CINXE.COM
Search results for: river runoff
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: river runoff</title> <meta name="description" content="Search results for: river runoff"> <meta name="keywords" content="river runoff"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="river runoff" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="river runoff"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1222</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: river runoff</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1222</span> Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Hamidi%20Machekposhti">Karim Hamidi Machekposhti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Sedghi"> Hossein Sedghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolrasoul%20Telvari"> Abdolrasoul Telvari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Babazadeh"> Hossein Babazadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R<sup>2</sup>) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20series%20modelling" title="time series modelling">time series modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=ARIMA%20model" title=" ARIMA model"> ARIMA model</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20runoff" title=" river runoff"> river runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Karkheh%20River" title=" Karkheh River"> Karkheh River</a>, <a href="https://publications.waset.org/abstracts/search?q=CLS%20method" title=" CLS method"> CLS method</a> </p> <a href="https://publications.waset.org/abstracts/76659/time-series-modelling-and-prediction-of-river-runoff-case-study-of-karkheh-river-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1221</span> Runoff Estimation in the Khiyav River Basin by Using the SCS_ CN Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Esfandyari%20Darabad">F. Esfandyari Darabad</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Samadi"> Z. Samadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The volume of runoff caused by rainfall in the river basin has enticed the researchers in the fields of the water management resources. In this study, first of the hydrological data such as the rainfall and discharge of the Khiyav river basin of Meshkin city in the northwest of Iran collected and then the process of analyzing and reconstructing has been completed. The soil conservation service (scs) has developed a method for calculating the runoff, in which is based on the curve number specification (CN). This research implemented the following model in the Khiyav river basin of Meshkin city by the GIS techniques and concluded the following fact in which represents the usage of weight model in calculating the curve numbers that provides the possibility for the all efficient factors which is contributing to the runoff creation such as; the geometric characteristics of the basin, the basin soil characteristics, vegetation, geology, climate and human factors to be considered, so an accurate estimation of runoff from precipitation to be achieved as the result. The findings also exposed the accident-prone areas in the output of the Khiyav river basin so it was revealed that the Khiyav river basin embodies a high potential for the flood creation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curve%20number" title="curve number">curve number</a>, <a href="https://publications.waset.org/abstracts/search?q=khiyav%20river%20basin" title=" khiyav river basin"> khiyav river basin</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff%20estimation" title=" runoff estimation"> runoff estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=SCS" title=" SCS"> SCS</a> </p> <a href="https://publications.waset.org/abstracts/33261/runoff-estimation-in-the-khiyav-river-basin-by-using-the-scs-cn-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1220</span> Interaction of Low-Impact Development Techniques and Urban River Flooding on the Zoning – Case Study Qomroud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Kavianpour">Mohammad Reza Kavianpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Arsalan%20Behzadifard%20Pour"> Arsalan Behzadifard Pour</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Aghazadeh%20Cloudy"> Ali Aghazadeh Cloudy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolfazl%20Moqimi"> Abolfazl Moqimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades, and with increasing of urban population and development of the city, the amount of impermeable surfaces has been increased. This cause urban runoff enhancement. This enhancement, especially in cities with urban river, increases the possibility of urban flooding caused by the river flooding interaction and urban runoff. In this research, we tried SWMM utilizes software development methods and practices that seek to reduce the impact of runoff to the river flows to reduce Qomroud and Effects using Arc GIS and HEC-RAS software on how we see the flood zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20management" title="flood management">flood management</a>, <a href="https://publications.waset.org/abstracts/search?q=SWMM" title=" SWMM"> SWMM</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20zone" title=" flood zone"> flood zone</a> </p> <a href="https://publications.waset.org/abstracts/22707/interaction-of-low-impact-development-techniques-and-urban-river-flooding-on-the-zoning-case-study-qomroud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1219</span> Effect of Climate Change on Runoff in the Upper Mun River Basin, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeyaphorn%20Kosa">Preeyaphorn Kosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanutch%20Sukwimolseree"> Thanutch Sukwimolseree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The climate change is a main parameter which affects the element of hydrological cycle especially runoff. Then, the purpose of this study is to determine the impact of the climate change on surface runoff using land use map on 2008 and daily weather data during January 1, 1979 to September 30, 2010 for SWAT model. SWAT continuously simulate time model and operates on a daily time step at basin scale. The results present that the effect of temperature change cannot be clearly presented on the change of runoff while the rainfall, relative humidity and evaporation are the parameters for the considering of runoff change. If there are the increasing of rainfall and relative humidity, there is also the increasing of runoff. On the other hand, if there is the increasing of evaporation, there is the decreasing of runoff. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate" title="climate">climate</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT" title=" SWAT"> SWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20Mun%20River%20basin" title=" upper Mun River basin"> upper Mun River basin</a> </p> <a href="https://publications.waset.org/abstracts/3825/effect-of-climate-change-on-runoff-in-the-upper-mun-river-basin-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1218</span> Application of ANN and Fuzzy Logic Algorithms for Runoff and Sediment Yield Modelling of Kal River, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Kothari">Mahesh Kothari</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20D.