CINXE.COM
Search results for: stomatal conductance
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: stomatal conductance</title> <meta name="description" content="Search results for: stomatal conductance"> <meta name="keywords" content="stomatal conductance"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="stomatal conductance" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="stomatal conductance"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 100</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: stomatal conductance</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Leaf Photosynthesis and Water-Use Efficiency of Diverse Legume Species Nodulated by Native Rhizobial Isolates in the Glasshouse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lebogang%20Jane%20Msiza">Lebogang Jane Msiza</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Dapare%20Dakora"> Felix Dapare Dakora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photosynthesis is a process by which plants convert light energy to chemical energy for metabolic processes. Plants are known for converting inorganic CO₂ in the atmosphere to organic C by photosynthesis. A decrease in stomatal conductance causes a decrease in the transpiration rate of leaves, thus increasing the water-use efficiency of plants. Water-use efficiency in plants is conditioned by soil moisture availability and is enhanced under conditions of water deficit. This study evaluated leaf photosynthesis and water-use efficiency in 12 legume species inoculated with 26 rhizobial isolates from soybean, 15 from common bean, 10 from cowpea, 15 from Bambara groundnut, 7 from lessertia and 10 from Kersting bean. Gas-exchange studies were used to measure photosynthesis and water-use efficiency. The results revealed a much higher photosynthetic rate (20.95µmol CO₂ m-2s-1) induced by isolated tutpres to a lower rate (7.06 µmol CO₂ m-2s-1) by isolate mgsa 88. Stomatal conductance ranged from to 0.01 mmol m-2.s-1 by mgsa 88 to 0.12 mmol m-2.s-1 by isolate da-pua 128. Transpiration rate also ranged from 0.09 mmol m-2.s-1 induced by da-pua B2 to 3.28 mmol m-2.s-1 by da-pua 3, while water-use efficiency ranged from 91.32 µmol CO₂ m-1 H₂O elicited by mgsa 106 to 4655.50 µmol CO₂ m-1 H₂O by isolate tutswz 13. The results revealed the highest photosynthetic rate in soybean and the lowest in common bean, and also with higher stomatal conductance and transpiration rates in jack bean and Bambara groundnut. Pigeonpea exhibited much higher water-use efficiency than all the tested legumes. The findings showed significant differences between and among the test legume/rhizobia combinations. Leaf photosynthetic rates are reported to be higher in legumes with high stomatal conductance, which suggests that legume productivity can be improved by manipulating leaf stomatal conductance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=legumes" title="legumes">legumes</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthetic%20rate" title=" photosynthetic rate"> photosynthetic rate</a>, <a href="https://publications.waset.org/abstracts/search?q=stomatal%20conductance" title=" stomatal conductance"> stomatal conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=water-use%20efficiency" title=" water-use efficiency"> water-use efficiency</a> </p> <a href="https://publications.waset.org/abstracts/140474/leaf-photosynthesis-and-water-use-efficiency-of-diverse-legume-species-nodulated-by-native-rhizobial-isolates-in-the-glasshouse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Physiological Response of Naturally Regenerated Pinus taeda L. Saplings to Four Levels of Stem Inoculation with Leptographium terebrantis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20K.%20Mensah">John K. Mensah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20A.%20Sword%20Sayer"> Mary A. Sword Sayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20L.%20Nadel"> Ryan L. Nadel</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Matusick"> George Matusick</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaofei%20Fan"> Zhaofei Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lori%20G.%20Eckhardt"> Lori G. Eckhardt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leptographium terebrantis is an opportunistic root pathogen commonly associated with loblolly pine (Pinus taeda L.) stands that are undergoing a loss of vigor in the southeastern US. In order to understand the relationship between L. terebrantis inoculum density and host physiology, an artificial inoculation study was conducted in a five-year-old naturally regenerated loblolly pine stand over a 24 week period in a completely randomized design. L. terebrantis caused sapwood occlusions that increased in severity as inoculum density increased. The occlusions significantly reduced water transport through the stem but did not interfere with fascicle-level stomatal conductance or induce moisture stress in the saplings. The resilience of stomatal conductance among pathogen-infested saplings is attributed to the growth and hydraulic function of new sapwood that developed after artificial inoculation. Results demonstrate that faster-growing families of loblolly pine may be capable of tolerating the vascular root disease when the formation of new sapwood is supported by sustained crown