CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;25 of 25 results for author: <span class="mathjax">Dudarev, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Dudarev%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Dudarev, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Dudarev%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Dudarev, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13915">arXiv:2411.13915</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13915">pdf</a>, <a href="https://arxiv.org/format/2411.13915">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> An accurate solar axions ray-tracing response of BabyIAXO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ahyoune%2C+S">S. Ahyoune</a>, <a href="/search/physics?searchtype=author&amp;query=Altenmueller%2C+K">K. Altenmueller</a>, <a href="/search/physics?searchtype=author&amp;query=Antolin%2C+I">I. Antolin</a>, <a href="/search/physics?searchtype=author&amp;query=Basso%2C+S">S. Basso</a>, <a href="/search/physics?searchtype=author&amp;query=Brun%2C+P">P. Brun</a>, <a href="/search/physics?searchtype=author&amp;query=Candon%2C+F+R">F. R. Candon</a>, <a href="/search/physics?searchtype=author&amp;query=Castel%2C+J+F">J. F. Castel</a>, <a href="/search/physics?searchtype=author&amp;query=Cebrian%2C+S">S. Cebrian</a>, <a href="/search/physics?searchtype=author&amp;query=Chouhan%2C+D">D. Chouhan</a>, <a href="/search/physics?searchtype=author&amp;query=Della+Ceca%2C+R">R. Della Ceca</a>, <a href="/search/physics?searchtype=author&amp;query=Cervera-Cortes%2C+M">M. Cervera-Cortes</a>, <a href="/search/physics?searchtype=author&amp;query=Chernov%2C+V">V. Chernov</a>, <a href="/search/physics?searchtype=author&amp;query=Civitani%2C+M+M">M. M. Civitani</a>, <a href="/search/physics?searchtype=author&amp;query=Cogollos%2C+C">C. Cogollos</a>, <a href="/search/physics?searchtype=author&amp;query=Costa%2C+E">E. Costa</a>, <a href="/search/physics?searchtype=author&amp;query=Cotroneo%2C+V">V. Cotroneo</a>, <a href="/search/physics?searchtype=author&amp;query=Dafni%2C+T">T. Dafni</a>, <a href="/search/physics?searchtype=author&amp;query=Derbin%2C+A">A. Derbin</a>, <a href="/search/physics?searchtype=author&amp;query=Desch%2C+K">K. Desch</a>, <a href="/search/physics?searchtype=author&amp;query=Diaz-Martin%2C+M+C">M. C. Diaz-Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Diaz-Morcillo%2C+A">A. Diaz-Morcillo</a>, <a href="/search/physics?searchtype=author&amp;query=Diez-Ibanez%2C+D">D. Diez-Ibanez</a>, <a href="/search/physics?searchtype=author&amp;query=Pardos%2C+C+D">C. Diez Pardos</a>, <a href="/search/physics?searchtype=author&amp;query=Dinter%2C+M">M. Dinter</a>, <a href="/search/physics?searchtype=author&amp;query=Doebrich%2C+B">B. Doebrich</a> , et al. (102 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13915v1-abstract-short" style="display: inline;"> BabyIAXO is the intermediate stage of the International Axion Observatory (IAXO) to be hosted at DESY. Its primary goal is the detection of solar axions following the axion helioscope technique. Axions are converted into photons in a large magnet that is pointing to the sun. The resulting X-rays are focused by appropriate X-ray optics and detected by sensitive low-background detectors placed at th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13915v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13915v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13915v1-abstract-full" style="display: none;"> BabyIAXO is the intermediate stage of the International Axion Observatory (IAXO) to be hosted at DESY. Its primary goal is the detection of solar axions following the axion helioscope technique. Axions are converted into photons in a large magnet that is pointing to the sun. The resulting X-rays are focused by appropriate X-ray optics and detected by sensitive low-background detectors placed at the focal spot. The aim of this article is to provide an accurate quantitative description of the different components (such as the magnet, optics, and X-ray detectors) involved in the detection of axions. Our efforts have focused on developing robust and integrated software tools to model these helioscope components, enabling future assessments of modifications or upgrades to any part of the IAXO axion helioscope and evaluating the potential impact on the experiment&#39;s sensitivity. In this manuscript, we demonstrate the application of these tools by presenting a precise signal calculation and response analysis of BabyIAXO&#39;s sensitivity to the axion-photon coupling. Though focusing on the Primakoff solar flux component, our virtual helioscope model can be used to test different production mechanisms, allowing for direct comparisons within a unified framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13915v1-abstract-full').style.display = 'none'; document.getElementById('2411.13915v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 18 figures, 4 tables, Submitted to JHEP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02835">arXiv:2401.02835</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02835">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/app131810387">10.3390/app131810387 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparison of Two Detector Magnetic Systems for the Future Circular Hadron-Hadron Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Klyukhin%2C+V">Vyacheslav Klyukhin</a>, <a href="/search/physics?searchtype=author&amp;query=Ball%2C+A">Austin Ball</a>, <a href="/search/physics?searchtype=author&amp;query=Berriaud%2C+C+P">Christophe Paul Berriaud</a>, <a href="/search/physics?searchtype=author&amp;query=Cur%C3%A9%2C+B">Benoit Cur茅</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">Alexey Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Gaddi%2C+A">Andrea Gaddi</a>, <a href="/search/physics?searchtype=author&amp;query=Gerwig%2C+H">Hubert Gerwig</a>, <a href="/search/physics?searchtype=author&amp;query=Herv%C3%A9%2C+A">Alain Herv茅</a>, <a href="/search/physics?searchtype=author&amp;query=Mentink%2C+M">Matthias Mentink</a>, <a href="/search/physics?searchtype=author&amp;query=Riegler%2C+W">Werner Riegler</a>, <a href="/search/physics?searchtype=author&amp;query=Wagner%2C+U">Udo Wagner</a>, <a href="/search/physics?searchtype=author&amp;query=Kate%2C+H+T">Herman Ten Kate</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02835v1-abstract-short" style="display: inline;"> The conceptual design study of a Future Circular hadron-hadron Collider (FCC-hh) to be con-structed at CERN with a center-of-mass energy of the order of 100 TeV requires superconducting magnetic systems with a central magnetic flux density of an order of 4 T for the experimental detectors. The developed concept of the FCC-hh detector involves the use of an iron-free magnetic system consisting of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02835v1-abstract-full').style.display = 'inline'; document.getElementById('2401.02835v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02835v1-abstract-full" style="display: none;"> The conceptual design study of a Future Circular hadron-hadron Collider (FCC-hh) to be con-structed at CERN with a center-of-mass energy of the order of 100 TeV requires superconducting magnetic systems with a central magnetic flux density of an order of 4 T for the experimental detectors. The developed concept of the FCC-hh detector involves the use of an iron-free magnetic system consisting of three superconducting solenoids. A superconducting magnet with a minimal steel yoke is proposed as an alternative to the baseline iron-free design. In this study, both magnetic system options for the FCC-hh detector are modeled with the same electrical parameters using Cobham$&#39;$s program TOSCA. All the main characteristics of both designs are compared and discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02835v1-abstract-full').style.display = 'none'; document.getElementById('2401.02835v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1 pages, 10 figures, 2 equations, 14 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Sci. 13 (2023) 10387 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08533">arXiv:2303.08533</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08533">pdf</a>, <a href="https://arxiv.org/format/2303.08533">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Towards a Muon Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Accettura%2C+C">Carlotta Accettura</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">Dean Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+R">Rohit Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Ahdida%2C+C">Claudia Ahdida</a>, <a href="/search/physics?searchtype=author&amp;query=Aim%C3%A8%2C+C">Chiara Aim猫</a>, <a href="/search/physics?searchtype=author&amp;query=Amapane%2C+N">Nicola Amapane</a>, <a href="/search/physics?searchtype=author&amp;query=Amorim%2C+D">David Amorim</a>, <a href="/search/physics?searchtype=author&amp;query=Andreetto%2C+P">Paolo Andreetto</a>, <a href="/search/physics?searchtype=author&amp;query=Anulli%2C+F">Fabio Anulli</a>, <a href="/search/physics?searchtype=author&amp;query=Appleby%2C+R">Robert Appleby</a>, <a href="/search/physics?searchtype=author&amp;query=Apresyan%2C+A">Artur Apresyan</a>, <a href="/search/physics?searchtype=author&amp;query=Apyan%2C+A">Aram Apyan</a>, <a href="/search/physics?searchtype=author&amp;query=Arsenyev%2C+S">Sergey Arsenyev</a>, <a href="/search/physics?searchtype=author&amp;query=Asadi%2C+P">Pouya Asadi</a>, <a href="/search/physics?searchtype=author&amp;query=Mahmoud%2C+M+A">Mohammed Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&amp;query=Azatov%2C+A">Aleksandr Azatov</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+J">John Back</a>, <a href="/search/physics?searchtype=author&amp;query=Balconi%2C+L">Lorenzo Balconi</a>, <a href="/search/physics?searchtype=author&amp;query=Bandiera%2C+L">Laura Bandiera</a>, <a href="/search/physics?searchtype=author&amp;query=Barlow%2C+R">Roger Barlow</a>, <a href="/search/physics?searchtype=author&amp;query=Bartosik%2C+N">Nazar Bartosik</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">Emanuela Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Batsch%2C+F">Fabian Batsch</a>, <a href="/search/physics?searchtype=author&amp;query=Bauce%2C+M">Matteo Bauce</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+J+S">J. Scott Berg</a> , et al. (272 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08533v2-abstract-short" style="display: inline;"> A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders desi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08533v2-abstract-full').style.display = 'inline'; document.getElementById('2303.08533v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08533v2-abstract-full" style="display: none;"> A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08533v2-abstract-full').style.display = 'none'; document.getElementById('2303.08533v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">118 pages, 103 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.13998">arXiv:2203.13998</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.13998">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> A Work Proposal for a Collaborative Study of Magnet Technology for a Future Muon Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bottura%2C+L">L. Bottura</a>, <a href="/search/physics?searchtype=author&amp;query=Aguglia%2C+D">D. Aguglia</a>, <a href="/search/physics?searchtype=author&amp;query=Auchmann%2C+B">B. Auchmann</a>, <a href="/search/physics?searchtype=author&amp;query=Arndt%2C+T">T. Arndt</a>, <a href="/search/physics?searchtype=author&amp;query=Beard%2C+J">J. Beard</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Boattini%2C+F">F. Boattini</a>, <a href="/search/physics?searchtype=author&amp;query=Breschi%2C+M">M. Breschi</a>, <a href="/search/physics?searchtype=author&amp;query=Caiffi%2C+B">B. Caiffi</a>, <a href="/search/physics?searchtype=author&amp;query=Chaud%2C+X">X. Chaud</a>, <a href="/search/physics?searchtype=author&amp;query=Dam%2C+M">M. Dam</a>, <a href="/search/physics?searchtype=author&amp;query=Debray%2C+F">F. Debray</a>, <a href="/search/physics?searchtype=author&amp;query=De+Gersem%2C+H">H. De Gersem</a>, <a href="/search/physics?searchtype=author&amp;query=De+Matteis%2C+E">E. De Matteis</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Farinon%2C+S">S. Farinon</a>, <a href="/search/physics?searchtype=author&amp;query=Kario%2C+A">A. Kario</a>, <a href="/search/physics?searchtype=author&amp;query=Losito%2C+R">R. Losito</a>, <a href="/search/physics?searchtype=author&amp;query=Mariotto%2C+S">S. Mariotto</a>, <a href="/search/physics?searchtype=author&amp;query=Mentink%2C+M">M. Mentink</a>, <a href="/search/physics?searchtype=author&amp;query=Musenich%2C+R">R. Musenich</a>, <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">T. Ogitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Prioli%2C+M">M. Prioli</a>, <a href="/search/physics?searchtype=author&amp;query=Quettier%2C+L">L. Quettier</a>, <a href="/search/physics?searchtype=author&amp;query=Rossi%2C+L">L. Rossi</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.13998v2-abstract-short" style="display: inline;"> In this paper we elaborate on the nature and challenges for the magnet systems of a muon collider as presently considered within the scope of the International Muon Collider Collaboration (IMCC). We outline the structure of the work proposed over the coming period of five years to study and demonstrate relevant magnet technology. The proposal, which is part of the overall work planned to establish&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13998v2-abstract-full').style.display = 'inline'; document.getElementById('2203.13998v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.13998v2-abstract-full" style="display: none;"> In this paper we elaborate on the nature and challenges for the magnet systems of a muon collider as presently considered within the scope of the International Muon Collider Collaboration (IMCC). We outline the structure of the work proposed over the coming period of five years to study and demonstrate relevant magnet technology. The proposal, which is part of the overall work planned to establish feasibility of a muon collider, is in direct response to the recent recommendations received from the Laboratories Directors Group (LDG). The plan is to profit from joint activities, within the scope of the IMCC and beyond, implemented through direct and EU-funded contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13998v2-abstract-full').style.display = 'none'; document.getElementById('2203.13998v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07799">arXiv:2203.07799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07799">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/06/T06013">10.1088/1748-0221/18/06/T06013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconducting detector magnets for high energy physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mentink%2C+M">Matthias Mentink</a>, <a href="/search/physics?searchtype=author&amp;query=Sasaki%2C+K">Ken-ichi Sasaki</a>, <a href="/search/physics?searchtype=author&amp;query=Cure%2C+B">Benoit Cure</a>, <a href="/search/physics?searchtype=author&amp;query=Deelen%2C+N">Nikkie Deelen</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">Alexey Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+M">Mitsushi Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Iio%2C+M">Masami Iio</a>, <a href="/search/physics?searchtype=author&amp;query=Makida%2C+Y">Yasuhiro Makida</a>, <a href="/search/physics?searchtype=author&amp;query=Okamura%2C+T">Takahiro Okamura</a>, <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">Toru Ogitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Sumi%2C+N">Naoyuki Sumi</a>, <a href="/search/physics?searchtype=author&amp;query=Yamamoto%2C+A">Akira Yamamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Yoshida%2C+M">Makoto Yoshida</a>, <a href="/search/physics?searchtype=author&amp;query=Iinuma%2C+H">Hiromi Iinuma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07799v1-abstract-short" style="display: inline;"> Various superconducting detector solenoids for particle physics have been developed in the world. The key technology is the aluminum-stabilized superconducting conductor for almost all the detector magnets in particle physics experiments. With the progress of the conductor, the coil fabrication technology has progressed as well, such as the inner coil winding technique, indirect cooling, transpare&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07799v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07799v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07799v1-abstract-full" style="display: none;"> Various superconducting detector solenoids for particle physics have been developed in the world. The key technology is the aluminum-stabilized superconducting conductor for almost all the detector magnets in particle physics experiments. With the progress of the conductor, the coil fabrication technology has progressed as well, such as the inner coil winding technique, indirect cooling, transparent vacuum vessel, quench protection scheme using pure aluminum strips and so on. The detector solenoids design study is in progress for future big projects in Japan and Europe, that is, ILC, FCC and CLIC, based on the technologies established over many years. The combination of good mechanical properties and keeping a high RRR is a key point for the development of Al-stabilized conductor. The present concern for the detector solenoid development is to have been gradually losing the key technologies and experiences, because large-scale detector magnets with Al-stabilized conductor has not been fabricated after the success of CMS and ATLAS-CS in LHC. Complementary efforts are needed to resume an equivalent level of expertise, to extend the effort on research and to develop these technologies and apply them to future detector magnet projects. Especially, further effort is necessary for the industrial technology of Al-stabilized superconductor production. The worldwide collaboration with relevant institutes and industries will be critically important to re-realize and validate the required performances. Some detector solenoids for mid-scale experiment wound with conventional copper-stabilized Nb-Ti conductor require precise control of magnetic field distribution. The development efforts are on-going in terms of the magnetic field design technology with high precision simulation, coil fabrication technology and control method of magnetic field distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07799v1-abstract-full').style.display = 'none'; document.getElementById('2203.07799v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 35 figures, 8 tables, contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.07101">arXiv:2201.07101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.07101">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Comparison of the Baseline and the Minimal Steel Yoke Superconducting Magnets for the Future Circular Hadron-Hadron Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Klyukhin%2C+V+I">V. I. Klyukhin</a>, <a href="/search/physics?searchtype=author&amp;query=Ball%2C+A">A. Ball</a>, <a href="/search/physics?searchtype=author&amp;query=Berriaud%2C+C+P">C. P. Berriaud</a>, <a href="/search/physics?searchtype=author&amp;query=Bielert%2C+E">E. Bielert</a>, <a href="/search/physics?searchtype=author&amp;query=Cur%C3%A9%2C+B">B. Cur茅</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Gaddi%2C+A">A. Gaddi</a>, <a href="/search/physics?searchtype=author&amp;query=Gerwig%2C+H">H. Gerwig</a>, <a href="/search/physics?searchtype=author&amp;query=Herv%C3%A9%2C+A">A. Herv茅</a>, <a href="/search/physics?searchtype=author&amp;query=Mentink%2C+M">M. Mentink</a>, <a href="/search/physics?searchtype=author&amp;query=Da+Silva%2C+H+P">H. Pais Da Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Wagner%2C+U">U. Wagner</a>, <a href="/search/physics?searchtype=author&amp;query=Kate%2C+H+H+J+T">H. H. J. Ten Kate</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.07101v1-abstract-short" style="display: inline;"> The conceptual design study of a hadron Future Circular hadron-hadron Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV assumes using in the experimental detector the superconducting magnetic system with a central magnetic flux density of an order of 4 T. A superconducting magnet with a minimal steel yoke was proposed as an alternative to the baseline iron-free solenoids. In a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07101v1-abstract-full').style.display = 'inline'; document.getElementById('2201.07101v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.07101v1-abstract-full" style="display: none;"> The conceptual design study of a