%20Gharde"> K. D. Gharde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ANN and fuzzy logic (FL) models were developed to predict the runoff and sediment yield for catchment of Kal river, India using 21 years (1991 to 2011) rainfall and other hydrological data (evaporation, temperature and streamflow lag by one and two day) and 7 years data for sediment yield modelling. The ANN model performance improved with increasing the input vectors. The fuzzy logic model was performing with R value more than 0.95 during developmental stage and validation stage. The comparatively FL model found to be performing well to ANN in prediction of runoff and sediment yield for Kal river. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transferred%20function" title="transferred function">transferred function</a>, <a href="https://publications.waset.org/abstracts/search?q=sigmoid" title=" sigmoid"> sigmoid</a>, <a href="https://publications.waset.org/abstracts/search?q=backpropagation" title=" backpropagation"> backpropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=membership%20function" title=" membership function"> membership function</a>, <a href="https://publications.waset.org/abstracts/search?q=defuzzification" title=" defuzzification "> defuzzification </a> </p> <a href="https://publications.waset.org/abstracts/33110/application-of-ann-and-fuzzy-logic-algorithms-for-runoff-and-sediment-yield-modelling-of-kal-river-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1217</span> Land Use Sensitivity Map for the Extreme Flood Events in the Kelantan River Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nader%20Saadatkhah">Nader Saadatkhah</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Rahnamarad"> Jafar Rahnamarad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shattri%20Mansor"> Shattri Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=Zailani%20Khuzaimah"> Zailani Khuzaimah</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnis%20Asmat"> Arnis Asmat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Aizam%20Adnan"> Nor Aizam Adnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Noradzah%20Adam"> Siti Noradzah Adam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kelantan river basin as a flood prone area at the east coast of the peninsular Malaysia has suffered several flood and mudflow events in the recent years. The current research attempted to assess the land cover changes impact in the Kelantan river basin focused on the runoff contributions from different land cover classes and the potential impact of land cover changes on runoff generation. In this regards, the hydrological regional modeling of rainfall induced runoff event as the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) was employed to compute rate of infiltration, and subsequently changes in the discharge volume in this study. The effects of land use changes on peak flow and runoff volume was investigated using storm rainfall events during the last three decades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=improved-TRIGRS%20model" title="improved-TRIGRS model">improved-TRIGRS model</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20changes" title=" land cover changes"> land cover changes</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelantan%20river%20basin" title=" Kelantan river basin"> Kelantan river basin</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20event" title=" flood event"> flood event</a> </p> <a href="https://publications.waset.org/abstracts/64368/land-use-sensitivity-map-for-the-extreme-flood-events-in-the-kelantan-river-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1216</span> Derivation of Runoff Susceptibility Map Using Slope-Adjusted SCS-CN in a Tropical River Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abolghasem%20Akbari">Abolghasem Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Natural Resources Conservation Service Curve Number (NRCS-CN) method is widely used for predicting direct runoff from rainfall. It employs the hydrologic soil groups and land use information along with period soil moisture conditions to derive NRCS-CN. This method has been well documented and available in popular rainfall-runoff models such as HEC-HMS, SWAT, SWMM and much more. Despite all benefits and advantages of this well documented and easy-to-use method, it does not take into account the effect of terrain slope and drainage area. This study aimed to first investigate the effect of slope on CN and then slope-adjusted runoff potential map is generated for Kuantan River Basin, Malaysia. The Hanng method was used to adjust CN values provided in National Handbook of Engineering and The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) version 2 is used to derive slope map with the spatial resolution of 30 m for Kuantan River Basin (KRB). The study significantly enhanced the application of GIS tools and recent advances in earth observation technology to analyze the hydrological process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuantan" title="Kuantan">Kuantan</a>, <a href="https://publications.waset.org/abstracts/search?q=ASTER-GDEM" title=" ASTER-GDEM"> ASTER-GDEM</a>, <a href="https://publications.waset.org/abstracts/search?q=SCS-CN" title=" SCS-CN"> SCS-CN</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a> </p> <a href="https://publications.waset.org/abstracts/52762/derivation-of-runoff-susceptibility-map-using-slope-adjusted-scs-cn-in-a-tropical-river-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1215</span> GIS Application in Surface Runoff Estimation for Upper Klang River Basin, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suzana%20Ramli">Suzana Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Wardah%20Tahir"> Wardah Tahir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimation of surface runoff depth is a vital part in any rainfall-runoff modeling. It leads to stream flow calculation and later predicts flood occurrences. GIS (Geographic Information System) is an advanced and opposite tool used in simulating hydrological model due to its realistic application on topography. The paper discusses on calculation of surface runoff depth for two selected events by using GIS with Curve Number method for Upper Klang River basin. GIS enables maps intersection between soil type and land use that later produces curve number map. The results show good correlation between simulated and observed values with more than 0.7 of R2. Acceptable performance of statistical measurements namely mean error, absolute mean error, RMSE, and bias are also deduced in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20runoff" title="surface runoff">surface runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system"> geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=curve%20number%20method" title=" curve number method"> curve number method</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/4351/gis-application-in-surface-runoff-estimation-for-upper-klang-river-basin-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1214</span> Simulation of Flood Inundation in Kedukan River Using HEC-RAS and GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reini%20S.%20Ilmiaty">Reini S. Ilmiaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20B.