health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20conductance" title="hydraulic conductance">hydraulic conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%20density" title=" inoculum density"> inoculum density</a>, <a href="https://publications.waset.org/abstracts/search?q=Leptographium%20terebrantis" title=" Leptographium terebrantis"> Leptographium terebrantis</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinus%20taeda" title=" Pinus taeda"> Pinus taeda</a>, <a href="https://publications.waset.org/abstracts/search?q=sapwood%20occlusion" title=" sapwood occlusion"> sapwood occlusion</a> </p> <a href="https://publications.waset.org/abstracts/84361/physiological-response-of-naturally-regenerated-pinus-taeda-l-saplings-to-four-levels-of-stem-inoculation-with-leptographium-terebrantis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Impact of Water Deficit and Nematode Infection Stress on Growth and Physiological Responses of Mungbean (Vigna radiata L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Areej%20A.%20Alzarqaa">Areej A. Alzarqaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahira%20S.%20Roushdy"> Shahira S. Roushdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Alderfasi"> Ali A. Alderfasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20A.%20AL-Yahya"> Fahad A. AL-Yahya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Dawaba"> Ahmed A. Dawaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The resistance of mungbean (Vigna radiata L. Wilczeck) and its physiological responses to drought stress was studied in a greenhouse pot experiment. A randomized complete block Design (RCBD) with factorial arrangement having three replications of each treatment was used. Treatments included three water deficit samples (80%, 40% and 20% of field capacity), two mungbean genotypes (Kawmay-1 and VC2010) and two root-knot nematode (Meloidogyne javanica) infection levels (infected and non-infected). Results showed that water deficit stress significantly hampered most of the studied parameters, except for the shoot water content, whereas genotypes showed highly significant differences for stomatal conductance, shoot dry weight and leaf area. Shoot water content was found to be non-significant in relation to chlorophyll b, shoot dry weight and leaf area, whereas highly significant but negatively correlated with chlorophyll a and stomatal conductance. However, all other possible correlations among studied parameters were found to be highly and positively significant. Results also showed that VC 2010 surpassed Kawmay-1 in most of studied characteristics. In the present study, genotypic variation was observed for these parameters and can be used as a basis for selection of the most promising variety under drought conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title="drought stress">drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Meloidogyne%20javanica" title=" Meloidogyne javanica"> Meloidogyne javanica</a>, <a href="https://publications.waset.org/abstracts/search?q=mungbean" title=" mungbean"> mungbean</a>, <a href="https://publications.waset.org/abstracts/search?q=stomatal%20conductivity" title=" stomatal conductivity"> stomatal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20area" title=" leaf area"> leaf area</a>, <a href="https://publications.waset.org/abstracts/search?q=root-knot%20nematode" title=" root-knot nematode"> root-knot nematode</a>, <a href="https://publications.waset.org/abstracts/search?q=shoot%20water%20content" title=" shoot water content"> shoot water content</a> </p> <a href="https://publications.waset.org/abstracts/5146/impact-of-water-deficit-and-nematode-infection-stress-on-growth-and-physiological-responses-of-mungbean-vigna-radiata-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Genotypic Response Differences among Faba Bean Accessions under Regular Deficit Irrigation (RDI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Afzal">M. Afzal</a>, <a href="https://publications.waset.org/abstracts/search?q=Salem%20Safer%20Alghamdi"> Salem Safer Alghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Awais%20Ahmad"> Awais Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Limited amount of irrigation water is an alarming threat to arid and semiarid agriculture. However, genotypic response differences to water deficit conditions within species have been reported frequently. Present study was conducted in order to measure the genotypic differences among faba bean accessions under Regular Deficit Irrigation (RDI). Five seeds from each accession were sown in 135 silt filled pots (30 x 24 cm). Experiment was planned under split plot arrangement and replicated thrice. Treatments consisted of three RDI levels (100% (control), 60% and 40% of the field capacity) and fifteen faba bean accessions (two local accessions as reference while thirteen from different sources around the world). Irrigation treatment was started from the very first day of sowing. Plant height, shoot dry weight, stomatal conductance and total chlorophyll contents (SPAD reading) were measured one month after germination. Irrigation, faba bean accessions and the all possible interactions has stood significantly high for all studied parameters. Regular deficient irrigation has hampered the plant growth and associated parameters in decreasing order (100% < 60% < 40%). Accessions have responded differently