CINXE.COM
Nanowire - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Nanowire - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"44d36cd0-27f6-4103-af26-89ed305a5a3d","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Nanowire","wgTitle":"Nanowire","wgCurRevisionId":1253080677,"wgRevisionId":1253080677,"wgArticleId":52206,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: multiple names: authors list","Articles with short description","Short description is different from Wikidata","Wikipedia introduction cleanup from February 2022","All pages needing cleanup","Articles covered by WikiProject Wikify from February 2022","All articles covered by WikiProject Wikify","All articles with unsourced statements","Articles with unsourced statements from December 2023","Webarchive template wayback links","Nanowire","Nanoelectronics","Electrical connectors", "Mesoscopic physics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Nanowire","wgRelevantArticleId":52206,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":60000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q631739", "wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible", "mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Nanowire - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Nanowire"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Nanowire&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Nanowire"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Nanowire rootpage-Nanowire skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Nanowire" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Nanowire" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Nanowire" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Nanowire" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Characteristics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Characteristics"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Characteristics</span> </div> </a> <ul id="toc-Characteristics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Synthesis" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Synthesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Synthesis</span> </div> </a> <button aria-controls="toc-Synthesis-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Synthesis subsection</span> </button> <ul id="toc-Synthesis-sublist" class="vector-toc-list"> <li id="toc-Suspension" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Suspension"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Suspension</span> </div> </a> <ul id="toc-Suspension-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-VLS_growth" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#VLS_growth"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>VLS growth</span> </div> </a> <ul id="toc-VLS_growth-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Solution-phase_synthesis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Solution-phase_synthesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Solution-phase synthesis</span> </div> </a> <ul id="toc-Solution-phase_synthesis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Liquid_Bridge_Induced_Self-assembly" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Liquid_Bridge_Induced_Self-assembly"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Liquid Bridge Induced Self-assembly</span> </div> </a> <ul id="toc-Liquid_Bridge_Induced_Self-assembly-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Non-catalytic_growth" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Non-catalytic_growth"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Non-catalytic growth</span> </div> </a> <ul id="toc-Non-catalytic_growth-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-DNA-templated_metallic_nanowire_synthesis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DNA-templated_metallic_nanowire_synthesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>DNA-templated metallic nanowire synthesis</span> </div> </a> <ul id="toc-DNA-templated_metallic_nanowire_synthesis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Crack-Defined_Shadow_Mask_Lithography" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Crack-Defined_Shadow_Mask_Lithography"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7</span> <span>Crack-Defined Shadow Mask Lithography</span> </div> </a> <ul id="toc-Crack-Defined_Shadow_Mask_Lithography-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Physics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Physics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Physics</span> </div> </a> <button aria-controls="toc-Physics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Physics subsection</span> </button> <ul id="toc-Physics-sublist" class="vector-toc-list"> <li id="toc-Conductivity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conductivity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Conductivity</span> </div> </a> <ul id="toc-Conductivity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Welding" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Welding"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Welding</span> </div> </a> <ul id="toc-Welding-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mechanical_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mechanical_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Mechanical properties</span> </div> </a> <ul id="toc-Mechanical_properties-sublist" class="vector-toc-list"> <li id="toc-Young's_modulus" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Young's_modulus"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.1</span> <span>Young's modulus</span> </div> </a> <ul id="toc-Young's_modulus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Yield_strength" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Yield_strength"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.2</span> <span>Yield strength</span> </div> </a> <ul id="toc-Yield_strength-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Possible_applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Possible_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Possible applications</span> </div> </a> <button aria-controls="toc-Possible_applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Possible applications subsection</span> </button> <ul id="toc-Possible_applications-sublist" class="vector-toc-list"> <li id="toc-Electronic_devices" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Electronic_devices"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Electronic devices</span> </div> </a> <ul id="toc-Electronic_devices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Single_nanowire_devices_for_gas_and_chemical_sensing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Single_nanowire_devices_for_gas_and_chemical_sensing"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Single nanowire devices for gas and chemical sensing</span> </div> </a> <ul id="toc-Single_nanowire_devices_for_gas_and_chemical_sensing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nanowire_lasers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nanowire_lasers"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Nanowire lasers</span> </div> </a> <ul id="toc-Nanowire_lasers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sensing_of_proteins_and_chemicals_using_semiconductor_nanowires" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sensing_of_proteins_and_chemicals_using_semiconductor_nanowires"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Sensing of proteins and chemicals using semiconductor nanowires</span> </div> </a> <ul id="toc-Sensing_of_proteins_and_chemicals_using_semiconductor_nanowires-sublist" class="vector-toc-list"> <li id="toc-Limitations_of_sensing_with_silicon_nanowire_FET_devices" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Limitations_of_sensing_with_silicon_nanowire_FET_devices"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4.1</span> <span>Limitations of sensing with silicon nanowire FET devices</span> </div> </a> <ul id="toc-Limitations_of_sensing_with_silicon_nanowire_FET_devices-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Nanowire_assisted_transfer_of_sensitive_TEM_samples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nanowire_assisted_transfer_of_sensitive_TEM_samples"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Nanowire assisted transfer of sensitive TEM samples</span> </div> </a> <ul id="toc-Nanowire_assisted_transfer_of_sensitive_TEM_samples-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Corn-like_nanowires" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Corn-like_nanowires"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Corn-like nanowires</span> </div> </a> <ul id="toc-Corn-like_nanowires-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Nanowire</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 20 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-20" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">20 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B3%D9%84%D9%83_%D9%86%D8%A7%D9%86%D9%88%D9%8A" title="سلك نانوي – Arabic" lang="ar" hreflang="ar" data-title="سلك نانوي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Nanofil" title="Nanofil – Catalan" lang="ca" hreflang="ca" data-title="Nanofil" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Nanotr%C3%A5d" title="Nanotråd – Danish" lang="da" hreflang="da" data-title="Nanotråd" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Nanodraht" title="Nanodraht – German" lang="de" hreflang="de" data-title="Nanodraht" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Nanotraat" title="Nanotraat – Estonian" lang="et" hreflang="et" data-title="Nanotraat" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Nanohilo" title="Nanohilo – Spanish" lang="es" hreflang="es" data-title="Nanohilo" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Nanodrato" title="Nanodrato – Esperanto" lang="eo" hreflang="eo" data-title="Nanodrato" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%86%D8%A7%D9%86%D9%88%D8%B3%DB%8C%D9%85" title="نانوسیم – Persian" lang="fa" hreflang="fa" data-title="نانوسیم" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Nanofil" title="Nanofil – French" lang="fr" hreflang="fr" data-title="Nanofil" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%82%98%EB%85%B8%EC%99%80%EC%9D%B4%EC%96%B4" title="나노와이어 – Korean" lang="ko" hreflang="ko" data-title="나노와이어" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Kawat_nano" title="Kawat nano – Indonesian" lang="id" hreflang="id" data-title="Kawat nano" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Nanofilo" title="Nanofilo – Italian" lang="it" hreflang="it" data-title="Nanofilo" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A0%D7%A0%D7%95-%D7%97%D7%95%D7%98" title="ננו-חוט – Hebrew" lang="he" hreflang="he" data-title="ננו-חוט" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%8A%E3%83%8E%E3%83%AF%E3%82%A4%E3%83%A4" title="ナノワイヤ – Japanese" lang="ja" hreflang="ja" data-title="ナノワイヤ" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Nanofio" title="Nanofio – Portuguese" lang="pt" hreflang="pt" data-title="Nanofio" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9D%D0%B8%D1%82%D0%B5%D0%B2%D0%B8%D0%B4%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%BD%D0%BE%D0%BA%D1%80%D0%B8%D1%81%D1%82%D0%B0%D0%BB%D0%BB" title="Нитевидный нанокристалл – Russian" lang="ru" hreflang="ru" data-title="Нитевидный нанокристалл" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Nanotr%C3%A5d" title="Nanotråd – Swedish" lang="sv" hreflang="sv" data-title="Nanotråd" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%AA%E0%B9%89%E0%B8%99%E0%B8%A5%E0%B8%A7%E0%B8%94%E0%B8%99%E0%B8%B2%E0%B9%82%E0%B8%99" title="เส้นลวดนาโน – Thai" lang="th" hreflang="th" data-title="เส้นลวดนาโน" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9D%D0%B0%D0%BD%D0%BE%D0%B4%D1%80%D0%BE%D1%82%D0%B8%D0%BD%D0%B8" title="Нанодротини – Ukrainian" lang="uk" hreflang="uk" data-title="Нанодротини" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%A5%88%E7%B1%B3%E7%B7%9A" title="奈米線 – Chinese" lang="zh" hreflang="zh" data-title="奈米線" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q631739#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Nanowire" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Nanowire" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Nanowire"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Nanowire&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Nanowire&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Nanowire"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Nanowire&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Nanowire&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Nanowire" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Nanowire" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Nanowire&oldid=1253080677" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Nanowire&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Nanowire&id=1253080677&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNanowire"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNanowire"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Nanowire&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Nanowire&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Nanowires" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q631739" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Wire with a diameter in the nanometres</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Lead_too_short plainlinks metadata ambox ambox-content ambox-lead_too_short" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Wiki_letter_w.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/6/6c/Wiki_letter_w.svg/40px-Wiki_letter_w.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/6/6c/Wiki_letter_w.svg/60px-Wiki_letter_w.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/6/6c/Wiki_letter_w.svg/80px-Wiki_letter_w.svg.png 2x" data-file-width="44" data-file-height="44" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article's <a href="/wiki/Wikipedia:Manual_of_Style/Lead_section#Length" title="Wikipedia:Manual of Style/Lead section">lead section</a> <b>may be too short to adequately <a href="/wiki/Wikipedia:Summary_style" title="Wikipedia:Summary style">summarize</a> the key points</b>.<span class="hide-when-compact"> Please consider expanding the lead to <a href="/wiki/Wikipedia:Manual_of_Style/Lead_section#Provide_an_accessible_overview" title="Wikipedia:Manual of Style/Lead section">provide an accessible overview</a> of all important aspects of the article.</span> <span class="date-container"><i>(<span class="date">February 2022</span>)</i></span></div></td></tr></tbody></table> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:SnSe@SWCNT.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/45/SnSe%40SWCNT.jpg/260px-SnSe%40SWCNT.jpg" decoding="async" width="260" height="32" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/45/SnSe%40SWCNT.jpg/390px-SnSe%40SWCNT.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/45/SnSe%40SWCNT.jpg/520px-SnSe%40SWCNT.jpg 2x" data-file-width="816" data-file-height="99" /></a><figcaption>Crystalline 2×2-atom <a href="/wiki/Tin_selenide" title="Tin selenide">tin selenide</a> nanowire grown inside a single-wall <a href="/wiki/Carbon_nanotube" title="Carbon nanotube">carbon nanotube</a> (tube diameter ≈1 nm).<sup id="cite_ref-wire_1-0" class="reference"><a href="#cite_note-wire-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><table class="sidebar nomobile nowraplinks" style="width:20em"><tbody><tr><td class="sidebar-pretitle">Part of a series of articles on</td></tr><tr><th class="sidebar-title-with-pretitle"><a href="/wiki/Nanoelectronics" title="Nanoelectronics">Nanoelectronics</a></th></tr><tr><th class="sidebar-heading"> Single-molecule electronics</th></tr><tr><td class="sidebar-content"> <div class="plainlist"> <ul><li><a href="/wiki/Molecular_scale_electronics" title="Molecular scale electronics">Molecular scale electronics</a></li> <li><a href="/wiki/Molecular_logic_gate" title="Molecular logic gate">Molecular logic gate</a></li> <li><a href="/wiki/Molecular_wire" title="Molecular wire">Molecular wires</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading"> Solid-state nanoelectronics</th></tr><tr><td class="sidebar-content"> <div class="plainlist"> <ul><li><a href="/wiki/Nanocircuitry" title="Nanocircuitry">Nanocircuitry</a></li> <li><a class="mw-selflink selflink">Nanowires</a></li> <li><a href="/wiki/Nanolithography" title="Nanolithography">Nanolithography</a></li> <li><a href="/wiki/Nanoelectromechanical_systems" title="Nanoelectromechanical systems">NEMS</a></li> <li><a href="/wiki/Nanosensor" title="Nanosensor">Nanosensor</a></li> <li><a href="/wiki/Moore%27s_law" title="Moore's law">Moore's law</a></li> <li><a href="/wiki/Multigate_device" title="Multigate device">Multigate device</a></li> <li><a href="/wiki/Semiconductor_device_fabrication" title="Semiconductor device fabrication">Semiconductor device fabrication</a></li> <li><a href="/wiki/List_of_semiconductor_scale_examples" title="List of semiconductor scale examples">List of semiconductor scale examples</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading"> Related approaches</th></tr><tr><td class="sidebar-content"> <div class="plainlist"> <ul><li><a href="/wiki/Nanoionics" title="Nanoionics">Nanoionics</a></li> <li><a href="/wiki/Nanophotonics" title="Nanophotonics">Nanophotonics</a></li> <li><a href="/wiki/Nanomechanics" title="Nanomechanics">Nanomechanics</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading"> Portals</th></tr><tr><td class="sidebar-content"> <span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_ksim.png" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Nuvola_apps_ksim.png/16px-Nuvola_apps_ksim.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Nuvola_apps_ksim.png/24px-Nuvola_apps_ksim.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Nuvola_apps_ksim.png/32px-Nuvola_apps_ksim.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Electronics" title="Portal:Electronics">Electronics portal</a></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Nanoelectronics" title="Template:Nanoelectronics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Nanoelectronics" title="Template talk:Nanoelectronics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Nanoelectronics" title="Special:EditPage/Template:Nanoelectronics"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>A <b>nanowire</b> is a <a href="/wiki/Nanostructure" title="Nanostructure">nanostructure</a> in the form of a <a href="/wiki/Wire" title="Wire">wire</a> with the diameter of the order of a nanometre (10<sup>−9</sup> m). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of <a href="/wiki/Nanometer" class="mw-redirect" title="Nanometer">nanometers</a> or less and an unconstrained length. At these scales, quantum mechanical effects are important—which coined the term "<a href="/wiki/Quantum_wire" title="Quantum wire">quantum wires</a>". </p><p>Many different types of nanowires exist, including superconducting (e.g. <a href="/wiki/Yttrium_barium_copper_oxide" title="Yttrium barium copper oxide">YBCO</a><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup>), metallic (e.g. <a href="/wiki/Nickel" title="Nickel">Ni</a>, <a href="/wiki/Platinum" title="Platinum">Pt</a>, <a href="/wiki/Gold" title="Gold">Au</a>, <a href="/wiki/Silver" title="Silver">Ag</a>), semiconducting (e.g. <a href="/wiki/Silicon_nanowire" title="Silicon nanowire">silicon nanowires (SiNWs)</a>, <a href="/wiki/Indium_phosphide" title="Indium phosphide">InP</a>, <a href="/wiki/Gallium_nitride" title="Gallium nitride">GaN</a>) and insulating (e.g. <a href="/wiki/Silicon_dioxide" title="Silicon dioxide">SiO<sub>2</sub></a>, <a href="/wiki/Titanium_dioxide" title="Titanium dioxide">TiO<sub>2</sub></a>). </p><p><a href="/wiki/Molecular_nanowires" class="mw-redirect" title="Molecular nanowires">Molecular nanowires</a> are composed of repeating molecular units either organic (e.g. <a href="/wiki/DNA" title="DNA">DNA</a>) or inorganic (e.g. Mo<sub>6</sub>S<sub>9−<i>x</i></sub>I<sub><i>x</i></sub>). </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Characteristics">Characteristics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=1" title="Edit section: Characteristics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:HgTe@SWCNT.