%20Al%20Amin"> Muhammad B. Al Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarino"> Sarino</a>, <a href="https://publications.waset.org/abstracts/search?q=Muzamil%20Jariski"> Muzamil Jariski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kedukan River is an artificial river which serves as a Watershed Boang drainage channel in Palembang. The river has upstream and downstream connected to Musi River, that often overflowing and flooding caused by the huge runoff discharge and high tide water level of Musi River. This study aimed to analyze the flood water surface profile on Kedukan River continued with flood inundation simulation to determine flooding prone areas in research area. The analysis starts from the peak runoff discharge calculations using rational method followed by water surface profile analysis using HEC-RAS program controlled by manual calculations using standard stages. The analysis followed by running flood inundation simulation using ArcGIS program that has been integrated with HEC-GeoRAS. Flood inundation simulation on Kedukan River creates inundation characteristic maps with depth, area, and circumference of inundation as the parameters. The inundation maps are very useful in providing an overview of flood prone areas in Kedukan River. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20modelling" title="flood modelling">flood modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-GeoRAS" title=" HEC-GeoRAS"> HEC-GeoRAS</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title=" HEC-RAS"> HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation%20map" title=" inundation map"> inundation map</a> </p> <a href="https://publications.waset.org/abstracts/36622/simulation-of-flood-inundation-in-kedukan-river-using-hec-ras-and-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1213</span> Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Sir">B. Sir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Podhoranyi"> M. Podhoranyi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kuchar"> S. Kuchar</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kocyan"> T. Kocyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainfall-runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15–May 18 2014). The prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-HMS" title=" HEC-HMS"> HEC-HMS</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff "> runoff </a> </p> <a href="https://publications.waset.org/abstracts/20151/automatic-flood-prediction-using-rainfall-runoff-model-in-moravian-silesian-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1212</span> Belarus Rivers Runoff: Current State, Prospects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliaksandr%20Volchak">Aliaksandr Volchak</a>, <a href="https://publications.waset.org/abstracts/search?q=%D0%9Caryna%20Barushka"> Мaryna Barushka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The territory of Belarus is studied quite well in terms of hydrology but runoff fluctuations over time require more detailed research in order to forecast changes in rivers runoff in future. Generally, river runoff is shaped by natural climatic factors, but man-induced impact has become so big lately that it can be compared to natural processes in forming runoffs. In Belarus, a heavy man load on the environment was caused by large-scale land reclamation in the 1960s. Lands of southern Belarus were reclaimed most, which contributed to changes in runoff. Besides, global warming influences runoff. Today we observe increase in air temperature, decrease in precipitation, changes in wind velocity and direction. These result from cyclic climate fluctuations and, to some extent, the growth of concentration of greenhouse gases in the air. Climate change affects Belarus’s water resources in different ways: in hydropower industry, other water-consuming industries, water transportation, agriculture, risks of floods. In this research we have done an assessment of river runoff according to the scenarios of climate change and global climate forecast presented in the 4th and 5th Assessment Reports conducted by Intergovernmental Panel on Climate Change (IPCC) and later specified and adjusted by experts from Vilnius Gediminas Technical University with the use of a regional climatic model. In order to forecast changes in climate and runoff, we analyzed their changes from 1962 up to now. This period is divided into two: from 1986 up to now in comparison with the changes observed from 1961 to 1985. Such a division is a common world-wide practice. The assessment has revealed that, on the average, changes in runoff are insignificant all over the country, even with its irrelevant increase by 0.5 – 4.0% in the catchments of the Western Dvina River and north-eastern part of the Dnieper River. However, changes in runoff have become more irregular both in terms of the catchment area and inter-annual distribution over seasons and river lengths. Rivers in southern Belarus (the Pripyat, the Western Bug, the Dnieper, the Neman) experience reduction of runoff all year round, except for winter, when their runoff increases. The Western Bug catchment is an exception because its runoff reduces all year round. Significant changes are observed in spring. Runoff of spring floods reduces but the flood comes much earlier. There are different trends in runoff changes in spring, summer, and autumn. Particularly in summer, we observe runoff reduction in the south and west of Belarus, with its growth in the north and north-east. Our forecast of runoff up to 2035 confirms the trend revealed in 1961 – 2015. According to it, in the future, there will be a strong difference between northern and southern Belarus, between small and big rivers. Although we predict irrelevant changes in runoff, it is quite possible that they will be uneven in terms of seasons or particular months. Especially, runoff can change in summer, but decrease in the rest seasons in the south of Belarus, whereas in the northern part the runoff is predicted to change insignificantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20fluctuation" title=" climate fluctuation"> climate fluctuation</a>, <a href="https://publications.waset.org/abstracts/search?q=forecast" title=" forecast"> forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20runoff" title=" river runoff"> river runoff</a> </p> <a href="https://publications.waset.org/abstracts/89284/belarus-rivers-runoff-current-state-prospects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1211</span> Current Status of Nitrogen Saturation in the Upper Reaches of the Kanna River, Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakura%20Yoshii">Sakura Yoshii</a>, <a href="https://publications.waset.org/abstracts/search?q=Masakazu%20Abe"> Masakazu Abe</a>, <a href="https://publications.waset.org/abstracts/search?q=Akihiro%20Iijima"> Akihiro Iijima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen saturation has become one of the serious issues in the field of forest environment. The watershed protection forests located in the downwind hinterland of Tokyo Metropolitan Area are believed to be facing nitrogen saturation. In this study, we carefully focus on the balance of nitrogen between load and runoff. Annual nitrogen load via atmospheric deposition was estimated to 