hadron Future Circular hadron-hadron Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV assumes using in the experimental detector the superconducting magnetic system with a central magnetic flux density of an order of 4 T. A superconducting magnet with a minimal steel yoke was proposed as an alternative to the baseline iron-free solenoids. In a present study, both designs are modeled with Cobham&#39;s program TOSCA and compared. All the main parameters are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07101v1-abstract-full').style.display = 'none'; document.getElementById('2201.07101v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 9 figures, 5 references. Presented at ICSM2018 - 6th International Conference on Superconductivity and Magnetism 2018, 29 April - 4 May, Antalya Turkey</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.12076">arXiv:2010.12076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.12076">pdf</a>, <a href="https://arxiv.org/format/2010.12076">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Conceptual Design of BabyIAXO, the intermediate stage towards the International Axion Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abeln%2C+A">A. Abeln</a>, <a href="/search/physics?searchtype=author&amp;query=Altenm%C3%BCller%2C+K">K. Altenm眉ller</a>, <a href="/search/physics?searchtype=author&amp;query=Cuendis%2C+S+A">S. Arguedas Cuendis</a>, <a href="/search/physics?searchtype=author&amp;query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&amp;query=Atti%C3%A9%2C+D">D. Atti茅</a>, <a href="/search/physics?searchtype=author&amp;query=Aune%2C+S">S. Aune</a>, <a href="/search/physics?searchtype=author&amp;query=Basso%2C+S">S. Basso</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&amp;query=Biasuzzi%2C+B">B. Biasuzzi</a>, <a href="/search/physics?searchtype=author&amp;query=De+Sousa%2C+P+T+C+B">P. T. C. Borges De Sousa</a>, <a href="/search/physics?searchtype=author&amp;query=Brun%2C+P">P. Brun</a>, <a href="/search/physics?searchtype=author&amp;query=Bykovskiy%2C+N">N. Bykovskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Calvet%2C+D">D. Calvet</a>, <a href="/search/physics?searchtype=author&amp;query=Carmona%2C+J+M">J. M. Carmona</a>, <a href="/search/physics?searchtype=author&amp;query=Castel%2C+J+F">J. F. Castel</a>, <a href="/search/physics?searchtype=author&amp;query=Cebri%C3%A1n%2C+S">S. Cebri谩n</a>, <a href="/search/physics?searchtype=author&amp;query=Chernov%2C+V">V. Chernov</a>, <a href="/search/physics?searchtype=author&amp;query=Christensen%2C+F+E">F. E. Christensen</a>, <a href="/search/physics?searchtype=author&amp;query=Civitani%2C+M+M">M. M. Civitani</a>, <a href="/search/physics?searchtype=author&amp;query=Cogollos%2C+C">C. Cogollos</a>, <a href="/search/physics?searchtype=author&amp;query=Dafn%C3%AD%2C+T">T. Dafn铆</a>, <a href="/search/physics?searchtype=author&amp;query=Derbin%2C+A">A. Derbin</a>, <a href="/search/physics?searchtype=author&amp;query=Desch%2C+K">K. Desch</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%ADez%2C+D">D. D铆ez</a>, <a href="/search/physics?searchtype=author&amp;query=Dinter%2C+M">M. Dinter</a> , et al. (101 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.12076v3-abstract-short" style="display: inline;"> This article describes BabyIAXO, an intermediate experimental stage of the International Axion Observatory (IAXO), proposed to be sited at DESY. IAXO is a large-scale axion helioscope that will look for axions and axion-like particles (ALPs), produced in the Sun, with unprecedented sensitivity. BabyIAXO is conceived to test all IAXO subsystems (magnet, optics and detectors) at a relevant scale for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12076v3-abstract-full').style.display = 'inline'; document.getElementById('2010.12076v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.12076v3-abstract-full" style="display: none;"> This article describes BabyIAXO, an intermediate experimental stage of the International Axion Observatory (IAXO), proposed to be sited at DESY. IAXO is a large-scale axion helioscope that will look for axions and axion-like particles (ALPs), produced in the Sun, with unprecedented sensitivity. BabyIAXO is conceived to test all IAXO subsystems (magnet, optics and detectors) at a relevant scale for the final system and thus serve as prototype for IAXO, but at the same time as a fully-fledged helioscope with relevant physics reach itself, and with potential for discovery. The BabyIAXO magnet will feature two 10 m long, 70 cm diameter bores, and will host two detection lines (optics and detector) of dimensions similar to the final ones foreseen for IAXO. BabyIAXO will detect or reject solar axions or ALPs with axion-photon couplings down to $g_{a纬} \sim 1.5 \times 10^{-11}$ GeV$^{-1}$, and masses up to $m_a\sim 0.25$ eV. BabyIAXO will offer additional opportunities for axion research in view of IAXO, like the development of precision x-ray detectors to identify particular spectral features in the solar axion spectrum, and the implementation of radiofrequency-cavity-based axion dark matter setups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12076v3-abstract-full').style.display = 'none'; document.getElementById('2010.12076v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">77 pages, 49 figures. Prepared for submission to JHEP. Third version after referees comments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.10406">arXiv:1705.10406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.10406">pdf</a>, <a href="https://arxiv.org/format/1705.10406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/07/C07028">10.1088/1748-0221/12/07/C07028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Baby MIND: A magnetized segmented neutrino detector for the WAGASCI experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&amp;query=Benoit%2C+P">P. Benoit</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Bross%2C+A">A. Bross</a>, <a href="/search/physics?searchtype=author&amp;query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&amp;query=Cervera%2C+A">A. Cervera</a>, <a href="/search/physics?searchtype=author&amp;query=Chikuma%2C+N">N. Chikuma</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Ekel%C3%B6f%2C+T">T. Ekel枚f</a>, <a href="/search/physics?searchtype=author&amp;query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&amp;query=Fedotov%2C+S">S. Fedotov</a>, <a href="/search/physics?searchtype=author&amp;query=Hallsj%C3%B6%2C+S">S-P. Hallsj枚</a>, <a href="/search/physics?searchtype=author&amp;query=Izmaylov%2C+A">A. Izmaylov</a>, <a href="/search/physics?searchtype=author&amp;query=Karadzhov%2C+Y">Y. Karadzhov</a>, <a href="/search/physics?searchtype=author&amp;query=Khabibullin%2C+M">M. Khabibullin</a>, <a href="/search/physics?searchtype=author&amp;query=Khotyantsev%2C+A">A. Khotyantsev</a>, <a href="/search/physics?searchtype=author&amp;query=Kleymenova%2C+A">A. Kleymenova</a>, <a href="/search/physics?searchtype=author&amp;query=Koga%2C+T">T. Koga</a>, <a href="/search/physics?searchtype=author&amp;query=Kostin%2C+A">A. Kostin</a>, <a href="/search/physics?searchtype=author&amp;query=Kudenko%2C+Y">Y. Kudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Likhacheva%2C+V">V. Likhacheva</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+B">B. Martinez</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.10406v3-abstract-short" style="display: inline;"> T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280~m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280&#39;s measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10406v3-abstract-full').style.display = 'inline'; document.getElementById('1705.10406v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.10406v3-abstract-full" style="display: none;"> T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280~m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280&#39;s measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295~km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10406v3-abstract-full').style.display = 'none'; document.getElementById('1705.10406v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In new version: modified both plots of Fig.1 and added one sentence in the introduction part explaining Baby MIND role in WAGASCI experiment, added information for the affiliations</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.08917">arXiv:1704.08917</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.08917">pdf</a>, <a href="https://arxiv.org/format/1704.08917">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Baby MIND Experiment Construction Status </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Bayes%2C+R">R Bayes</a>, <a href="/search/physics?searchtype=author&amp;query=Benoit%2C+P">P. Benoit</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Bross%2C+A">A. Bross</a>, <a href="/search/physics?searchtype=author&amp;query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&amp;query=Cervera%2C+A">A. Cervera</a>, <a href="/search/physics?searchtype=author&amp;query=Chikuma%2C+N">N. Chikuma</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Ekel%C3%B6f%2C+T">T. Ekel枚f</a>, <a href="/search/physics?searchtype=author&amp;query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&amp;query=Fedotov%2C+S">S. Fedotov</a>, <a href="/search/physics?searchtype=author&amp;query=Hallsj%C3%B6%2C+S">S-P. Hallsj枚</a>, <a href="/search/physics?searchtype=author&amp;query=Izmaylov%2C+A">A. Izmaylov</a>, <a href="/search/physics?searchtype=author&amp;query=Karadzhov%2C+Y">Y. Karadzhov</a>, <a href="/search/physics?searchtype=author&amp;query=Khabibullin%2C+M">M. Khabibullin</a>, <a href="/search/physics?searchtype=author&amp;query=Khotyantsev%2C+A">A. Khotyantsev</a>, <a href="/search/physics?searchtype=author&amp;query=Kleymenova%2C+A">A. Kleymenova</a>, <a href="/search/physics?searchtype=author&amp;query=Koga%2C+T">T. Koga</a>, <a href="/search/physics?searchtype=author&amp;query=Kostin%2C+A">A. Kostin</a>, <a href="/search/physics?searchtype=author&amp;query=Kudenko%2C+Y">Y. Kudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Likhacheva%2C+V">V. Likhacheva</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+B">B. Martinez</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.08917v1-abstract-short" style="display: inline;"> Baby MIND is a magnetized iron neutrino detector, with novel design features, and is planned to serve as a downstream magnetized muon spectrometer for the WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main goals of this experiment is to reduce systematic uncertainties relevant to CP-violation searches, by measuring the neutrino contamination in the anti-neutrino beam mode o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08917v1-abstract-full').style.display = 'inline'; document.getElementById('1704.08917v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.08917v1-abstract-full" style="display: none;"> Baby MIND is a magnetized iron neutrino detector, with novel design features, and is planned to serve as a downstream magnetized muon spectrometer for the WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main goals of this experiment is to reduce systematic uncertainties relevant to CP-violation searches, by measuring the neutrino contamination in the anti-neutrino beam mode of T2K. Baby MIND is currently being constructed at CERN, and is planned to be operational in Japan in October 2017. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08917v1-abstract-full').style.display = 'none'; document.getElementById('1704.08917v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Poster presented at NuPhys2016 (London, 12-14 December 2016). 4 pages, LaTeX, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NuPhys2016-Parsa </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.08079">arXiv:1704.08079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.08079">pdf</a>, <a href="https://arxiv.org/format/1704.08079">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Baby MIND: A magnetised spectrometer for the WAGASCI experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Bayes%2C+R">R Bayes</a>, <a href="/search/physics?searchtype=author&amp;query=Benoit%2C+P">P. Benoit</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Cross%2C+A">A. Cross</a>, <a href="/search/physics?searchtype=author&amp;query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&amp;query=Cervera%2C+A">A. Cervera</a>, <a href="/search/physics?searchtype=author&amp;query=Chikuma%2C+N">N. Chikuma</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Ekel%C3%B6f%2C+T">T. Ekel枚f</a>, <a href="/search/physics?searchtype=author&amp;query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&amp;query=Fedotov%2C+S">S. Fedotov</a>, <a href="/search/physics?searchtype=author&amp;query=Hallsj%C3%B6%2C+S">S-P. Hallsj枚</a>, <a href="/search/physics?searchtype=author&amp;query=Izmaylov%2C+A">A. Izmaylov</a>, <a href="/search/physics?searchtype=author&amp;query=Karadzhov%2C+Y">Y. Karadzhov</a>, <a href="/search/physics?searchtype=author&amp;query=Khabibullin%2C+M">M. Khabibullin</a>, <a href="/search/physics?searchtype=author&amp;query=Khotyantsev%2C+A">A. Khotyantsev</a>, <a href="/search/physics?searchtype=author&amp;query=Kleymenova%2C+A">A. Kleymenova</a>, <a href="/search/physics?searchtype=author&amp;query=Koga%2C+T">T. Koga</a>, <a href="/search/physics?searchtype=author&amp;query=Kostin%2C+A">A. Kostin</a>, <a href="/search/physics?searchtype=author&amp;query=Kudenko%2C+Y">Y. Kudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Likhacheva%2C+V">V. Likhacheva</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+B">B. Martinez</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.08079v1-abstract-short" style="display: inline;"> The WAGASCI experiment being built at the J-PARC neutrino beam line will measure the difference in cross sections from neutrinos interacting with a water and scintillator targets, in order to constrain neutrino cross sections, essential for the T2K neutrino oscillation measurements. A prototype Magnetised Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN to act as a mag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08079v1-abstract-full').style.display = 'inline'; document.getElementById('1704.08079v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.08079v1-abstract-full" style="display: none;"> The WAGASCI experiment being built at the J-PARC neutrino beam line will measure the difference in cross sections from neutrinos interacting with a water and scintillator targets, in order to constrain neutrino cross sections, essential for the T2K neutrino oscillation measurements. A prototype Magnetised Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN to act as a magnetic spectrometer behind the main WAGASCI target to be able to measure the charge and momentum of the outgoing muon from neutrino charged current interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08079v1-abstract-full').style.display = 'none'; document.getElementById('1704.08079v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Poster presented at NuPhys2016 (London, 12-14 December 2016). Title + 4 pages, LaTeX, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NuPhys2016-Hallsj\&#34;o </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.08777">arXiv:1605.08777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.08777">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10948-016-3660-6">10.1007/s10948-016-3660-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconducting Magnet with a Minimal Steel Yoke for the Future Circular Collider Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Klyukhin%2C+V+I">V. I. Klyukhin</a>, <a href="/search/physics?searchtype=author&amp;query=Herv%C3%A9%2C+A">A. Herv茅</a>, <a href="/search/physics?searchtype=author&amp;query=Ball%2C+A">A. Ball</a>, <a href="/search/physics?searchtype=author&amp;query=Cur%C3%A9%2C+B">B. Cur茅</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Gaddi%2C+A">A. Gaddi</a>, <a href="/search/physics?searchtype=author&amp;query=Gerwig%2C+H">H. Gerwig</a>, <a href="/search/physics?searchtype=author&amp;query=Mentink%2C+M">M. Mentink</a>, <a href="/search/physics?searchtype=author&amp;query=Da+Silva%2C+H+P">H. Pais Da Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Rolando%2C+G">G. Rolando</a>, <a href="/search/physics?searchtype=author&amp;query=Kate%2C+H+H+J+T">H. H. J. Ten Kate</a>, <a href="/search/physics?searchtype=author&amp;query=Berriaud%2C+C+P">C. P. Berriaud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.08777v2-abstract-short" style="display: inline;"> The conceptual design study of a Future Circular hadron-hadron Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV, assumed to be constructed in a new tunnel of 80-100 km circumference, includes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12-m-diameter inner bore with the central magnetic flux density of 6 T, in combination&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.08777v2-abstract-full').style.display = 'inline'; document.getElementById('1605.08777v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.08777v2-abstract-full" style="display: none;"> The conceptual design study of a Future Circular hadron-hadron Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV, assumed to be constructed in a new tunnel of 80-100 km circumference, includes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12-m-diameter inner bore with the central magnetic flux density of 6 T, in combination with two superconducting dipole magnets and two conventional toroid magnets is proposed for an FCC-hh experimental setup. The coil of 23.468 m length has seven 3.35-m-long modules included into one cryostat. The steel yoke with a mass of 22.6 kt consists of two barrel layers of 0.5 m radial thickness and a 0.7-m-thick nose disk and four 0.6-m-thick end-cap disks each side. The outer diameter of the yoke is 17.7 m. The full length of the magnetic system is 62.6 m. The air gaps between the end-cap disks provide for the installation of the muon chambers up to an absolute pseudorapidity about 2.7. The superconducting dipole magnets provide measurement of charged particle momenta in the absolute pseudorapidity region greater than 3. The conventional forward muon spectrometer allows muon identification in the absolute pseudorapidity region from 2.7 to 5. The magnet is modeled with the program TOSCA from Cobham CTS Limited. The total current in the superconducting solenoid coil is 123 MA-turns; the stored energy is 41.8 GJ. The axial force acting on each end-cap is 450 MN. The stray field is 13.7 mT at a radius of 50 m from the coil axis, and 5.2 mT at a radius of 100 m. Many other parameters are presented and discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.08777v2-abstract-full').style.display = 'none'; document.getElementById('1605.08777v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, presented at ICSM2016 - 5th International Conference on Superconductivity and Magnetism on April 26, 2016 at Fethiye, Turkey</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Superconductivity and Novel Magnetism, Article 3660 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.03143">arXiv:1511.03143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.03143">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/NSSMIC.2015.7581877">10.1109/NSSMIC.2015.7581877 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconducting Magnet with the Reduced Barrel Yoke for the Hadron Future Circular Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Klyukhin%2C+V+I">V. I. Klyukhin</a>, <a href="/search/physics?searchtype=author&amp;query=Ball%2C+A">A. Ball</a>, <a href="/search/physics?searchtype=author&amp;query=Berriaud%2C+C">C. Berriaud</a>, <a href="/search/physics?searchtype=author&amp;query=Cur%C3%A9%2C+B">B. Cur茅</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Gaddi%2C+A">A. Gaddi</a>, <a href="/search/physics?searchtype=author&amp;query=Gerwig%2C+H">H. Gerwig</a>, <a href="/search/physics?searchtype=author&amp;query=Herv%C3%A9%2C+A">A. Herv茅</a>, <a href="/search/physics?searchtype=author&amp;query=Mentink%2C+M">M. Mentink</a>, <a href="/search/physics?searchtype=author&amp;query=Rolando%2C+G">G. Rolando</a>, <a href="/search/physics?searchtype=author&amp;query=Da+Silva%2C+H+F+P">H. F. Pais Da Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Wagner%2C+U">U. Wagner</a>, <a href="/search/physics?searchtype=author&amp;query=Kate%2C+H+H+J+t">H. H. J. ten Kate</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.03143v1-abstract-short" style="display: inline;"> The conceptual design study of a hadron Future Circular Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV in a new tunnel of 80-100 km circumference assumes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12 m diameter inner bore with the central magnetic flux density of 6 T is proposed for a FCC-hh experimental setup. The