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/HgTe%40SWCNT.png/220px-HgTe%40SWCNT.png" decoding="async" width="220" height="49" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/HgTe%40SWCNT.png/330px-HgTe%40SWCNT.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1c/HgTe%40SWCNT.png/440px-HgTe%40SWCNT.png 2x" data-file-width="699" data-file-height="155" /></a><figcaption>A noise-filtered HRTEM image of a <a href="/wiki/HgTe" class="mw-redirect" title="HgTe">HgTe</a> extreme nanowire embedded down the central pore of a SWCNT. The image is also accompanied by a simulation of the crystal structure<sup id="cite_ref-ExtremeNanowire_3-0" class="reference"><a href="#cite_note-ExtremeNanowire-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>Typical nanowires exhibit aspect ratios (length-to-width ratio) of 1000 or more. As such they are often referred to as one-dimensional (1-D) materials. Nanowires have many interesting properties that are not seen in bulk or 3-D (three-dimensional) materials. This is because <a href="/wiki/Electron" title="Electron">electrons</a> in nanowires are <a href="/wiki/Quantum" title="Quantum">quantum</a> confined laterally and thus occupy energy levels that are different from the traditional continuum of energy levels or bands found in bulk materials. </p><p>A consequence of this <a href="/wiki/Quantum_confinement" class="mw-redirect" title="Quantum confinement">quantum confinement</a> in nanowires is that they exhibit discrete values of the <a href="/wiki/Electrical_conductance" class="mw-redirect" title="Electrical conductance">electrical conductance</a>. Such discrete values arise from a quantum mechanical constraint on the number electronic transport channels at the nanometer scale, and they are often approximately equal to <a href="/wiki/Integer" title="Integer">integer</a> multiples of the <a href="/wiki/Quantum_of_conductance" class="mw-redirect" title="Quantum of conductance">quantum of conductance</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2e^{2}}{h}}\simeq 77.41\;\mu S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>≃<!-- ≃ --></mo> <mn>77.41</mn> <mspace width="thickmathspace" /> <mi>μ<!-- μ --></mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2e^{2}}{h}}\simeq 77.41\;\mu S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6450eb1a247cf14328963c562e306cb9253df808" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:16.078ex; height:5.843ex;" alt="{\displaystyle {\frac {2e^{2}}{h}}\simeq 77.41\;\mu S}"></span></dd></dl> <p>This conductance is twice the reciprocal of the resistance unit called the <a href="/wiki/Von_Klitzing_constant" class="mw-redirect" title="Von Klitzing constant">von Klitzing constant</a>, <i>R</i><sub>K</sub> = <span class="nowrap"><span data-sort-value="7004258128074500000♠"></span>25<span style="margin-left:.25em;">812</span>.807<span style="margin-left:.25em;">45</span>... Ω</span>,<sup id="cite_ref-physconst-RK_4-0" class="reference"><a href="#cite_note-physconst-RK-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> defined as <span class="nowrap"><i>R</i><sub>K</sub> = <i>h</i>/<i>e</i><sup>2</sup></span> and named for <a href="/wiki/Klaus_von_Klitzing" title="Klaus von Klitzing">Klaus von Klitzing</a>, the discoverer of the <a href="/wiki/Quantum_Hall_effect" title="Quantum Hall effect">integer quantum Hall effect</a>. </p><p>Examples of nanowires include inorganic molecular nanowires (Mo<sub>6</sub>S<sub>9−<i>x</i></sub>I<sub><i>x</i></sub>, Li<sub>2</sub>Mo<sub>6</sub>Se<sub>6</sub>), which can have a diameter of 0.9 nm and be hundreds of micrometers long. Other important examples are based on semiconductors such as InP, Si, GaN, etc., dielectrics (e.g. SiO<sub>2</sub>,TiO<sub>2</sub>), or metals (e.g. Ni, Pt). </p><p>There are many applications where nanowires may become important in electronic, opto-electronic and nanoelectromechanical devices, as additives in advanced composites, for metallic interconnects in nanoscale quantum devices, as field-emitters and as leads for biomolecular nanosensors. </p> <div class="mw-heading mw-heading2"><h2 id="Synthesis">Synthesis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=2" title="Edit section: Synthesis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Epitaxial_Nanowire_Heterostructures_SEM_image.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Epitaxial_Nanowire_Heterostructures_SEM_image.jpg/170px-Epitaxial_Nanowire_Heterostructures_SEM_image.jpg" decoding="async" width="170" height="127" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Epitaxial_Nanowire_Heterostructures_SEM_image.jpg/255px-Epitaxial_Nanowire_Heterostructures_SEM_image.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Epitaxial_Nanowire_Heterostructures_SEM_image.jpg/340px-Epitaxial_Nanowire_Heterostructures_SEM_image.jpg 2x" data-file-width="1023" data-file-height="767" /></a><figcaption>An <a href="/wiki/Scanning_electron_microscope" title="Scanning electron microscope">SEM</a> image of epitaxial nanowire heterostructures grown from catalytic gold nanoparticles</figcaption></figure> <p>There are two basic approaches to synthesizing nanowires: <a href="/wiki/Silicon_Nanowire#Top_Down_Synthesis_Methods" class="mw-redirect" title="Silicon Nanowire">top-down</a> and <a href="/wiki/Silicon_Nanowire#Bottom-up_Synthesis_Methods" class="mw-redirect" title="Silicon Nanowire">bottom-up</a>. A top-down approach reduces a large piece of material to small pieces, by various means such as <a href="/wiki/Lithography" title="Lithography">lithography</a>,<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Ball_mill" title="Ball mill">milling</a> or <a href="/wiki/Thermal_oxidation" title="Thermal oxidation">thermal oxidation</a>. A bottom-up approach synthesizes the nanowire by combining constituent <a href="/wiki/Adatom" title="Adatom">adatoms</a>. Most synthesis techniques use a bottom-up approach. Initial synthesis via either method may often be followed by a <a href="/wiki/Silicon_Nanowire#Thermal_Oxidation_of_Silicon_Nanowires" class="mw-redirect" title="Silicon Nanowire">nanowire thermal treatment step</a>, often involving a form of self-limiting oxidation, to fine tune the size and aspect ratio of the structures.<sup id="cite_ref-slo_7-0" class="reference"><a href="#cite_note-slo-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> After the bottom-up synthesis, nanowires can be integrated using pick-and-place techniques.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>Nanowire production uses several common laboratory techniques, including suspension, electrochemical deposition, vapor deposition, and <a href="/wiki/Vapor%E2%80%93liquid%E2%80%93solid_method" title="Vapor–liquid–solid method">VLS</a> growth. <a href="/wiki/Ion_track_technology_(track_replication)" class="mw-redirect" title="Ion track technology (track replication)">Ion track technology</a> enables growing homogeneous and segmented nanowires down to 8 nm diameter. As nanowire oxidation rate is controlled by diameter, <a href="/wiki/Thermal_oxidation" title="Thermal oxidation">thermal oxidation</a> steps are often applied to tune their morphology. </p> <div class="mw-heading mw-heading3"><h3 id="Suspension">Suspension</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=3" title="Edit section: Suspension"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A suspended nanowire is a wire produced in a high-vacuum chamber held at the longitudinal extremities. Suspended nanowires can be produced by: </p> <ul><li>The chemical etching of a larger wire</li> <li>The bombardment of a larger wire, typically with highly energetic ions</li> <li>Indenting the tip of a <a href="/wiki/Scanning_tunneling_microscope" title="Scanning tunneling microscope">STM</a> in the surface of a metal near its melting point, and then retracting it</li></ul> <div class="mw-heading mw-heading3"><h3 id="VLS_growth">VLS growth</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=4" title="Edit section: VLS growth"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A common technique for creating a nanowire is <a href="/wiki/Vapor%E2%80%93liquid%E2%80%93solid_method" title="Vapor–liquid–solid method">vapor–liquid–solid method</a> (VLS), which was first reported by Wagner and Ellis in 1964 for silicon whiskers with diameters ranging from hundreds of nm to hundreds of μm.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> This process can produce high-quality crystalline nanowires of many semiconductor materials, for example, VLS–grown single crystalline <a href="/wiki/Silicon_Nanowire" class="mw-redirect" title="Silicon Nanowire">silicon nanowires (SiNWs)</a> with smooth surfaces could have excellent properties, such as ultra-large elasticity.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> This method uses a source material from either laser <a href="/wiki/Ablation" title="Ablation">ablated</a> particles or a feed gas such as <a href="/wiki/Silane" title="Silane">silane</a>. </p><p>VLS synthesis requires a catalyst. For nanowires, the best catalysts are liquid metal (such as <a href="/wiki/Gold" title="Gold">gold</a>) <a href="/wiki/Nanocluster" title="Nanocluster">nanoclusters</a>, which can either be self-assembled from a thin film by <a href="/wiki/Dewetting" title="Dewetting">dewetting</a>, or purchased in colloidal form and deposited on a substrate. </p><p>The source enters these nanoclusters and begins to saturate them. On reaching supersaturation, the source solidifies and grows outward from the nanocluster. Simply turning off the source can adjust the final length of the nanowire. Switching sources while still in the growth phase can create compound nanowires with super-lattices of alternating materials. For example, a method termed ENGRAVE (Encoded Nanowire GRowth and Appearance through VLS and Etching)<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> developed by the Cahoon Lab at <a href="/wiki/University_of_North_Carolina_at_Chapel_Hill" title="University of North Carolina at Chapel Hill">UNC-Chapel Hill</a> allows for nanometer-scale morphological control via rapid <i>in situ</i> dopant modulation. </p><p>A single-step vapour phase reaction at elevated temperature synthesises inorganic nanowires such as Mo<sub>6</sub>S<sub>9−<i>x</i></sub>I<sub><i>x</i></sub>. From another point of view, such nanowires are cluster <a href="/wiki/Polymer" title="Polymer">polymers</a>. </p><p>Similar to VLS synthesis, VSS (vapor-solid-solid) synthesis of nanowires (NWs) proceeds through thermolytic decomposition of a silicon precursor (typically phenylsilane). Unlike VLS, the catalytic seed remains in solid state when subjected to high temperature annealing of the substrate. This such type of synthesis is widely used to synthesise metal silicide/germanide nanowires through VSS alloying between a copper substrate and a silicon/germanium precursor. </p> <div class="mw-heading mw-heading3"><h3 id="Solution-phase_synthesis">Solution-phase synthesis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=5" title="Edit section: Solution-phase synthesis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Solution-phase synthesis refers to techniques that grow nanowires in solution. They can produce nanowires of many types of materials. Solution-phase synthesis has the advantage that it can produce very large quantities, compared to other methods. In one technique, the <a href="/wiki/Polyol" title="Polyol">polyol</a> synthesis, ethylene glycol is both solvent and reducing agent. This technique is particularly versatile at producing nanowires of gold,<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> lead, platinum, and silver. </p><p>The supercritical fluid-liquid-solid growth method<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> can be used to synthesize semiconductor nanowires, e.g., Si and Ge. By using metal nanocrystals as seeds,<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> Si and Ge organometallic precursors are fed into a reactor filled with a supercritical organic solvent, such as <a href="/wiki/Toluene" title="Toluene">toluene</a>. <a href="/wiki/Thermal_decomposition" title="Thermal decomposition">Thermolysis</a> results in degradation of the precursor, allowing release of Si or Ge, and dissolution into the metal nanocrystals. As more of the semiconductor solute is added from the supercritical phase (due to a concentration gradient), a solid crystallite precipitates, and a nanowire grows uniaxially from the nanocrystal seed. </p> <div class="mw-heading mw-heading3"><h3 id="Liquid_Bridge_Induced_Self-assembly">Liquid Bridge Induced Self-assembly</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=6" title="Edit section: Liquid Bridge Induced Self-assembly"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Protein nanowires in spider silk have been formed by rolling a droplet of spider silk solution over a superhydrophobic pillar structure.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Non-catalytic_growth">Non-catalytic growth</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=7" title="Edit section: Non-catalytic growth"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Nanowire_growth.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/d/da/Nanowire_growth.png/220px-Nanowire_growth.png" decoding="async" width="220" height="264" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/da/Nanowire_growth.png/330px-Nanowire_growth.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/da/Nanowire_growth.png/440px-Nanowire_growth.png 2x" data-file-width="730" data-file-height="875" /></a><figcaption>In situ observation of CuO nanowire growth</figcaption></figure> <p>The vast majority of nanowire-formation mechanisms are explained through the use of catalytic nanoparticles, which drive the nanowire growth and are either added intentionally or generated during the growth. However, nanowires can be also grown without the help of catalysts, which gives an advantage of pure nanowires and minimizes the number of technological steps. The mechanisms for catalyst-free growth of nanowires (or whiskers) were known from 1950s.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p><p>The simplest methods to obtain metal oxide nanowires use ordinary heating of the metals, e.g. metal wire heated with battery, by <a href="/wiki/Joule_heating" title="Joule heating">Joule heating</a> in air<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> can be easily done at home. Spontaneous nanowire formation by non-catalytic methods were explained by the <a href="/wiki/Dislocations" class="mw-redirect" title="Dislocations">dislocation</a> present in specific directions<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> or the growth anisotropy of various <a href="/wiki/Crystal" title="Crystal">crystal faces</a>. More recently, after microscopy advancement, the nanowire growth driven by <a href="/wiki/Screw_dislocation" class="mw-redirect" title="Screw dislocation">screw dislocations</a><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> or <a href="/wiki/Twin_boundary" class="mw-redirect" title="Twin boundary">twin boundaries</a><sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> were demonstrated. The picture on the right shows a single atomic layer growth on the tip of CuO nanowire, observed by in situ <a href="/wiki/Transmission_electron_microscopy" title="Transmission electron microscopy">TEM microscopy</a> during the non-catalytic synthesis of nanowire. </p><p>Atomic-scale nanowires can also form completely self-organised without need for defects. For example, <a href="/wiki/Rare-earth_element" title="Rare-earth element">rare-earth</a> silicide (RESi<sub>2</sub>) nanowires of few nm width and height and several 100 nm length form on silicon(<a href="/wiki/Miller_index" title="Miller index">001</a>) substrates which are covered with a sub-monolayer of a rare earth metal and subsequently annealed.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> The lateral dimensions of the nanowires confine the electrons in such a way that the system resembles a (quasi-)one-dimensional metal.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> Metallic RESi<sub>2</sub> nanowires form on silicon(<i><a href="/wiki/Miller_index" title="Miller index">hhk</a></i>) as well. This system permits tuning the dimensionality between two-dimensional and one-dimensional by the coverage and the tilt angle of the substrate.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="DNA-templated_metallic_nanowire_synthesis">DNA-templated metallic nanowire synthesis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=8" title="Edit section: DNA-templated metallic nanowire synthesis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An emerging field is to use DNA strands as scaffolds for metallic nanowire synthesis. This method is investigated both for the synthesis of metallic nanowires in electronic components and for biosensing applications, in which they allow the transduction of a DNA strand into a metallic nanowire that can be electrically detected. Typically, ssDNA strands are stretched, whereafter they are decorated with metallic nanoparticles that have been functionalised with short complementary ssDNA strands.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Crack-Defined_Shadow_Mask_Lithography">Crack-Defined Shadow Mask Lithography</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=9" title="Edit section: Crack-Defined Shadow Mask Lithography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A simple method to produce nanowires with defined geometries has been recently reported using conventional optical lithography.<sup id="cite_ref-Enrico_2019_8217–8226_32-0" class="reference"><a href="#cite_note-Enrico_2019_8217–8226-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> In this approach, optical lithography is used to generate nanogaps using controlled crack formation.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> These nanogaps are then used as shadow mask for generating individual nanowires with precise lengths and widths. This technique allows to produce individual nanowires below 20 nm in width in a scalable way out of several metallic and metal oxide materials. </p> <div class="mw-heading mw-heading2"><h2 id="Physics">Physics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=10" title="Edit section: Physics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Conductivity">Conductivity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=11" title="Edit section: Conductivity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Wire15micron.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Wire15micron.jpg/220px-Wire15micron.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Wire15micron.jpg/330px-Wire15micron.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/33/Wire15micron.jpg/440px-Wire15micron.jpg 2x" data-file-width="1024" data-file-height="768" /></a><figcaption>An <a href="/wiki/Scanning_electron_microscope" title="Scanning electron microscope">SEM</a> image of a 15 micrometer nickel wire</figcaption></figure> <p>Several physical reasons predict that the conductivity of a nanowire will be much less than that of the corresponding bulk material. First, there is scattering from the wire boundaries, whose effect will be very significant whenever the wire width is below the free electron mean free path of the bulk material. In copper, for example, the mean free path is 40 nm. Copper nanowires less than 40 nm wide will shorten the mean free path to the wire width. Silver nanowires have very different electrical and thermal conductivity from bulk silver.