="anatomia">Anatomia</option> <option value="anesthres">Anesthesia Research</option> <option value="animals">Animals</option> <option value="antibiotics">Antibiotics</option> <option value="antibodies">Antibodies</option> <option value="antioxidants">Antioxidants</option> <option value="applbiosci">Applied Biosciences</option> <option value="applmech">Applied Mechanics</option> <option value="applmicrobiol">Applied Microbiology</option> <option value="applnano">Applied Nano</option> <option value="applsci">Applied Sciences</option> <option value="asi">Applied System Innovation</option> <option value="appliedchem">AppliedChem</option> <option value="appliedmath">AppliedMath</option> <option value="aquacj">Aquaculture Journal</option> <option value="architecture">Architecture</option> <option value="arthropoda">Arthropoda</option> <option value="arts">Arts</option> <option value="astronomy">Astronomy</option> <option value="atmosphere">Atmosphere</option> <option value="atoms">Atoms</option> <option value="audiolres">Audiology Research</option> <option value="automation">Automation</option> <option value="axioms">Axioms</option> <option value="bacteria">Bacteria</option> <option value="batteries">Batteries</option> <option value="behavsci">Behavioral Sciences</option> <option value="beverages">Beverages</option> <option value="BDCC">Big Data and Cognitive Computing</option> <option value="biochem">BioChem</option> <option value="bioengineering">Bioengineering</option> <option value="biologics">Biologics</option> <option value="biology">Biology</option> <option value="blsf">Biology and Life Sciences Forum</option> <option value="biomass">Biomass</option> <option value="biomechanics">Biomechanics</option> <option value="biomed">BioMed</option> <option value="biomedicines">Biomedicines</option> <option value="biomedinformatics">BioMedInformatics</option> <option value="biomimetics">Biomimetics</option> <option value="biomolecules">Biomolecules</option> <option value="biophysica">Biophysica</option> <option value="biosensors">Biosensors</option> <option value="biotech">BioTech</option> <option value="birds">Birds</option> <option value="blockchains">Blockchains</option> <option value="brainsci">Brain Sciences</option> <option value="buildings">Buildings</option> <option value="businesses">Businesses</option> <option value="carbon">C</option> <option value="cancers">Cancers</option> <option value="cardiogenetics">Cardiogenetics</option> <option value="catalysts">Catalysts</option> <option value="cells">Cells</option> <option value="ceramics">Ceramics</option> <option value="challenges">Challenges</option> <option value="ChemEngineering">ChemEngineering</option> <option value="chemistry">Chemistry</option> <option value="chemproc">Chemistry Proceedings</option> <option value="chemosensors">Chemosensors</option> <option value="children">Children</option> <option value="chips">Chips</option> <option value="civileng">CivilEng</option> <option value="cleantechnol">Clean Technologies</option> <option value="climate">Climate</option> <option value="ctn">Clinical and Translational Neuroscience</option> <option value="clinpract">Clinics and Practice</option> <option value="clockssleep">Clocks & Sleep</option> <option value="coasts">Coasts</option> <option value="coatings">Coatings</option> <option value="colloids">Colloids and Interfaces</option> <option value="colorants">Colorants</option> <option value="commodities">Commodities</option> <option value="complications">Complications</option> <option value="compounds">Compounds</option> <option value="computation">Computation</option> <option value="csmf">Computer Sciences & Mathematics Forum</option> <option value="computers">Computers</option> <option value="condensedmatter">Condensed Matter</option> <option value="conservation">Conservation</option> <option value="constrmater">Construction Materials</option> <option value="cmd">Corrosion and Materials Degradation</option> <option value="cosmetics">Cosmetics</option> <option value="covid">COVID</option> <option value="crops">Crops</option> <option value="cryptography">Cryptography</option> <option value="crystals">Crystals</option> <option value="cimb">Current Issues in Molecular Biology</option> <option value="curroncol">Current Oncology</option> <option value="dairy">Dairy</option> <option value="data">Data</option> <option value="dentistry">Dentistry Journal</option> <option value="dermato">Dermato</option> <option value="dermatopathology">Dermatopathology</option> <option value="designs">Designs</option> <option value="diabetology">Diabetology</option> <option value="diagnostics">Diagnostics</option> <option value="dietetics">Dietetics</option> <option value="digital">Digital</option> <option value="disabilities">Disabilities</option> <option value="diseases">Diseases</option> <option value="diversity">Diversity</option> <option value="dna">DNA</option> <option value="drones">Drones</option> <option value="ddc">Drugs and Drug Candidates</option> <option value="dynamics">Dynamics</option> <option value="earth">Earth</option> <option value="ecologies">Ecologies</option> <option value="econometrics">Econometrics</option> <option value="economies">Economies</option> <option value="education">Education Sciences</option> <option value="electricity">Electricity</option> <option value="electrochem">Electrochem</option> <option value="electronicmat">Electronic Materials</option> <option value="electronics">Electronics</option> <option value="ecm">Emergency Care and Medicine</option> <option value="encyclopedia">Encyclopedia</option> <option value="endocrines">Endocrines</option> <option value="energies">Energies</option> <option value="eng">Eng</option> <option value="engproc">Engineering Proceedings</option> <option value="entropy">Entropy</option> <option value="environsciproc">Environmental Sciences Proceedings</option> <option value="environments">Environments</option> <option value="epidemiologia">Epidemiologia</option> <option value="epigenomes">Epigenomes</option> <option value="ebj">European Burn Journal</option> <option value="ejihpe">European Journal of Investigation in Health, Psychology and Education</option> <option value="fermentation">Fermentation</option> <option value="fibers">Fibers</option> <option value="fintech">FinTech</option> <option value="fire">Fire</option> <option value="fishes">Fishes</option> <option value="fluids">Fluids</option> <option value="foods">Foods</option> <option value="forecasting">Forecasting</option> <option value="forensicsci">Forensic Sciences</option> <option value="forests">Forests</option> <option value="fossstud">Fossil Studies</option> <option value="foundations">Foundations</option> <option value="fractalfract">Fractal and Fractional</option> <option value="fuels">Fuels</option> <option value="future">Future</option> <option value="futureinternet">Future Internet</option> <option value="futurepharmacol">Future Pharmacology</option> <option value="futuretransp">Future Transportation</option> <option value="galaxies">Galaxies</option> <option value="games">Games</option> <option value="gases">Gases</option> <option value="gastroent">Gastroenterology Insights</option> <option value="gastrointestdisord">Gastrointestinal Disorders</option> <option value="gastronomy">Gastronomy</option> <option value="gels">Gels</option> <option value="genealogy">Genealogy</option> <option value="genes">Genes</option> <option value="geographies">Geographies</option> <option value="geohazards">GeoHazards</option> <option value="geomatics">Geomatics</option> <option value="geosciences">Geosciences</option> <option value="geotechnics">Geotechnics</option> <option value="geriatrics">Geriatrics</option> <option value="gucdd">Gout, Urate, and Crystal Deposition Disease</option> <option value="grasses">Grasses</option> <option value="hardware">Hardware</option> <option value="healthcare">Healthcare</option> <option value="hearts">Hearts</option> <option value="hemato">Hemato</option> <option value="hematolrep">Hematology Reports</option> <option value="heritage">Heritage</option> <option value="histories">Histories</option> <option value="horticulturae">Horticulturae</option> <option value="hospitals">Hospitals</option> <option value="humanities">Humanities</option> <option value="humans">Humans</option> <option value="hydrobiology">Hydrobiology</option> <option value="hydrogen">Hydrogen</option> <option value="hydrology">Hydrology</option> <option value="hygiene">Hygiene</option> <option value="immuno">Immuno</option> <option value="idr">Infectious Disease Reports</option> <option value="informatics">Informatics</option> <option value="information">Information</option> <option value="infrastructures">Infrastructures</option> <option value="inorganics">Inorganics</option> <option value="insects">Insects</option> <option value="instruments">Instruments</option> <option value="ijerph">International Journal of Environmental Research and Public Health</option> <option value="ijfs">International Journal of Financial Studies</option> <option value="ijms">International Journal of Molecular Sciences</option> <option value="IJNS">International Journal of Neonatal Screening</option> <option value="ijpb">International Journal of Plant Biology</option> <option value="ijtm">International Journal of Translational Medicine</option> <option value="ijtpp">International Journal of