461.1 t-N/year in the upper reaches of the Kanna River. Annual nitrogen runoff to the forested headwater stream of the Kanna River was determined to 184.9 t-N/year, corresponding to 40.1% of the total nitrogen load. Clear seasonal change in NO3-N concentration was still observed. Therefore, watershed protection forest of the Kanna River is most likely to be in Stage-1 on the status of nitrogen saturation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition" title="atmospheric deposition">atmospheric deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20accumulation" title=" nitrogen accumulation"> nitrogen accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=denitrification" title=" denitrification"> denitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20ecosystems" title=" forest ecosystems"> forest ecosystems</a> </p> <a href="https://publications.waset.org/abstracts/3246/current-status-of-nitrogen-saturation-in-the-upper-reaches-of-the-kanna-river-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1210</span> The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phanida%20Phukoetphim">Phanida Phukoetphim</a>, <a href="https://publications.waset.org/abstracts/search?q=Asaad%20Y.%20Shamseldin"> Asaad Y. Shamseldin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-model%20combination" title="multi-model combination">multi-model combination</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall-runoff%20modeling" title=" rainfall-runoff modeling"> rainfall-runoff modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20gradient%20boosting" title=" stochastic gradient boosting"> stochastic gradient boosting</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a> </p> <a href="https://publications.waset.org/abstracts/3455/the-use-of-stochastic-gradient-boosting-method-for-multi-model-combination-of-rainfall-runoff-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1209</span> Potential Impacts of Warming Climate on Contributions of Runoff Components from Two Catchments of Upper Indus Basin, Karakoram, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Hammad%20Ali">Syed Hammad Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Rijan%20Bhakta%20Kayastha"> Rijan Bhakta Kayastha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahuti%20Shrestha"> Ahuti Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Iram%20Bano"> Iram Bano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrology of Upper Indus basin is not recognized well due to the intricacies in the climate and geography, and the scarcity of data above 5000 meters above sea level where most of the precipitation falls in the form of snow. The main objective of this study is to measure the contributions of different components of runoff in Upper Indus basin. To achieve this goal, the Modified positive degree-day model (MPDDM) was used to simulate the runoff and investigate its components in two catchments of Upper Indus basin, Hunza and Gilgit River basins. These two catchments were selected because of their different glacier coverage, contrasting area distribution at high altitudes and significant impact on the Upper Indus River flow. The components of runoff like snow-ice melt and rainfall-base flow were identified by the model. The simulation results show that the MPDDM shows a good agreement between observed and modeled runoff of these two catchments and the effects of snow-ice are mainly reliant on the catchment characteristics and the glaciated area. For Gilgit River basin, the largest contributor to runoff is rain-base flow, whereas large contribution of snow-ice melt observed in Hunza River basin due to its large fraction of glaciated area. This research will not only contribute to the better understanding of the impacts of climate change on the hydrological response in the Upper Indus, but will also provide guidance for the development of hydropower potential, water resources management and offer a possible evaluation of future water quantity and availability in these catchments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=future%20discharge%20projection" title="future discharge projection">future discharge projection</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20degree%20day" title=" positive degree day"> positive degree day</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20climate%20model" title=" regional climate model"> regional climate model</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resource%20management" title=" water resource management"> water resource management</a> </p> <a href="https://publications.waset.org/abstracts/69633/potential-impacts-of-warming-climate-on-contributions-of-runoff-components-from-two-catchments-of-upper-indus-basin-karakoram-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1208</span> Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myungjin%20Lee">Myungjin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Daegun%20Han"> Daegun Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongsung%20Kim"> Jongsung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Soojun%20Kim"> Soojun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung%20Soo%20Kim"> Hung Soo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radar%20rainfall%20ensemble" title="radar rainfall ensemble">radar rainfall ensemble</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall-runoff%20models" title=" rainfall-runoff models"> rainfall-runoff models</a>, <a href="https://publications.waset.org/abstracts/search?q=blending%20method" title=" blending method"> blending method</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20runoff%20hydrograph" title=" optimum runoff hydrograph"> optimum runoff hydrograph</a> </p> <a href="https://publications.waset.org/abstracts/76203/simulation-of-optimal-runoff-hydrograph-using-ensemble-of-radar-rainfall-and-blending-of-runoffs-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1207</span> The Relationship between Land Use Change and Runoff</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanutch%20Sukwimolseree">Thanutch Sukwimolseree</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeyaphorn%20Kosa"> Preeyaphorn Kosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many problems are occurred in watershed due to human activity and economic development. The purpose is to determine the effects of the land use change on surface runoff using land use map on 1980, 2001 and 2008 and daily weather data during January 1, 1979 to September 30, 2010 applied to SWAT. The results can be presented that the polynomial equation is suitable to display that relationship. These equations for land use in 1980, 2001 and 2008 are consisted of y = -0.0076x5 + 0.1914x4–1.6386x3 + 6.6324x2–8.736x + 7.8023(R2 = 0.9255), y = -0.0298x5 + 0.8794x4 - 9.8056x3 + 51.99x2 - 117.04x + 96.797; (R2 = 0.9186) and y = -0.0277x5 + 0.8132x4 - 8.9598x3 + 46.498x2–101.83x +81.108 (R2 = 0.9006), respectively. Moreover, if the agricultural area is the largest area, it is a sensitive parameter to concern surface runoff. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use" title="land use">land use</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT" title=" SWAT"> SWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20Mun%20River%20basin" title=" upper Mun River basin"> upper Mun River basin</a> </p> <a href="https://publications.waset.org/abstracts/3827/the-relationship-between-land-use-change-and-runoff" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1206</span> A Study of Flooding Detention Space Efficiency in Different Lands Uses : The Case in Zhoushui River Downstream Catchment in Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie-Ying%20Wu">Jie-Ying Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Hao%20Weng"> Kuo-Hao Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Cheng%20Fu"> Jin-Cheng Fu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes changes to land use for the purposes of water retention and runoff reduction, with the aim of reducing the frequency of flooding. This study uses the Zhuoshui River in Taiwan as a case study, designing different land use planning strategies, and setting up various detention spaces. The HEC-HMS model developed by the Hydrology Research Center of the U.S. Army Corps of Engineers is used to calculate the decrease in runoff using various planning strategies, during five precipitation events of increasing return periods. This study finds that a maximum decrease in runoff of 14 million square meters can result by changing the form of land cover and storm detention in non-urban agricultural and river zones. This is due to the fact that non-urban land accounts for 96% of the area under study. Greatest efficacy was demonstrated in a two-year return period, with results ranging from 16% to 52%. The efficacy of a 100-year return period rated from 3% to 8%. Urban area detentions consist of agricultural paddy fields, storm water ponds and rainwater retention systems in building basements. Although urban areas can provide one million cubic meters of runoff storage, this result is insignificant due to the fact that urban area constitutes only 4% of the study area. By changing land cover, a 2-year return period has a 9% efficacy, and a 100-year return period has a 2% efficacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20detention%20space" title="flood detention space">flood detention space</a>, <a href="https://publications.waset.org/abstracts/search?q=land-use" title=" land-use"> land-use</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20planning" title=" spatial planning"> spatial planning</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuoshuei%20River" title=" Zhuoshuei River"> Zhuoshuei River</a>, <a href="https://publications.waset.org/abstracts/search?q=Taiwan" title=" Taiwan "> Taiwan </a> </p> <a href="https://publications.waset.org/abstracts/26597/a-study-of-flooding-detention-space-efficiency-in-different-lands-uses-the-case-in-zhoushui-river-downstream-catchment-in-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1205</span> Rainfall-Runoff Forecasting Utilizing Genetic Programming Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Najah%20Ahmed%20Al-Mahfoodh">Ahmed Najah Ahmed Al-Mahfoodh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Najah%20Ahmed%20%20Al-Mahfoodh"> Ali Najah Ahmed Al-Mahfoodh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-Shafie"> Ahmed Al-Shafie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, genetic programming (GP) technique has been investigated in prediction of set of rainfall-runoff data. To assess the effect of input parameters on the model, the sensitivity analysis was adopted. To evaluate the performance of the proposed model, three statistical indexes were used, namely; Correlation Coefficient (CC), Mean Square Error (MSE) and Correlation of Efficiency (CE). The principle aim of this study is to develop a computationally efficient and robust approach for predict of rainfall-runoff which could reduce the cost and labour for measuring these parameters. This research concentrates on the Johor River in Johor State, Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20programming" title="genetic programming">genetic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall-runoff" title=" rainfall-runoff"> rainfall-runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/66110/rainfall-runoff-forecasting-utilizing-genetic-programming-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1204</span> Transformation of the Ili Delta Ecosystems Related to the Runoff Control of the Ile-Balkhash Basin Rivers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruslan%20Salmurzauli">Ruslan Salmurzauli</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabir%20Nurtazin"> Sabir Nurtazin</a>, <a href="https://publications.waset.org/abstracts/search?q=Buho%20Hoshino"> Buho Hoshino</a>, <a href="https://publications.waset.org/abstracts/search?q=Niels%20Thevs"> Niels Thevs</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Yeszhanov"> A. B. Yeszhanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Imentai"> Aiman Imentai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents the results of a research on the transformation of the diverse ecosystems of the Ili delta during the period 1979-2014 based on the analysis of the hydrological regime dynamics, weather conditions and satellite images. Conclusions have been drawn on the decisive importance of the water runoff of the Ili River in the negative changes and environmental degradation in delta areas over the past forty-five years. The increase of water consumption in the Chinese and Kazakhstan parts of the Ili-Balkhash basin caused desiccation and desertification of many hydromorphic delta ecosystems and the reduction of water flow into Lake Balkhash. We demonstrate that a significant reduction of watering of the delta areas could drastically accelerate the aridization and degradation of the hydromorphic ecosystems. Under runoff decrease, a transformation process of the delta ecosystems begins from the head part and gradually spread northward to the periphery of the delta. The desertification is most clearly expressed in the central and western parts of the delta areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ili-Balkhash%20basin" title="Ili-Balkhash basin">Ili-Balkhash basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ili%20river%20delta" title=" Ili river delta"> Ili river delta</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20regime" title=" hydrological regime"> hydrological regime</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation%20of%20ecosystems" title=" transformation of ecosystems"> transformation of ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/32225/transformation-of-the-ili-delta-ecosystems-related-to-the-runoff-control-of-the-ile-balkhash-basin-rivers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1203</span> Analyzing Changes in Runoff Patterns Due to Urbanization Using SWAT Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asawari%20Ajay%20Avhad">Asawari Ajay Avhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Soil and Water Assessment Tool (SWAT) is a hydrological model designed to predict the complex interactions within natural and human-altered watersheds. This research applies the SWAT model to the Ulhas River basin, a small watershed undergoing urbanization and characterized by bowl-like topography. Three simulation scenarios (LC17, LC22, and LC27) are investigated, each representing different land use and land cover (LULC) configurations, to