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p><p>Nanowires also show other peculiar electrical properties due to their size. Unlike single wall carbon nanotubes, whose motion of electrons can fall under the regime of <a href="/wiki/Ballistic_transport" class="mw-redirect" title="Ballistic transport">ballistic transport</a> (meaning the electrons can travel freely from one electrode to the other), nanowire conductivity is strongly influenced by edge effects. The edge effects come from atoms that lay at the nanowire surface and are not fully bonded to neighboring atoms like the atoms within the bulk of the nanowire. The unbonded atoms are often a source of defects within the nanowire, and may cause the nanowire to conduct electricity more poorly than the bulk material. As a nanowire shrinks in size, the surface atoms become more numerous compared to the atoms within the nanowire, and edge effects become more important.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (December 2023)">citation needed</span></a></i>]</sup> </p><p>The conductance in a nanowire is described as the sum of the transport by separate <i>channels</i>, each having a different electronic wavefunction normal to the wire. The thinner the wire is, the smaller the number of channels available to the transport of electrons. As a result, wires that are only one or a few atoms wide exhibit quantization of the conductance: i.e. the conductance can assume only discrete values that are multiples of the <a href="/wiki/Conductance_quantum" title="Conductance quantum">conductance quantum</a> <span class="nowrap"><i>G</i><sub>0</sub> = 2<i>e</i><sup>2</sup>/<i>h</i></span> (where <i>e</i> is the <a href="/wiki/Elementary_charge" title="Elementary charge">elementary charge</a> and <i>h</i> is the <a href="/wiki/Planck_constant" title="Planck constant">Planck constant</a>) (see also <i><a href="/wiki/Quantum_Hall_effect" title="Quantum Hall effect">Quantum Hall effect</a></i>). This quantization has been observed by measuring the conductance of a nanowire suspended between two electrodes while pulling it progressively longer: as its diameter reduces, its conductivity decreases in a stepwise fashion and the plateaus correspond approximately to multiples of <i>G</i><sub>0</sub>.<sup id="cite_ref-Yanson_1998_35-0" class="reference"><a href="#cite_note-Yanson_1998-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Rodrigues_2000_36-0" class="reference"><a href="#cite_note-Rodrigues_2000-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p><p>The quantization of conductivity is more pronounced in semiconductors like Si or GaAs than in metals, because of their lower electron density and lower effective mass. It can be observed in 25 nm wide silicon fins, and results in increased <a href="/wiki/Threshold_voltage" title="Threshold voltage">threshold voltage</a>. In practical terms, this means that a <a href="/wiki/MOSFET" title="MOSFET">MOSFET</a> with such nanoscale silicon fins, when used in digital applications, will need a higher gate (control) voltage to switch the transistor on.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Welding">Welding</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=12" title="Edit section: Welding"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To incorporate nanowire technology into industrial applications, researchers in 2008 developed a method of welding nanowires together: a <a href="/wiki/Sacrificial_metal" title="Sacrificial metal">sacrificial metal</a> nanowire is placed adjacent to the ends of the pieces to be joined (using the manipulators of a <a href="/wiki/Scanning_electron_microscope" title="Scanning electron microscope">scanning electron microscope</a>); then an electric current is applied, which fuses the wire ends. The technique fuses wires as small as 10 nm.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p><p>For nanowires with diameters less than 10 nm, existing welding techniques, which require precise control of the heating mechanism and which may introduce the possibility of damage, will not be practical. Recently scientists discovered that single-crystalline ultrathin gold nanowires with diameters ≈ 3–10 nm can be "cold-welded" together within seconds by mechanical contact alone, and under remarkably low applied pressures (unlike macro- and micro-scale <a href="/wiki/Cold_welding" title="Cold welding">cold welding</a> process).<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> High-resolution <a href="/wiki/Transmission_electron_microscopy" title="Transmission electron microscopy">transmission electron microscopy</a> and <a href="/wiki/In_situ" title="In situ">in situ</a> measurements reveal that the welds are nearly perfect, with the same crystal orientation, strength and electrical conductivity as the rest of the nanowire. The high quality of the welds is attributed to the nanoscale sample dimensions, oriented-attachment mechanisms and mechanically assisted fast <a href="/wiki/Surface_diffusion" title="Surface diffusion">surface diffusion</a>. Nanowire welds were also demonstrated between gold and silver, and silver nanowires (with diameters ≈ 5–15 nm) at near room temperature, indicating that this technique may be generally applicable for ultrathin metallic nanowires. Combined with other nano- and microfabrication technologies,<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Cold_welding" title="Cold welding">cold welding</a> is anticipated to have potential applications in the future <a href="/wiki/Top-down_and_bottom-up_design#Nanotechnology" class="mw-redirect" title="Top-down and bottom-up design">bottom-up</a> assembly of metallic one-dimensional nanostructures. </p> <div class="mw-heading mw-heading3"><h3 id="Mechanical_properties">Mechanical properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=13" title="Edit section: Mechanical properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Si_NanoWire_Failure.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Si_NanoWire_Failure.gif/220px-Si_NanoWire_Failure.gif" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Si_NanoWire_Failure.gif/330px-Si_NanoWire_Failure.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/77/Si_NanoWire_Failure.gif/440px-Si_NanoWire_Failure.gif 2x" data-file-width="1600" data-file-height="1200" /></a><figcaption>Simulation of a nanowire <a href="/wiki/Fracture" title="Fracture">fracturing</a></figcaption></figure> <p>The study of nanowire mechanics has boomed since the advent of the <a href="/wiki/Atomic_force_microscopy" title="Atomic force microscopy">atomic force microscope</a> (AFM), and associated technologies which have enabled direct study of the response of the nanowire to an applied load.<sup id="cite_ref-:0_42-0" class="reference"><a href="#cite_note-:0-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> Specifically, a nanowire can be clamped from one end, and the free end displaced by an AFM tip. In this cantilever geometry, the height of the AFM is precisely known, and the force applied is precisely known. This allows for construction of a force vs. displacement curve, which can be converted to a <a href="/wiki/Stress%E2%80%93strain_curve" title="Stress–strain curve">stress vs. strain</a> curve if the nanowire dimensions are known. From the stress-strain curve, the elastic constant known as the <a href="/wiki/Young%27s_modulus" title="Young's modulus">Young's Modulus</a> can be derived, as well as the <a href="/wiki/Toughness" title="Toughness">toughness</a>, and degree of <a href="/wiki/Strain-hardening" class="mw-redirect" title="Strain-hardening">strain-hardening</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Young's_modulus"><span id="Young.27s_modulus"></span>Young's modulus</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=14" title="Edit section: Young's modulus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Stress_Strain_Ductile_Material.pdf" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/Stress_Strain_Ductile_Material.pdf/page1-260px-Stress_Strain_Ductile_Material.pdf.jpg" decoding="async" width="260" height="170" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/Stress_Strain_Ductile_Material.pdf/page1-390px-Stress_Strain_Ductile_Material.pdf.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/60/Stress_Strain_Ductile_Material.pdf/page1-520px-Stress_Strain_Ductile_Material.pdf.jpg 2x" data-file-width="920" data-file-height="600" /></a><figcaption>Stress-strain curve provides all the relevant mechanical properties including; tensile modulus, yield strength, ultimate tensile strength, and fracture strength</figcaption></figure> <p>The elastic component of the stress-strain curve described by the Young's Modulus, has been reported for nanowires, however the modulus depends very strongly on the microstructure. Thus a complete description of the modulus dependence on diameter is lacking. Analytically, <a href="/wiki/Continuum_mechanics" title="Continuum mechanics">continuum mechanics</a> has been applied to estimate the dependence of modulus on diameter: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=E_{0}[1+4(E_{0}/E_{s}-1)(r_{s}/D-r_{s}^{2}/D^{2})]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">[</mo> <mn>1</mn> <mo>+</mo> <mn>4</mn> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>D</mi> <mo>−<!-- − --></mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=E_{0}[1+4(E_{0}/E_{s}-1)(r_{s}/D-r_{s}^{2}/D^{2})]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d434ba5a3530ae0f8e41a1152c69c4b325dc29f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.597ex; height:3.176ex;" alt="{\displaystyle E=E_{0}[1+4(E_{0}/E_{s}-1)(r_{s}/D-r_{s}^{2}/D^{2})]}"></span> in tension, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/411d268de7b1cf300d7481e3fe59f3b20887e0d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.769ex; height:2.509ex;" alt="{\displaystyle E_{0}}"></span> is the bulk modulus, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28528468fc3b17c72144f4ba50bb7b4257c1e316" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.052ex; height:2.009ex;" alt="{\displaystyle r_{s}}"></span> is the thickness of a shell layer in which the modulus is surface dependent and varies from the bulk, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4deb9686f7bb561a4c1d67c22a12ba3256e7c2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.866ex; height:2.176ex;" alt="{\displaystyle E{s}}"></span> is the surface modulus, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> is the diameter.<sup id="cite_ref-:0_42-1" class="reference"><a href="#cite_note-:0-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> This equation implies that the modulus increases as the diameter decreases. However, various computational methods such as molecular dynamics have predicted that modulus should decrease as diameter decreases. </p><p>Experimentally, gold nanowires have been shown to have a Young's modulus which is effectively diameter independent.<sup id="cite_ref-:1_43-0" class="reference"><a href="#cite_note-:1-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> Similarly, <a href="/wiki/Nanoindentation" title="Nanoindentation">nano-indentation</a> was applied to study the modulus of silver nanowires, and again the modulus was found to be 88 GPa, very similar to the modulus of bulk Silver (85 GPa)<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> These works demonstrated that the analytically determined modulus dependence seems to be suppressed in nanowire samples where the crystalline structure highly resembles that of the bulk system. </p><p>In contrast, Si solid nanowires have been studied, and shown to have a decreasing modulus with diameter<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> The authors of that work report a Si modulus which is half that of the bulk value, and they suggest that the density of point defects, and or loss of chemical stoichiometry may account for this difference. </p> <div class="mw-heading mw-heading4"><h4 id="Yield_strength">Yield strength</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=15" title="Edit section: Yield strength"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The plastic component of the stress strain curve (or more accurately the onset of plasticity) is described by the <a href="/wiki/Yield_(engineering)" title="Yield (engineering)">yield strength</a>. The strength of a material is increased by decreasing the number of defects in the solid, which occurs naturally in <a href="/wiki/Nanomaterials" title="Nanomaterials">nanomaterials</a> where the volume of the solid is reduced. As a nanowire is shrunk to a single line of atoms, the strength should theoretically increase all the way to the molecular tensile strength.<sup id="cite_ref-:0_42-2" class="reference"><a href="#cite_note-:0-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> Gold nanowires have been described as 'ultrahigh strength' due to the extreme increase in yield strength, approaching the theoretical value of <i>E</i>/10.<sup id="cite_ref-:1_43-1" class="reference"><a href="#cite_note-:1-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> This huge increase in yield is determined to be due to the lack of <a href="/wiki/Dislocation" title="Dislocation">dislocations</a> in the solid. Without dislocation motion, a 'dislocation-starvation' mechanism is in operation. The material can accordingly experience huge stresses before dislocation motion is possible, and then begins to strain-harden. For these reasons, nanowires (historically described as 'whiskers') have been used extensively in composites for increasing the overall strength of a material.<sup id="cite_ref-:0_42-3" class="reference"><a href="#cite_note-:0-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> Moreover, nanowires continue to be actively studied, with research aiming to translate enhanced mechanical properties to novel devices in the fields of <a href="/wiki/Microelectromechanical_systems" class="mw-redirect" title="Microelectromechanical systems">MEMS</a> or <a href="/wiki/Nanoelectromechanical_systems" title="Nanoelectromechanical systems">NEMS</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Possible_applications">Possible applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=16" title="Edit section: Possible applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Electronic_devices">Electronic devices</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=17" title="Edit section: Electronic devices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Threshold_formation_nowatermark.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/43/Threshold_formation_nowatermark.gif/220px-Threshold_formation_nowatermark.gif" decoding="async" width="220" height="100" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/43/Threshold_formation_nowatermark.gif/330px-Threshold_formation_nowatermark.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/43/Threshold_formation_nowatermark.gif/440px-Threshold_formation_nowatermark.gif 2x" data-file-width="722" data-file-height="328" /></a><figcaption>Atomistic simulation result for formation of inversion channel (electron density) and attainment of threshold voltage (IV) in a nanowire MOSFET. Note that the threshold voltage for this device lies around 0.45V</figcaption></figure> <p>Nanowires have been proposed for use as <a href="/wiki/MOSFET" title="MOSFET">MOSFETs</a> (MOS <a href="/wiki/Field-effect_transistors" class="mw-redirect" title="Field-effect transistors">field-effect transistors</a>). <a href="/wiki/MOS_transistor" class="mw-redirect" title="MOS transistor">MOS transistors</a> are used widely as fundamental building elements in today's electronic circuits.<sup id="cite_ref-triumph_46-0" class="reference"><a href="#cite_note-triumph-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Raymer_47-0" class="reference"><a href="#cite_note-Raymer-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> As predicted by <a href="/wiki/Moore%27s_law" title="Moore's law">Moore's law</a>, the dimension of MOS <a href="/wiki/Transistors" class="mw-redirect" title="Transistors">transistors</a> is shrinking smaller and smaller into nanoscale. One of the key challenges of building future nanoscale MOS transistors is ensuring good gate control over the channel. In general, having a wider gate relative to the total transistor length affords greater gate control. Therefore, the high aspect ratio of nanowires potentially allows for good gate control. </p><p>Due to their one-dimensional structure with unusual optical properties, the nanowire are of interest for photovoltaic devices.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> Compared with its bulk counterparts, the nanowire solar cells are less sensitive to impurities due to bulk recombination, and thus silicon wafers with lower purity can be used to achieve acceptable efficiency, leading to the reduction on material consumption.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p><p>After p-n junctions were built with nanowires, the next logical step was to build <a href="/wiki/Logic_gates" class="mw-redirect" title="Logic gates">logic gates</a>. By connecting several p-n junctions together, researchers have been able to create the basis of all logic circuits: the <a href="/wiki/AND_gate" title="AND gate">AND</a>, <a href="/wiki/OR_gate" title="OR gate">OR</a>, and <a href="/wiki/NOT_gate" class="mw-redirect" title="NOT gate">NOT</a> gates have all been built from semiconductor nanowire crossings. </p><p>In August 2012, researchers reported constructing the first <a href="/wiki/NAND_gate" title="NAND gate">NAND gate</a> from undoped silicon nanowires. This avoids the problem of how to achieve precision doping of complementary nanocircuits, which is unsolved. They were able to control the <a href="/wiki/Schottky_barrier" title="Schottky barrier">Schottky barrier</a> to achieve low-resistance contacts by placing a <a href="/wiki/Silicide" title="Silicide">silicide</a> layer in the metal-silicon interface.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> </p><p>It is possible that semiconductor nanowire crossings will be important to the future of digital computing. Though there are other uses for nanowires beyond these, the only ones that actually take advantage of physics in the nanometer regime are electronic.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> </p><p>In addition, nanowires are also being studied for use as photon ballistic waveguides as interconnects in <a href="/wiki/Quantum_dot" title="Quantum dot">quantum dot</a>/quantum effect well photon logic arrays. Photons travel inside the tube, electrons travel on the outside shell. </p><p>When two nanowires acting as photon waveguides cross each other the juncture acts as a <a href="/wiki/Quantum_dot" title="Quantum dot">quantum dot</a>. </p><p>Conducting nanowires offer the possibility of connecting molecular-scale entities in a molecular computer. Dispersions of conducting nanowires in different polymers are being investigated for use as transparent electrodes for flexible flat-screen displays. </p><p>Because of their high <a href="/wiki/Young%27s_moduli" class="mw-redirect" title="Young's moduli">Young's moduli</a>, their use in mechanically enhancing composites is being investigated. Because nanowires appear in bundles, they may be used as tribological additives to improve friction characteristics and reliability of electronic transducers and actuators. </p><p>Because of their high aspect ratio, nanowires are also suited to <a href="/wiki/Dielectrophoresis" title="Dielectrophoresis">dielectrophoretic</a> manipulation,<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> which offers a low-cost, bottom-up approach to integrating suspended dielectric metal oxide nanowires in electronic devices such as UV, water vapor, and ethanol sensors.