Turbomachinery, Propulsion and Power</option> <option value="ime">International Medical Education</option> <option value="inventions">Inventions</option> <option value="IoT">IoT</option> <option value="ijgi">ISPRS International Journal of Geo-Information</option> <option value="J">J</option> <option value="jal">Journal of Ageing and Longevity</option> <option value="jcdd">Journal of Cardiovascular Development and Disease</option> <option value="jcto">Journal of Clinical & Translational Ophthalmology</option> <option value="jcm">Journal of Clinical Medicine</option> <option value="jcs">Journal of Composites Science</option> <option value="jcp">Journal of Cybersecurity and Privacy</option> <option value="jdb">Journal of Developmental Biology</option> <option value="jeta">Journal of Experimental and Theoretical Analyses</option> <option value="jfb">Journal of Functional Biomaterials</option> <option value="jfmk">Journal of Functional Morphology and Kinesiology</option> <option value="jof">Journal of Fungi</option> <option value="jimaging">Journal of Imaging</option> <option value="jintelligence">Journal of Intelligence</option> <option value="jlpea">Journal of Low Power Electronics and Applications</option> <option value="jmmp">Journal of Manufacturing and Materials Processing</option> <option value="jmse">Journal of Marine Science and Engineering</option> <option value="jmahp">Journal of Market Access & Health Policy</option> <option value="jmp">Journal of Molecular Pathology</option> <option value="jnt">Journal of Nanotheranostics</option> <option value="jne">Journal of Nuclear Engineering</option> <option value="ohbm">Journal of Otorhinolaryngology, Hearing and Balance Medicine</option> <option value="jpm">Journal of Personalized Medicine</option> <option value="jor">Journal of Respiration</option> <option value="jrfm">Journal of Risk and Financial Management</option> <option value="jsan">Journal of Sensor and Actuator Networks</option> <option value="jtaer">Journal of Theoretical and Applied Electronic Commerce Research</option> <option value="jvd">Journal of Vascular Diseases</option> <option value="jox">Journal of Xenobiotics</option> <option value="jzbg">Journal of Zoological and Botanical Gardens</option> <option value="journalmedia">Journalism and Media</option> <option value="kidneydial">Kidney and Dialysis</option> <option value="kinasesphosphatases">Kinases and Phosphatases</option> <option value="knowledge">Knowledge</option> <option value="laboratories">Laboratories</option> <option value="land">Land</option> <option value="languages">Languages</option> <option value="laws">Laws</option> <option value="life">Life</option> <option value="limnolrev">Limnological Review</option> <option value="liquids">Liquids</option> <option value="literature">Literature</option> <option value="livers">Livers</option> <option value="logics">Logics</option> <option value="logistics">Logistics</option> <option value="lubricants">Lubricants</option> <option value="lymphatics">Lymphatics</option> <option value="make">Machine Learning and Knowledge Extraction</option> <option value="machines">Machines</option> <option value="macromol">Macromol</option> <option value="magnetism">Magnetism</option> <option value="magnetochemistry">Magnetochemistry</option> <option value="marinedrugs">Marine Drugs</option> <option value="materials">Materials</option> <option value="materproc">Materials Proceedings</option> <option value="mca">Mathematical and Computational Applications</option> <option value="mathematics">Mathematics</option> <option value="medsci">Medical Sciences</option> <option value="msf">Medical Sciences Forum</option> <option value="medicina">Medicina</option> <option value="medicines">Medicines</option> <option value="membranes">Membranes</option> <option value="merits">Merits</option> <option value="metabolites">Metabolites</option> <option value="metals">Metals</option> <option value="meteorology">Meteorology</option> <option value="methane">Methane</option> <option value="mps">Methods and Protocols</option> <option value="metrology">Metrology</option> <option value="micro">Micro</option> <option value="microbiolres">Microbiology Research</option> <option value="micromachines">Micromachines</option> <option value="microorganisms">Microorganisms</option> <option value="microplastics">Microplastics</option> <option value="minerals">Minerals</option> <option value="mining">Mining</option> <option value="modelling">Modelling</option> <option value="molbank">Molbank</option> <option value="molecules">Molecules</option> <option value="mti">Multimodal Technologies and Interaction</option> <option value="muscles">Muscles</option> <option value="nanoenergyadv">Nanoenergy Advances</option> <option value="nanomanufacturing">Nanomanufacturing</option> <option value="nanomaterials">Nanomaterials</option> <option value="ndt">NDT</option> <option value="network">Network</option> <option value="neuroglia">Neuroglia</option> <option value="neurolint">Neurology International</option> <option value="neurosci">NeuroSci</option> <option value="nitrogen">Nitrogen</option> <option value="ncrna">Non-Coding RNA</option> <option value="nursrep">Nursing Reports</option> <option value="nutraceuticals">Nutraceuticals</option> <option value="nutrients">Nutrients</option> <option value="obesities">Obesities</option> <option value="oceans">Oceans</option> <option value="onco">Onco</option> <option value="optics">Optics</option> <option value="oral">Oral</option> <option value="organics">Organics</option> <option value="organoids">Organoids</option> <option value="osteology">Osteology</option> <option value="oxygen">Oxygen</option> <option value="parasitologia">Parasitologia</option> <option value="particles">Particles</option> <option value="pathogens">Pathogens</option> <option value="pathophysiology">Pathophysiology</option> <option value="pediatrrep">Pediatric Reports</option> <option value="pharmaceuticals">Pharmaceuticals</option> <option value="pharmaceutics">Pharmaceutics</option> <option value="pharmacoepidemiology">Pharmacoepidemiology</option> <option value="pharmacy">Pharmacy</option> <option value="philosophies">Philosophies</option> <option value="photochem">Photochem</option> <option value="photonics">Photonics</option> <option value="phycology">Phycology</option> <option value="physchem">Physchem</option> <option value="psf">Physical Sciences Forum</option> <option value="physics">Physics</option> <option value="physiologia">Physiologia</option> <option value="plants">Plants</option> <option value="plasma">Plasma</option> <option value="platforms">Platforms</option> <option value="pollutants">Pollutants</option> <option value="polymers">Polymers</option> <option value="polysaccharides">Polysaccharides</option> <option value="poultry">Poultry</option> <option value="powders">Powders</option> <option value="proceedings">Proceedings</option> <option value="processes">Processes</option> <option value="prosthesis">Prosthesis</option> <option value="proteomes">Proteomes</option> <option value="psych">Psych</option> <option value="psychiatryint">Psychiatry International</option> <option value="psychoactives">Psychoactives</option> <option value="publications">Publications</option> <option value="qubs">Quantum Beam Science</option> <option value="quantumrep">Quantum Reports</option> <option value="quaternary">Quaternary</option> <option value="radiation">Radiation</option> <option value="reactions">Reactions</option> <option value="realestate">Real Estate</option> <option value="receptors">Receptors</option> <option value="recycling">Recycling</option> <option value="religions">Religions</option> <option value="remotesensing">Remote Sensing</option> <option value="reports">Reports</option> <option value="reprodmed">Reproductive Medicine</option> <option value="resources">Resources</option> <option value="rheumato">Rheumato</option> <option value="risks">Risks</option> <option value="robotics">Robotics</option> <option value="ruminants">Ruminants</option> <option value="safety">Safety</option> <option value="sci">Sci</option> <option value="scipharm">Scientia Pharmaceutica</option> <option value="sclerosis">Sclerosis</option> <option value="seeds">Seeds</option> <option value="sensors">Sensors</option> <option value="separations">Separations</option> <option value="sexes">Sexes</option> <option value="signals">Signals</option> <option value="sinusitis">Sinusitis</option> <option value="smartcities">Smart Cities</option> <option value="socsci">Social Sciences</option> <option value="societies">Societies</option> <option value="software">Software</option> <option value="soilsystems">Soil Systems</option> <option value="solar">Solar</option> <option value="solids">Solids</option> <option value="spectroscj">Spectroscopy Journal</option> <option value="sports">Sports</option> <option value="standards">Standards</option> <option value="stats">Stats</option> <option value="stresses">Stresses</option> <option value="surfaces">Surfaces</option> <option value="surgeries">Surgeries</option> <option value="std">Surgical Techniques Development</option> <option value="sustainability">Sustainability</option> <option value="suschem">Sustainable Chemistry</option> <option value="symmetry">Symmetry</option> <option value="synbio">SynBio</option> <option value="systems">Systems</option> <option value="targets">Targets</option> <option