assess the impact of urbanization on runoff. The LULC for the year 2027 is generated using the MOLUSCE Plugin of QGIS, incorporating various spatial factors such as DEM, Distance from Road, Distance from River, Slope, and distance from settlements. Future climate data is simulated within the SWAT model using historical data spanning 30 years. A susceptibility map for runoff across the basin is created, classifying runoff into five susceptibility levels ranging from very low to very high. Sub-basins corresponding to major urban settlements are identified as highly susceptible to runoff. With consideration of future climate projections, a slight increase in runoff is forecasted. The reliability of the methodology was validated through the identification of sub-basins known for experiencing severe flood events, which were determined to be highly susceptible to runoff. The susceptibility map successfully pinpointed these sub-basins with a track record of extreme flood occurrences, thus reinforcing the credibility of the assessment methodology. This study suggests that the methodology employed could serve as a valuable tool in flood management planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=future%20land%20use%20impact" title="future land use impact">future land use impact</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20management" title=" flood management"> flood management</a>, <a href="https://publications.waset.org/abstracts/search?q=run%20off%20prediction" title=" run off prediction"> run off prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=ArcSWAT" title=" ArcSWAT"> ArcSWAT</a> </p> <a href="https://publications.waset.org/abstracts/184451/analyzing-changes-in-runoff-patterns-due-to-urbanization-using-swat-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1202</span> Internal Cycles from Hydrometric Data and Variability Detected Through Hydrological Modelling Results, on the Niger River, over 1901-2020</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salif%20Kon%C3%A9">Salif Koné</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We analyze hydrometric data at the Koulikoro station on the Niger River; this basin drains 120600 km2 and covers three countries in West Africa, Guinea, Mali, and Ivory Coast. Two subsequent decadal cycles are highlighted (1925-1936 and 1929-1939) instead of the presumed single decadal one from literature. Moreover, the observed hydrometric data shows a multidecadal 40-year period that is confirmed when graphing a spatial coefficient of variation of runoff over decades (starting at 1901-1910). Spatial runoff data are produced on 48 grids (0.5 degree by 0.5 degree) and through semi-distributed versions of both SimulHyd model and GR2M model - variants of a French Hydrologic model – standing for Genie Rural of 2 parameters at monthly time step. Both extremal decades in terms of runoff coefficient of variation are confronted: 1951-1960 has minimal coefficient of variation, and 1981-1990 shows the maximal value of it during the three months of high-water level (August, September, and October). The mapping of the relative variation of these two decadal situations allows hypothesizing as following: the scale of variation between both extremal situations could serve to fix boundary conditions for further simulations using data from climate scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20cycles" title="internal cycles">internal cycles</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrometric%20data" title=" hydrometric data"> hydrometric data</a>, <a href="https://publications.waset.org/abstracts/search?q=niger%20river" title=" niger river"> niger river</a>, <a href="https://publications.waset.org/abstracts/search?q=gr2m%20and%20simulhyd%20framework" title=" gr2m and simulhyd framework"> gr2m and simulhyd framework</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff%20coefficient%20of%20variation" title=" runoff coefficient of variation"> runoff coefficient of variation</a> </p> <a href="https://publications.waset.org/abstracts/162099/internal-cycles-from-hydrometric-data-and-variability-detected-through-hydrological-modelling-results-on-the-niger-river-over-1901-2020" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1201</span> Hydrological Characterization of a Watershed for Streamflow Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oseni%20Taiwo%20Amoo">Oseni Taiwo Amoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bloodless%20Dzwairo"> Bloodless Dzwairo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrological%20characteristic" title="hydrological characteristic">hydrological characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20flow" title=" stream flow"> stream flow</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff%20discharge" title=" runoff discharge"> runoff discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20and%20climate" title=" land and climate"> land and climate</a> </p> <a href="https://publications.waset.org/abstracts/65719/hydrological-characterization-of-a-watershed-for-streamflow-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1200</span> Hydrological Modeling and Climate Change Impact Assessment Using HBV Model, A Case Study of Karnali River Basin of Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sagar%20Shiwakoti">Sagar Shiwakoti</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Man%20Shakya"> Narendra Man Shakya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lumped conceptual hydrological model HBV is applied to the Karnali River Basin to estimate runoff at several gauging stations and to analyze the changes in catchment hydrology and future flood magnitude due to climate change. The performance of the model is analyzed to assess its suitability to simulate streamflow in snow fed mountainous catchments. Due to the structural complexity, the model shows difficulties in modeling low and high flows accurately at the same time. It is observed that the low flows were generally underestimated and the peaks were correctly estimated except for some sharp peaks due to isolated precipitation events. In this study, attempt has been made to evaluate the importance of snow melt discharge in the runoff regime of the basin. Quantification of contribution of snowmelt to annual, summer and winter runoff has been done. The contribution is highest at the beginning of the hot months as the accumulated snow begins to melt. Examination of this contribution under conditions of increased temperatures indicate that global warming leading to increase in average basin temperature will significantly lead to higher contributions to runoff from snowmelt. Forcing the model with the output of HadCM3 GCM and the A1B scenario downscaled to the station level show significant changes to catchment hydrology in the 2040s. It is observed that the increase in runoff is most extreme in June - July. A shift in the hydrological regime is also observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modeling" title="hydrological modeling">hydrological modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=HBV%20light" title=" HBV light"> HBV light</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20runoff%20modeling" title=" rainfall runoff modeling"> rainfall runoff modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=snow%20melt" title=" snow melt"> snow melt</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a> </p> <a href="https://publications.waset.org/abstracts/33253/hydrological-modeling-and-climate-change-impact-assessment-using-hbv-model-a-case-study-of-karnali-river-basin-of-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1199</span> Estimation of the Curve Number and Runoff Height Using the Arc CN-Runoff Tool in Sartang Ramon Watershed in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.Jowkar.