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> </p><p>Due to their large surface-to-volume ratio, physico-chemical reactions are facilitated on the surface of nanowires.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Single_nanowire_devices_for_gas_and_chemical_sensing">Single nanowire devices for gas and chemical sensing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=18" title="Edit section: Single nanowire devices for gas and chemical sensing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The high aspect ratio of nanowires makes this nanostructures suitable for electrochemical sensing with the potential for ultimate sensitivity. One of the challenge for the use of nanowires in commercial products is related to the isolation, handling, and integration of nanowires in an electrical circuit when using the conventional and manual pick-and-place approach, leading to a very limited throughput. Recent developments in the nanowire synthesis methods now allow for parallel production of single nanowire devices with useful applications in electrochemistry, photonics, and gas- and biosensing.<sup id="cite_ref-Enrico_2019_8217–8226_32-1" class="reference"><a href="#cite_note-Enrico_2019_8217–8226-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Nanowire_lasers">Nanowire lasers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=19" title="Edit section: Nanowire lasers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Nanowire_laser.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Nanowire_laser.png/170px-Nanowire_laser.png" decoding="async" width="170" height="87" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Nanowire_laser.png/255px-Nanowire_laser.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Nanowire_laser.png/340px-Nanowire_laser.png 2x" data-file-width="739" data-file-height="379" /></a><figcaption>Nanowire lasers for ultrafast transmission of information in light pulses</figcaption></figure> <p><a href="/wiki/Nanowire_lasers" title="Nanowire lasers">Nanowire lasers</a> are nano-scaled <a href="/wiki/Lasers" class="mw-redirect" title="Lasers">lasers</a> with potential as optical interconnects and optical data communication on chip. Nanowire lasers are built from III–V semiconductor heterostructures, the high refractive index allows for low optical loss in the nanowire core. Nanowire lasers are subwavelength lasers of only a few hundred nanometers.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> Nanowire lasers are Fabry–Perot resonator cavities defined by the end facets of the wire with high-reflectivity, recent developments have demonstrated repetition rates greater than 200 GHz offering possibilities for optical chip level communications.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Sensing_of_proteins_and_chemicals_using_semiconductor_nanowires">Sensing of proteins and chemicals using semiconductor nanowires</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=20" title="Edit section: Sensing of proteins and chemicals using semiconductor nanowires"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In an analogous way to FET devices in which the modulation of conductance (flow of electrons/holes) in the semiconductor, between the input (source) and the output (drain) terminals, is controlled by electrostatic potential variation (gate-electrode) of the charge carriers in the device conduction channel, the methodology of a Bio/Chem-FET is based on the detection of the local change in charge density, or so-called "field effect", that characterizes the recognition event between a target molecule and the surface receptor. </p><p>This change in the surface potential influences the Chem-FET device exactly as a 'gate' voltage does, leading to a detectable and measurable change in the device conduction. When these devices are fabricated using semiconductor nanowires as the transistor element the binding of a chemical or biological species to the surface of the sensor can lead to the depletion or accumulation of charge carriers in the "bulk" of the nanometer diameter nanowire i.e. (small cross section available for conduction channels). Moreover, the wire, which serves as a tunable conducting channel, is in close contact with the sensing environment of the target, leading to a short response time, along with orders of magnitude increase in the sensitivity of the device as a result of the huge S/V ratio of the nanowires. </p><p>While several inorganic semiconducting materials such as Si, Ge, and metal oxides (e.g. In<sub>2</sub>O<sub>3</sub>, SnO<sub>2</sub>, ZnO, etc.) have been used for the preparation of nanowires, Si is usually the material of choice when fabricating nanowire FET-based chemo/biosensors.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </p><p>Several examples of the use of <a href="/wiki/Silicon_Nanowire" class="mw-redirect" title="Silicon Nanowire">silicon nanowire</a>(SiNW) sensing devices include the ultra sensitive, real-time sensing of biomarker proteins for cancer, detection of single virus particles, and the detection of nitro-aromatic explosive materials such as 2,4,6-tri-nitrotoluene (TNT) in sensitives superior to these of canines.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> Silicon nanowires could also be used in their twisted form, as electromechanical devices, to measure intermolecular forces with great precision.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Limitations_of_sensing_with_silicon_nanowire_FET_devices">Limitations of sensing with <a href="/wiki/Silicon_nanowire" title="Silicon nanowire">silicon nanowire</a> FET devices</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=21" title="Edit section: Limitations of sensing with silicon nanowire FET devices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Generally, the charges on dissolved molecules and macromolecules are screened by dissolved counterions, since in most cases molecules bound to the devices are separated from the sensor surface by approximately 2–12 nm (the size of the receptor proteins or DNA linkers bound to the sensor surface). As a result of the screening, the electrostatic potential that arises from charges on the analyte molecule decays exponentially toward zero with distance. Thus, for optimal sensing, the <a href="/wiki/Debye_length" title="Debye length">Debye length</a> must be carefully selected for nanowire FET measurements. One approach of overcoming this limitation employs fragmentation of the antibody-capturing units and control over surface receptor density, allowing more intimate binding to the nanowire of the target protein. This approach proved useful for dramatically enhancing the sensitivity of <a href="/wiki/Cardiac_marker" title="Cardiac marker">cardiac biomarkers</a> (e.g. <a href="/wiki/Troponin" title="Troponin">Troponin</a>) detection directly from serum for the diagnosis of acute myocardial infarction.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Nanowire_assisted_transfer_of_sensitive_TEM_samples">Nanowire assisted transfer of sensitive TEM samples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=22" title="Edit section: Nanowire assisted transfer of sensitive TEM samples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a minimal introduction of stress and bending to <a href="/wiki/Transmission_electron_microscopy" title="Transmission electron microscopy">transmission electron microscopy</a> (TEM) samples (<a href="/wiki/Lamella_(materials)" title="Lamella (materials)">lamellae</a>, <a href="/wiki/Thin_films" class="mw-redirect" title="Thin films">thin films</a>, and other mechanically and beam sensitive samples), when transferring inside a <a href="/wiki/Focused_ion_beam" title="Focused ion beam">focused ion beam</a> (FIB), flexible metallic nanowires can be attached to a typically rigid <a href="/wiki/Micromanipulator" title="Micromanipulator">micromanipulator</a>. </p><p>The main advantages of this method include a significant reduction of sample preparation time (quick welding and cutting of nanowire at low beam current), and minimization of stress-induced bending, Pt contamination, and ion beam damage.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> This technique is particularly suitable for <a href="/wiki/In_situ_electron_microscopy" title="In situ electron microscopy">in situ electron microscopy</a> sample preparation. </p> <div class="mw-heading mw-heading2"><h2 id="Corn-like_nanowires">Corn-like nanowires</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=23" title="Edit section: Corn-like nanowires"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Corn-like nanowire is a one-dimensional nanowire with interconnected nanoparticles on the surface, providing a large percentage of reactive facets. TiO<sub>2</sub> corn-like nanowires were first prepared by a surface modification concept using surface tension stress mechanism through a two consecutive hydrothermal operation, and showed an increase of 12% in dye-sensitized solar cell efficiency the light scattering layer.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> CdSe corn-like nanowires grown by chemical bath deposition and corn-like γ-Fe<sub>2</sub>O<sub>3</sub>@SiO<sub>2</sub>@TiO<sub>2</sub> photocatalysts induced by magnetic dipole interactions have been also reported previously.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=24" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1259569809">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_kalzium.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/28px-Nuvola_apps_kalzium.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/42px-Nuvola_apps_kalzium.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/56px-Nuvola_apps_kalzium.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Science" title="Portal:Science">Science portal</a></span></li><li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Noun-technology.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Noun-technology.svg/29px-Noun-technology.svg.png" decoding="async" width="29" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Noun-technology.svg/43px-Noun-technology.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Noun-technology.svg/57px-Noun-technology.svg.png 2x" data-file-width="90" data-file-height="88" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Technology" title="Portal:Technology">Technology portal</a></span></li></ul> <ul><li><a href="/wiki/Bacterial_nanowires" title="Bacterial nanowires">Bacterial nanowires</a></li> <li><a href="/wiki/Molecular_wire" title="Molecular wire">Molecular wire</a></li> <li><a href="/wiki/Nanoantenna" class="mw-redirect" title="Nanoantenna">Nanoantenna</a></li> <li><a href="/wiki/Nanorod" title="Nanorod">Nanorod</a></li> <li><a href="/wiki/Nanowire_battery" title="Nanowire battery">Nanowire battery</a></li> <li><a href="/wiki/Non-carbon_nanotube" title="Non-carbon nanotube">Non-carbon nanotube</a></li> <li><a href="/wiki/Silicon_nanowire" title="Silicon nanowire">Silicon nanowire</a></li> <li><a href="/wiki/Solar_cell" title="Solar cell">Solar cell</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=25" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-wire-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-wire_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFCarterSuyetinListerDyson2014" class="citation journal cs1">Carter, Robin; Suyetin, Mikhail; Lister, Samantha; Dyson, M. Adam; Trewhitt, Harrison; Goel, Sanam; Liu, Zheng; Suenaga, Kazu; Giusca, Cristina; Kashtiban, Reza J.; Hutchison, John L.; Dore, John C.; Bell, Gavin R.; <a href="/wiki/Elena_Besley" title="Elena Besley">Bichoutskaia, Elena</a>; Sloan, Jeremy (2014). <a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC4DT00185K">"Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal oscillation in low-dimensional tin selenide crystals"</a>. <i>Dalton Trans</i>. <b>43</b> (20): 7391–9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC4DT00185K">10.1039/C4DT00185K</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24637546">24637546</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Dalton+Trans&rft.atitle=Band+gap+expansion%2C+shear+inversion+phase+change+behaviour+and+low-voltage+induced+crystal+oscillation+in+low-dimensional+tin+selenide+crystals&rft.volume=43&rft.issue=20&rft.pages=7391-9&rft.date=2014&rft_id=info%3Adoi%2F10.1039%2FC4DT00185K&rft_id=info%3Apmid%2F24637546&rft.aulast=Carter&rft.aufirst=Robin&rft.au=Suyetin%2C+Mikhail&rft.au=Lister%2C+Samantha&rft.au=Dyson%2C+M.+Adam&rft.au=Trewhitt%2C+Harrison&rft.au=Goel%2C+Sanam&rft.au=Liu%2C+Zheng&rft.au=Suenaga%2C+Kazu&rft.au=Giusca%2C+Cristina&rft.au=Kashtiban%2C+Reza+J.&rft.au=Hutchison%2C+John+L.&rft.au=Dore%2C+John+C.&rft.au=Bell%2C+Gavin+R.&rft.au=Bichoutskaia%2C+Elena&rft.au=Sloan%2C+Jeremy&rft_id=https%3A%2F%2Fdoi.org%2F10.1039%252FC4DT00185K&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBostonSchneppNemotoSakka2014" class="citation journal cs1">Boston, R.; Schnepp, Z.; Nemoto, Y.; Sakka, Y.; Hall, S. R. (2014). <a rel="nofollow" class="external text" href="https://research-information.bris.ac.uk/en/publications/in-situ-tem-observation-of-a-microcrucible-mechanism-of-nanowire-growth(8f23c618-23f8-46e1-a1d9-960a0b491b1f).html">"In Situ TEM Observation of a Microcrucible Mechanism of Nanowire Growth"</a>. <i>Science</i>. <b>344</b> (6184): 623–6. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014Sci...344..623B">2014Sci...344..623B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1251594">10.1126/science.1251594</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1983%2F8f23c618-23f8-46e1-a1d9-960a0b491b1f">1983/8f23c618-23f8-46e1-a1d9-960a0b491b1f</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24812400">24812400</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206555658">206555658</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=In+Situ+TEM+Observation+of+a+Microcrucible+Mechanism+of+Nanowire+Growth&rft.volume=344&rft.issue=6184&rft.pages=623-6&rft.date=2014&rft_id=info%3Ahdl%2F1983%2F8f23c618-23f8-46e1-a1d9-960a0b491b1f&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206555658%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2014Sci...344..623B&rft_id=info%3Apmid%2F24812400&rft_id=info%3Adoi%2F10.1126%2Fscience.1251594&rft.aulast=Boston&rft.aufirst=R.&rft.au=Schnepp%2C+Z.&rft.au=Nemoto%2C+Y.&rft.au=Sakka%2C+Y.&rft.au=Hall%2C+S.+R.&rft_id=https%3A%2F%2Fresearch-information.bris.ac.uk%2Fen%2Fpublications%2Fin-situ-tem-observation-of-a-microcrucible-mechanism-of-nanowire-growth%288f23c618-23f8-46e1-a1d9-960a0b491b1f%29.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-ExtremeNanowire-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-ExtremeNanowire_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpencerNesbittTrewhittKashtiban2014" class="citation journal cs1">Spencer, Joseph; Nesbitt, John; Trewhitt, Harrison; Kashtiban, Reza; Bell, Gavin; Ivanov, Victor; Faulques, Eric; Smith, David (2014). <a rel="nofollow" class="external text" href="https://eprints.soton.ac.uk/401309/1/HgTe%2540SWNT_ACSNano_Final.pdf">"Raman Spectroscopy of Optical Transitions and Vibrational Energies of ≈1 nm HgTe Extreme Nanowires within Single Walled Carbon Nanotubes"</a> <span class="cs1-format">(PDF)</span>. <i>ACS Nano</i>. <b>8</b> (9): 9044–52. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fnn5023632">10.1021/nn5023632</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25163005">25163005</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ACS+Nano&rft.atitle=Raman+Spectroscopy+of+Optical+Transitions+and+Vibrational+Energies+of+%E2%89%881+nm+HgTe+Extreme+Nanowires+within+Single+Walled+Carbon+Nanotubes&rft.volume=8&rft.issue=9&rft.pages=9044-52&rft.date=2014&rft_id=info%3Adoi%2F10.1021%2Fnn5023632&rft_id=info%3Apmid%2F25163005&rft.aulast=Spencer&rft.aufirst=Joseph&rft.au=Nesbitt%2C+John&rft.au=Trewhitt%2C+Harrison&rft.au=Kashtiban%2C+Reza&rft.au=Bell%2C+Gavin&rft.au=Ivanov%2C+Victor&rft.au=Faulques%2C+Eric&rft.au=Smith%2C+David&rft_id=https%3A%2F%2Feprints.soton.ac.uk%2F401309%2F1%2FHgTe%252540SWNT_ACSNano_Final.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-physconst-RK-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-physconst-RK_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://physics.nist.gov/cgi-bin/cuu/Value?rk">"2022 CODATA Value: von Klitzing constant"</a>. <i>The NIST Reference on Constants, Units, and Uncertainty</i>. <a href="/wiki/National_Institute_of_Standards_and_Technology" title="National Institute of Standards and Technology">NIST</a>. May 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">2024-05-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+NIST+Reference+on+Constants%2C+Units%2C+and+Uncertainty&rft.atitle=2022+CODATA+Value%3A+von+Klitzing+constant&rft.date=2024-05&rft_id=https%3A%2F%2Fphysics.nist.gov%2Fcgi-bin%2Fcuu%2FValue%3Frk&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShkondin,_E.Takayama,_O.Liu,_P.Mar,_M._D.2017" class="citation journal cs1">Shkondin, E.; Takayama, O., Aryaee Panah, M. E.; Liu, P., Larsen, P. V.; Mar, M. D., Jensen, F.; Lavrinenko, A. V. (2017). <a rel="nofollow" class="external text" href="https://backend.orbit.dtu.dk/ws/files/131570679/ome_7_5_1606.pdf">"Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials"</a> <span class="cs1-format">(PDF)</span>. <i>Optical Materials Express</i>. <b>7</b> (5): 1606–1627. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017OMExp...7.1606S">2017OMExp...7.1606S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FOME.7.001606">10.1364/OME.7.001606</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Optical+Materials+Express&rft.atitle=Large-scale+high+aspect+ratio+Al-doped+ZnO+nanopillars+arrays+as+anisotropic+metamaterials.&rft.volume=7&rft.issue=5&rft.pages=1606-1627&rft.date=2017&rft_id=info%3Adoi%2F10.1364%2FOME.7.001606&rft_id=info%3Abibcode%2F2017OMExp...7.1606S&rft.au=Shkondin%2C+E.&rft.au=Takayama%2C+O.%2C+Aryaee+Panah%2C+M.+E.&rft.au=Liu%2C+P.%2C+Larsen%2C+P.+V.&rft.au=Mar%2C+M.+D.%2C+Jensen%2C+F.&rft.au=Lavrinenko%2C+A.+V.&rft_id=https%3A%2F%2Fbackend.orbit.dtu.dk%2Fws%2Ffiles%2F131570679%2Fome_7_5_1606.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShkondin,_E.Alimadadi,_H.Jensen,_F.2020" class="citation journal cs1">Shkondin, E.; Alimadadi, H., Takayama, O.; Jensen, F., Lavrinenko, A. V. (2020). <a rel="nofollow" class="external text" href="https://backend.orbit.dtu.dk/ws/files/204375048/1.5130176.pdf">"Fabrication of hollow coaxial Al2O3/ZnAl2O4 high aspect ratio freestanding nanotubes based on the Kirkendall effect"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Vacuum Science & Technology A</i>. <b>38</b> (1): 1606–1627. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020JVSTA..38a3402S">2020JVSTA..38a3402S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1116%2F1.5130176">10.1116/1.5130176</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:209898658">209898658</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Vacuum+Science+%26+Technology+A&rft.atitle=Fabrication+of+hollow+coaxial+Al2O3%2FZnAl2O4+high+aspect+ratio+freestanding+nanotubes+based+on+the+Kirkendall+effect.&rft.volume=38&rft.issue=1&rft.pages=1606-1627&rft.date=2020&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A209898658%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1116%2F1.5130176&rft_id=info%3Abibcode%2F2020JVSTA..38a3402S&rft.au=Shkondin%2C+E.&rft.au=Alimadadi%2C+H.%2C+Takayama%2C+O.&rft.au=Jensen%2C+F.%2C+Lavrinenko%2C+A.+V.&rft_id=https%3A%2F%2Fbackend.orbit.dtu.dk%2Fws%2Ffiles%2F204375048%2F1.5130176.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-slo-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-slo_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuPeng2016" class="citation journal cs1">Liu, M.; Peng, J.; et al. (2016). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/306273009">"Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires"</a>. <i>Theoretical and Applied Mechanics Letters</i>. <b>6</b> (5): 195–199. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1911.08908">1911.08908</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.taml.2016.08.002">10.1016/j.taml.2016.08.002</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Theoretical+and+Applied+Mechanics+Letters&rft.atitle=Two-dimensional+modeling+of+the+self-limiting+oxidation+in+silicon+and+tungsten+nanowires&rft.volume=6&rft.issue=5&rft.pages=195-199&rft.date=2016&rft_id=info%3Aarxiv%2F1911.08908&rft_id=info%3Adoi%2F10.1016%2Fj.taml.2016.08.002&rft.aulast=Liu&rft.aufirst=M.&rft.au=Peng%2C+J.&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F306273009&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAliYangKhayrudinovModi2022" class="citation journal cs1">Ali, Utku Emre; Yang, He; Khayrudinov, Vladislav; Modi, Gaurav; Cheng, Zengguang; Agarwal, Ritesh; Lipsanen, Harri; Bhaskaran, Harish (September 2022). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/10.1002/smll.202201968">"A Universal Pick-and-Place Assembly for Nanowires"</a>. <i>Small</i>. <b>18</b> (38): 2201968. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fsmll.202201968">10.1002/smll.202201968</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1613-6810">1613-6810</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/35938750">35938750</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:251399932">251399932</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Small&rft.atitle=A+Universal+Pick-and-Place+Assembly+for+Nanowires&rft.volume=18&rft.issue=38&rft.pages=2201968&rft.date=2022-09&rft.issn=1613-6810&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A251399932%23id-name%3DS2CID&rft_id=info%3Apmid%2F35938750&rft_id=info%3Adoi%2F10.1002%2Fsmll.202201968&rft.aulast=Ali&rft.aufirst=Utku+Emre&rft.au=Yang%2C+He&rft.au=Khayrudinov%2C+Vladislav&rft.au=Modi%2C+Gaurav&rft.au=Cheng%2C+Zengguang&rft.au=Agarwal%2C+Ritesh&rft.au=Lipsanen%2C+Harri&rft.au=Bhaskaran%2C+Harish&rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fsmll.202201968&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWagnerEllis,_W._C.1964" class="citation journal cs1">Wagner, R. S.; Ellis, W. C. (1964). "Vapor-liquid-solid mechanism of single crystal growth". <i>Appl. Phys. Lett</i>. <b>4</b> (5): 89. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964ApPhL...4...89W">1964ApPhL...4...89W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1753975">10.1063/1.1753975</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Appl.+Phys.+Lett.&rft.atitle=Vapor-liquid-solid+mechanism+of+single+crystal+growth&rft.volume=4&rft.issue=5&rft.pages=89&rft.date=1964&rft_id=info%3Adoi%2F10.1063%2F1.1753975&rft_id=info%3Abibcode%2F1964ApPhL...4...89W&rft.aulast=Wagner&rft.aufirst=R.+S.&rft.au=Ellis%2C+W.+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhang2016" class="citation journal cs1">Zhang, H.; et al. (2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988777">"Approaching the ideal elastic strain limit in silicon nanowires"</a>. <i>Science Advances</i>. <b>2</b> (8): e1501382. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016SciA....2E1382Z">2016SciA....2E1382Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.1501382">10.1126/sciadv.1501382</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988777">4988777</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27540586">27540586</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+Advances&rft.atitle=Approaching+the+ideal+elastic+strain+limit+in+silicon+nanowires&rft.volume=2&rft.issue=8&rft.pages=e1501382&rft.date=2016&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4988777%23id-name%3DPMC&rft_id=info%3Apmid%2F27540586&rft_id=info%3Adoi%2F10.1126%2Fsciadv.1501382&rft_id=info%3Abibcode%2F2016SciA....2E1382Z&rft.aulast=Zhang&rft.aufirst=H.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4988777&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChristesenPinionGrumstrupPapanikolas2013" class="citation journal cs1">Christesen, Joseph D.; Pinion, Christopher W.; Grumstrup, Erik M.; Papanikolas, John M.; Cahoon, James F. (2013-12-11). <a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fnl403909r">"Synthetically Encoding 10 nm Morphology in Silicon Nanowires"</a>. <i>Nano Letters</i>. <b>13</b> (12): 6281–6286. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013NanoL..13.6281C">2013NanoL..13.6281C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fnl403909r">10.1021/nl403909r</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1530-6984">1530-6984</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24274858">24274858</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nano+Letters&rft.atitle=Synthetically+Encoding+10+nm+Morphology+in+Silicon+Nanowires&rft.volume=13&rft.issue=12&rft.pages=6281-6286&rft.date=2013-12-11&rft_id=info%3Adoi%2F10.1021%2Fnl403909r&rft.issn=1530-6984&rft_id=info%3Apmid%2F24274858&rft_id=info%3Abibcode%2F2013NanoL..13.6281C&rft.aulast=Christesen&rft.aufirst=Joseph+D.&rft.au=Pinion%2C+Christopher+W.&rft.au=Grumstrup%2C+Erik+M.&rft.au=Papanikolas%2C+John+M.&rft.au=Cahoon%2C+James+F.&rft_id=https%3A%2F%2Fdoi.org%2F10.1021%252Fnl403909r&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYinWuLiShi2016" class="citation journal cs1">Yin, Xi; Wu, Jianbo; Li, Panpan; Shi, Miao; Yang, Hong (January 2016). "Self-Heating Approach to the Fast Production of Uniform Metal Nanostructures". <i>ChemNanoMat</i>. <b>2</b> (1): 37–41. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fcnma.201500123">10.1002/cnma.201500123</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ChemNanoMat&rft.atitle=Self-Heating+Approach+to+the+Fast+Production+of+Uniform+Metal+Nanostructures&rft.volume=2&rft.issue=1&rft.pages=37-41&rft.date=2016-01&rft_id=info%3Adoi%2F10.1002%2Fcnma.201500123&rft.aulast=Yin&rft.aufirst=Xi&rft.au=Wu%2C+Jianbo&rft.au=Li%2C+Panpan&rft.au=Shi%2C+Miao&rft.au=Yang%2C+Hong&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolmesJohnstonDotyKorgel2000" class="citation journal cs1">Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. (2000). "Control of thickness and orientation of solution-grown silicon nanowires". <i>Science</i>. <b>287</b> (5457): 1471–3. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000Sci...287.1471H">2000Sci...287.1471H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.287.5457.1471">10.1126/science.287.5457.1471</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10688792">10688792</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Control+of+thickness+and+orientation+of+solution-grown+silicon+nanowires&rft.volume=287&rft.issue=5457&rft.pages=1471-3&rft.date=2000&rft_id=info%3Apmid%2F10688792&rft_id=info%3Adoi%2F10.1126%2Fscience.287.5457.1471&rft_id=info%3Abibcode%2F2000Sci...287.1471H&rft.aulast=Holmes&rft.aufirst=J.+D.&rft.au=Johnston%2C+K.+P.&rft.au=Doty%2C+R.+C.&rft.au=Korgel%2C+B.+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeitschAkhavanKorgel2011" class="citation journal cs1">Heitsch, Andrew T.; Akhavan, Vahid A.; Korgel, Brian A. (2011). "Rapid SFLS Synthesis of Si Nanowires Using Trisilane with in situ Alkyl-Amine Passivation". <i>Chemistry of Materials</i>. <b>23</b> (11): 2697–2699. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fcm2007704">10.1021/cm2007704</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Chemistry+of+Materials&rft.atitle=Rapid+SFLS+Synthesis+of+Si+Nanowires+Using+Trisilane+with+in+situ+Alkyl-Amine+Passivation&rft.volume=23&rft.issue=11&rft.pages=2697-2699&rft.date=2011&rft_id=info%3Adoi%2F10.1021%2Fcm2007704&rft.aulast=Heitsch&rft.aufirst=Andrew+T.&rft.au=Akhavan%2C+Vahid+A.&rft.au=Korgel%2C+Brian+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHanrathKorgel2003" class="citation journal cs1">Hanrath, T.; Korgel, B.A. (2003). "Supercritical Fluid–Liquid–Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals". <i>Advanced Materials</i>. <b>15</b> (5): 437–440. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003AdM....15..437H">2003AdM....15..437H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.200390101">10.1002/adma.200390101</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:137573988">137573988</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Materials&rft.atitle=Supercritical+Fluid%E2%80%93Liquid%E2%80%93Solid+%28SFLS%29+Synthesis+of+Si+and+Ge+Nanowires+Seeded+by+Colloidal+Metal+Nanocrystals&rft.volume=15&rft.issue=5&rft.pages=437-440&rft.date=2003&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A137573988%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1002%2Fadma.200390101&rft_id=info%3Abibcode%2F2003AdM....15..437H&rft.aulast=Hanrath&rft.aufirst=T.&rft.au=Korgel%2C+B.A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGustafsson,_L.Jansson,_R.Hedhammar,_M.van_der_Wijngaart,_W.2018" class="citation journal cs1">Gustafsson, L.; Jansson, R.; Hedhammar, M.; van der Wijngaart, W. (2018). "Structuring of Functional Spider Silk Wires, Coatings, and Sheets by Self-Assembly on Superhydrophobic Pillar Surfaces". <i>Advanced Materials</i>. <b>30</b> (3). <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018AdM....3004325G">2018AdM....3004325G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201704325">10.1002/adma.201704325</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29205540">29205540</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205283504">205283504</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Materials&rft.atitle=Structuring+of+Functional+Spider+Silk+Wires%2C+Coatings%2C+and+Sheets+by+Self-Assembly+on+Superhydrophobic+Pillar+Surfaces&rft.volume=30&rft.issue=3&rft.date=2018&rft_id=info%3Adoi%2F10.1002%2Fadma.201704325&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205283504%23id-name%3DS2CID&rft_id=info%3Apmid%2F29205540&rft_id=info%3Abibcode%2F2018AdM....3004325G&rft.au=Gustafsson%2C+L.&rft.au=Jansson%2C+R.&rft.au=Hedhammar%2C+M.&rft.au=van+der+Wijngaart%2C+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGustafsson,_L.Kvick,_M.Åstrand,_C.Ponsteen,_N.2023" class="citation journal cs1">Gustafsson, L.; Kvick, M.; Åstrand, C.; Ponsteen, N.; Dorka, N.; Hegrová, V.; Svanberg, S.; Horák, J.; Jansson, R.; Hedhammar, M.; van der Wijngaart, W. (2023). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fmabi.202200450">"Scalable Production of Monodisperse Bioactive Spider Silk Nanowires"</a>. <i>Macromolecular Bioscience</i>. <b>23</b> (4): e2200450. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fmabi.202200450">10.1002/mabi.202200450</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/36662774">36662774</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:256032679">256032679</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Macromolecular+Bioscience&rft.atitle=Scalable+Production+of+Monodisperse+Bioactive+Spider+Silk+Nanowires&rft.volume=23&rft.issue=4&rft.pages=e2200450&rft.date=2023&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A256032679%23id-name%3DS2CID&rft_id=info%3Apmid%2F36662774&rft_id=info%3Adoi%2F10.1002%2Fmabi.202200450&rft.au=Gustafsson%2C+L.&rft.au=Kvick%2C+M.&rft.au=%C3%85strand%2C+C.&rft.au=Ponsteen%2C+N.&rft.au=Dorka%2C+N.&rft.au=Hegrov%C3%A1%2C+V.&rft.au=Svanberg%2C+S.&rft.au=Hor%C3%A1k%2C+J.&rft.au=Jansson%2C+R.&rft.au=Hedhammar%2C+M.&rft.au=van+der+Wijngaart%2C+W.&rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Fmabi.202200450&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSears1955" class="citation journal cs1">Sears, G.W. (1955). "A Growth Mechanism for Mercury Whiskers". <i>Acta Metall</i>. <b>3</b> (4): 361–366. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0001-6160%2855%2990041-9">10.1016/0001-6160(55)90041-9</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Metall&rft.atitle=A+Growth+Mechanism+for+Mercury+Whiskers&rft.volume=3&rft.issue=4&rft.pages=361-366&rft.date=1955&rft_id=info%3Adoi%2F10.1016%2F0001-6160%2855%2990041-9&rft.aulast=Sears&rft.aufirst=G.W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRackauskasNasibulinJiangTian2010" class="citation journal cs1">Rackauskas, S.; Nasibulin, A. G.; Jiang, H.; Tian, Y.; Kleshch, V. I.; Sainio, J.; Obraztsova, E. D.; Bokova, S. N.; Obraztsov, A. N.; Kauppinen, E. I. (2010). "A Novel Method for Metal Oxide Nanowire Synthesis". <i>Nanotechnology</i>. <b>20</b> (16): 165603. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009Nanot..20p5603R">2009Nanot..20p5603R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0957-4484%2F20%2F16%2F165603">10.1088/0957-4484/20/16/165603</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19420573">19420573</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3529748">3529748</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nanotechnology&rft.atitle=A+Novel+Method+for+Metal+Oxide+Nanowire+Synthesis&rft.volume=20&rft.issue=16&rft.pages=165603&rft.date=2010&rft_id=info%3Adoi%2F10.1088%2F0957-4484%2F20%2F16%2F165603&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3529748%23id-name%3DS2CID&rft_id=info%3Apmid%2F19420573&rft_id=info%3Abibcode%2F2009Nanot..20p5603R&rft.aulast=Rackauskas&rft.aufirst=S.&rft.au=Nasibulin%2C+A.+G.&rft.au=Jiang%2C+H.&rft.au=Tian%2C+Y.&rft.au=Kleshch%2C+V.+I.&rft.au=Sainio%2C+J.&rft.au=Obraztsova%2C+E.+D.&rft.au=Bokova%2C+S.+N.&rft.au=Obraztsov%2C+A.+N.&rft.au=Kauppinen%2C+E.+I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrank1949" class="citation journal cs1">Frank, F. C. (1949). "The influence of dislocations on crystal growth". <i>Discussions of the Faraday Society</i>. <b>5</b>: 48. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2Fdf9490500048">10.1039/df9490500048</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53512926">53512926</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Discussions+of+the+Faraday+Society&rft.atitle=The+influence+of+dislocations+on+crystal+growth&rft.volume=5&rft.pages=48&rft.date=1949&rft_id=info%3Adoi%2F10.1039%2Fdf9490500048&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53512926%23id-name%3DS2CID&rft.aulast=Frank&rft.aufirst=F.+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurtonCabreraFrank1951" class="citation journal cs1">Burton, W. K.; Cabrera, N.; Frank, F. C. (1951). "The Growth of Crystals and the Equilibrium Structure of Their Surfaces". <i>Philos. Trans. R. Soc. Lond. A</i>. <b>243</b> (866): 299–358. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1951RSPTA.243..299B">1951RSPTA.243..299B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.1951.0006">10.1098/rsta.1951.0006</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119643095">119643095</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Philos.+Trans.+R.+Soc.+Lond.+A&rft.atitle=The+Growth+of+Crystals+and+the+Equilibrium+Structure+of+Their+Surfaces&rft.volume=243&rft.issue=866&rft.pages=299-358&rft.date=1951&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119643095%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1098%2Frsta.1951.0006&rft_id=info%3Abibcode%2F1951RSPTA.243..299B&rft.aulast=Burton&rft.aufirst=W.+K.&rft.au=Cabrera%2C+N.&rft.au=Frank%2C+F.+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorinBiermanTongJin2010" class="citation journal cs1">Morin, S. A.; Bierman, M. J.; Tong, J.; Jin, S. (2010). "Mechanism and Kinetics of Spontaneous Nanotube Growth Driven by Screw Dislocations". <i>Science</i>. <b>328</b> (5977): 476–480. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010Sci...328..476M">2010Sci...328..476M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1182977">10.1126/science.1182977</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20413496">20413496</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:30955349">30955349</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Mechanism+and+Kinetics+of+Spontaneous+Nanotube+Growth+Driven+by+Screw+Dislocations&rft.volume=328&rft.issue=5977&rft.pages=476-480&rft.date=2010&rft_id=info%3Adoi%2F10.1126%2Fscience.1182977&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A30955349%23id-name%3DS2CID&rft_id=info%3Apmid%2F20413496&rft_id=info%3Abibcode%2F2010Sci...328..476M&rft.aulast=Morin&rft.aufirst=S.+A.&rft.au=Bierman%2C+M.+J.&rft.au=Tong%2C+J.&rft.au=Jin%2C+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBiermanLauKvitSchmitt2008" class="citation journal cs1">Bierman, M. J.; Lau, Y. K. A.; Kvit, A. V; Schmitt, A. L.; Jin, S. (2008). "Dislocation-Driven Nanowire Growth and Eshelby Twist". <i>Science</i>. <b>320</b> (5879): 1060–1063. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008Sci...320.1060B">2008Sci...320.1060B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1157131">10.1126/science.1157131</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18451264">18451264</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:20919593">20919593</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Dislocation-Driven+Nanowire+Growth+and+Eshelby+Twist&rft.volume=320&rft.issue=5879&rft.pages=1060-1063&rft.date=2008&rft_id=info%3Adoi%2F10.1126%2Fscience.1157131&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A20919593%23id-name%3DS2CID&rft_id=info%3Apmid%2F18451264&rft_id=info%3Abibcode%2F2008Sci...320.1060B&rft.aulast=Bierman&rft.aufirst=M.+J.&rft.au=Lau%2C+Y.+K.+A.&rft.au=Kvit%2C+A.+V&rft.au=Schmitt%2C+A.+L.&rft.au=Jin%2C+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRackauskasJiangWagnerShandakov2014" class="citation journal cs1">Rackauskas, S.; Jiang, H.; Wagner, J. B.; Shandakov, S. D.; Hansen, T. W.; Kauppinen, E. I.; Nasibulin, A. G. (2014). "In Situ Study of Noncatalytic Metal Oxide Nanowire Growth". <i>Nano Lett</i>. <b>14</b> (10): 5810–5813. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014NanoL..14.5810R">2014NanoL..14.5810R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fnl502687s">10.1021/nl502687s</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25233273">25233273</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nano+Lett.&rft.atitle=In+Situ+Study+of+Noncatalytic+Metal+Oxide+Nanowire+Growth&rft.volume=14&rft.issue=10&rft.pages=5810-5813&rft.date=2014&rft_id=info%3Apmid%2F25233273&rft_id=info%3Adoi%2F10.1021%2Fnl502687s&rft_id=info%3Abibcode%2F2014NanoL..14.5810R&rft.aulast=Rackauskas&rft.aufirst=S.&rft.au=Jiang%2C+H.&rft.au=Wagner%2C+J.+B.&rft.au=Shandakov%2C+S.+D.&rft.au=Hansen%2C+T.+W.&rft.au=Kauppinen%2C+E.+I.&rft.au=Nasibulin%2C+A.+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPreinesbergerBeckerVandréKalka2002" class="citation journal cs1">Preinesberger, C.; Becker, S. K.; Vandré, S.; Kalka, T.; Dähne, M. (February 2002). <a rel="nofollow" class="external text" href="http://aip.scitation.org/doi/10.1063/1.1430540">"Structure of DySi2 nanowires on Si(001)"</a>. <i>Journal of Applied Physics</i>. <b>91</b> (3): 1695–1697. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002JAP....91.1695P">2002JAP....91.1695P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1430540">10.1063/1.1430540</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-8979">0021-8979</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Physics&rft.atitle=Structure+of+DySi2+nanowires+on+Si%28001%29&rft.volume=91&rft.issue=3&rft.pages=1695-1697&rft.date=2002-02&rft.issn=0021-8979&rft_id=info%3Adoi%2F10.1063%2F1.1430540&rft_id=info%3Abibcode%2F2002JAP....91.1695P&rft.aulast=Preinesberger&rft.aufirst=C.&rft.au=Becker%2C+S.+K.&rft.au=Vandr%C3%A9%2C+S.&rft.au=Kalka%2C+T.&rft.au=D%C3%A4hne%2C+M.&rft_id=http%3A%2F%2Faip.scitation.org%2Fdoi%2F10.1063%2F1.1430540&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoltgreweAppelfellerFranzDähne2019" class="citation journal cs1">Holtgrewe, Kris; Appelfeller, Stephan; Franz, Martin; Dähne, Mario; Sanna, Simone (2019-06-10). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevB.99.214104">"Structure and one-dimensional metallicity of rare-earth silicide nanowires on Si(001)"</a>. <i>Physical Review B</i>. <b>99</b> (21): 214104. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019PhRvB..99u4104H">2019PhRvB..99u4104H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.99.214104">10.1103/PhysRevB.99.214104</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2469-9950">2469-9950</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:197525473">197525473</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+B&rft.atitle=Structure+and+one-dimensional+metallicity+of+rare-earth+silicide+nanowires+on+Si%28001%29&rft.volume=99&rft.issue=21&rft.pages=214104&rft.date=2019-06-10&rft_id=info%3Adoi%2F10.1103%2FPhysRevB.99.214104&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A197525473%23id-name%3DS2CID&rft.issn=2469-9950&rft_id=info%3Abibcode%2F2019PhRvB..99u4104H&rft.aulast=Holtgrewe&rft.aufirst=Kris&rft.au=Appelfeller%2C+Stephan&rft.au=Franz%2C+Martin&rft.au=D%C3%A4hne%2C+Mario&rft.au=Sanna%2C+Simone&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevB.99.214104&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAppelfellerHoltgreweFranzFreter2020" class="citation journal cs1">Appelfeller, Stephan; Holtgrewe, Kris; Franz, Martin; Freter, Lars; Hassenstein, Christian; Jirschik, Hans-Ferdinand; Sanna, Simone; Dähne, Mario (2020-09-24). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevB.102.115433">"Continuous crossover from two-dimensional to one-dimensional electronic properties for metallic silicide nanowires"</a>. <i>Physical Review B</i>. <b>102</b> (11): 115433. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PhRvB.102k5433A">2020PhRvB.102k5433A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.102.115433">10.1103/PhysRevB.102.115433</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2469-9950">2469-9950</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:224924918">224924918</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+B&rft.atitle=Continuous+crossover+from+two-dimensional+to+one-dimensional+electronic+properties+for+metallic+silicide+nanowires&rft.volume=102&rft.issue=11&rft.pages=115433&rft.date=2020-09-24&rft_id=info%3Adoi%2F10.1103%2FPhysRevB.102.115433&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A224924918%23id-name%3DS2CID&rft.issn=2469-9950&rft_id=info%3Abibcode%2F2020PhRvB.102k5433A&rft.aulast=Appelfeller&rft.aufirst=Stephan&rft.au=Holtgrewe%2C+Kris&rft.au=Franz%2C+Martin&rft.au=Freter%2C+Lars&rft.au=Hassenstein%2C+Christian&rft.au=Jirschik%2C+Hans-Ferdinand&rft.au=Sanna%2C+Simone&rft.au=D%C3%A4hne%2C+Mario&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevB.102.115433&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuo2018" class="citation journal cs1">Guo; et al. (2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fmicronano.2017.84">"Efficient DNA-assisted synthesis of trans-membrane gold nanowires"</a>. <i>Microsystems & Nanoengineering</i>. <b>4</b>: 17084. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fmicronano.2017.84">10.1038/micronano.2017.84</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Microsystems+%26+Nanoengineering&rft.atitle=Efficient+DNA-assisted+synthesis+of+trans-membrane+gold+nanowires&rft.volume=4&rft.pages=17084&rft.date=2018&rft_id=info%3Adoi%2F10.1038%2Fmicronano.2017.84&rft.au=Guo&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fmicronano.2017.84&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTeschomeFacskoSchönherrKerbusch2016" class="citation journal cs1">Teschome, Bezu; Facsko, Stefan; Schönherr, Tommy; Kerbusch, Jochen; Keller, Adrian; Erbe, Artur (2016). "Temperature-Dependent Charge Transport through Individually Contacted DNA Origami-Based Au Nanowires". <i>Langmuir</i>. <b>32</b> (40): 10159–10165. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.langmuir.6b01961">10.1021/acs.langmuir.6b01961</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27626925">27626925</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Langmuir&rft.atitle=Temperature-Dependent+Charge+Transport+through+Individually+Contacted+DNA+Origami-Based+Au+Nanowires&rft.volume=32&rft.issue=40&rft.pages=10159-10165&rft.date=2016&rft_id=info%3Adoi%2F10.1021%2Facs.langmuir.6b01961&rft_id=info%3Apmid%2F27626925&rft.aulast=Teschome&rft.aufirst=Bezu&rft.au=Facsko%2C+Stefan&rft.au=Sch%C3%B6nherr%2C+Tommy&rft.au=Kerbusch%2C+Jochen&rft.au=Keller%2C+Adrian&rft.au=Erbe%2C+Artur&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRakitinAichPapadopoulosKobzar2001" class="citation journal cs1">Rakitin, A; Aich, P; Papadopoulos, C; Kobzar, Yu; Vedeneev, A. S; Lee, J. S; Xu, J. M (2001). "Metallic Conduction through Engineered DNA: DNA Nanoelectronic Building Blocks". <i>Physical Review Letters</i>. <b>86</b> (16): 3670–3. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001PhRvL..86.3670R">2001PhRvL..86.3670R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.86.3670">10.1103/PhysRevLett.86.3670</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11328050">11328050</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Metallic+Conduction+through+Engineered+DNA%3A+DNA+Nanoelectronic+Building+Blocks&rft.volume=86&rft.issue=16&rft.pages=3670-3&rft.date=2001&rft_id=info%3Apmid%2F11328050&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.86.3670&rft_id=info%3Abibcode%2F2001PhRvL..86.3670R&rft.aulast=Rakitin&rft.aufirst=A&rft.au=Aich%2C+P&rft.au=Papadopoulos%2C+C&rft.au=Kobzar%2C+Yu&rft.au=Vedeneev%2C+A.+S&rft.au=Lee%2C+J.+S&rft.au=Xu%2C+J.+M&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOngaroGriffinNagleIacopino2004" class="citation journal cs1">Ongaro, A; Griffin, F; Nagle, L; Iacopino, D; Eritja, R; Fitzmaurice, D (2004). "DNA-Templated Assembly of a Protein-Functionalized Nanogap Electrode". <i>Advanced Materials</i>. <b>16</b> (20): 1799–1803. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004AdM....16.1799O">2004AdM....16.1799O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.200400244">10.1002/adma.200400244</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:97905129">97905129</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Materials&rft.atitle=DNA-Templated+Assembly+of+a+Protein-Functionalized+Nanogap+Electrode&rft.volume=16&rft.issue=20&rft.pages=1799-1803&rft.date=2004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A97905129%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1002%2Fadma.200400244&rft_id=info%3Abibcode%2F2004AdM....16.1799O&rft.aulast=Ongaro&rft.aufirst=A&rft.au=Griffin%2C+F&rft.au=Nagle%2C+L&rft.au=Iacopino%2C+D&rft.au=Eritja%2C+R&rft.au=Fitzmaurice%2C+D&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-Enrico_2019_8217–8226-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-Enrico_2019_8217–8226_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Enrico_2019_8217–8226_32-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEnrico2019" class="citation journal cs1">Enrico; et al. (2019). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426283">"Scalable Manufacturing of Single Nanowire Devices Using Crack-Defined Shadow Mask Lithography"</a>. <i>ACS Appl. Mater. Interfaces</i>. <b>11</b> (8): 8217–8226. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsami.8b19410">10.1021/acsami.8b19410</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426283">6426283</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30698940">30698940</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ACS+Appl.+Mater.+Interfaces&rft.atitle=Scalable+Manufacturing+of+Single+Nanowire+Devices+Using+Crack-Defined+Shadow+Mask+Lithography&rft.volume=11&rft.issue=8&rft.pages=8217-8226&rft.date=2019&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6426283%23id-name%3DPMC&rft_id=info%3Apmid%2F30698940&rft_id=info%3Adoi%2F10.1021%2Facsami.8b19410&rft.au=Enrico&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6426283&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDubois2016" class="citation journal cs1">Dubois; et al. (2016). <a rel="nofollow" class="external text" href="http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182341">"Crack-Defined Electronic Nanogaps"</a>. <i>Advanced Materials</i>. <b>28</b> (11): 2172178–2182. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016AdM....28.2178D">2016AdM....28.2178D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201504569">10.1002/adma.201504569</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26784270">26784270</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205265220">205265220</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Materials&rft.atitle=Crack-Defined+Electronic+Nanogaps&rft.volume=28&rft.issue=11&rft.pages=2172178-2182&rft.date=2016&rft_id=info%3Adoi%2F10.1002%2Fadma.201504569&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205265220%23id-name%3DS2CID&rft_id=info%3Apmid%2F26784270&rft_id=info%3Abibcode%2F2016AdM....28.2178D&rft.au=Dubois&rft_id=http%3A%2F%2Furn.kb.se%2Fresolve%3Furn%3Durn%3Anbn%3Ase%3Akth%3Adiva-182341&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChengLiuXuLu2015" class="citation journal cs1">Cheng, Zhe; Liu, Longju; Xu, Shen; Lu, Meng; Wang, Xinwei (2015-06-02). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451791">"Temperature Dependence of Electrical and Thermal Conduction in Single Silver Nanowire"</a>. <i>Scientific Reports</i>. <b>5</b> (1): 10718. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1411.7659">1411.7659</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NatSR...510718C">2015NatSR...510718C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep10718">10.1038/srep10718</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2045-2322">2045-2322</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451791">4451791</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26035288">26035288</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+Reports&rft.atitle=Temperature+Dependence+of+Electrical+and+Thermal+Conduction+in+Single+Silver+Nanowire&rft.volume=5&rft.issue=1&rft.pages=10718&rft.date=2015-06-02&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4451791%23id-name%3DPMC&rft_id=info%3Abibcode%2F2015NatSR...510718C&rft_id=info%3Aarxiv%2F1411.7659&rft.issn=2045-2322&rft_id=info%3Adoi%2F10.1038%2Fsrep10718&rft_id=info%3Apmid%2F26035288&rft.aulast=Cheng&rft.aufirst=Zhe&rft.au=Liu%2C+Longju&rft.au=Xu%2C+Shen&rft.au=Lu%2C+Meng&rft.au=Wang%2C+Xinwei&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4451791&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-Yanson_1998-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Yanson_1998_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYansonBollingervan_den_BromAgraït1998" class="citation journal cs1">Yanson, A. I.; Bollinger, G. Rubio; van den Brom, H. E.; Agraït, N.; van Ruitenbeek, J. M. (1998). "Formation and manipulation of a metallic wire of single gold atoms". <i>Nature</i>. <b>395</b> (6704): 783–785. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cond-mat/9811093">cond-mat/9811093</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998Natur.395..783Y">1998Natur.395..783Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F27405">10.1038/27405</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Formation+and+manipulation+of+a+metallic+wire+of+single+gold+atoms&rft.volume=395&rft.issue=6704&rft.pages=783-785&rft.date=1998&rft_id=info%3Aarxiv%2Fcond-mat%2F9811093&rft.issn=0028-0836&rft_id=info%3Adoi%2F10.1038%2F27405&rft_id=info%3Abibcode%2F1998Natur.395..783Y&rft.aulast=Yanson&rft.aufirst=A.+I.&rft.au=Bollinger%2C+G.+Rubio&rft.au=van+den+Brom%2C+H.+E.&rft.au=Agra%C3%AFt%2C+N.&rft.au=van+Ruitenbeek%2C+J.+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-Rodrigues_2000-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rodrigues_2000_36-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRodriguesFuhrerUgarte2000" class="citation journal cs1">Rodrigues, Varlei; Fuhrer, Tobias; Ugarte, Daniel (2000-11-06). "Signature of Atomic Structure in the Quantum Conductance of Gold Nanowires". <i>Phys. Rev. Lett</i>. <b>85</b> (19): 4124–4127. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000PhRvL..85.4124R">2000PhRvL..85.4124R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.85.4124">10.1103/PhysRevLett.85.4124</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-9007">0031-9007</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11056640">11056640</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Phys.+Rev.+Lett.&rft.atitle=Signature+of+Atomic+Structure+in+the+Quantum+Conductance+of+Gold+Nanowires&rft.volume=85&rft.issue=19&rft.pages=4124-4127&rft.date=2000-11-06&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.85.4124&rft.issn=0031-9007&rft_id=info%3Apmid%2F11056640&rft_id=info%3Abibcode%2F2000PhRvL..85.4124R&rft.aulast=Rodrigues&rft.aufirst=Varlei&rft.au=Fuhrer%2C+Tobias&rft.au=Ugarte%2C+Daniel&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTilkeSimmelLorenzBlick2003" class="citation journal cs1">Tilke, A. T.; Simmel, F. C.; Lorenz, H.; Blick, R. H.; Kotthaus, J. P. (2003). "Quantum interference in a one-dimensional silicon nanowire". <i>Physical Review B</i>. <b>68</b> (7): 075311. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003PhRvB..68g5311T">2003PhRvB..68g5311T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.68.075311">10.1103/PhysRevB.68.075311</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+B&rft.atitle=Quantum+interference+in+a+one-dimensional+silicon+nanowire&rft.volume=68&rft.issue=7&rft.pages=075311&rft.date=2003&rft_id=info%3Adoi%2F10.1103%2FPhysRevB.68.075311&rft_id=info%3Abibcode%2F2003PhRvB..68g5311T&rft.aulast=Tilke&rft.aufirst=A.+T.&rft.au=Simmel%2C+F.+C.&rft.au=Lorenz%2C+H.&rft.au=Blick%2C+R.+H.&rft.au=Kotthaus%2C+J.+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalford,_Bethany2008" class="citation journal cs1">Halford, Bethany (2008). "Wee Welding with Nanosolder". <i>Chemical & Engineering News</i>. <b>86</b> (51): 35.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Chemical+%26+Engineering+News&rft.atitle=Wee+Welding+with+Nanosolder&rft.volume=86&rft.issue=51&rft.pages=35&rft.date=2008&rft.au=Halford%2C+Bethany&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuHuangWangSun2010" class="citation journal cs1">Lu, Yang; Huang, Jian Yu; Wang, Chao; Sun, Shouheng; Lou, Jun (2010). "Cold welding of ultrathin gold nanowires". <i>Nature Nanotechnology</i>. <b>5</b> (3): 218–24. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010NatNa...5..218L">2010NatNa...5..218L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnnano.2010.4">10.1038/nnano.2010.4</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20154688">20154688</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Nanotechnology&rft.atitle=Cold+welding+of+ultrathin+gold+nanowires&rft.volume=5&rft.issue=3&rft.pages=218-24&rft.date=2010&rft_id=info%3Apmid%2F20154688&rft_id=info%3Adoi%2F10.1038%2Fnnano.2010.4&rft_id=info%3Abibcode%2F2010NatNa...5..218L&rft.aulast=Lu&rft.aufirst=Yang&rft.au=Huang%2C+Jian+Yu&rft.au=Wang%2C+Chao&rft.au=Sun%2C+Shouheng&rft.au=Lou%2C+Jun&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhongWangCuiBockrath2003" class="citation journal cs1">Zhong, Z.; Wang, D; Cui, Y; Bockrath, M. W.; Lieber, C. M. (2003). <a rel="nofollow" class="external text" href="https://authors.library.caltech.edu/51862/7/zhong.SOM.pdf">"Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems"</a> <span class="cs1-format">(PDF)</span>. <i>Science</i>. <b>302</b> (5649): 1377–9. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003Sci...302.1377Z">2003Sci...302.1377Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1090899">10.1126/science.1090899</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14631034">14631034</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:35084433">35084433</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Nanowire+Crossbar+Arrays+as+Address+Decoders+for+Integrated+Nanosystems&rft.volume=302&rft.issue=5649&rft.pages=1377-9&rft.date=2003&rft_id=info%3Adoi%2F10.1126%2Fscience.1090899&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A35084433%23id-name%3DS2CID&rft_id=info%3Apmid%2F14631034&rft_id=info%3Abibcode%2F2003Sci...302.1377Z&rft.aulast=Zhong&rft.aufirst=Z.&rft.au=Wang%2C+D&rft.au=Cui%2C+Y&rft.au=Bockrath%2C+M.+W.&rft.au=Lieber%2C+C.+M.&rft_id=https%3A%2F%2Fauthors.library.caltech.edu%2F51862%2F7%2Fzhong.SOM.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuoZhengZhengGiam2008" class="citation journal cs1">Huo, F.; Zheng, Z.; Zheng, G.; Giam, L. R.; Zhang, H.; Mirkin, C. A. (2008). <a rel="nofollow" class="external text" href="https://dr.ntu.edu.sg/bitstream/10220/8553/1/48.%20Polymer%20Pen%20Lithography.pdf">"Polymer Pen Lithography"</a> <span class="cs1-format">(PDF)</span>. <i>Science</i>. <b>321</b> (5896): 1658–60. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008Sci...321.1658H">2008Sci...321.1658H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1162193">10.1126/science.1162193</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/10356%2F94822">10356/94822</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247121">8247121</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18703709">18703709</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:354452">354452</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Polymer+Pen+Lithography&rft.volume=321&rft.issue=5896&rft.pages=1658-60&rft.date=2008&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8247121%23id-name%3DPMC&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A354452%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2008Sci...321.1658H&rft_id=info%3Apmid%2F18703709&rft_id=info%3Adoi%2F10.1126%2Fscience.1162193&rft_id=info%3Ahdl%2F10356%2F94822&rft.aulast=Huo&rft.aufirst=F.&rft.au=Zheng%2C+Z.&rft.au=Zheng%2C+G.&rft.au=Giam%2C+L.+R.&rft.au=Zhang%2C+H.&rft.au=Mirkin%2C+C.+A.&rft_id=https%3A%2F%2Fdr.ntu.edu.sg%2Fbitstream%2F10220%2F8553%2F1%2F48.%2520Polymer%2520Pen%2520Lithography.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-:0-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_42-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_42-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:0_42-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangShanHuang2017" class="citation journal cs1">Wang, Shiliang; Shan, Zhiwei; Huang, Han (2017-01-03). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5396167">"The Mechanical Properties of Nanowires"</a>. <i>Advanced Science</i>. <b>4</b> (4): 1600332. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadvs.201600332">10.1002/advs.201600332</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5396167">5396167</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28435775">28435775</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Science&rft.atitle=The+Mechanical+Properties+of+Nanowires&rft.volume=4&rft.issue=4&rft.pages=1600332&rft.date=2017-01-03&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5396167%23id-name%3DPMC&rft_id=info%3Apmid%2F28435775&rft_id=info%3Adoi%2F10.1002%2Fadvs.201600332&rft.aulast=Wang&rft.aufirst=Shiliang&rft.au=Shan%2C+Zhiwei&rft.au=Huang%2C+Han&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5396167&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-:1-43"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_43-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_43-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWuHeidelbergBoland2005" class="citation journal cs1">Wu, Bin; Heidelberg, Andreas; Boland, John J. (2005-06-05). "Mechanical properties of ultrahigh-strength gold nanowires". <i>Nature Materials</i>. <b>4</b> (7): 525–529. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005NatMa...4..525W">2005NatMa...4..525W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnmat1403">10.1038/nmat1403</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-1122">1476-1122</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15937490">15937490</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:34828518">34828518</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Materials&rft.atitle=Mechanical+properties+of+ultrahigh-strength+gold+nanowires&rft.volume=4&rft.issue=7&rft.pages=525-529&rft.date=2005-06-05&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A34828518%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2005NatMa...4..525W&rft.issn=1476-1122&rft_id=info%3Adoi%2F10.1038%2Fnmat1403&rft_id=info%3Apmid%2F15937490&rft.aulast=Wu&rft.aufirst=Bin&rft.au=Heidelberg%2C+Andreas&rft.au=Boland%2C+John+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiGaoMurphyCaswell2003" class="citation journal cs1">Li, Xiaodong; Gao, Hongsheng; Murphy, Catherine J.; Caswell, K. K. (Nov 2003). "Nanoindentation of Silver Nanowires". <i>Nano Letters</i>. <b>3</b> (11): 1495–1498. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003NanoL...3.1495L">2003NanoL...3.1495L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fnl034525b">10.1021/nl034525b</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1530-6984">1530-6984</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nano+Letters&rft.atitle=Nanoindentation+of+Silver+Nanowires&rft.volume=3&rft.issue=11&rft.pages=1495-1498&rft.date=2003-11&rft.issn=1530-6984&rft_id=info%3Adoi%2F10.1021%2Fnl034525b&rft_id=info%3Abibcode%2F2003NanoL...3.1495L&rft.aulast=Li&rft.aufirst=Xiaodong&rft.au=Gao%2C+Hongsheng&rft.au=Murphy%2C+Catherine+J.&rft.au=Caswell%2C+K.+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangDaiGaoGole2002" class="citation journal cs1">Wang, Zhong Lin; Dai, Zu Rong; Gao, Ruiping; Gole, James L. (2002-03-27). "Measuring the Young's modulus of solid nanowires byin situTEM". <i>Journal of Electron Microscopy</i>. <b>51</b> (suppl 1): S79–S85. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fjmicro%2F51.Supplement.S79">10.1093/jmicro/51.Supplement.S79</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-0744">0022-0744</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53588258">53588258</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Electron+Microscopy&rft.atitle=Measuring+the+Young%27s+modulus+of+solid+nanowires+byin+situTEM&rft.volume=51&rft.issue=suppl+1&rft.pages=S79-S85&rft.date=2002-03-27&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53588258%23id-name%3DS2CID&rft.issn=0022-0744&rft_id=info%3Adoi%2F10.1093%2Fjmicro%2F51.Supplement.S79&rft.aulast=Wang&rft.aufirst=Zhong+Lin&rft.au=Dai%2C+Zu+Rong&rft.au=Gao%2C+Ruiping&rft.au=Gole%2C+James+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-triumph-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-triumph_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=q6fBEjf9WPw">"Triumph of the MOS Transistor"</a>. <i><a href="/wiki/YouTube" title="YouTube">YouTube</a></i>. <a href="/wiki/Computer_History_Museum" title="Computer History Museum">Computer History Museum</a>. 6 August 2010. <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211211/q6fBEjf9WPw">Archived</a> from the original on 2021-12-11<span class="reference-accessdate">. Retrieved <span class="nowrap">21 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=YouTube&rft.atitle=Triumph+of+the+MOS+Transistor&rft.date=2010-08-06&rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dq6fBEjf9WPw&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-Raymer-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-Raymer_47-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaymer2009" class="citation book cs1">Raymer, Michael G. (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=PLYChGDqa6EC&pg=PA365"><i>The Silicon Web: Physics for the Internet Age</i></a>. <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. p. 365. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781439803127" title="Special:BookSources/9781439803127"><bdi>9781439803127</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Silicon+Web%3A+Physics+for+the+Internet+Age&rft.pages=365&rft.pub=CRC+Press&rft.date=2009&rft.isbn=9781439803127&rft.aulast=Raymer&rft.aufirst=Michael+G.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPLYChGDqa6EC%26pg%3DPA365&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYuWuLiuXiong2016" class="citation journal cs1">Yu, Peng; Wu, Jiang; Liu, Shenting; Xiong, Jie; Jagadish, Chennupati; Wang, Zhiming M. (2016-12-01). <a rel="nofollow" class="external text" href="http://discovery.ucl.ac.uk/1536157/">"Design and fabrication of silicon nanowires towards efficient solar cells"</a>. <i>Nano Today</i>. <b>11</b> (6): 704–737. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.nantod.2016.10.001">10.1016/j.nantod.2016.10.001</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nano+Today&rft.atitle=Design+and+fabrication+of+silicon+nanowires+towards+efficient+solar+cells&rft.volume=11&rft.issue=6&rft.pages=704-737&rft.date=2016-12-01&rft_id=info%3Adoi%2F10.1016%2Fj.nantod.2016.10.001&rft.aulast=Yu&rft.aufirst=Peng&rft.au=Wu%2C+Jiang&rft.au=Liu%2C+Shenting&rft.au=Xiong%2C+Jie&rft.au=Jagadish%2C+Chennupati&rft.au=Wang%2C+Zhiming+M.&rft_id=http%3A%2F%2Fdiscovery.ucl.ac.uk%2F1536157%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKayesAtwaterLewis2005" class="citation journal cs1">Kayes, Brendan M.; Atwater, Harry A.; Lewis, Nathan S. (2005-05-23). <a rel="nofollow" class="external text" href="https://authors.library.caltech.edu/4165/1/KAYjap05.pdf">"Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Applied Physics</i>. <b>97</b> (11): 114302–114302–11. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005JAP....97k4302K">2005JAP....97k4302K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1901835">10.1063/1.1901835</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-8979">0021-8979</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Physics&rft.atitle=Comparison+of+the+device+physics+principles+of+planar+and+radial+p-n+junction+nanorod+solar+cells&rft.volume=97&rft.issue=11&rft.pages=114302-114302-11&rft.date=2005-05-23&rft.issn=0021-8979&rft_id=info%3Adoi%2F10.1063%2F1.1901835&rft_id=info%3Abibcode%2F2005JAP....97k4302K&rft.aulast=Kayes&rft.aufirst=Brendan+M.&rft.au=Atwater%2C+Harry+A.&rft.au=Lewis%2C+Nathan+S.&rft_id=https%3A%2F%2Fauthors.library.caltech.edu%2F4165%2F1%2FKAYjap05.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMongilloSpathisKatsarosGentile2012" class="citation journal cs1">Mongillo, Massimo; Spathis, Panayotis; Katsaros, Georgios; Gentile, Pascal; De Franceschi, Silvano (2012). "Multifunctional Devices and Logic Gates with Undoped Silicon Nanowires". <i>Nano Letters</i>. <b>12</b> (6): 3074–9. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1208.1465">1208.1465</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NanoL..12.3074M">2012NanoL..12.3074M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fnl300930m">10.1021/nl300930m</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22594644">22594644</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:22112655">22112655</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nano+Letters&rft.atitle=Multifunctional+Devices+and+Logic+Gates+with+Undoped+Silicon+Nanowires&rft.volume=12&rft.issue=6&rft.pages=3074-9&rft.date=2012&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A22112655%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2012NanoL..12.3074M&rft_id=info%3Aarxiv%2F1208.1465&rft_id=info%3Apmid%2F22594644&rft_id=info%3Adoi%2F10.1021%2Fnl300930m&rft.aulast=Mongillo&rft.aufirst=Massimo&rft.au=Spathis%2C+Panayotis&rft.au=Katsaros%2C+Georgios&rft.au=Gentile%2C+Pascal&rft.au=De+Franceschi%2C+Silvano&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAppenzellerKnochBjorkRiel2008" class="citation journal cs1">Appenzeller, Joerg; Knoch, Joachim; Bjork, Mikael T.; <a href="/wiki/Heike_Riel" title="Heike Riel">Riel, Heike</a>; Schmid, Heinz; Riess, Walter (2008). <a rel="nofollow" class="external text" href="https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1169&context=nanodocs&sei-redir=1&referer=https%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Dzh-CN%26q%3Dnanowire%2Belectronics%26btnG%3D%26lr%3D#search=%22nanowire%20electronics%22">"Toward nanowire electronics"</a>. <i>IEEE Transactions on Electron Devices</i>. <b>55</b> (11): 2827–2845. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008ITED...55.2827A">2008ITED...55.2827A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTED.2008.2008011">10.1109/TED.2008.2008011</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:703393">703393</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Electron+Devices&rft.atitle=Toward+nanowire+electronics&rft.volume=55&rft.issue=11&rft.pages=2827-2845&rft.date=2008&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A703393%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FTED.2008.2008011&rft_id=info%3Abibcode%2F2008ITED...55.2827A&rft.aulast=Appenzeller&rft.aufirst=Joerg&rft.au=Knoch%2C+Joachim&rft.au=Bjork%2C+Mikael+T.&rft.au=Riel%2C+Heike&rft.au=Schmid%2C+Heinz&rft.au=Riess%2C+Walter&rft_id=https%3A%2F%2Fdocs.lib.purdue.edu%2Fcgi%2Fviewcontent.cgi%3Farticle%3D1169%26context%3Dnanodocs%26sei-redir%3D1%26referer%3Dhttps%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Dzh-CN%2526q%253Dnanowire%252Belectronics%2526btnG%253D%2526lr%253D%23search%3D%2522nanowire%2520electronics%2522&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWissner-Gross,_A._D.2006" class="citation journal cs1">Wissner-Gross, A. D. (2006). <a rel="nofollow" class="external text" href="http://www.alexwg.org/publications/Nanotechnology_17-4986.pdf">"Dielectrophoretic reconfiguration of nanowire interconnects"</a> <span class="cs1-format">(PDF)</span>. <i>Nanotechnology</i>. <b>17</b> (19): 4986–4990. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006Nanot..17.4986W">2006Nanot..17.4986W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0957-4484%2F17%2F19%2F035">10.1088/0957-4484/17/19/035</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4590982">4590982</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nanotechnology&rft.atitle=Dielectrophoretic+reconfiguration+of+nanowire+interconnects&rft.volume=17&rft.issue=19&rft.pages=4986-4990&rft.date=2006&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4590982%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0957-4484%2F17%2F19%2F035&rft_id=info%3Abibcode%2F2006Nanot..17.4986W&rft.au=Wissner-Gross%2C+A.+D.&rft_id=http%3A%2F%2Fwww.alexwg.org%2Fpublications%2FNanotechnology_17-4986.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20070522224736/http://nanotechweb.org/articles/journal/5/10/2/1">"Nanowires get reconfigured"</a>. <i>nanotechweb.org</i>. October 19, 2006. Archived from <a rel="nofollow" class="external text" href="http://nanotechweb.org/articles/journal/5/10/2/1">the original</a> on May 22, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">January 18,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=nanotechweb.org&rft.atitle=Nanowires+get+reconfigured&rft.date=2006-10-19&rft_id=http%3A%2F%2Fnanotechweb.org%2Farticles%2Fjournal%2F5%2F10%2F2%2F1&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrange,_R.Choi,_J.W.Hsieh,_C.L.Pu,_Y.2009" class="citation journal cs1">Grange, R.; Choi, J.W.; Hsieh, C.L.; Pu, Y.; Magrez, A.; Smajda, R.; Forro, L.; Psaltis, D. (2009). <a rel="nofollow" class="external text" href="http://arquivo.pt/wayback/20160514132623/http://link.aip.org/link/?APPLAB/95/143105/1">"Lithium niobate nanowires: synthesis, optical properties and manipulation"</a>. <i>Applied Physics Letters</i>. <b>95</b> (14): 143105. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009ApPhL..95n3105G">2009ApPhL..95n3105G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.3236777">10.1063/1.3236777</a>. Archived from <a rel="nofollow" class="external text" href="http://link.aip.org/link/?APPLAB/95/143105/1">the original</a> on 2016-05-14.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Physics+Letters&rft.atitle=Lithium+niobate+nanowires%3A+synthesis%2C+optical+properties+and+manipulation&rft.volume=95&rft.issue=14&rft.pages=143105&rft.date=2009&rft_id=info%3Adoi%2F10.1063%2F1.3236777&rft_id=info%3Abibcode%2F2009ApPhL..95n3105G&rft.au=Grange%2C+R.&rft.au=Choi%2C+J.W.&rft.au=Hsieh%2C+C.L.&rft.au=Pu%2C+Y.&rft.au=Magrez%2C+A.&rft.au=Smajda%2C+R.&rft.au=Forro%2C+L.&rft.au=Psaltis%2C+D.&rft_id=http%3A%2F%2Flink.aip.org%2Flink%2F%3FAPPLAB%2F95%2F143105%2F1&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVizcaínoNúñez2013" class="citation journal cs1">Vizcaíno, J. L. P.; Núñez, C. G. A. (2013). "Fast, effective manipulation of nanowires for electronic devices". <i>SPIE Newsroom</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1117%2F2.1201312.005260">10.1117/2.1201312.005260</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:124474608">124474608</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=SPIE+Newsroom&rft.atitle=Fast%2C+effective+manipulation+of+nanowires+for+electronic+devices&rft.date=2013&rft_id=info%3Adoi%2F10.1117%2F2.1201312.005260&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A124474608%23id-name%3DS2CID&rft.aulast=Vizca%C3%ADno&rft.aufirst=J.+L.+P.&rft.au=N%C3%BA%C3%B1ez%2C+C.+G.+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCoradiniTunesKremmerSchön2020" class="citation journal cs1">Coradini, Diego S. R.; Tunes, Matheus A.; Kremmer, Thomas M.; Schön, Claudio G.; Uggowitzer, Peter J.; Pogatscher, Stefan (2020-11-05). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41529-020-00137-2">"Degradation of Cu nanowires in a low-reactive plasma environment"</a>. <i>npj Materials Degradation</i>. <b>4</b> (1): 1–8. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41529-020-00137-2">10.1038/s41529-020-00137-2</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/20.500.11850%2F454060">20.500.11850/454060</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2397-2106">2397-2106</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:226248533">226248533</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=npj+Materials+Degradation&rft.atitle=Degradation+of+Cu+nanowires+in+a+low-reactive+plasma+environment&rft.volume=4&rft.issue=1&rft.pages=1-8&rft.date=2020-11-05&rft_id=info%3Ahdl%2F20.500.11850%2F454060&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A226248533%23id-name%3DS2CID&rft.issn=2397-2106&rft_id=info%3Adoi%2F10.1038%2Fs41529-020-00137-2&rft.aulast=Coradini&rft.aufirst=Diego+S.+R.&rft.au=Tunes%2C+Matheus+A.&rft.au=Kremmer%2C+Thomas+M.&rft.au=Sch%C3%B6n%2C+Claudio+G.&rft.au=Uggowitzer%2C+Peter+J.&rft.au=Pogatscher%2C+Stefan&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fs41529-020-00137-2&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoblmüllerMayerStettner2017" class="citation journal cs1">Koblmüller, Gregor; et al. (2017). "GaAs–AlGaAs core–shell nanowire lasers on silicon: invited review". <i>Semiconductor Science and Technology</i>. <b>32</b> (5). 053001. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017SeScT..32e3001K">2017SeScT..32e3001K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1361-6641%2Faa5e45">10.1088/1361-6641/aa5e45</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:99074531">99074531</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Semiconductor+Science+and+Technology&rft.atitle=GaAs%E2%80%93AlGaAs+core%E2%80%93shell+nanowire+lasers+on+silicon%3A+invited+review&rft.volume=32&rft.issue=5&rft.pages=053001&rft.date=2017&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A99074531%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1361-6641%2Faa5e45&rft_id=info%3Abibcode%2F2017SeScT..32e3001K&rft.aulast=Koblm%C3%BCller&rft.aufirst=Gregor&rft.au=Mayer%2C+Benedikt&rft.au=Stettner%2C+Thomas&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYanGargasYang2009" class="citation journal cs1">Yan, Ruoxue; Gargas, Daniel; Yang, Peidong (2009). "Nanowire photonics". <i>Nature Photonics</i>. <b>3</b> (10): 569–576. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009NaPho...3..569Y">2009NaPho...3..569Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnphoton.2009.184">10.1038/nphoton.2009.184</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2481816">2481816</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Photonics&rft.atitle=Nanowire+photonics&rft.volume=3&rft.issue=10&rft.pages=569-576&rft.date=2009&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2481816%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2Fnphoton.2009.184&rft_id=info%3Abibcode%2F2009NaPho...3..569Y&rft.aulast=Yan&rft.aufirst=Ruoxue&rft.au=Gargas%2C+Daniel&rft.au=Yang%2C+Peidong&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMayerJankerLoitsch2015" class="citation journal cs1">Mayer, B.; et al. (2015). "Monolithically integrated high-β nanowire lasers on silicon". <i>Nano Letters</i>. <b>16</b> (1): 152–156. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.nanolett.5b03404">10.1021/acs.nanolett.5b03404</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26618638">26618638</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nano+Letters&rft.atitle=Monolithically+integrated+high-%CE%B2+nanowire+lasers+on+silicon&rft.volume=16&rft.issue=1&rft.pages=152-156&rft.date=2015&rft_id=info%3Adoi%2F10.1021%2Facs.nanolett.5b03404&rft_id=info%3Apmid%2F26618638&rft.aulast=Mayer&rft.aufirst=B.&rft.au=Janker%2C+L.&rft.au=Loitsch%2C+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMayerReglerSterzl2017" class="citation journal cs1">Mayer, B.; et al. (2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457509">"Long-term mutual phase locking of picosecond pulse pairs generated by a semiconductor nanowire laser"</a>. <i>Nature Communications</i>. <b>8</b>. 15521. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1603.02169">1603.02169</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017NatCo...815521M">2017NatCo...815521M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms15521">10.1038/ncomms15521</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457509">5457509</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28534489">28534489</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1099474">1099474</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Long-term+mutual+phase+locking+of+picosecond+pulse+pairs+generated+by+a+semiconductor+nanowire+laser&rft.volume=8&rft.pages=15521&rft.date=2017&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5457509%23id-name%3DPMC&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1099474%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2017NatCo...815521M&rft_id=info%3Aarxiv%2F1603.02169&rft_id=info%3Apmid%2F28534489&rft_id=info%3Adoi%2F10.1038%2Fncomms15521&rft.aulast=Mayer&rft.aufirst=B.&rft.au=Regler%2C+A.&rft.au=Sterzl%2C+S.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5457509&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuXiang2015" class="citation book cs1">Lu, Wei; Xiang, Jie, eds. (2015). <a rel="nofollow" class="external text" href="https://pubs.rsc.org/en/content/ebook/978-1-78262-694-7"><i>Semiconductor Nanowires</i></a>. Smart Materials Series. Cambridge: Royal Society of Chemistry. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2F9781782626947">10.1039/9781782626947</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-84973-826-2" title="Special:BookSources/978-1-84973-826-2"><bdi>978-1-84973-826-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Semiconductor+Nanowires&rft.place=Cambridge&rft.series=Smart+Materials+Series&rft.pub=Royal+Society+of+Chemistry&rft.date=2015&rft_id=info%3Adoi%2F10.1039%2F9781782626947&rft.isbn=978-1-84973-826-2&rft_id=https%3A%2F%2Fpubs.rsc.org%2Fen%2Fcontent%2Febook%2F978-1-78262-694-7&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEngelElnathanPevznerDavidi2010" class="citation journal cs1">Engel, Yoni; Elnathan, Roey; Pevzner, Alexander; Davidi, Guy; Flaxer, Eli; Patolsky, Fernando (2010). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fanie.201000847">"Supersensitive Detection of Explosives by Silicon Nanowire Arrays"</a>. <i>Angewandte Chemie International Edition</i>. <b>49</b> (38): 6830–6835. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fanie.201000847">10.1002/anie.201000847</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20715224">20715224</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Angewandte+Chemie+International+Edition&rft.atitle=Supersensitive+Detection+of+Explosives+by+Silicon+Nanowire+Arrays&rft.volume=49&rft.issue=38&rft.pages=6830-6835&rft.date=2010&rft_id=info%3Adoi%2F10.1002%2Fanie.201000847&rft_id=info%3Apmid%2F20715224&rft.aulast=Engel&rft.aufirst=Yoni&rft.au=Elnathan%2C+Roey&rft.au=Pevzner%2C+Alexander&rft.au=Davidi%2C+Guy&rft.au=Flaxer%2C+Eli&rft.au=Patolsky%2C+Fernando&rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Fanie.201000847&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGarciaJusto2014" class="citation journal cs1">Garcia, J. C.; Justo, J. F. (2014). "Twisted ultrathin silicon nanowires: A possible torsion electromechanical nanodevice". <i>Europhys. Lett</i>. <b>108</b> (3): 36006. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1411.0375">1411.0375</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014EL....10836006G">2014EL....10836006G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1209%2F0295-5075%2F108%2F36006">10.1209/0295-5075/108/36006</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118792981">118792981</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Europhys.+Lett.&rft.atitle=Twisted+ultrathin+silicon+nanowires%3A+A+possible+torsion+electromechanical+nanodevice&rft.volume=108&rft.issue=3&rft.pages=36006&rft.date=2014&rft_id=info%3Aarxiv%2F1411.0375&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118792981%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1209%2F0295-5075%2F108%2F36006&rft_id=info%3Abibcode%2F2014EL....10836006G&rft.aulast=Garcia&rft.aufirst=J.+C.&rft.au=Justo%2C+J.+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFElnathanKwiat,_M.Pevzner,_A.Engel,_Y.2012" class="citation journal cs1">Elnathan, Roey; Kwiat, M.; Pevzner, A.; Engel, Y.; Burstein, L.; Khatchtourints, A.; Lichtenstein, A.; Kantaev, R.; Patolsky, F. (10 September 2012). "Biorecognition Layer Engineering: Overcoming Screening Limitations of Nanowire-Based FET Devices". <i>Nano Letters</i>. <b>12</b> (10): 5245–5254. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NanoL..12.5245E">2012NanoL..12.5245E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fnl302434w">10.1021/nl302434w</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22963381">22963381</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nano+Letters&rft.atitle=Biorecognition+Layer+Engineering%3A+Overcoming+Screening+Limitations+of+Nanowire-Based+FET+Devices&rft.volume=12&rft.issue=10&rft.pages=5245-5254&rft.date=2012-09-10&rft_id=info%3Apmid%2F22963381&rft_id=info%3Adoi%2F10.1021%2Fnl302434w&rft_id=info%3Abibcode%2F2012NanoL..12.5245E&rft.aulast=Elnathan&rft.aufirst=Roey&rft.au=Kwiat%2C+M.&rft.au=Pevzner%2C+A.&rft.au=Engel%2C+Y.&rft.au=Burstein%2C+L.&rft.au=Khatchtourints%2C+A.&rft.au=Lichtenstein%2C+A.&rft.au=Kantaev%2C+R.&rft.au=Patolsky%2C+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGorjiKashiwarManthaKruk2020" class="citation journal cs1">Gorji, Saleh; Kashiwar, Ankush; Mantha, Lakshmi S; Kruk, Robert; Witte, Ralf; Marek, Peter; Hahn, Horst; Kübel, Christian; Scherer, Torsten (December 2020). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/342952945">"Nanowire facilitated transfer of sensitive TEM samples in a FIB"</a>. <i>Ultramicroscopy</i>. <b>219</b>: 113075. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ultramic.2020.113075">10.1016/j.ultramic.2020.113075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33035837">33035837</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:222255773">222255773</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ultramicroscopy&rft.atitle=Nanowire+facilitated+transfer+of+sensitive+TEM+samples+in+a+FIB&rft.volume=219&rft.pages=113075&rft.date=2020-12&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A222255773%23id-name%3DS2CID&rft_id=info%3Apmid%2F33035837&rft_id=info%3Adoi%2F10.1016%2Fj.ultramic.2020.113075&rft.aulast=Gorji&rft.aufirst=Saleh&rft.au=Kashiwar%2C+Ankush&rft.au=Mantha%2C+Lakshmi+S&rft.au=Kruk%2C+Robert&rft.au=Witte%2C+Ralf&rft.au=Marek%2C+Peter&rft.au=Hahn%2C+Horst&rft.au=K%C3%BCbel%2C+Christian&rft.au=Scherer%2C+Torsten&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F342952945&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBakhshayeshMohammadiDadarFray2013" class="citation journal cs1">Bakhshayesh, A. M.; Mohammadi, M. R.; Dadar, H.; Fray, D. J. (2013). "Improved efficiency of dye-sensitized solar cells aided by corn-like TiO<sub>2</sub> nanowires as the light scattering layer". <i>Electrochimica Acta</i>. <b>90</b> (15): 302–308. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.electacta.2012.12.065">10.1016/j.electacta.2012.12.065</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electrochimica+Acta&rft.atitle=Improved+efficiency+of+dye-sensitized+solar+cells+aided+by+corn-like+TiO%3Csub%3E2%3C%2Fsub%3E+nanowires+as+the+light+scattering+layer&rft.volume=90&rft.issue=15&rft.pages=302-308&rft.date=2013&rft_id=info%3Adoi%2F10.1016%2Fj.electacta.2012.12.065&rft.aulast=Bakhshayesh&rft.aufirst=A.+M.&rft.au=Mohammadi%2C+M.+R.&rft.au=Dadar%2C+H.&rft.au=Fray%2C+D.+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuburSeptekinAlpdoganSahan2016" class="citation journal cs1">Gubur, H. M.; Septekin, F.; Alpdogan, S.; Sahan, B.; Zeyrek, B. K. (2016). "Structural properties of CdSe corn-like nanowires grown by chemical bath deposition". <i>Journal of Materials Science: Materials in Electronics</i>. <b>27</b> (7): 7640–7645. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10854-016-4748-2">10.1007/s10854-016-4748-2</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:137884561">137884561</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Materials+Science%3A+Materials+in+Electronics&rft.atitle=Structural+properties+of+CdSe+corn-like+nanowires+grown+by+chemical+bath+deposition&rft.volume=27&rft.issue=7&rft.pages=7640-7645&rft.date=2016&rft_id=info%3Adoi%2F10.1007%2Fs10854-016-4748-2&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A137884561%23id-name%3DS2CID&rft.aulast=Gubur&rft.aufirst=H.+M.&rft.au=Septekin%2C+F.&rft.au=Alpdogan%2C+S.&rft.au=Sahan%2C+B.&rft.au=Zeyrek%2C+B.+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangLiYuSun2017" class="citation journal cs1">Wang, F.; Li, M.; Yu, L.; Sun, F.; Wang, Z.; Zhang, L.; Zeng, H.; Xu, X. (2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537353">"Corn-like, Recoverable γ-Fe<sub>2</sub>O<sub>3</sub>@SiO<sub>2</sub>@TiO<sub>2</sub> Photocatalyst Induced by Magnetic Dipole Interactions"</a>. <i>Sci. Rep</i>. <b>7</b> (1). 6960. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017NatSR...7.6960W">2017NatSR...7.6960W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41598-017-07417-z">10.1038/s41598-017-07417-z</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537353">5537353</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28761085">28761085</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6058050">6058050</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Sci.+Rep.&rft.atitle=Corn-like%2C+Recoverable+%CE%B3-Fe%3Csub%3E2%3C%2Fsub%3EO%3Csub%3E3%3C%2Fsub%3E%40SiO%3Csub%3E2%3C%2Fsub%3E%40TiO%3Csub%3E2%3C%2Fsub%3E+Photocatalyst+Induced+by+Magnetic+Dipole+Interactions&rft.volume=7&rft.issue=1&rft.pages=6960&rft.date=2017&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5537353%23id-name%3DPMC&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6058050%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2017NatSR...7.6960W&rft_id=info%3Apmid%2F28761085&rft_id=info%3Adoi%2F10.1038%2Fs41598-017-07417-z&rft.aulast=Wang&rft.aufirst=F.&rft.au=Li%2C+M.&rft.au=Yu%2C+L.&rft.au=Sun%2C+F.&rft.au=Wang%2C+Z.&rft.au=Zhang%2C+L.&rft.au=Zeng%2C+H.&rft.au=Xu%2C+X.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5537353&rfr_id=info%3Asid%2Fen.wikipedia.org%3ANanowire" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nanowire&action=edit&section=26" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/40px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/60px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/80px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Look up <i><b><a href="https://en.wiktionary.org/wiki/Special:Search/nanowire" class="extiw" title="wiktionary:Special:Search/nanowire">nanowire</a></b></i> in Wiktionary, the free dictionary.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://www.nanohedron.com">Nanohedron.com | Nano Image Gallery</a> several images of nanowires are included in the galleries.</li> <li><a rel="nofollow" class="external text" href="http://news-service.stanford.edu/news/2008/january9/nanowire-010908.html">Stanford's nanowire battery holds 10 times the charge of existing ones</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100107182920/http://news-service.stanford.edu/news/2008/january9/nanowire-010908.html">Archived</a> 2010-01-07 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20040918144456/http://www.fkf.mpg.de/klitzing/publications/abstracts/vk00xx/vk0000.html">Original article on the Quantum Hall Effect: K. v. Klitzing, G. Dorda, and M. Pepper; Phys. Rev. Lett. 45, 494–497 (1980).</a></li> <li><a rel="nofollow" class="external text" href="http://www.abc.net.au/science/news/stories/2006/1813845.htm">Strongest theoretical nanowire produced at Australia's University of Melbourne.</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20071012024713/http://www.upenn.edu/pennnews/article.php?id=1217">Penn Engineers Design Electronic Computer Memory in Nanoscale Form That Retrieves Data 1,000 Times Faster.</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20081013224151/http://pne.tnw.utwente.nl/">One atom thick, hundreds of nanometers long Pt-nanowires are one of the best examples of self-assembly. (University of Twente)</a></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Nanotechnology" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Nanotech_footer" title="Template:Nanotech footer"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Nanotech_footer" title="Template talk:Nanotech footer"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Nanotech_footer" title="Special:EditPage/Template:Nanotech footer"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Nanotechnology" style="font-size:114%;margin:0 4em"><a href="/wiki/Nanotechnology" title="Nanotechnology">Nanotechnology</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Outline_of_nanotechnology" title="Outline of nanotechnology">Overview</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_nanotechnology" title="History of nanotechnology">History</a></li> <li><a href="/wiki/List_of_nanotechnology_organizations" title="List of nanotechnology organizations">Organizations</a></li> <li><a href="/wiki/Nanotechnology_in_fiction" title="Nanotechnology in fiction">Popular culture</a></li> <li><a href="/wiki/Outline_of_nanotechnology" title="Outline of nanotechnology">Outline</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Impact_of_nanotechnology" title="Impact of nanotechnology">Impact</a> and <a href="/wiki/Applications_of_nanotechnology" title="Applications of nanotechnology">applications</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nanomedicine" title="Nanomedicine">Nanomedicine</a></li> <li><a href="/wiki/Nanotoxicology" title="Nanotoxicology">Nanotoxicology</a></li> <li><a href="/wiki/Green_nanotechnology" title="Green nanotechnology">Green nanotechnology</a></li> <li><a href="/wiki/Regulation_of_nanotechnology" title="Regulation of nanotechnology">Regulation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Nanomaterials" title="Nanomaterials">Nanomaterials</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fullerene" title="Fullerene">Fullerenes</a></li> <li>Nanotubes <ul><li><a href="/wiki/Carbon_nanotube" title="Carbon nanotube">Carbon</a></li> <li><a href="/wiki/Non-carbon_nanotube" title="Non-carbon nanotube">Non-carbon</a></li></ul></li> <li><a href="/wiki/Nanoparticle" title="Nanoparticle">Nanoparticles</a> <ul><li><a href="/wiki/Characterization_of_nanoparticles" title="Characterization of nanoparticles">characterization</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Molecular_self-assembly" title="Molecular self-assembly">Molecular self-assembly</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Self-assembled_monolayer" title="Self-assembled monolayer">Self-assembled monolayer</a></li> <li><a href="/wiki/Supramolecular_assembly" class="mw-redirect" title="Supramolecular assembly">Supramolecular assembly</a></li> <li><a href="/wiki/DNA_nanotechnology" title="DNA nanotechnology">DNA nanotechnology</a></li> <li><a href="/wiki/Solid_lipid_nanoparticle" class="mw-redirect" title="Solid lipid nanoparticle">Solid lipid nanoparticle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Nanoelectronics" title="Nanoelectronics">Nanoelectronics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Molecular_scale_electronics" title="Molecular scale electronics">Molecular scale electronics</a></li> <li><a href="/wiki/Nanolithography" title="Nanolithography">Nanolithography</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Scanning_probe_microscopy" title="Scanning probe microscopy">Scanning probe microscopy</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Atomic_force_microscopy" title="Atomic force microscopy">Atomic force microscope</a></li> <li><a href="/wiki/Scanning_tunneling_microscope" title="Scanning tunneling microscope">Scanning tunneling microscope</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Molecular_nanotechnology" title="Molecular nanotechnology">Molecular nanotechnology</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Molecular_assembler" title="Molecular assembler">Molecular assembler</a></li> <li><a href="/wiki/Nanorobotics" title="Nanorobotics">Nanorobotics</a></li> <li><a href="/wiki/Mechanosynthesis" title="Mechanosynthesis">Mechanosynthesis</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><b><a href="/wiki/Category:Nanotechnology" title="Category:Nanotechnology">Category</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <b><a href="https://commons.wikimedia.org/wiki/Category:Nanotechnology" class="extiw" title="commons:Category:Nanotechnology">Commons</a></b></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_kalzium.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/28px-Nuvola_apps_kalzium.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/42px-Nuvola_apps_kalzium.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/56px-Nuvola_apps_kalzium.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Science" title="Portal:Science">Science portal</a></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Noun-technology.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Noun-technology.svg/29px-Noun-technology.svg.png" decoding="async" width="29" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Noun-technology.svg/43px-Noun-technology.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Noun-technology.svg/57px-Noun-technology.svg.png 2x" data-file-width="90" data-file-height="88" /></a></span> </span><a href="/wiki/Portal:Technology" title="Portal:Technology">Technology portal</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q631739#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q631739#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q631739#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">International</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/1032641/">FAST</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4707308-1">Germany</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Nanowires"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh97004111">United States</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb14628157b">France</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb14628157b">BnF data</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="nanodráty"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph615514&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007566252005171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5857dfdcd6‐9v27f Cached time: 20241203065331 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.290 seconds Real time usage: 1.523 seconds Preprocessor visited node count: 5847/1000000 Post‐expand include size: 216297/2097152 bytes Template argument size: 2559/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 303594/5000000 bytes Lua time usage: 0.862/10.000 seconds Lua memory usage: 9705051/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1287.386 1 -total 54.13% 696.912 1 Template:Reflist 45.58% 586.787 63 Template:Cite_journal 9.72% 125.170 1 Template:Nanoelec 8.75% 112.684 1 Template:Sidebar 6.61% 85.033 1 Template:Short_description 6.13% 78.853 1 Template:Lead_too_short 5.39% 69.441 1 Template:Physconst 5.34% 68.767 1 Template:Ambox 4.97% 63.930 1 Template:Authority_control --> <!-- Saved in parser cache with key enwiki:pcache:52206:|#|:idhash:canonical and timestamp 20241203065331 and revision id 1253080677. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Nanowire&oldid=1253080677">https://en.wikipedia.org/w/index.php?title=Nanowire&oldid=1253080677</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Nanowire" title="Category:Nanowire">Nanowire</a></li><li><a href="/wiki/Category:Nanoelectronics" title="Category:Nanoelectronics">Nanoelectronics</a></li><li><a href="/wiki/Category:Electrical_connectors" title="Category:Electrical connectors">Electrical connectors</a></li><li><a href="/wiki/Category:Mesoscopic_physics" title="Category:Mesoscopic physics">Mesoscopic physics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_introduction_cleanup_from_February_2022" title="Category:Wikipedia introduction cleanup from February 2022">Wikipedia introduction cleanup from February 2022</a></li><li><a href="/wiki/Category:All_pages_needing_cleanup" title="Category:All pages needing cleanup">All pages needing cleanup</a></li><li><a href="/wiki/Category:Articles_covered_by_WikiProject_Wikify_from_February_2022" title="Category:Articles covered by WikiProject Wikify from February 2022">Articles covered by WikiProject Wikify from February 2022</a></li><li><a href="/wiki/Category:All_articles_covered_by_WikiProject_Wikify" title="Category:All articles covered by WikiProject Wikify">All articles covered by WikiProject Wikify</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_December_2023" title="Category:Articles with unsourced statements from December 2023">Articles with unsourced statements from December 2023</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 24 October 2024, at 07:36<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Nanowire&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-67847f4bfd-ggv98","wgBackendResponseTime":180,"wgPageParseReport":{"limitreport":{"cputime":"1.290","walltime":"1.523","ppvisitednodes":{"value":5847,"limit":1000000},"postexpandincludesize":{"value":216297,"limit":2097152},"templateargumentsize":{"value":2559,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":303594,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1287.386 1 -total"," 54.13% 696.912 1 Template:Reflist"," 45.58% 586.787 63 Template:Cite_journal"," 9.72% 125.170 1 Template:Nanoelec"," 8.75% 112.684 1 Template:Sidebar"," 6.61% 85.033 1 Template:Short_description"," 6.13% 78.853 1 Template:Lead_too_short"," 5.39% 69.441 1 Template:Physconst"," 5.34% 68.767 1 Template:Ambox"," 4.97% 63.930 1 Template:Authority_control"]},"scribunto":{"limitreport-timeusage":{"value":"0.862","limit":"10.000"},"limitreport-memusage":{"value":9705051,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\ntable#1 {\n}\ntable#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-5857dfdcd6-9v27f","timestamp":"20241203065331","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Nanowire","url":"https:\/\/en.wikipedia.org\/wiki\/Nanowire","sameAs":"http:\/\/www.wikidata.org\/entity\/Q631739","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q631739","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-05-16T15:14:03Z","dateModified":"2024-10-24T07:36:48Z","headline":"nanostructure with its diameter in nanometers"}</script> </body> </html>