value="taxonomy">Taxonomy</option> <option value="technologies">Technologies</option> <option value="telecom">Telecom</option> <option value="textiles">Textiles</option> <option value="thalassrep">Thalassemia Reports</option> <option value="thermo">Thermo</option> <option value="tomography">Tomography</option> <option value="tourismhosp">Tourism and Hospitality</option> <option value="toxics">Toxics</option> <option value="toxins">Toxins</option> <option value="transplantology">Transplantology</option> <option value="traumacare">Trauma Care</option> <option value="higheredu">Trends in Higher Education</option> <option value="tropicalmed">Tropical Medicine and Infectious Disease</option> <option value="universe">Universe</option> <option value="urbansci">Urban Science</option> <option value="uro">Uro</option> <option value="vaccines">Vaccines</option> <option value="vehicles">Vehicles</option> <option value="venereology">Venereology</option> <option value="vetsci">Veterinary Sciences</option> <option value="vibration">Vibration</option> <option value="virtualworlds">Virtual Worlds</option> <option value="viruses">Viruses</option> <option value="vision">Vision</option> <option value="waste">Waste</option> <option value="water">Water</option> <option value="wind">Wind</option> <option value="women">Women</option> <option value="world">World</option> <option value="wevj">World Electric Vehicle Journal</option> <option value="youth">Youth</option> <option value="zoonoticdis">Zoonotic Diseases</option> </select> <input name="email" type="email" placeholder="Enter your email address..." required="required" /> <button class="genericCaptcha button button--dark UA_FooterNewsletterSubscribeButton" type="submit">Subscribe</button> </form> </div> </div> </div> <div id="footer-copyright"> <div class="row"> <div class="columns large-6 medium-6 small-12 text-left"> © 1996-2024 MDPI (Basel, Switzerland) unless otherwise stated </div> <div class="columns large-6 medium-6 small-12 small-text-left medium-text-right large-text-right"> <a data-dropdown="drop-view-disclaimer" aria-controls="drop-view-disclaimer" aria-expanded="false" data-options="align:top; is_hover:true; hover_timeout:2000;"> Disclaimer </a> <div id="drop-view-disclaimer" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide text-left" data-dropdown-content aria-hidden="true" tabindex="-1"> Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. </div> <a href="/about/terms-and-conditions"> Terms and Conditions </a> <a href="/about/privacy"> Privacy Policy </a> </div> </div> </div> </div> <div id="cookie-notification" class="js-allow-cookies" style="display: none;"> <div class="columns large-10 medium-10 small-12"> We use cookies on our website to ensure you get the best experience.<br class="show-for-medium-up" /> Read more about our cookies <a href="/about/privacy">here</a>. </div> <div class="columns large-2 medium-2 small-12 small-only-text-left text-right"> <a class="button button--default" href="/accept_cookies">Accept</a> </div> </div> </div> <div id="main-share-modal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Share Link</h2> </div> <div class="small-12 columns"> <div class="social-media-links UA_ShareModalLinks" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#3f00195e524f044c4a5d555a5c4b02794d50521a0d0f727b6f761a0c7e1a0d0f1a0d0d725e5c5756515a1a0d0f69564c5650511a0d0f7e4f4f4d505e5c571a0d0f59504d1a0d0f7b565e5851504c5651581a0d0f6b4a5d5a4d5c4a53504c564c1a0d0f1a0d076b7d1a0d061a0d0f7d5e4c5a5b1a0d0f50511a0d0f7c50524f4a4b5a4d56455a5b1a0d0f6b505250584d5e4f57461a0d0f1a0d077c6b1a0d061a0d0f6c5c5e511a0d0f76525e585a4c194e4a504b04195e524f045d505b4602574b4b4f4c05101048484811525b4f56115c5052100e070b090a090f1a0c7e1a0f7e1a0f7e725e5c5756515a1a0d0f69564c5650511a0d0f7e4f4f4d505e5c571a0d0f59504d1a0d0f7b565e5851504c5651581a0d0f6b4a5d5a4d5c4a53504c564c1a0d0f1a0d076b7d1a0d061a0d0f7d5e4c5a5b1a0d0f50511a0d0f7c50524f4a4b5a4d56455a5b1a0d0f6b505250584d5e4f57461a0d0f1a0d077c6b1a0d061a0d0f6c5c5e511a0d0f76525e585a4c35356b4a5d5a4d5c4a53504c564c1a0d0f564c1a0d0f5c4a4d5e5d535a1a0d7c1a0d0f4c4b5653531a0d0f4b575a1a0d0f48504d535b1a7a0d1a070f1a06064c1a0d0f4c5a5c50515b1a0d0f565159535a5c4b5650515e531a0d0f524a4d5b5a4d504a4c1a0d0f5b564c5a5e4c5a1a0d7c1a0d0f5e515b1a0d0f4d5e51545a5b1a0d0f0e0c4b571a0d0f1a0d0756511a0d0f0d0f0d0f1a0d061a0d0f5d461a0d0f4b575a1a0d0f68504d535b1a0d0f775a5e534b571a0d0f704d585e5156455e4b5650511a0d0f50511a0d0f4b575a1a0d0f53564c4b1a0d0f50591a0d0f535a5e5b5651581a0d0f5b5a5e4b571a0d0f5c5e4a4c5a4c111a0d0f70515a1a0d0f50591a0d0f4b575a1a0d0f4d5a5e4c50514c1a0d0f59504d1a0d0f564b4c1a0d0f595e4b5e53564b461a0d0f564c1a0d0f4b575a1a0d0f4a515e495e56535e5d5653564b461a0d0f50591a0d0f52505b5a4d511a0d0f4b5a5c575150535058461a0d0f5e515b1a0d0f574a525e511a0d0f5a474f5a4d4b4c1a0d0f59504d1a0d0f5a5e4d53461a0d0f5b5a4b5a5c4b565051111a0d0f6b57564c1a0d0f4c4b4a5b461a0d0f4d5a4f4d5a4c5a514b4c1a0d0f5e1a0d0f4f4d5a5c564c5a1a0d0f5e515b1a0d0f4d5a53565e5d535a1a0d0f525e5c5756515a1a0d0f49564c565051125d5e4c5a5b1a0d0f5e4f4f4d505e5c571a0d0f59504d1a0d0f6b4a5d5a4d5c4a53504c564c1a0d0f5b5a4b5a5c4b5650511a0d0f56511a0d0f4b575a1a0d0f534a51581a0d0f4b574d504a58571a0d0f6c4652525a4b4d461a0d0f7c6b1a0d0f4c5c5e511a0d0f56525e585a4c111a0d0f6b7d1a0d0f4c4f4d5a5e5b4c1a0d0f564d4d5a584a535e4d53461a0d7c1a0d0f4857565c571a0d0f525a5e514c1a0d0f564b1a0d0f525658574b1a0d0f51504b1a0d0f5e59595a5c4b1a0d0f5d504b571a0d0f534a51584c1a0d0f5a4e4a5e5353461a0d7c1a0d0f5e515b1a0d0f564b1a0d0f525658574b1a0d0f5e59595a5c4b1a0d0f505153461a0d0f4c50525a1a0d0f4f5e4d4b1a0d0f50591a0d0f4b575a1a0d0f534a5158111a0d0f6b575e4b1a7a0d1a070f1a06064c1a0d0f4857461a0d0f4d5a585650514c1a0d0f50591a0d0f56514b5a4d5a4c4b1a0d0f1a0d076d70761a7a0d1a070f1a06064c1a0d061a0d0f594d50521a0d0f6b7d1a0d0f5651595a5c4b5a5b1a0d0f5e515b1a0d0f51504d525e531a0d0f7c6b1a0d0f4c5c5e511a0d0f56525e585a4c1a0d0f50591a0d0f534a51584c1a0d0f485a4d5a1a0d0f4c5a535a5c4b5a5b1a0d0f5e594b5a4d1a0d0f4f4d5a124f4d505c5a4c4c5651581a0d0f56115a111a0d7c1a0d0f4c5a535a5c4b5650511a0d795c4d504f4f5651581a0d7c1a0d0f584d5e464c5c5e535a1a0d0f56525e585a1a0d0f5c5051495a4d4c5650511a0d7c1a0d0f5e515b1a0d0f5956534b4d5e4b5650511a0d7c1a0d0f6c4b5e4b564c4b565c5e531a0d0f4b5a474b4a4d5a1a0d0f595a5e4b4a4d5a4c1a0d0f485a4d5a1a0d0f5a474b4d5e5c4b5a5b1a0d7c1a0d0f5e515b1a0d0f0c0f1a0d0f504f4b565256455a5b1a0d0f595a5e4b4a4d5a4c1a0d0f4a4c5651581a0d0f791a0d0f1a0d0779564c575a4d1a0d061a0d0f1a0d7d1a0d0f6f7e1a0d0f1a0d074f4d505d5e5d5653564b461a0d0f50591a0d0f5a4d4d504d1a0d0f1a0d7d1a0d0f5e495a4d5e585a1a0d0f5c504d4d5a535e4b5650511a0d061a0d0f1a0d7d1a0d0f72761a0d0f1a0d07524a4b4a5e531a0d0f565159504d525e4b5650511a0d061a0d0f485a4d5a1a0d0f4c5a535a5c4b5a5b1a0d0f59504d1a0d0f5956515e531a0d0f504f4b565256455e4b5650511a0d0f5e515b1a0d0f505153461a0d0f091a0d0f52504c4b1a0d0f504f4b565256455a5b1a0d0f595a5e4b4a4d5a4c1a0d0f485a4d5a1a0d0f4c5a535a5c4b5a5b111a0d0f6c5a495a4d5e531a0d0f4c4a4f5a4d49564c5a5b1a0d0f535a5e4d515651581a0d0f5c535e4c4c5659565a4d4c1a0d0f485a4d5a1a0d0f4a4c5a5b1a0d0f4b501a0d0f5c535e4c4c5659461a0d0f5d5a4b485a5a511a0d0f51504d525e531a0d0f5e515b1a0d0f5651595a5c4b5a5b1a0d0f6b7d1a0d0f56525e585a4c111a0d0f7e4d4b5659565c565e531a0d0f715a4a4d5e531a0d0f715a4b48504d541a0d0f1a0d077e71711a0c7e1a0d0f511a0d0f5c535e4c4c1a0d066411111162" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Machine+Vision+Approach+for+Diagnosing+Tuberculosis+%28TB%29+Based+on+Computerized+Tomography+%28CT%29+Scan+Images&hashtags=mdpisymmetry&url=https%3A%2F%2Fwww.mdpi.com%2F1846560&via=Symmetry_MDPI" onclick="windowOpen(this.href,600,800); return false" title="Twitter" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2F1846560&title=Machine%20Vision%20Approach%20for%20Diagnosing%20Tuberculosis%20%28TB%29%20Based%20on%20Computerized%20Tomography%20%28CT%29%20Scan%20Images%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DTuberculosis%20is%20curable%2C%20still%20the%20world%E2%80%99s%20second%20inflectional%20murderous%20disease%2C%20and%20ranked%2013th%20%28in%202020%29%20by%20the%20World%20Health%20Organization%20on%20the%20list%20of%20leading%20death%20causes.%20One%20of%20the%20reasons%20for%20its%20fatality%20is%20the%20unavailability%20of%20modern%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/1846560" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/1846560" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/1846560" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> <a href="http://www.citeulike.org/posturl?url=https://www.mdpi.com/1846560" title="CiteULike" target="_blank" rel="noopener noreferrer"> <i class="fa fa-citeulike-square" style="font-size: 30px;"></i> </a> </div> </div> <div class="small-9 columns"> <input id="js-clipboard-text" type="text" readonly value="https://www.mdpi.com/1846560" /> </div> <div class="small-3 columns text-left"> <a class="button button--color js-clipboard-copy" data-clipboard-target="#js-clipboard-text">Copy</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="weixin-share-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="weixin-share-modal-title" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="weixin-share-modal-title" style="margin: 0;">Share</h2> </div> <div class="small-12 columns"> <div class="weixin-qr-code-section"> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="300" height="300" version="1.1" xmlns="http://www.w3.org/2000/svg"> <desc>https://www.mdpi.com/1846560</desc> <g id="elements" fill="black" stroke="none"> <rect x="0" y="0" width="12" height="12" /> <rect