under regular deficient irrigation and some of them are even better than local accession. A highly significant correlation among all parameters has also been observed. It was concluded from results that above parameters could be used as markers to identify the genotypic differences for water deficit stress response. This outcome encouraged the use of superior faba bean genotypes in breeding programs for improved varieties to enhance water use efficiency under stress conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accessions" title="accessions">accessions</a>, <a href="https://publications.waset.org/abstracts/search?q=stomatal%20conductance" title=" stomatal conductance"> stomatal conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20chlorophyll%20contents" title=" total chlorophyll contents"> total chlorophyll contents</a>, <a href="https://publications.waset.org/abstracts/search?q=RDI" title=" RDI"> RDI</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20deficient%20irrigation" title=" regular deficient irrigation"> regular deficient irrigation</a> </p> <a href="https://publications.waset.org/abstracts/5157/genotypic-response-differences-among-faba-bean-accessions-under-regular-deficit-irrigation-rdi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Amino Acid Responses of Wheat Cultivars under Glasshouse Drought Accurately Predict Yield-Based Drought Tolerance in the Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20K.%20Yadav">Arun K. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20J.%20Carroll"> Adam J. Carroll</a>, <a href="https://publications.waset.org/abstracts/search?q=Gonzalo%20M.%20Estavillo"> Gonzalo M. Estavillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Greg%20J.%20Rebetzke"> Greg J. Rebetzke</a>, <a href="https://publications.waset.org/abstracts/search?q=Barry%20J.%20Pogson"> Barry J. Pogson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water limits crop productivity, so selecting for minimal yield-gap in drier environments is critical to mitigate against climate change and land-use pressures. To date, no markers measured in glasshouses have been reported to predict field-based drought tolerance. In the field, the best measure of drought tolerance is yield-gap; but this requires multisite trials that are an order of magnitude more resource intensive and can be impacted by weather variation. We investigated the responses of relative water content (RWC), stomatal conductance (gs), chlorophyll content and metabolites in flag leaves of commercial wheat (Triticum aestivum L.) cultivars to three drought treatments in the glasshouse and field environments. We observed strong genetic associations between glasshouse-based RWC, metabolites and Yield gap-based Drought Tolerance (YDT): the ratio of yield in water-limited versus well-watered conditions across 24 field environments spanning sites and seasons. Critically, RWC response to glasshouse drought was strongly associated with both YDT (r2 = 0.85, p < 8E-6) and RWC under field drought (r2 = 0.77, p < 0.05). Multiple regression analyses revealed that 98% of genetic YDT variance was explained by drought responses of four metabolites: serine, asparagine, methionine and lysine (R2 = 0.98; p < 0.01). Fitted coefficients suggested that, for given levels of serine and asparagine, stronger methionine and lysine accumulation was associated with higher YDT. Collectively, our results demonstrate that high-throughput, targeted metabolic phenotyping of glasshouse-grown plants may be an effective tool for the selection of wheat cultivars with high YDT in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title="drought stress">drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20yield" title=" grain yield"> grain yield</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=stomatal%20conductance" title=" stomatal conductance"> stomatal conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/84496/amino-acid-responses-of-wheat-cultivars-under-glasshouse-drought-accurately-predict-yield-based-drought-tolerance-in-the-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Leaf Epidermal Micromorphology as Identification Features in Accessions of Sesamum indicum L. Collected from Northern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Abdul">S. D. Abdul</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20B.%20J.%20Sawa"> F. B. J. Sawa</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Z.%20Andrawus"> D. Z. Andrawus</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Dan%27ilu"> G. Dan'ilu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fresh leaves of twelve accessions of S. indicum were studied to examine their stomatal features, trichomes, epidermal cell shapes and anticlinal cell-wall patterns which may be used for the delimitation of the varieties. The twelve accessions of S. indicum studied have amphistomatic leaves, i.e. having stomata on both surfaces. Four types of stomatal complex types were observed namely, diacytic, anisocytic, tetracytic and anomocytic. Anisocytic type was the most common occurring on both surfaces of all the varieties and occurred 100% in varieties lale-duk, ex-sudan and ex-gombe 6. One-way ANOVA revealed that there was no significant difference between the stomatal densities of ex-gombe 6, ex-sudan, adawa-wula, adawa-ting, ex-gombe 4 and ex-gombe 2 . Accession adawa-ting (improved) has the smallest stomatal size (26.39µm) with highest stomatal density (79.08mm2) while variety adawa-wula possessed the largest stomatal size (74.31µm) with lowest stomatal density (29.60mm2), the exception was found in variety adawa-ting whose stomatal size is larger (64.03µm) but with higher stomatal density (71.54mm2). Wavy, curve or undulate anticlinal wall patterns with irregular and or isodiametric epidermal cell shapes were observed. These accessions were found to exhibit high degree of heterogeneity in their trichome features. Ten types of trichomes were observed: unicellular, glandular peltate, capitate glandular, long unbranched uniseriate, short unbranched uniseriate, scale, multicellular, multiseriate capitate glandular, branched uniseriate and stallate trichomes. The most frequent trichome type is short-unbranched uniseriate, followed by long-unbranched uniseriate (72.73% and 72.5%) respectively. The least frequent was multiseriate capitate glandular (11.5%). The high variation in trichome types and density coupled with the stomatal complex types suggest that these varieties of S. indicum probably have the capacity to conserve water. Furthermore, the leaf micromorphological features varied from one accession to another, hence, are found to be good diagnostic and additional tool in identification as well as nomenclature of the accessions of S. indicum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sesamum%20indicum" title="Sesamum indicum">Sesamum indicum</a>, <a href="https://publications.waset.org/abstracts/search?q=stomata" title=" stomata"> stomata</a>, <a href="https://publications.waset.org/abstracts/search?q=trichomes" title=" trichomes"> trichomes</a>, <a href="https://publications.waset.org/abstracts/search?q=epidermal%20cells" title=" epidermal cells"> epidermal cells</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomy" title=" taxonomy"> taxonomy</a> </p> <a href="https://publications.waset.org/abstracts/3845/leaf-epidermal-micromorphology-as-identification-features-in-accessions-of-sesamum-indicum-l-collected-from-northern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Selection of Most Appropriate Poplar and Willow Cultivars for Landfill Remediation Using Plant Physiology Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrej%20Pilipovi%C4%87">Andrej Pilipović</a>, <a href="https://publications.waset.org/abstracts/search?q=Branislav%20Kova%C4%8Devi%C4%87"> Branislav Kovačević</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Milovi%C4%87"> Marina Milović</a>, <a href="https://publications.waset.org/abstracts/search?q=Lazar%20Kesi%C4%87"> Lazar Kesić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C5%A1a%20Peke%C4%8D"> Saša Pekeč</a>, <a href="https://publications.waset.org/abstracts/search?q=Leopold%20Poljakovi%C4%87-Pajnik"> Leopold Poljaković-Pajnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C5%A1a%20Orlovi%C4%87"> Saša Orlović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of landfills on the environment reflects in the dispersion of the contaminants on surrounding soils by the groundwater plume. Such negative effect can be mitigated with the establishment of vegetative buffers surrounding landfills. The “TreeRemEnergy” project funded by the Science Fund of Republic of Serbia – Green program focuses on development of phytobuffers for landfill phytoremediation with the use of Short Rotation Woody Crops (SRWC) plantations that can be further used for the biomass for energy. One of the goals of the project is to select most appropriate poplar (Populus sp.) and willow (Salix sp.) clones through phytorecurrent selection that involves testing of various breeding traits. Physiological parameters serve as a significant contribution to the breeding process aimed to early detection of potential candidates. This study involved testing of the effect of the landfill soils on the photosynthetic processes of the selected poplar and willow candidates. For this purpose, measurements of the gas exchange, chlorophyll content and chlorophyll fluorescence were measured on the tested plants. Obtained results showed that there were differences in the influence of the controlled sources of variation on examined physiological parameters. The effect of clone was significant in all parameters, while the effect of the substrate was not statistically significant in any of measured parameters. However, the effect of interaction Clone×Substrate was significant in intercellular CO2 concentration(ci), stomatal conductance (gs) and transpiration rate (E), suggesting that water regime of the tested clones showed different response to the tested soils. Some clones showed more “generalist” behavior (380, 107/65/9, and PE19/66), while “specialist” behavior was recorded in clones PE4/68, S1-8, and 79/64/2. On the other hand, there was no significant effect of the tested substrate on the pigments content measured with SPAD meter. Results of this study allowed us to narrow the group of clones for further trails in field conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clones" title="clones">clones</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20photosynthesis" title=" net photosynthesis"> net photosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=WUE" title=" WUE"> WUE</a>, <a href="https://publications.waset.org/abstracts/search?q=transpiration" title=" transpiration"> transpiration</a>, <a href="https://publications.waset.org/abstracts/search?q=stomatal%20conductance" title=" stomatal conductance"> stomatal conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=SPAD" title=" SPAD"> SPAD</a> </p> <a href="https://publications.waset.org/abstracts/173878/selection-of-most-appropriate-poplar-and-willow-cultivars-for-landfill-remediation-using-plant-physiology-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Nursery Treatments May Improve Restoration Outcomes by Reducing Seedling Transplant Shock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Douglas%20E.