co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.03143v1-abstract-full').style.display = 'inline'; document.getElementById('1511.03143v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.03143v1-abstract-full" style="display: none;"> The conceptual design study of a hadron Future Circular Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV in a new tunnel of 80-100 km circumference assumes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12 m diameter inner bore with the central magnetic flux density of 6 T is proposed for a FCC-hh experimental setup. The coil of 24.518 m long has seven 3.5 m long modules included into one cryostat. The steel yoke with a mass of 21 kt consists of two barrel layers of 0.5 m radial thickness, and 0.7 m thick nose disk, four 0.6 m thick end-cap disks, and three 0.8 m thick muon toroid disks each side. The outer diameter of the yoke is 17.7 m; the length without the forward muon toroids is 33 m. The air gaps between the end-cap disks provide the installation of the muon chambers up to the pseudorapidity of \pm 3.5. The conventional forward muon spectrometer provides the measuring of the muon momenta in the pseudorapidity region from \pm 2.7 to \pm 4.6. The magnet modeled with Cobham&#39;s program TOSCA. The total Ampere-turns in the superconducting solenoid coil are 127.25 MA-turns. The stored energy is 43.3 GJ. The axial force onto each end-cap is 480 MN. The stray field at the radius of 50 m off the coil axis is 14.1 mT and 5.4 mT at the radius of 100 m. All other parameters presented and discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.03143v1-abstract-full').style.display = 'none'; document.getElementById('1511.03143v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 6 figures, presented on November 4, 2015 at the 2015 IEEE Nuclear Science Symposium, Town \&amp; Country Hotel, San Diego, CA (31 October - 7 November 2015)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.1186">arXiv:1409.1186</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.1186">pdf</a>, <a href="https://arxiv.org/format/1409.1186">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The influence of the Al stabilizer layer thickness on the normal zone propagation velocity in high current superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shilon%2C+I">I. Shilon</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Langeslag%2C+S+A+E">S. A. E. Langeslag</a>, <a href="/search/physics?searchtype=author&amp;query=Martins%2C+L+P">L. P. Martins</a>, <a href="/search/physics?searchtype=author&amp;query=Kate%2C+H+H+J+t">H. H. J. ten Kate</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.1186v1-abstract-short" style="display: inline;"> The stability of high-current superconductors is challenging in the design of superconducting magnets. When the stability requirements are fulfilled, the protection against a quench must still be considered. A main factor in the design of quench protection systems is the resistance growth rate in the magnet following a quench. The usual method for determining the resistance growth in impregnated c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.1186v1-abstract-full').style.display = 'inline'; document.getElementById('1409.1186v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.1186v1-abstract-full" style="display: none;"> The stability of high-current superconductors is challenging in the design of superconducting magnets. When the stability requirements are fulfilled, the protection against a quench must still be considered. A main factor in the design of quench protection systems is the resistance growth rate in the magnet following a quench. The usual method for determining the resistance growth in impregnated coils is to calculate the longitudinal velocity with which the normal zone propagates in the conductor along the coil windings. Here, we present a 2D numerical model for predicting the normal zone propagation velocity in Al stabilized Rutherford NbTi cables with large cross section. By solving two coupled differential equations under adiabatic conditions, the model takes into account the thermal diffusion and the current redistribution process following a quench. Both the temperature and magnetic field dependencies of the superconductor and the metal cladding materials properties are included. Unlike common normal zone propagation analyses, we study the influence of the thickness of the cladding on the propagation velocity for varying operating current and magnetic field. To assist in the comprehension of the numerical results, we also introduce an analytical formula for the longitudinal normal zone propagation. The analysis distinguishes between low-current and high-current regimes of normal zone propagation, depending on the ratio between the characteristic times of thermal and magnetic diffusion. We show that above a certain thickness, the cladding acts as a heat sink with a limited contribution to the acceleration of the propagation velocity with respect to the cladding geometry. Both numerical and analytical results show good agreement with experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.1186v1-abstract-full').style.display = 'none'; document.getElementById('1409.1186v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in Physics Procedia (ICEC 25 conference special issue)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.3233">arXiv:1401.3233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.3233">pdf</a>, <a href="https://arxiv.org/format/1401.3233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/9/05/T05002">10.1088/1748-0221/9/05/T05002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conceptual Design of the International Axion Observatory (IAXO) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone</a>, <a href="/search/physics?searchtype=author&amp;query=Betz%2C+M">M. Betz</a>, <a href="/search/physics?searchtype=author&amp;query=Brax%2C+P">P. Brax</a>, <a href="/search/physics?searchtype=author&amp;query=Brun%2C+P">P. Brun</a>, <a href="/search/physics?searchtype=author&amp;query=Cantatore%2C+G">G. Cantatore</a>, <a href="/search/physics?searchtype=author&amp;query=Carmona%2C+J+M">J. M. Carmona</a>, <a href="/search/physics?searchtype=author&amp;query=Carosi%2C+G+P">G. P. Carosi</a>, <a href="/search/physics?searchtype=author&amp;query=Caspers%2C+F">F. Caspers</a>, <a href="/search/physics?searchtype=author&amp;query=Caspi%2C+S">S. Caspi</a>, <a href="/search/physics?searchtype=author&amp;query=Cetin%2C+S+A">S. A. Cetin</a>, <a href="/search/physics?searchtype=author&amp;query=Chelouche%2C+D">D. Chelouche</a>, <a href="/search/physics?searchtype=author&amp;query=Christensen%2C+F+E">F. E. Christensen</a>, <a href="/search/physics?searchtype=author&amp;query=Dael%2C+A">A. Dael</a>, <a href="/search/physics?searchtype=author&amp;query=Dafni%2C+T">T. Dafni</a>, <a href="/search/physics?searchtype=author&amp;query=Davenport%2C+M">M. Davenport</a>, <a href="/search/physics?searchtype=author&amp;query=Derbin%2C+A+V">A. V. Derbin</a>, <a href="/search/physics?searchtype=author&amp;query=Desch%2C+K">K. Desch</a>, <a href="/search/physics?searchtype=author&amp;query=Diago%2C+A">A. Diago</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6brich%2C+B">B. D枚brich</a>, <a href="/search/physics?searchtype=author&amp;query=Dratchnev%2C+I">I. Dratchnev</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Eleftheriadis%2C+C">C. Eleftheriadis</a>, <a href="/search/physics?searchtype=author&amp;query=Fanourakis%2C+G">G. Fanourakis</a>, <a href="/search/physics?searchtype=author&amp;query=Ferrer-Ribas%2C+E">E. Ferrer-Ribas</a> , et al. (63 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.3233v1-abstract-short" style="display: inline;"> The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion heliosc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3233v1-abstract-full').style.display = 'inline'; document.getElementById('1401.3233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.3233v1-abstract-full" style="display: none;"> The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $\times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{ae}$ with sensitivity $-$for the first time$-$ to values of $g_{ae}$ not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, which follows the layout of an enhanced axion helioscope, based on a purpose-built 20m-long 8-coils toroidal superconducting magnet. All the eight 60cm-diameter magnet bores are equipped with focusing x-ray optics, able to focus the signal photons into $\sim 0.2$ cm$^2$ spots that are imaged by ultra-low-background Micromegas x-ray detectors. The magnet is built into a structure with elevation and azimuth drives that will allow for solar tracking for $\sim$12 h each day. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3233v1-abstract-full').style.display = 'none'; document.getElementById('1401.3233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, submitted to JINST</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 9 (2014) T05002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.4982">arXiv:1311.4982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.4982">pdf</a>, <a href="https://arxiv.org/format/1311.4982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Annihilation of low energy antiprotons in silicon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aghion%2C+S">S. Aghion</a>, <a href="/search/physics?searchtype=author&amp;query=Ahl%C3%A9n%2C+O">O. Ahl茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+A+S">A. S. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bonomi%2C+G">G. Bonomi</a>, <a href="/search/physics?searchtype=author&amp;query=Br%C3%A4unig%2C+P">P. Br盲unig</a>, <a href="/search/physics?searchtype=author&amp;query=Bremer%2C+J">J. Bremer</a>, <a href="/search/physics?searchtype=author&amp;query=Brusa%2C+R+S">R. S. Brusa</a>, <a href="/search/physics?searchtype=author&amp;query=Burghart%2C+G">G. Burghart</a>, <a href="/search/physics?searchtype=author&amp;query=Cabaret%2C+L">L. Cabaret</a>, <a href="/search/physics?searchtype=author&amp;query=Caccia%2C+M">M. Caccia</a>, <a href="/search/physics?searchtype=author&amp;query=Canali%2C+C">C. Canali</a>, <a href="/search/physics?searchtype=author&amp;query=Caravita%2C+R">R. Caravita</a>, <a href="/search/physics?searchtype=author&amp;query=Castelli%2C+F">F. Castelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cerchiari%2C+G">G. Cerchiari</a>, <a href="/search/physics?searchtype=author&amp;query=Cialdi%2C+S">S. Cialdi</a>, <a href="/search/physics?searchtype=author&amp;query=Comparat%2C+D">D. Comparat</a>, <a href="/search/physics?searchtype=author&amp;query=Consolati%2C+G">G. Consolati</a>, <a href="/search/physics?searchtype=author&amp;query=Derking%2C+J+H">J. H. Derking</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Noto%2C+L">L. Di Noto</a>, <a href="/search/physics?searchtype=author&amp;query=Doser%2C+M">M. Doser</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Ferragut%2C+R">R. Ferragut</a>, <a href="/search/physics?searchtype=author&amp;query=Fontana%2C+A">A. Fontana</a>, <a href="/search/physics?searchtype=author&amp;query=Genova%2C+P">P. Genova</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.4982v2-abstract-short" style="display: inline;"> The goal of the AE$\mathrm{\bar{g}}$IS experiment at the Antiproton Decelerator (AD) at CERN, is to measure directly the Earth&#39;s gravitational acceleration on antimatter. To achieve this goal, the AE$\mathrm{\bar{g}}$IS collaboration will produce a pulsed, cold (100 mK) antihydrogen beam with a velocity of a few 100 m/s and measure the magnitude of the vertical deflection of the beam from a straig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4982v2-abstract-full').style.display = 'inline'; document.getElementById('1311.4982v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.4982v2-abstract-full" style="display: none;"> The goal of the AE$\mathrm{\bar{g}}$IS experiment at the Antiproton Decelerator (AD) at CERN, is to measure directly the Earth&#39;s gravitational acceleration on antimatter. To achieve this goal, the AE$\mathrm{\bar{g}}$IS collaboration will produce a pulsed, cold (100 mK) antihydrogen beam with a velocity of a few 100 m/s and measure the magnitude of the vertical deflection of the beam from a straight path. The final position of the falling antihydrogen will be detected by a position sensitive detector. This detector will consist of an active silicon part, where the annihilations take place, followed by an emulsion part. Together, they allow to achieve 1$%$ precision on the measurement of $\bar{g}$ with about 600 reconstructed and time tagged annihilations. We present here, to the best of our knowledge, the first direct measurement of antiproton annihilation in a segmented silicon sensor, the first step towards designing a position sensitive silicon detector for the AE$\mathrm{\bar{g}}$IS experiment. We also present a first comparison with Monte Carlo simulations (GEANT4) for antiproton energies below 5 MeV <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4982v2-abstract-full').style.display = 'none'; document.getElementById('1311.4982v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages in total, 29 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.2117">arXiv:1309.2117</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.2117">pdf</a>, <a href="https://arxiv.org/format/1309.2117">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2013.2280654">10.1109/TASC.2013.2280654 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Superconducting Toroid for the New International AXion Observatory (IAXO) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shilon%2C+I">I. Shilon</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+H">H. Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Wagner%2C+U">U. Wagner</a>, <a href="/search/physics?searchtype=author&amp;query=Kate%2C+H+H+J+t">H. H. J. ten Kate</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.2117v1-abstract-short" style="display: inline;"> IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.2117v1-abstract-full').style.display = 'inline'; document.getElementById('1309.2117v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.2117v1-abstract-full" style="display: none;"> IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap toroids, a large superconducting toroid is being designed. The toroid comprises eight, one meter wide and twenty one meters long racetrack coils. The assembled toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250 tons. The useful field in the bores is 2.5 T while the peak magnetic field in the windings is 5.4 T. At the operational current of 12 kA the stored energy is 500 MJ. The racetrack type of coils are wound with a reinforced Aluminum stabilized NbTi/Cu cable and are conduction cooled. The coils optimization is shortly described as well as new concepts for cryostat, cold mass, supporting structure and the sun tracking system. Materials selection and sizing, conductor, thermal loads, the cryogenics system and the electrical system are described. Lastly, quench simulations are reported to demonstrate the system&#39;s safe quench protection scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.2117v1-abstract-full').style.display = 'none'; document.getElementById('1309.2117v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in IEEE Trans. Appl. Supercond. MT 23 issue. arXiv admin note: substantial text overlap with arXiv:1308.2526, arXiv:1212.4633</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.2526">arXiv:1308.2526</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.2526">pdf</a>, <a href="https://arxiv.org/format/1308.2526">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4860892">10.1063/1.4860892 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shilon%2C+I">I. Shilon</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+H">H. Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Wagner%2C+U">U. Wagner</a>, <a href="/search/physics?searchtype=author&amp;query=Kate%2C+H+H+J+t">H. H. J. ten Kate</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.2526v1-abstract-short" style="display: inline;"> Axions are hypothetical particles that were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. The new International AXion Observatory (IAXO) will incorporate the most promising solar axions detector to date, which is designed to enhance the sensitivity to the axion-photon coupling by one order of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.2526v1-abstract-full').style.display = 'inline'; document.getElementById('1308.2526v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.2526v1-abstract-full" style="display: none;"> Axions are hypothetical particles that were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. The new International AXion Observatory (IAXO) will incorporate the most promising solar axions detector to date, which is designed to enhance the sensitivity to the axion-photon coupling by one order of magnitude beyond the limits of the current state-of-the-art detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into X-ray photons. Inspired by the successful realization of the ATLAS barrel and end-cap toroids, a very large superconducting toroid is currently designed at CERN to provide the required magnetic field. This toroid will comprise eight, one meter wide and twenty one meter long, racetrack coils. The system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field is 5.4 T with a stored energy of 500 MJ. The magnetic field optimization process to arrive at maximum detector yield is described. In addition, materials selection and their structure and sizing has been determined by force and stress calculations. Thermal loads are estimated to size the necessary cryogenic power and the concept of a forced flow supercritical helium based cryogenic system is given. A quench simulation confirmed the quench protection scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.2526v1-abstract-full').style.display = 'none'; document.getElementById('1308.2526v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Adv. Cryo. Eng. (CEC/ICMC 2013 special issue)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.5602">arXiv:1306.5602</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.5602">pdf</a>, <a href="https://arxiv.org/format/1306.5602">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/8/08/P08013">10.1088/1748-0221/8/08/P08013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prospects for measuring the gravitational free-fall of antihydrogen with emulsion detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=AEgIS+Collaboration"> AEgIS Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aghion%2C+S">S. Aghion</a>, <a href="/search/physics?searchtype=author&amp;query=Ahl%C3%A9n%2C+O">O. Ahl茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Amsler%2C+C">C. Amsler</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+T">T. Ariga</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+A+S">A. S. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bonomi%2C+G">G. Bonomi</a>, <a href="/search/physics?searchtype=author&amp;query=Br%C3%A4unig%2C+P">P. Br盲unig</a>, <a href="/search/physics?searchtype=author&amp;query=Bremer%2C+J">J. Bremer</a>, <a href="/search/physics?searchtype=author&amp;query=Brusa%2C+R+S">R. S. Brusa</a>, <a href="/search/physics?searchtype=author&amp;query=Cabaret%2C+L">L. Cabaret</a>, <a href="/search/physics?searchtype=author&amp;query=Canali%2C+C">C. Canali</a>, <a href="/search/physics?searchtype=author&amp;query=Caravita%2C+R">R. Caravita</a>, <a href="/search/physics?searchtype=author&amp;query=Castelli%2C+F">F. Castelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cerchiari%2C+G">G. Cerchiari</a>, <a href="/search/physics?searchtype=author&amp;query=Cialdi%2C+S">S. Cialdi</a>, <a href="/search/physics?searchtype=author&amp;query=Comparat%2C+D">D. Comparat</a>, <a href="/search/physics?searchtype=author&amp;query=Consolati%2C+G">G. Consolati</a>, <a href="/search/physics?searchtype=author&amp;query=Derking%2C+J+H">J. H. Derking</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Noto%2C+L">L. Di Noto</a>, <a href="/search/physics?searchtype=author&amp;query=Doser%2C+M">M. Doser</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Ereditato%2C+A">A. Ereditato</a> , et al. (46 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.5602v1-abstract-short" style="display: inline;"> The main goal of the AEgIS experiment at CERN is to test the weak equivalence principle for antimatter. AEgIS will measure the free-fall of an antihydrogen beam traversing a moir茅 deflectometer. The goal is to determine the gravitational acceleration g for antihydrogen with an initial relative accuracy of 1% by using an emulsion detector combined with a silicon micro-strip detector to measure the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.5602v1-abstract-full').style.display = 'inline'; document.getElementById('1306.5602v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.5602v1-abstract-full" style="display: none;"> The main goal of the AEgIS experiment at CERN is to test the weak equivalence principle for antimatter. AEgIS will measure the free-fall of an antihydrogen beam traversing a moir茅 deflectometer. The goal is to determine the gravitational acceleration g for antihydrogen with an initial relative accuracy of 1% by using an emulsion detector combined with a silicon micro-strip detector to measure the time of flight. Nuclear emulsions can measure the annihilation vertex of antihydrogen atoms with a precision of about 1 - 2 microns r.m.s. We present here results for emulsion detectors operated in vacuum using low energy antiprotons from the CERN antiproton decelerator. We compare with Monte Carlo simulations, and discuss the impact on the AEgIS project. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.5602v1-abstract-full').style.display = 'none'; document.getElementById('1306.5602v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 16 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.3273">arXiv:1302.3273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.3273">pdf</a>, <a href="https://arxiv.org/ps/1302.3273">ps</a>, <a href="https://arxiv.org/format/1302.3273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> IAXO - The International Axion Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vogel%2C+J+K">J. K. Vogel</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone</a>, <a href="/search/physics?searchtype=author&amp;query=Cantatore%2C+G">G. Cantatore</a>, <a href="/search/physics?searchtype=author&amp;query=Carmona%2C+J+M">J. M. Carmona</a>, <a href="/search/physics?searchtype=author&amp;query=Caspi%2C+S">S. Caspi</a>, <a href="/search/physics?searchtype=author&amp;query=Cetin%2C+S+A">S. A. Cetin</a>, <a href="/search/physics?searchtype=author&amp;query=Christensen%2C+F+E">F. E. Christensen</a>, <a href="/search/physics?searchtype=author&amp;query=Dael%2C+A">A. Dael</a>, <a href="/search/physics?searchtype=author&amp;query=Dafni%2C+T">T. Dafni</a>, <a href="/search/physics?searchtype=author&amp;query=Davenport%2C+M">M. Davenport</a>, <a href="/search/physics?searchtype=author&amp;query=Derbin%2C+A+V">A. V. Derbin</a>, <a href="/search/physics?searchtype=author&amp;query=Desch%2C+K">K. Desch</a>, <a href="/search/physics?searchtype=author&amp;query=Diago%2C+A">A. Diago</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Eleftheriadis%2C+C">C. Eleftheriadis</a>, <a href="/search/physics?searchtype=author&amp;query=Fanourakis%2C+G">G. Fanourakis</a>, <a href="/search/physics?searchtype=author&amp;query=Ferrer-Ribas%2C+E">E. Ferrer-Ribas</a>, <a href="/search/physics?searchtype=author&amp;query=Galan%2C+J">J. Galan</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia%2C+J+A">J. A. Garcia</a>, <a href="/search/physics?searchtype=author&amp;query=Garza%2C+J+G">J. G. Garza</a>, <a href="/search/physics?searchtype=author&amp;query=Geralis%2C+T">T. Geralis</a>, <a href="/search/physics?searchtype=author&amp;query=Gimeno%2C+B">B. Gimeno</a>, <a href="/search/physics?searchtype=author&amp;query=Giomataris%2C+I">I. Giomataris</a>, <a href="/search/physics?searchtype=author&amp;query=Gninenko%2C+S">S. Gninenko</a>, <a href="/search/physics?searchtype=author&amp;query=Gomez%2C+H">H. Gomez</a> , et al. (39 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.3273v1-abstract-short" style="display: inline;"> The International Axion Observatory (IAXO) is a next generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 10^{-12} GeV^{-1}, i.e. 1-1.5 orders of magnitude beyond sensitivities achieved by the currently most sensitive axion helioscope, the CERN Axion Solar Telescope (CAST). Crucial factors in improving the sensitivity for IAXO are the increase of the magnetic f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.3273v1-abstract-full').style.display = 'inline'; document.getElementById('1302.3273v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.3273v1-abstract-full" style="display: none;"> The International Axion Observatory (IAXO) is a next generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 10^{-12} GeV^{-1}, i.e. 1-1.5 orders of magnitude beyond sensitivities achieved by the currently most sensitive axion helioscope, the CERN Axion Solar Telescope (CAST). Crucial factors in improving the sensitivity for IAXO are the increase of the magnetic field volume together with the extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested at CAST. Electron-coupled axions invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic axion-like particles (ALPs) along with other novel excitations at the low-energy frontier of elementary particle physics could provide additional physics motivation for IAXO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.3273v1-abstract-full').style.display = 'none'; document.getElementById('1302.3273v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 1 figure, Contribution to the 8th Patras Workshop on Axions, WIMPs and WISPs, Chicago, IL, USA, 2012</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.4633">arXiv:1212.4633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.4633">pdf</a>, <a href="https://arxiv.org/format/1212.4633">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2013.2251052">10.1109/TASC.2013.2251052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conceptual Design of a New Large Superconducting Toroid for IAXO, the New International AXion Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shilon%2C+I">I. Shilon</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+H">H. Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Kate%2C+H+H+J+t">H. H. J. ten Kate</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.4633v1-abstract-short" style="display: inline;"> The International AXion Observatory (IAXO) will incorporate a new generation detector for axions, a hypothetical particle, which was postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP problem. The new IAXO experiment is aiming at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.4633v1-abstract-full').style.display = 'inline'; document.getElementById('1212.4633v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.4633v1-abstract-full" style="display: none;"> The International AXion Observatory (IAXO) will incorporate a new generation detector for axions, a hypothetical particle, which was postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP problem. The new IAXO experiment is aiming at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current state-of-the-art detector, represented by the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into x-ray photons. Utilizing the designs of the ATLAS barrel and end-cap toroids, a large superconducting toroidal magnet is currently being designed at CERN to provide the required magnetic field. The new toroid will be built up from eight, one meter wide and 20 m long, racetrack coils. The toroid is sized about 4 m in diameter and 22 m in length. It is designed to realize a peak magnetic field of 5.4 T with a stored energy of 500 MJ. The magnetic field optimization process to arrive at maximum detector yield is described. In addition, force and stress calculations are performed to select materials and determine their structure and sizing. Conductor dimensionality, quench protection and the cryogenic design are dealt with as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.4633v1-abstract-full').style.display = 'none'; document.getElementById('1212.4633v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures. To be published in IEEE Trans. Appl. Supercond. 23 (ASC 2012 conference special issue)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.4831">arXiv:1211.4831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.4831">pdf</a>, <a href="https://arxiv.org/format/1211.4831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> A Large Hadron Electron Collider at CERN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+J+L+A">J. L. Abelleira Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Adolphsen%2C+C">C. Adolphsen</a>, <a href="/search/physics?searchtype=author&amp;query=Adzic%2C+P">P. Adzic</a>, <a href="/search/physics?searchtype=author&amp;query=Akay%2C+A+N">A. N. Akay</a>, <a href="/search/physics?searchtype=author&amp;query=Aksakal%2C+H">H. Aksakal</a>, <a href="/search/physics?searchtype=author&amp;query=Albacete%2C+J+L">J. L. Albacete</a>, <a href="/search/physics?searchtype=author&amp;query=Allanach%2C+B">B. Allanach</a>, <a href="/search/physics?searchtype=author&amp;query=Alekhin%2C+S">S. Alekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Allport%2C+P">P. Allport</a>, <a href="/search/physics?searchtype=author&amp;query=Andreev%2C+V">V. Andreev</a>, <a href="/search/physics?searchtype=author&amp;query=Appleby%2C+R+B">R. B. Appleby</a>, <a href="/search/physics?searchtype=author&amp;query=Arikan%2C+E">E. Arikan</a>, <a href="/search/physics?searchtype=author&amp;query=Armesto%2C+N">N. Armesto</a>, <a href="/search/physics?searchtype=author&amp;query=Azuelos%2C+G">G. Azuelos</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+M">M. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Barber%2C+D">D. Barber</a>, <a href="/search/physics?searchtype=author&amp;query=Bartels%2C+J">J. Bartels</a>, <a href="/search/physics?searchtype=author&amp;query=Behnke%2C+O">O. Behnke</a>, <a href="/search/physics?searchtype=author&amp;query=Behr%2C+J">J. Behr</a>, <a href="/search/physics?searchtype=author&amp;query=Belyaev%2C+A+S">A. S. Belyaev</a>, <a href="/search/physics?searchtype=author&amp;query=Ben-Zvi%2C+I">I. Ben-Zvi</a>, <a href="/search/physics?searchtype=author&amp;query=Bernard%2C+N">N. Bernard</a>, <a href="/search/physics?searchtype=author&amp;query=Bertolucci%2C+S">S. Bertolucci</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+S">S. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Biswal%2C+S">S. Biswal</a> , et al. (184 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.4831v2-abstract-short" style="display: inline;"> This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.4831v2-abstract-full').style.display = 'inline'; document.getElementById('1211.4831v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.4831v2-abstract-full" style="display: none;"> This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb$^{-1}$. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.4831v2-abstract-full').style.display = 'none'; document.getElementById('1211.4831v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.2913">arXiv:1206.2913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.2913">pdf</a>, <a href="https://arxiv.org/format/1206.2913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0954-3899/39/7/075001">10.1088/0954-3899/39/7/075001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+J+L+A">J. L. Abelleira Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Adolphsen%2C+C">C. Adolphsen</a>, <a href="/search/physics?searchtype=author&amp;query=Akay%2C+A+N">A. N. Akay</a>, <a href="/search/physics?searchtype=author&amp;query=Aksakal%2C+H">H. Aksakal</a>, <a href="/search/physics?searchtype=author&amp;query=Albacete%2C+J+L">J. L. Albacete</a>, <a href="/search/physics?searchtype=author&amp;query=Alekhin%2C+S">S. Alekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Allport%2C+P">P. Allport</a>, <a href="/search/physics?searchtype=author&amp;query=Andreev%2C+V">V. Andreev</a>, <a href="/search/physics?searchtype=author&amp;query=Appleby%2C+R+B">R. B. Appleby</a>, <a href="/search/physics?searchtype=author&amp;query=Arikan%2C+E">E. Arikan</a>, <a href="/search/physics?searchtype=author&amp;query=Armesto%2C+N">N. Armesto</a>, <a href="/search/physics?searchtype=author&amp;query=Azuelos%2C+G">G. Azuelos</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+M">M. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Barber%2C+D">D. Barber</a>, <a href="/search/physics?searchtype=author&amp;query=Bartels%2C+J">J. Bartels</a>, <a href="/search/physics?searchtype=author&amp;query=Behnke%2C+O">O. Behnke</a>, <a href="/search/physics?searchtype=author&amp;query=Behr%2C+J">J. Behr</a>, <a href="/search/physics?searchtype=author&amp;query=Belyaev%2C+A+S">A. S. Belyaev</a>, <a href="/search/physics?searchtype=author&amp;query=Ben-Zvi%2C+I">I. Ben-Zvi</a>, <a href="/search/physics?searchtype=author&amp;query=Bernard%2C+N">N. Bernard</a>, <a href="/search/physics?searchtype=author&amp;query=Bertolucci%2C+S">S. Bertolucci</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+S">S. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Biswal%2C+S">S. Biswal</a>, <a href="/search/physics?searchtype=author&amp;query=Bl%C3%BCmlein%2C+J">J. Bl眉mlein</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%B6ttcher%2C+H">H. B枚ttcher</a> , et al. (168 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.2913v2-abstract-short" style="display: inline;"> The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.2913v2-abstract-full').style.display = 'inline'; document.getElementById('1206.2913v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.2913v2-abstract-full" style="display: none;"> The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, $Q^2$, and in the inverse Bjorken $x$, while with the design luminosity of $10^{33}$ cm$^{-2}$s$^{-1}$ the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions. The physics programme also includes electron-deuteron and electron-ion scattering in a $(Q^2, 1/x)$ range extended by four orders of magnitude as compared to previous lepton-nucleus DIS experiments for novel investigations of neutron&#39;s and nuclear structure, the initial conditions of Quark-Gluon Plasma formation and further quantum chromodynamic phenomena. The LHeC may be realised either as a ring-ring or as a linac-ring collider. Optics and beam dynamics studies are presented for both versions, along with technical design considerations on the interaction region, magnets and further components, together with a design study for a high acceptance detector. Civil engineering and installation studies are presented for the accelerator and the detector. The LHeC can be built within a decade and thus be operated while the LHC runs in its high-luminosity phase. It thus represents a major opportunity for progress in particle physics exploiting the investment made in the LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.2913v2-abstract-full').style.display = 'none'; document.getElementById('1206.2913v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0702141">arXiv:physics/0702141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0702141">pdf</a>, <a href="https://arxiv.org/ps/physics/0702141">ps</a>, <a href="https://arxiv.org/format/physics/0702141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Micro Drift Chamber as a high resolution vertex detector for the DIRAC experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Kruglov%2C+V">V. Kruglov</a>, <a href="/search/physics?searchtype=author&amp;query=Kruglova%2C+L">L. Kruglova</a>, <a href="/search/physics?searchtype=author&amp;query=Nikitin%2C+M">M. Nikitin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0702141v3-abstract-short" style="display: inline;"> A possible implementation of the Micro Drift Chamber (MDC) technique as a high resolution vertex detector in the upstream part of the DIRAC spectrometer was investigated in this paper. Simulations of different MDC layout were performed with the help of GARFIELD package. Based on the results of simulation the optimal chamber geometry and the gas mixture were selected. One cell prototype was pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0702141v3-abstract-full').style.display = 'inline'; document.getElementById('physics/0702141v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0702141v3-abstract-full" style="display: none;"> A possible implementation of the Micro Drift Chamber (MDC) technique as a high resolution vertex detector in the upstream part of the DIRAC spectrometer was investigated in this paper. Simulations of different MDC layout were performed with the help of GARFIELD package. Based on the results of simulation the optimal chamber geometry and the gas mixture were selected. One cell prototype was produced and its characteristics were measured at different particle fluxes, various gas pressures and thresholds of electronics. Data observed together with expected coordinate resolution of MDC allow to employ such detector in different field of application including the DIRAC experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0702141v3-abstract-full').style.display = 'none'; document.getElementById('physics/0702141v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 7 figures, English</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0502056">arXiv:physics/0502056</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0502056">pdf</a>, <a href="https://arxiv.org/ps/physics/0502056">ps</a>, <a href="https://arxiv.org/format/physics/0502056">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/epl/i2005-10051-1">10.1209/epl/i2005-10051-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Statistical Mechanics of an Optical Phase Space Compressor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A+M">Artem M. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Marder%2C+M">M. Marder</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+Q">Qian Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Fisch%2C+N+J">Nathaniel J. Fisch</a>, <a href="/search/physics?searchtype=author&amp;query=Raizen%2C+M+G">Mark G. Raizen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0502056v1-abstract-short" style="display: inline;"> We describe the statistical mechanics of a new method to produce very cold atoms or molecules. The method results from trapping a gas in a potential well, and sweeping through the well a semi-permeable barrier, one that allows particles to leave but not to return. If the sweep is sufficiently slow, all the particles trapped in the well compress into an arbitrarily cold gas. We derive analytical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0502056v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0502056v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0502056v1-abstract-full" style="display: none;"> We describe the statistical mechanics of a new method to produce very cold atoms or molecules. The method results from trapping a gas in a potential well, and sweeping through the well a semi-permeable barrier, one that allows particles to leave but not to return. If the sweep is sufficiently slow, all the particles trapped in the well compress into an arbitrarily cold gas. We derive analytical expressions for the velocity distribution of particles in the cold gas, and compare these results with numerical simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0502056v1-abstract-full').style.display = 'none'; document.getElementById('physics/0502056v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0502055">arXiv:physics/0502055</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0502055">pdf</a>, <a href="https://arxiv.org/ps/physics/0502055">ps</a>, <a href="https://arxiv.org/format/physics/0502055">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.94.053003">10.1103/PhysRevLett.94.053003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Compression of Atomic Phase Space Using an Asymmetric One-Way Barrier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Raizen%2C+M+G">M. G. Raizen</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A+M">A. M. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+Q">Qian Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Fisch%2C+N+J">N. J. Fisch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0502055v1-abstract-short" style="display: inline;"> We show how to construct asymmetric optical barriers for atoms. These barriers can be used to compress phase space of a sample by creating a confined region in space where atoms can accumulate with heating at the single photon recoil level. We illustrate our method with a simple two-level model and then show how it can be applied to more realistic multi-level atoms. </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0502055v1-abstract-full" style="display: none;"> We show how to construct asymmetric optical barriers for atoms. These barriers can be used to compress phase space of a sample by creating a confined region in space where atoms can accumulate with heating at the single photon recoil level. We illustrate our method with a simple two-level model and then show how it can be applied to more realistic multi-level atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0502055v1-abstract-full').style.display = 'none'; document.getElementById('physics/0502055v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 94, 053003 (2005) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10