x="12" y="0" width="12" height="12" /> <rect x="24" y="0" width="12" height="12" /> <rect x="36" y="0" width="12" height="12" /> <rect x="48" y="0" width="12" height="12" /> <rect x="60" y="0" width="12" height="12" /> <rect x="72" y="0" width="12" height="12" /> <rect x="120" y="0" width="12" height="12" /> <rect x="168" y="0" width="12" height="12" /> <rect x="180" y="0" width="12" height="12" /> <rect x="216" y="0" width="12" height="12" /> <rect x="228" y="0" width="12" height="12" /> <rect x="240" y="0" width="12" height="12" /> <rect x="252" y="0" width="12" height="12" /> <rect x="264" y="0" width="12" height="12" /> <rect x="276" y="0" width="12" height="12" /> <rect x="288" y="0" width="12" height="12" /> <rect x="0" y="12" width="12" height="12" /> <rect x="72" y="12" width="12" height="12" /> <rect x="96" y="12" width="12" height="12" /> <rect x="108" y="12" width="12" height="12" /> <rect x="120" y="12" width="12" height="12" /> <rect x="156" y="12" width="12" height="12" /> <rect x="180" y="12" width="12" height="12" /> <rect x="192" y="12" width="12" height="12" /> <rect x="216" y="12" width="12" height="12" /> <rect x="288" y="12" width="12" height="12" /> <rect x="0" y="24" width="12" height="12" /> <rect x="24" y="24" width="12" height="12" /> <rect x="36" y="24" width="12" height="12" /> <rect x="48" y="24" width="12" height="12" /> <rect x="72" y="24" width="12" height="12" /> <rect x="96" y="24" width="12" height="12" /> <rect x="168" y="24" width="12" height="12" /> <rect x="180" y="24" width="12" height="12" /> <rect x="216" y="24" width="12" height="12" /> <rect x="240" y="24" width="12" height="12" /> <rect x="252" y="24" width="12" height="12" /> <rect x="264" y="24" width="12" height="12" /> <rect x="288" y="24" width="12" height="12" /> <rect x="0" y="36" width="12" height="12" /> <rect x="24" y="36" width="12" height="12" /> <rect x="36" y="36" width="12" height="12" /> <rect x="48" y="36" width="12" height="12" /> <rect x="72" y="36" width="12" height="12" /> <rect x="108" y="36" width="12" height="12" /> <rect x="168" y="36" width="12" height="12" /> <rect x="216" y="36" width="12" height="12" /> <rect x="240" y="36" width="12" height="12" /> <rect x="252" y="36" width="12" height="12" /> <rect x="264" y="36" width="12" height="12" /> <rect x="288" y="36" width="12" height="12" /> <rect x="0" y="48" width="12" height="12" /> <rect x="24" y="48" width="12" height="12" /> <rect x="36" y="48" width="12" height="12" /> <rect x="48" y="48" width="12" height="12" /> <rect x="72" y="48" width="12" height="12" /> <rect x="96" y="48" width="12" height="12" /> <rect x="108" y="48" width="12" height="12" /> <rect x="120" y="48" width="12" height="12" /> <rect x="144" y="48" width="12" height="12" /> <rect x="168" y="48" width="12" height="12" /> <rect x="180" y="48" width="12" height="12" /> <rect x="216" y="48" width="12" height="12" /> <rect x="240" y="48" width="12" height="12" /> <rect x="252" y="48" width="12" height="12" /> <rect x="264" y="48" width="12" height="12" /> <rect x="288" y="48" width="12" height="12" /> <rect x="0" y="60" width="12" height="12" /> <rect x="72" y="60" width="12" height="12" /> <rect x="96" y="60" width="12" height="12" /> <rect x="120" y="60" width="12" height="12" /> <rect x="180" y="60" width="12" height="12" /> <rect x="192" y="60" width="12" height="12" /> <rect x="216" y="60" width="12" height="12" /> <rect x="288" y="60" width="12" height="12" /> <rect x="0" y="72" width="12" height="12" /> <rect x="12" y="72" width="12" height="12" /> <rect x="24" y="72" width="12" height="12" /> <rect x="36" y="72" width="12" height="12" /> <rect x="48" y="72" width="12" height="12" /> <rect x="60" y="72" width="12" height="12" /> <rect x="72" y="72" width="12" height="12" /> <rect x="96" y="72" width="12" height="12" /> <rect x="120" y="72" width="12" height="12" /> <rect x="144" y="72" width="12" height="12" /> <rect x="168" y="72" width="12" height="12" /> <rect x="192" y="72" width="12" height="12" /> <rect x="216" y="72" width="12" height="12" /> <rect x="228" y="72" width="12" height="12" /> <rect x="240" y="72" width="12" height="12" /> <rect x="252" y="72" width="12" height="12" /> <rect x="264" y="72" width="12" height="12" /> <rect x="276" y="72" width="12" height="12" /> <rect x="288" y="72" width="12" height="12" /> <rect x="96" y="84" width="12" height="12" /> <rect x="120" y="84" width="12" height="12" /> <rect x="132" y="84" width="12" height="12" /> <rect x="168" y="84" width="12" height="12" /> <rect x="180" y="84" width="12" height="12" /> <rect x="192" y="84" width="12" height="12" /> <rect x="0" y="96" width="12" height="12" /> <rect x="12" y="96" width="12" height="12" /> <rect x="36" y="96" width="12" height="12" /> <rect x="72" y="96" width="12" height="12" /> <rect x="84" y="96" width="12" height="12" /> <rect x="132" y="96" width="12" height="12" /> <rect x="144" y="96" width="12" height="12" /> <rect x="156" y="96" width="12" height="12" /> <rect x="168" y="96" width="12" height="12" /> <rect x="180" y="96" width="12" height="12" /> <rect x="192" y="96" width="12" height="12" /> <rect x="216" y="96" width="12" height="12" /> <rect x="228" y="96" width="12" height="12" /> <rect x="240" y="96" width="12" height="12" /> <rect x="264" y="96" width="12" height="12" /> <rect x="276" y="96" width="12" height="12" /> <rect x="0" y="108" width="12" height="12" /> <rect x="24" y="108" width="12" height="12" /> <rect x="36" y="108" width="12" height="12" /> <rect x="108" y="108" width="12" height="12" /> <rect x="132" y="108" width="12" height="12" /> <rect x="192" y="108" width="12" height="12" /> <rect x="216" y="108" width="12" height="12" /> <rect x="288" y="108" width="12" height="12" /> <rect x="24" y="120" width="12" height="12" /> <rect x="36" y="120" width="12" height="12" /> <rect x="72" y="120" width="12" height="12" /> <rect x="84" y="120" width="12" height="12" /> <rect x="156" y="120" width="12" height="12" /> <rect x="204" y="120" width="12" height="12" /> <rect x="216" y="120" width="12" height="12" /> <rect x="276" y="120" width="12" height="12" /> <rect x="288" y="120" width="12" height="12" /> <rect x="24" y="132" width="12" height="12" /> <rect x="36" y="132" width="12" height="12" /> <rect x="48" y="132" width="12" height="12" /> <rect x="96" y="132" width="12" height="12" /> <rect x="108" y="132" width="12" height="12" /> <rect x="120" y="132" width="12" height="12" /> <rect x="132" y="132" width="12" height="12" /> <rect x="144" y="132" width="12" height="12" /> <rect x="156" y="132" width="12" height="12" /> <rect x="180" y="132" width="12" height="12" /> <rect x="204" y="132" width="12" height="12" /> <rect x="216" y="132" width="12" height="12" /> <rect x="240" y="132" width="12" height="12" /> <rect x="12" y="144" width="12" height="12" /> <rect x="24" y="144" width="12" height="12" /> <rect x="72" y="144" width="12" height="12" /> <rect x="84" y="144" width="12" height="12" /> <rect x="120" y="144" width="12" height="12" /> <rect x="144" y="144" width="12" height="12" /> <rect x="156" y="144" width="12" height="12" /> <rect x="168" y="144" width="12" height="12" /> <rect x="204" y="144" width="12" height="12" /> <rect x="216" y="144" width="12" height="12" /> <rect x="228" y="144" width="12" height="12" /> <rect x="252" y="144" width="12" height="12" /> <rect x="276" y="144" width="12" height="12" /> <rect x="288" y="144" width="12" height="12" /> <rect x="24" y="156" width="12" height="12" /> <rect x="36" y="156" width="12" height="12" /> <rect x="48" y="156" width="12" height="12" /> <rect x="60" y="156" width="12" height="12" /> <rect x="84" y="156" width="12" height="12" /> <rect x="132" y="156" width="12" height="12" /> <rect x="216" y="156" width="12" height="12" /> <rect x="228" y="156" width="12" height="12" /> <rect x="252" y="156" width="12" height="12" /> <rect x="264" y="156" width="12" height="12" /> <rect x="288" y="156" width="12" height="12" /> <rect x="0" y="168" width="12" height="12" /> <rect x="36" y="168" width="12" height="12" /> <rect x="72" y="168" width="12" height="12" /> <rect x="84" y="168" width="12" height="12" /> <rect x="96" y="168" width="12" height="12" /> <rect x="108" y="168" width="12" height="12" /> <rect x="120" y="168" width="12" height="12" /> <rect x="144" y="168" width="12" height="12" /> <rect x="192" y="168" width="12" height="12" /> <rect x="216" y="168" width="12" height="12" /> <rect x="228" y="168" width="12" height="12" /> <rect x="240" y="168" width="12" height="12" /> <rect x="264" y="168" width="12" height="12" /> <rect x="288" y="168" width="12" height="12" /> <rect x="12" y="180" width="12" height="12" /> <rect x="48" y="180" width="12" height="12" /> <rect x="84" y="180" width="12" height="12" /> <rect x="96" y="180" width="12" height="12" /> <rect x="108" y="180" width="12" height="12" /> <rect x="132" y="180" width="12" height="12" /> <rect x="144" y="180" width="12" height="12" /> <rect x="156" y="180" width="12" height="12" /> <rect x="180" y="180" width="12" height="12" /> <rect x="192" y="180" width="12" height="12" /> <rect x="216" y="180" width="12" height="12" /> <rect x="240" y="180" width="12" height="12" /> <rect x="276" y="180" width="12" height="12" /> <rect x="0" y="192" width="12" height="12" /> <rect x="12" y="192" width="12" height="12" /> <rect x="36" y="192" width="12" height="12" /> <rect x="60" y="192" width="12" height="12" /> <rect