%20M.Samiee">L.Jowkar. M.Samiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Models or systems based on rainfall and runoff are numerous and have been formulated and applied depending on the precipitation regime, temperature, and climate. In this study, the ArcCN-Runoff rain-runoff modeling tool was used to estimate the spatial variability of the rainfall-runoff relationship in Sartang Ramon in Jiroft watershed. In this study, the runoff was estimated from 6-hour rainfall. The results showed that based on hydrological soil group map, soils with hydrological groups A, B, C, and D covered 1, 2, 55, and 41% of the basin, respectively. Given that the majority of the area has a slope above 60 percent and results of soil hydrologic groups, one can conclude that Sartang Ramon Basin has a relatively high potential for producing runoff. The average runoff height for a 6-hour rainfall with a 2-year return period is 26.6 mm. The volume of runoff from the 2-year return period was calculated as the runoff height of each polygon multiplied by the area of the polygon, which is 137913486 m³ for the whole basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arc%20CN-Run%20off" title="Arc CN-Run off">Arc CN-Run off</a>, <a href="https://publications.waset.org/abstracts/search?q=rain-runoff" title=" rain-runoff"> rain-runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20period" title=" return period"> return period</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/121495/estimation-of-the-curve-number-and-runoff-height-using-the-arc-cn-runoff-tool-in-sartang-ramon-watershed-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1198</span> Hydrology and Hydraulics Analysis of Aremenie Earthen Dam, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azazhu%20Wassie">Azazhu Wassie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study tried to analyze the impact of the hydrologic and hydraulic parameters (catchment area, rainfall intensity, and runoff coefficient) on the referenced study area. The study was conducted in June 2023. The Aremenie River Dam has 30 years of record, which is reasonably sufficient data. It is a matter of common experience that, due to the failure of an instrument or the absence of a gauged river, the rainfall record at quite a number of stations is incomplete. From the analysis, the 50-year return period design flood is 62.685 m³/s at 1.2 hr peak time. This implies that for this watershed, the peak flood rate per km² area of the watershed is about this value, which ensures that high rainfall in the area can generate a higher rate of runoff per km² of the generating catchment. The Aremenie Rivers carry a large amount of sediment along with water. These sediments are deposited in the reservoir upstream of the dam because of the reduction in velocity. Sediment reduces the available capacity of the reservoir with continuous sedimentation; the useful life of the reservoir goes on decreasing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dam%20design" title="dam design">dam design</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20flood" title=" peak flood"> peak flood</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20capacity" title=" reservoir capacity"> reservoir capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a> </p> <a href="https://publications.waset.org/abstracts/188045/hydrology-and-hydraulics-analysis-of-aremenie-earthen-dam-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1197</span> The Effects of Land Use Types to Determine the Status of Sustainable River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Louis%20Sunaris">Michael Louis Sunaris</a>, <a href="https://publications.waset.org/abstracts/search?q=Robby%20Yussac%20Tallar"> Robby Yussac Tallar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of sustainable river is evolving in Indonesia today. Many rivers condition in Indonesia have decreased by quality and quantity. The degradation of this condition is caused by rapid land use change as a result of increased population growth and human activity. It brings the degradation of the existing watersheds including some types of land use that an important factor in determining the status of river sustainability. Therefore, an evaluation method is required to determine the sustainability status of waterbody within watershed. The purpose of this study is to analyze various types of land use in determining the status of river sustainability. This study takes the watersheds of Citarum Upstream as a study area. The results of the analysis prove the index of sustainability status of the river that changes from good to bad or average in the rivers in the study area. The rapid and uncontrolled changes of land use especially in the upper watersheds area are the main causes that happened over time. It was indicated that the cumulative runoff coefficients were increased significantly. These situations indicated that the damage of watersheds has an impact on the water surplus or deficit problem yearly. Therefore, the rivers in Indonesia should be protected and conserved. The sustainability index of the rivers is an index to indicate the condition of watersheds by defining status of rivers in order to achieve sustainable water resource management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use%20change" title="land use change">land use change</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff%20coefficient" title=" runoff coefficient"> runoff coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20simple%20index" title=" a simple index"> a simple index</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20river" title=" sustainable river"> sustainable river</a> </p> <a href="https://publications.waset.org/abstracts/96805/the-effects-of-land-use-types-to-determine-the-status-of-sustainable-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1196</span> Hydrological, Hydraulics, Analysis and Design of the Aposto –Yirgalem Road Upgrading Project, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azazhu%20Wassie">Azazhu Wassie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study tried to analyze and identify the drainage pattern and catchment characteristics of the river basin and assess the impact of the hydrologic parameters (catchment area, rainfall intensity, runoff coefficient, land use, and soil type) on the referenced study area. Since there is no river gauging station near the road, even for large rivers, rainfall-runoff models are adopted for flood estimation, i.e., for catchment areas less than 50 ha, the rational method is used; for catchment areas, less than 65 km², the SCS unit hydrograph method is used; and for catchment areas greater than 65 km², HEC-HMS is adopted for flood estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arc%20GIS" title="Arc GIS">Arc GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=catchment%20area" title=" catchment area"> catchment area</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fland%20cover" title=" land use/land cover"> land use/land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20flood" title=" peak flood"> peak flood</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20intensity" title=" rainfall intensity"> rainfall intensity</a> </p> <a href="https://publications.waset.org/abstracts/188232/hydrological-hydraulics-analysis-and-design-of-the-aposto-yirgalem-road-upgrading-project-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1195</span> Gis-Based Water Pollution Assesment of Buriganga River, Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur-E-Jannat%20Tinu">Nur-E-Jannat Tinu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is absolutely vital not only for the survival of human beings but also for plants, animals, and all other living organisms. Water bodies, such as lakes, rivers, ponds, and estuaries, are the source of water supply in domestic, industrial, agriculture, and aquaculture purposes. The Buriganga River flows through the south and west of Dhaka city. The water quality of this river has become a matter of concern due to anthropogenic intervention of vital pollutants such as industrial effluents, urban sewage, and solid wastes in this area. Buriganga River is at risk to contamination from untreated municipal wastes, industrial discharges, runoff from organic and inorganic fertilizers, pesticides, insecticides, and oil emission around the river. The residential and commercial establishments along the river discharge wastewater either directly into the river or through drains and canals into the river. However, several regulatory measures and policies have been enforced by the Government to protect the river Buriganga from pollution, in most cases to no affect. Water quality assessment reveals that the water is also not appropriate for irrigation purposes. The physical parameters (pH, TDS, EC, Temperature, DO, COD, BOD) indicated that the water is too poor to be useable for agricultural, drinking, or other purposes. Chemical concentrations showed significant seasonal variations with high-level concentrations during the monsoon season, presumably due to extreme seasonal surface runoff. A comparative study of Electrical Conductivity (EC) and Total Dissolved Solids (TDS) indicated a considerable increase over the last five years A change in trend was observed from 2020 June-July, probably due to monsoon and post-monsoon. EC values decreased from 775 to 665 mmho/cm during this period. DO increased significantly from the mid-post-monsoon months to the early monsoon period. The pH value of river water is strongly alkaline, ranging between 6.5 and 7.79. This indicates that ecological organic compounds cause the water to become alkaline after the monsoon and monsoon seasons. As the water pollution level is very high, an effective remediation and pollution control plan should be considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precipitation" title="precipitation">precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20distribution" title=" spatial distribution"> spatial distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=effluent" title=" effluent"> effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation" title=" remediation"> remediation</a> </p> <a href="https://publications.waset.org/abstracts/142879/gis-based-water-pollution-assesment-of-buriganga-river-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1194</span> Hydraulic Performance of Urban Drainage System Using SWMM: A Case Study of Siti Khadijah Retention Pond in Palembang City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20B.%20Al%20Amin">Muhammad B. Al Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nyimas%20S.%20Rika"> Nyimas S. Rika</a>, <a href="https://publications.waset.org/abstracts/search?q=Dwi%20F.%20Yanto"> Dwi F. Yanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelina"> Marcelina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Siti Khadijah retention pond is located beside of Siti Khadijah Islamic Hospital on Demang Lebar Daun Street in Palembang City. This retention pond is functioned as storage for runoff from drainage channels in the surrounding area before entering Sekanak River, which is one of Musi River tributaries. However, in recent years, the developments in the surrounding area into paved area trigger to increase runoff discharge that causes the pond can no longer store it adequately. This study aimed to investigate the hydraulic performance of drainage system in the area around Siti Khadijah retention pond. A SWMM model was used to simulate runoff discharge into the pond and out from the pond, so the water level fluctuation within the pond and its capacity could be determined. Besides that, the water depth within drainage channels was simulated as well. The results showed that capacity of retention pond and some drainage channels already inadequate, so the area around it potentially to be flooded. Thus, it is necessary to increase the capacity of the retention pond and drainage channels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=retention%20pond" title=" retention pond"> retention pond</a>, <a href="https://publications.waset.org/abstracts/search?q=SWMM" title=" SWMM"> SWMM</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20drainage%20system" title=" urban drainage system"> urban drainage system</a> </p> <a href="https://publications.waset.org/abstracts/36591/hydraulic-performance-of-urban-drainage-system-using-swmm-a-case-study-of-siti-khadijah-retention-pond-in-palembang-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1193</span> Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Fattahi">Mohammad H. Fattahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. The noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaotic%20behavior" title="chaotic behavior">chaotic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet" title=" wavelet"> wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20reduction" title=" noise reduction"> noise reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20flow" title=" river flow"> river flow</a> </p> <a href="https://publications.waset.org/abstracts/12972/applying-a-noise-reduction-method-to-reveal-chaos-in-the-river-flow-time-series" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20runoff&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20runoff&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20runoff&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20runoff&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20runoff&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20runoff&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20runoff&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20runoff&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20runoff&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20runoff&page=40">40</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20runoff&page=41">41</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20runoff&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>