x="72" y="192" width="12" height="12" /> <rect x="108" y="192" width="12" height="12" /> <rect x="132" y="192" width="12" height="12" /> <rect x="144" y="192" width="12" height="12" /> <rect x="156" y="192" width="12" height="12" /> <rect x="192" y="192" width="12" height="12" /> <rect x="204" y="192" width="12" height="12" /> <rect x="216" y="192" width="12" height="12" /> <rect x="228" y="192" width="12" height="12" /> <rect x="240" y="192" width="12" height="12" /> <rect x="252" y="192" width="12" height="12" /> <rect x="264" y="192" width="12" height="12" /> <rect x="96" y="204" width="12" height="12" /> <rect x="120" y="204" width="12" height="12" /> <rect x="144" y="204" width="12" height="12" /> <rect x="156" y="204" width="12" height="12" /> <rect x="168" y="204" width="12" height="12" /> <rect x="180" y="204" width="12" height="12" /> <rect x="192" y="204" width="12" height="12" /> <rect x="240" y="204" width="12" height="12" /> <rect x="252" y="204" width="12" height="12" /> <rect x="288" y="204" width="12" height="12" /> <rect x="0" y="216" width="12" height="12" /> <rect x="12" y="216" width="12" height="12" /> <rect x="24" y="216" width="12" height="12" /> <rect x="36" y="216" width="12" height="12" /> <rect x="48" y="216" width="12" height="12" /> <rect x="60" y="216" width="12" height="12" /> <rect x="72" y="216" width="12" height="12" /> <rect x="96" y="216" width="12" height="12" /> <rect x="108" y="216" width="12" height="12" /> <rect x="120" y="216" width="12" height="12" /> <rect x="144" y="216" width="12" height="12" /> <rect x="156" y="216" width="12" height="12" /> <rect x="180" y="216" width="12" height="12" /> <rect x="192" y="216" width="12" height="12" /> <rect x="216" y="216" width="12" height="12" /> <rect x="240" y="216" width="12" height="12" /> <rect x="252" y="216" width="12" height="12" /> <rect x="276" y="216" width="12" height="12" /> <rect x="288" y="216" width="12" height="12" /> <rect x="0" y="228" width="12" height="12" /> <rect x="72" y="228" width="12" height="12" /> <rect x="108" y="228" width="12" height="12" /> <rect x="132" y="228" width="12" height="12" /> <rect x="144" y="228" width="12" height="12" /> <rect x="156" y="228" width="12" height="12" /> <rect x="168" y="228" width="12" height="12" /> <rect x="192" y="228" width="12" height="12" /> <rect x="240" y="228" width="12" height="12" /> <rect x="252" y="228" width="12" height="12" /> <rect x="264" y="228" width="12" height="12" /> <rect x="276" y="228" width="12" height="12" /> <rect x="0" y="240" width="12" height="12" /> <rect x="24" y="240" width="12" height="12" /> <rect x="36" y="240" width="12" height="12" /> <rect x="48" y="240" width="12" height="12" /> <rect x="72" y="240" width="12" height="12" /> <rect x="108" y="240" width="12" height="12" /> <rect x="132" y="240" width="12" height="12" /> <rect x="144" y="240" width="12" height="12" /> <rect x="192" y="240" width="12" height="12" /> <rect x="204" y="240" width="12" height="12" /> <rect x="216" y="240" width="12" height="12" /> <rect x="228" y="240" width="12" height="12" /> <rect x="240" y="240" width="12" height="12" /> <rect x="252" y="240" width="12" height="12" /> <rect x="288" y="240" width="12" height="12" /> <rect x="0" y="252" width="12" height="12" /> <rect x="24" y="252" width="12" height="12" /> <rect x="36" y="252" width="12" height="12" /> <rect x="48" y="252" width="12" height="12" /> <rect x="72" y="252" width="12" height="12" /> <rect x="96" y="252" width="12" height="12" /> <rect x="108" y="252" width="12" height="12" /> <rect x="120" y="252" width="12" height="12" /> <rect x="132" y="252" width="12" height="12" /> <rect x="156" y="252" width="12" height="12" /> <rect x="168" y="252" width="12" height="12" /> <rect x="204" y="252" width="12" height="12" /> <rect x="228" y="252" width="12" height="12" /> <rect x="240" y="252" width="12" height="12" /> <rect x="252" y="252" width="12" height="12" /> <rect x="264" y="252" width="12" height="12" /> <rect x="0" y="264" width="12" height="12" /> <rect x="24" y="264" width="12" height="12" /> <rect x="36" y="264" width="12" height="12" /> <rect x="48" y="264" width="12" height="12" /> <rect x="72" y="264" width="12" height="12" /> <rect x="132" y="264" width="12" height="12" /> <rect x="156" y="264" width="12" height="12" /> <rect x="168" y="264" width="12" height="12" /> <rect x="180" y="264" width="12" height="12" /> <rect x="192" y="264" width="12" height="12" /> <rect x="228" y="264" width="12" height="12" /> <rect x="240" y="264" width="12" height="12" /> <rect x="264" y="264" width="12" height="12" /> <rect x="288" y="264" width="12" height="12" /> <rect x="0" y="276" width="12" height="12" /> <rect x="72" y="276" width="12" height="12" /> <rect x="96" y="276" width="12" height="12" /> <rect x="108" y="276" width="12" height="12" /> <rect x="120" y="276" width="12" height="12" /> <rect x="144" y="276" width="12" height="12" /> <rect x="156" y="276" width="12" height="12" /> <rect x="168" y="276" width="12" height="12" /> <rect x="180" y="276" width="12" height="12" /> <rect x="192" y="276" width="12" height="12" /> <rect x="204" y="276" width="12" height="12" /> <rect x="216" y="276" width="12" height="12" /> <rect x="252" y="276" width="12" height="12" /> <rect x="0" y="288" width="12" height="12" /> <rect x="12" y="288" width="12" height="12" /> <rect x="24" y="288" width="12" height="12" /> <rect x="36" y="288" width="12" height="12" /> <rect x="48" y="288" width="12" height="12" /> <rect x="60" y="288" width="12" height="12" /> <rect x="72" y="288" width="12" height="12" /> <rect x="96" y="288" width="12" height="12" /> <rect x="120" y="288" width="12" height="12" /> <rect x="132" y="288" width="12" height="12" /> <rect x="144" y="288" width="12" height="12" /> <rect x="156" y="288" width="12" height="12" /> <rect x="168" y="288" width="12" height="12" /> <rect x="180" y="288" width="12" height="12" /> <rect x="192" y="288" width="12" height="12" /> <rect x="228" y="288" width="12" height="12" /> <rect x="276" y="288" width="12" height="12" /> <rect x="288" y="288" width="12" height="12" /> </g> </svg> </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <a href="#" class="back-to-top"><span class="show-for-medium-up">Back to Top</span><span class="show-for-small">Top</span></a> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://pub.mdpi-res.com/assets/js/modernizr-2.8.3.min.js?5227e0738f7f421d?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery-1.12.4.min.js?4f252523d4af0b47?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.min.js?6b2ec41c18b29054?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.equalizer.min.js?0f6c549b75ec554c?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.multiselect.js?0edd3998731d1091?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.cycle2.min.js?63413052928f97ee?1704293393"></script> <script> // old browser fix - this way the console log rows won't throw (silent) errors in browsers not supporting console log if (!window.console) window.console = {}; if (!window.console.log) window.console.log = function () { }; var currentJournalNameSystem = "symmetry"; $(document).ready(function() { $('select.foundation-select').multiselect({ search: true, minHeight: 130, maxHeight: 130, }); $(document).foundation({ orbit: { timer_speed: 4000, }, reveal: { animation: 'fadeAndPop', animation_speed: 100, } }); $(".chosen-select").each(function(element) { var maxSelected = (undefined !== $(this).data('maxselectedoptions') ? $(this).data('maxselectedoptions') : 100); $(this).on('chosen:ready', function(event, data) { var select = $(data.chosen.form_field); if (select.attr('id') === 'journal-browser-volume') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Volume_Options'); } if (select.attr('id') === 'journal-browser-issue') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Issue_Options'); } }).chosen({ display_disabled_options: false, disable_search_threshold: 7, max_selected_options: maxSelected, width: "100%" }); }); $(".toEncode").each(function(e) { var oldHref = $(this).attr("href"); var newHref = oldHref.replace('.botdefense.please.enable.javascript.','@'); $(this).attr("href", newHref); if (!$(this).hasClass("emailCaptcha")) { $(this).html(newHref.replace('mailto:', '')); } $(this).removeClass("visibility-hidden"); }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { $(document).foundation('equalizer', 'reflow'); }); // fix the images that have tag height / width defined // otherwise the default foundation styles overwrite the tag definitions $("img").each(function() { if ($(this).attr('width') != undefined || $(this).attr('height') != undefined) { $(this).addClass("img-fixed"); } }); $("#basic_search, #advanced_search").submit(function(e) { var searchArguments = false; $(this).find("input,select").not("#search,.search-button").each(function() { if (undefined === $(this).val() || "" === $(this).val()) { $(this).attr('name', null); } else { $(this).attr('name'); searchArguments = true; } }); if (!searchArguments) { window.location = $(this).attr('action'); return false; } }); $(".hide-show-desktop-option").click(function(e) { e.preventDefault(); var parentDiv = $(this).closest("div"); $.ajax({ url: $(this).attr('href'), success: function(msg) { parentDiv.removeClass().hide(); } }); }); $(".generic-toggleable-header").click(function(e) { $(this).toggleClass("active"); $(this).next(".generic-toggleable-content").toggleClass("active"); }); /* * handle whole row as a link if the row contains only one visible link */ $("table.new tr").hover(function() { if ($(this).find("td:visible a").length == 1) { $(this).addClass("single-link"); } }, function() { $(this).removeClass("single-link"); }); $("table.new:not(.table-of-tables)").on("click", "tr.single-link", function(e) { var target = $(e.target); if (!e.ctrlKey && !target.is("a")) { $(this).find("td:visible a")[0].click(); } }); $(document).on("click", ".custom-accordion-for-small-screen-link", function(e) { if ($(this).closest("#basic_search").length > 0) { if ($(".search-container__advanced").first().is(":visible")) { openAdvanced() } } if (Foundation.utils.is_small_only()) { if ($(this).hasClass("active")) { $(this).removeClass("active"); $(this).next(".custom-accordion-for-small-screen-content").addClass("show-for-medium-up"); } else { $(this).addClass("active"); $(this).next(".custom-accordion-for-small-screen-content").removeClass("show-for-medium-up"); $(document).foundation('orbit', 'reflow'); } } if (undefined !== $(this).data("callback")) { var customCallback = $(this).data("callback"); func = window[customCallback]; func(); } }); $(document).on("click", ".js-open-small-search", function(e) { e.preventDefault(); $(this).toggleClass("active").closest(".tab-bar").toggleClass("active"); $(".search-container").toggleClass("hide-for-small-down"); }); $(document).on("click", ".js-open-menu", function(e) { $(".search-container").addClass("hide-for-small-down"); }); $(window).on('resize', function() { recalculate_main_browser_position(); recalculate_responsive_moving_containers(); }); updateSearchLabelVisibilities(); recalculate_main_browser_position(); recalculate_responsive_moving_containers(); if (window.document.documentMode == 11) { $("<link/>", { rel: "stylesheet", type: "text/css", href: "https://fonts.googleapis.com/icon?family=Material+Icons"}).appendTo("head"); } }); function recalculate_main_browser_position() { if (Foundation.utils.is_small_only()) { if ($("#js-main-top-container").parent("#js-large-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-small-main-top-container")); } } else { if ($("#js-main-top-container").parent("#js-small-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-large-main-top-container")); } } } function recalculate_responsive_moving_containers() { $(".responsive-moving-container.large").each(function() { var previousParent = $(".responsive-moving-container.active[data-id='"+$(this).data("id")+"']"); var movingContent = previousParent.html(); if (Foundation.utils.is_small_only()) { var currentParent = $(".responsive-moving-container.small[data-id='"+$(this).data("id")+"']"); } else if (Foundation.utils.is_medium_only()) { var currentParent = $(".responsive-moving-container.medium[data-id='"+$(this).data("id")+"']"); } else { var currentParent = $(".responsive-moving-container.large[data-id='"+$(this).data("id")+"']"); } if (previousParent.attr("class") !== currentParent.attr("class")) { currentParent.html(movingContent); previousParent.html(); currentParent.addClass("active"); previousParent.removeClass("active"); } }); } // cookies allowed is checked from a) local storage and b) from server separately so that the footer bar doesn't // get included in the custom page caches function checkCookiesAllowed() { var cookiesEnabled = localStorage.getItem("mdpi_cookies_enabled"); if (null === cookiesEnabled) { $.ajax({ url: "/ajax_cookie_value/mdpi_cookies_accepted", success: function(data) { if (data.value) { localStorage.setItem("mdpi_cookies_enabled", true); checkDisplaySurvey(); } else { $(".js-allow-cookies").show(); } } }); } else { checkDisplaySurvey(); } } function checkDisplaySurvey() { } window.addEventListener('CookiebotOnAccept', function (e) { var CookieDate = new Date; if (Cookiebot.consent.preferences) { CookieDate.setFullYear(CookieDate.getFullYear() + 1); document.cookie = "mdpi_layout_type_v2=mobile; path=/; expires=" + CookieDate.toUTCString() + ";"; $(".js-toggle-desktop-layout-link").css("display", "inline-block"); } }, false); window.addEventListener('CookiebotOnDecline', function (e) { if (!Cookiebot.consent.preferences) { $(".js-toggle-desktop-layout-link").hide(); if ("" === "desktop") { window.location = "/toggle_desktop_layout_cookie"; } } }, false); </script> <script src="https://pub.mdpi-res.com/assets/js/lib.js?fd43fe50d062d8d9?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/mdpi.js?44d698355e7ccba5?1704293393"></script> <script>var banners_url = 'https://serve.mdpi.com';</script> <script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/ifvisible.min.js?c621d19ecb761212?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?ac4ea55275297c15?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/clipboard.min.js?3f3688138a1b9fc4?1704293393"></script> <script type="text/javascript"> $(document).ready(function() { var helpFunctions = $(".middle-column__help__fixed"); var leftColumnAffix = $(".left-column__fixed"); var middleColumn = $("#middle-column"); var clone = null; helpFunctions.affix({ offset: { top: function() { return middleColumn.offset().top - 8 - (Foundation.utils.is_medium_only() ? 30 : 0); }, bottom: function() { return $("#footer").innerHeight() + 74 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); if (leftColumnAffix.length > 0) { clone = leftColumnAffix.clone(); clone.addClass("left-column__fixed__affix"); clone.insertBefore(leftColumnAffix); clone.css('width', leftColumnAffix.outerWidth() + 50); clone.affix({ offset: { top: function() { return leftColumnAffix.offset().top - 30 - (Foundation.utils.is_medium_only() ? 50 : 0); }, bottom: function() { return $("#footer").innerHeight() + 92 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); } $(window).on("resize", function() { if (clone !== null) { clone.css('width', leftColumnAffix.outerWidth() + 50); } }); new ClipboardJS('.js-clipboard-copy'); }); </script> <script src="https://pub.mdpi-res.com/assets/js/jquery-ui-1.13.2.min.js?1e2047978946a1d2?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/slick.min.js?d5a61c749e44e471?1704293393"></script> <script> $(document).ready(function() { $(".link-article-menu").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("div").toggleClass("active"); }); $(".js-similarity-related-articles").click(function(e) { e.preventDefault(); if ('' !== $('#recommended-articles-modal').attr('data-url')) { $('#recommended-articles-modal').foundation('reveal', 'open', $('#recommended-articles-modal').attr('data-url')); } }); $.ajax({ url: "/article/923280/similarity-related/show-link", success: function(result) { if (result.show) { $('#recommended-articles-modal').attr('data-url', result.link); $('.js-article-similarity-container').show(); } } }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { var modal = $(this); if (modal.attr('id') === "author-biographies-modal") { modal.find('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, }); modal.find('.multiple-items').slick('refresh'); } }); }); </script> <script> $(document).ready(function() { $(document).on('keyup', function (e) { if (e.keyCode == 27) { var hElem = $(this).find(".annotator-adder"); if (hElem.length){ hElem.css({'visibility':'hidden'}); } else { document.querySelector("hypothesis-adder").shadowRoot.querySelector(".annotator-adder").style.visibility = "hidden"; } } }); }); </script> <script> window.hypothesisConfig = function () { return { sidebarAppUrl: 'https://commenting.mdpi.com/app.html', showHighlights: 'whenSidebarOpen' , openSidebar: false , assetRoot: 'https://commentingres.mdpi.com/hypothesis', services: [{ apiUrl: 'https://commenting.mdpi.com/api/', authority: 'mdpi', grantToken: '', doi: '10.3390/sym14101997' }], }; }; </script> <script async id="hypothesis_frame"></script> <script type="text/javascript"> if (-1 !== window.location.href.indexOf("?src=")) { window.history.replaceState({}, '', `${location.pathname}`); } $(document).ready(function() { var scifeedCounter = 0; var search = window.location.search; var mathjaxReady = false; // late image file loading $("img[data-lsrc]").each(function() { $(this).attr("src", $(this).data("lsrc")); }); // late mathjax initialization var head = document.getElementsByTagName("head")[0]; var script = document.createElement("script"); script.type = "text/x-mathjax-config"; script[(window.opera ? "innerHTML" : "text")] = "MathJax.Hub.processSectionDelay = 0;\n" + "MathJax.Hub.Config({\n" + " \"menuSettings\": {\n" + " CHTMLpreview: false\n" + " },\n" + " \"CHTML-preview\":{\n" + " disabled: true\n" + " },\n" + " \"HTML-CSS\": {\n" + " scale: 90,\n" + " availableFonts: [],\n" + " preferredFont: null,\n" + " preferredFonts: null,\n" + " webFont:\"Gyre-Pagella\",\n" + " imageFont:'TeX',\n" + " undefinedFamily:\"'Arial Unicode MS',serif\",\n" + " linebreaks: { automatic: false }\n" + " },\n" + " \"TeX\": {\n" + " extensions: ['noErrors.js'],\n" + " noErrors: {\n" + " inlineDelimiters: [\"\",\"\"],\n" + " multiLine: true,\n" + " style: {\n" + " 'font-size': '90%',\n" + " 'text-align': 'left',\n" + " 'color': 'black',\n" + " 'padding': '1px 3px',\n" + " 'border': '1px solid'\n" + " }\n" + " }\n" + " }\n" + "});\n" + "MathJax.Hub.Register.StartupHook('End', function() {\n" + " refreshMathjaxWidths();\n" + " mathjaxReady = true;\n" + "});\n" + "MathJax.Hub.Startup.signal.Interest(function (message) {\n" + " if (message == 'End') {\n" + " var hypoLink = document.getElementById('hypothesis_frame');\n" + " if (null !== hypoLink) {\n" + " hypoLink.setAttribute('src', 'https://commenting.mdpi.com/embed.js');\n" + " }\n" + " }\n" + "});"; head.appendChild(script); script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://pub.mdpi-res.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; head.appendChild(script); // article version checker if (0 === search.indexOf('?type=check_update&version=')) { $.ajax({ url: "/2073-8994/14/10/1997" + "/versioncheck" + search, success: function(result) { $(".js-check-update-container").html(result); } }); } $('#feed_option').click(function() { // tracker if ($('#scifeed_clicked').length<1) { $(this).append('<span style="display:none" id="scifeed_clicked">done</span>'); } $('#feed_data').toggle('slide', { direction: 'up'}, '1000'); // slideToggle(700); OR toggle(700) $("#scifeed_error_msg").html('').hide(); $("#scifeed_notice_msg").html('').hide(); }); $('#feed_option').click(function(event) { setTimeout(function(){ var captchaSection = $("#captchaSection"); captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); // var img = captchaSection.find('img'); // img.attr('src', img.data('url') + "?" + (new Date()).getTime()); // $(".captcha_reload").trigger("click"); var img = document.getElementById('gregwar_captcha_scifeed'); img.src = '/generate-captcha/gcb_captcha?n=' + (new Date()).getTime(); },800); }); $(document).on('click', '.split_feeds', function() { var name = $( this ).attr('name'); var flag = 1 - ($(this).is(":checked")*1); $('.split_feeds').each(function (index) { if ($( this ).attr('name') !== name) { $(this)[0].checked = flag; } }); }); $(document).on('click', '#scifeed_submit, #scifeed_submit1', function(event) { event.preventDefault(); $(".captcha_reload").trigger("click"); $("#scifeed_error_msg").html(""); $("#scifeed_error_msg").hide(); }); $(document).on('click', '.subscription_toggle', function(event) { if ($(this).val() === 'Create SciFeed' && $('#scifeed_hidden_flag').length>0) { event.preventDefault(); // alert('Here there would be a captcha because user is not logged in'); var captchaSection = $("#captchaSection"); if (captchaSection.hasClass('ui-helper-hidden')) { captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); var img = captchaSection.find('img'); img.attr('src', img.data('url') + "?" + (new Date()).getTime()); $("#reloadCaptcha").trigger("click"); } } }); $(document).on('click', '.scifeed_msg', function(){ $(this).hide(); }); $(document).on('click', '.article-scilit-search', function(e) { e.preventDefault(); var data = $(".article-scilit-search-data").val(); var dataArray = data.split(';').map(function(keyword) { return "(\"" + keyword.trim() + "\")"; }); var searchQuery = dataArray.join(" OR "); var searchUrl = encodeURI("https://www.scilit.net/articles/search?q="+ searchQuery + "&advanced=1&highlight=1"); var win = window.open(searchUrl, '_blank'); if (win) { win.focus(); } else { window.location(searchUrl); } }); display_stats(); citedCount(); follow_goto(); // Select the node that will be observed for mutations const targetNodes = document.getElementsByClassName('hypothesis-count-container'); // Options for the observer (which mutations to observe) const config = { attributes: false, childList: true, subtree: false }; // Callback function to execute when mutations are observed const callback = function(mutationList, observer) { for(const mutation of mutationList) { if (mutation.type === 'childList') { let node = $(mutation.target); if (parseInt(node.html()) > 0) { node.show(); } } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callback); // Start observing the target node for configured mutations for(const targetNode of targetNodes) { observer.observe(targetNode, config); } // Select the node that will be observed for mutations const mathjaxTargetNode = document.getElementById('middle-column'); // Callback function to execute when mutations are observed const mathjaxCallback = function(mutationList, observer) { if (mathjaxReady && typeof(MathJax) !== 'undefined') { refreshMathjaxWidths(); } }; // Create an observer instance linked to the callback function const mathjaxObserver = new ResizeObserver(mathjaxCallback); // Start observing the target node for configured mutations mathjaxObserver.observe(mathjaxTargetNode); var sf_authors = "please_login,please_login,please_login,please_login,please_login,please_login,please_login,please_login,please_login"; var sf_usr_val = "false"; var sf_email = ''; var sf_firstname = ''; var sf_lastname = ''; }); /* END $(document).ready */ function refreshMathjaxWidths() { let width = ($('.html-body').width()*0.9) + "px"; $('.MathJax_Display').css('max-width', width); $('.MJXc-display').css('max-width', width); } function sendScifeedFrom(form) { if (!$('#scifeed_email').val().trim()) { // empty email alert('Please, provide an email for subscribe to this scifeed'); return false; } else if (!$('#captchaSection').hasClass('ui-helper-hidden') && !$('#captchaSection').find('input').val().trim()) { // empty captcha alert('Please, fill the captcha field.'); return false; } else if( ((($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds:checked').length))<1) || ($('#scifeed_kwd_txt').length < 0 && !$('#scifeed_kwd_txt').val().trim()) || ($('#scifeed_author_txt').length<0 &&!$('#scifeed_author_txt').val().trim()) ) { alert('You did not select anything to subscribe'); return false; } else if(($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds2:checked').length)<1){ alert("You did not select anything to subscribe"); return false; } else { var url = $('#scifeed_subscribe_url').html(); var formData = $(form).serializeArray(); $.post(url, formData).done(function (data) { if (JSON.parse(data)) { $('.scifeed_msg').hide(); var res = JSON.parse(data); var successFeeds = 0; var errorFeeds = 0; if (res) { $('.scifeed_msg').html(''); $.each(res, function (index, val) { if (val) { if (val.error) { errorFeeds++; $("#scifeed_error_msg").append(index+' - '+val.error+'<br>'); } if (val.notice) // for successful feed creation { successFeeds++; // $("#scifeed_notice_msg").append(index+' - '+val.notice+'<br>'); $("#scifeed_notice_msg").append('<li>'+index+'</li>'); } } }); if (successFeeds>0) { text = $('#scifeed_notice_msg').html(); text = 'The following feed'+(successFeeds>1?'s have':' has')+ ' been sucessfully created:<br><ul>'+ text + '</ul>' +($('#scifeed_hidden_flag').length>0 ? 'You are not logged in, so you probably need to validate '+ (successFeeds>1?'them':' it')+'.<br>' :'' ) +'Please check your email'+(successFeeds>1?'s':'')+' for more details.'; //(successFeeds>1?' for each of them':'')+'.<br>'; $("#scifeed_notice_msg").html(text); $("#scifeed_notice_msg").show(); } if (errorFeeds>0) { $("#scifeed_error_msg").show();; } } $("#feed_data").hide(); } }); } } function follow_goto() { var hashStr = location.hash.replace("#",""); if(typeof hashStr !== 'undefined') { if( hashStr == 'supplementary') { document.getElementById('suppl_id').scrollIntoView(); } if( hashStr == 'citedby') { document.getElementById('cited_id').scrollIntoView(); } } } function cited() { $("#framed_div").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded"); if(loaded.innerHTML == "No") { // Load Xref result var container = document.getElementById("framed_div"); // This replace the content container.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1704293393\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; var url = "/citedby/10.3390%252Fsym14101997/44"; $.post(url, function(result) { if (result.success) { container.innerHTML = result.view; } loaded.innerHTML = "Yes"; }); } } return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } function detect_device() { // Added by Bastien (18/08/2014): based on the http://detectmobilebrowsers.com/ detector var check = false; (function(a){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4)))check = true})(navigator.userAgent||navigator.vendor||window.opera); return check; } function display_stats(){ $("#article_stats_div").toggle(); return false; } /* * Cited By Scopus */ function citedCount(){ $("#framed_div_cited_count").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded_cite_count"); // to load only once the result! if(loaded.innerHTML == "No") { // Load Xref result var d = document.getElementById("framed_div_cited_count"); // This replace the content d.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1704293393\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; $.ajax({ method : "POST", url : "/cite-count/10.3390%252Fsym14101997", success : function(data) { if (data.succ) { d.innerHTML = data.view; loaded.innerHTML = "Yes"; follow_goto(); } } }); } } // end else return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } </script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/highcharts.js?bdd06f45e34c33df?1704293393"></script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/modules/exporting.js?944dc938d06de3a8?1704293393"></script><script type="text/javascript" defer="defer"> var advancedStatsData; var selectedStatsType = "abstract"; $(function(){ var countWrapper = $('#counts-wrapper'); $('#author_stats_id #type_links a').on('click', function(e) { e.preventDefault(); selectedStatsType = $(this).data('type'); $('#article_advanced_stats').vectorMap('set', 'values', advancedStatsData[selectedStatsType]); $('#advanced_stats_max').html(advancedStatsData[selectedStatsType].max); $('#type_links a').removeClass('active'); $(this).addClass('active'); }); $.get('/2073-8994/14/10/1997/stats', function (result) { if (!result.success) { return; } // process article metrics part in left column var viewNumber = countWrapper.find(".view-number"); viewNumber.html(result.metrics.views); viewNumber.parent().toggleClass("count-div--grey", result.metrics.views == 0); var downloadNumber = countWrapper.find(".download-number"); downloadNumber.html(result.metrics.downloads); downloadNumber.parent().toggleClass("count-div--grey", result.metrics.downloads == 0); var citationsNumber = countWrapper.find(".citations-number"); citationsNumber.html(result.metrics.citations); citationsNumber.parent().toggleClass("count-div--grey", result.metrics.citations == 0); if (result.metrics.views > 0 || result.metrics.downloads > 0 || result.metrics.citations > 0) { countWrapper.find("#js-counts-wrapper__views, #js-counts-wrapper__downloads").addClass("visible").show(); if (result.metrics.citations > 0) { countWrapper.find('.citations-number').html(result.metrics.citations).show(); countWrapper.find("#js-counts-wrapper__citations").addClass("visible").show(); } else { countWrapper.find("#js-counts-wrapper__citations").remove(); } $("[data-id='article-counters']").removeClass("hidden"); } if (result.metrics.altmetrics_score > 0) { $("#js-altmetrics-donut").show(); } // process view chart in main column var jsondata = result.chart; var series = new Array(); $.each(jsondata.elements, function(i, element) { var dataValues = new Array(); $.each(element.values, function(i, value) { dataValues.push(new Array(value.tip, value.value)); }); series[i] = {name: element.text, data:dataValues}; }); Highcharts.setOptions({ chart: { style: { fontFamily: 'Arial,sans-serif' } } }); $('#article_stats_swf').highcharts({ chart: { type: 'line', width: $("#tabs").width() //* 0.91 }, credits: { enabled: false }, exporting: { enabled: true }, title: { text: jsondata.title.text, x: -20 //center }, xAxis: { categories: jsondata.x_axis.labels.labels, offset: jsondata.x_axis.offset, labels:{ step: jsondata.x_axis.labels.steps, rotation: 30 } }, yAxis: { max: jsondata.y_axis.max, min: jsondata.y_axis.min, offset: jsondata.y_axis.offset, labels: { steps: jsondata.y_axis.steps }, title: { enabled: false } }, tooltip: { formatter: function (){ return this.key.replace("#val#", this.y); } }, legend: { align: 'top', itemDistance: 50 }, series: series }); }); $('#supplement_link').click(function() { document.getElementById('suppl_id').scrollIntoView(); }); $('#stats_link').click(function() { document.getElementById('stats_id').scrollIntoView(); }); // open mol viewer for molbank special supplementary files $('.showJmol').click(function(e) { e.preventDefault(); var jmolModal = $("#jmolModal"); var url = "/article/923280/jsmol_viewer/__supplementary_id__"; url = url.replace(/__supplementary_id__/g, $(this).data('index')); $('#jsmol-content').attr('src', url); jmolModal.find(".content").html($(this).data('description')); jmolModal.foundation("reveal", "open"); }); }); </script><script type="text/javascript"> function setCookie(cname, cvalue, ctime) { ctime = (typeof ctime === 'undefined') ? 10*365*24*60*60*1000 : ctime; // default => 10 years var d = new Date(); d.setTime(d.getTime() + ctime); // ==> 1 hour = 60*60*1000 var expires = "expires="+d.toUTCString(); document.cookie = cname + "=" + cvalue + "; " + expires +"; path=/"; } function getCookie(cname) { var name = cname + "="; var ca = document.cookie.split(';'); for(var i=0; i<ca.length; i++) { var c = ca[i]; while (c.charAt(0)==' ') c = c.substring(1); if (c.indexOf(name) == 0) return c.substring(name.length, c.length); } return ""; } </script><script type="text/javascript" src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script><script> $(document).ready(function() { if ($("#js-similarity-related-data").length > 0) { $.ajax({ url: '/article/923280/similarity-related', success: function(response) { $("#js-similarity-related-data").html(response); $("#js-related-articles-menu").show(); $(document).foundation('tab', 'reflow'); MathJax.Hub.Queue(["Typeset", MathJax.Hub]); } }); } }); </script><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1704293393"><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1704293393"><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/magnific-popup.min.js?2be3d9e7dc569146?1704293393"></script><script> $(function() { $(".js-show-more-academic-editors").on("click", function(e) { e.preventDefault(); $(this).hide(); $(".academic-editor-container").removeClass("hidden"); }); }); </script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/vmap/jqvmap.min.css?126a06688aa11c13?1704293393"> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.min.js?935f68d33bdd88a1?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.world.js?16677403c0e1bef1?1704293393"></script> <script> function updateSlick() { $('.multiple-items').slick('setPosition'); } $(document).ready(function() { $('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, responsive: [ { breakpoint: 1024, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 600, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 480, settings: { slidesToShow: 1, slidesToScroll: 1, } } ] }); $('.multiple-items').show(); $(document).on('click', '.reviewReportSelector', function(e) { let path = $(this).attr('data-path'); handleReviews(path, $(this)); }); $(document).on('click', '.viewReviewReports', function(e) { let versionOne = $('#versionTab_1'); if (!versionOne.hasClass('activeTab')) { let path = $(this).attr('data-path'); handleReviews(path, versionOne); } location.href = "#reviewReports"; }); $(document).on('click', '.reviewersResponse, .authorResponse', function(e) { let version = $(this).attr('data-version'); let targetVersion = $('#versionTab_' + version); if (!targetVersion.hasClass('activeTab')) { let path = targetVersion.attr('data-path'); handleReviews(path, targetVersion); } location.href = $(this).attr('data-link'); }); $(document).on('click', '.tab', function (e) { e.preventDefault(); $('.tab').removeClass('activeTab'); $(this).addClass('activeTab') $('.tab').each(function() { $(this).closest('.tab-title').removeClass('active'); }); $(this).closest('.tab-title').addClass('active') }); }); function handleReviews(path, target) { $.ajax({ url: path, context: this, success: function (data) { $('.activeTab').removeClass('activeTab'); target.addClass('activeTab'); $('#reviewSection').html(data.view); }, error: function (xhr, ajaxOptions, thrownError) { console.log(xhr.status); console.log(thrownError); } }); } </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?v1?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/storage.js?e9b262d3a3476d25?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/jquery-scrollspy.js?09cbaec0dbb35a67?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/magnific-popup.js?4a09c18460afb26c?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/underscore.js?f893e294cde60c24?1704293393"></script> <script type="text/javascript"> $('document').ready(function(){ $("#left-column").addClass("show-for-large-up"); $("#middle-column").removeClass("medium-9").removeClass("left-bordered").addClass("medium-12"); $(window).on('resize scroll', function() { /* if ($('.button--drop-down').isInViewport($(".top-bar").outerHeight())) { */ if ($('.button--drop-down').isInViewport()) { $("#js-button-download").hide(); } else { $("#js-button-download").show(); } }); }); $(document).on('DOMNodeInserted', function(e) { var element = $(e.target); if (element.hasClass('menu') && element.hasClass('html-nav') ) { element.addClass("side-menu-ul"); } }); </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/articles.js?eae67e95653a8570?1704293393"></script> <script> repositionOpenSideBar = function() { $('#left-column').addClass("show-for-large-up show-for-medium-up").show(); $('#middle-column').removeClass('large-12').removeClass('medium-12'); $('#middle-column').addClass('large-9'); } repositionCloseSideBar = function() { $('#left-column').removeClass("show-for-large-up show-for-medium-up").hide(); $('#middle-column').removeClass('large-9'); $('#middle-column').addClass('large-12').addClass('medium-12'); } </script> <!--[if lt IE 9]> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8.js?6eef8fcbc831f5bd?1704293393"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/jquery.xdomainrequest.min.js?a945caca315782b0?1704293393"></script> <![endif]--> <script type="text/plain" data-cookieconsent="marketing"> !function(e,t,n,s,u,a){e.twq||(s=e.twq=function(){s.exe?s.exe.apply(s,arguments):s.queue.push(arguments); },s.version='1.1',s.queue=[],u=t.createElement(n),u.async=!0,u.src='//static.ads-twitter.com/uwt.js', a=t.getElementsByTagName(n)[0],a.parentNode.insertBefore(u,a))}(window,document,'script'); // Insert Twitter Pixel ID and Standard Event data below twq('init','o2pip'); twq('track','PageView'); </script> <script defer src="https://static.cloudflareinsights.com/beacon.min.js/v84a3a4012de94ce1a686ba8c167c359c1696973893317" integrity="sha512-euoFGowhlaLqXsPWQ48qSkBSCFs3DPRyiwVu3FjR96cMPx+Fr+gpWRhIafcHwqwCqWS42RZhIudOvEI+Ckf6MA==" data-cf-beacon='{"rayId":"84002fb0f984681e","b":1,"version":"2023.10.0","token":"28b078b091674c0f80b4eb2521a2d256"}' crossorigin="anonymous"></script> </body> </html>