%20Mainhart">Douglas E. Mainhart</a>, <a href="https://publications.waset.org/abstracts/search?q=Alejandro%20Fierro-Cabo"> Alejandro Fierro-Cabo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bradley%20Christoffersen"> Bradley Christoffersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Charlotte%20Reemts"> Charlotte Reemts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semi-arid ecosystems across the globe have faced land conversion for agriculture and resource extraction activities, posing a threat to the important ecosystem services they provide. Revegetation-centered restoration efforts in these regions face low success rates due to limited soil water availability and high temperatures leading to elevated seedling mortality after planting. Typical methods to alleviate these stresses require costly post-planting interventions aimed at improving soil moisture status. We set out to evaluate the efficacy of applying in-nursery treatments to address transplant shock. Four native Tamaulipan thornscrub species were compared. Three treatments were applied: elevated CO2, drought hardening (four-week exposure each), and antitranspirant foliar spray (the day prior to planting). Our goal was to answer two primary questions: (1) Do treatments improve survival and growth of seedlings in the early period post-planting? (2) If so, what underlying physiological changes are associated with this improved performance? To this end, we measured leaf gas exchange (stomatal conductance, light saturated photosynthetic rate, water use efficiency), leaf morphology (specific leaf area), and osmolality before and upon the conclusion of treatments. A subset of seedlings from all treatments have been planted, which will be monitored in coming months for in-field survival and growth.First month field survival for all treatment groups were high due to ample rainfall following planting (>85%). Growth data was unreliable due to high herbivory (68% of all sampled plants). While elevated CO2 had infrequent or no detectable influence on all aspects of leaf gas exchange, drought hardening reduced stomatal conductance in three of the four species measured without negatively impacting photosynthesis. Both CO2 and drought hardening elevated leaf osmolality in two species. Antitranspirant application significantly reduced conductance in all species for up to four days and reduced photosynthesis in two species. Antitranspirants also increased the variability of water use efficiency compared to controls. Collectively, these results suggest that antitranspirants and drought hardening are viable treatments for reducing short-term water loss during the transplant shock period. Elevated CO2, while not effective at reducing water loss, may be useful for promoting more favorable water status via osmotic adjustment. These practices could improve restoration outcomes in Tamaulipan thornscrub and other semi-arid systems. Further research should focus on evaluating combinations of these treatments and their species-specific viability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation" title="conservation">conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20conditioning" title=" drought conditioning"> drought conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-arid%20restoration" title=" semi-arid restoration"> semi-arid restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20physiology" title=" plant physiology"> plant physiology</a> </p> <a href="https://publications.waset.org/abstracts/148948/nursery-treatments-may-improve-restoration-outcomes-by-reducing-seedling-transplant-shock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Growth and Yield Response of Solanum retroflexum to Different Level of Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fhatuwani%20Herman%20Nndwambi">Fhatuwani Herman Nndwambi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20W.%20Mashela"> P. W. Mashela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity is a major constraint limiting crop productivity. It has been predicted that by the year 2050, more than 50% of the arable land will be affected by salinity. Two similar salinity experiments were conducted in two seasons under greenhouse condition. Six levels of salinity plus control (viz; control, 2, 4, 8, 16, 32 and 64 % NaCl and CaCl2 at 3:1 ratio) were applied in a form of irrigation water in a single factor experiment arranged in a complete block design with 20 replications. Plant growth and yield were negatively affected by salinity treatments especially at the high levels of salinity. For example, our results suggest that the 32 and 64% of NaCl and CaCl2 treatment were too much for the plant to withstand as determined by reduced dry shoot mass, stem diameter and plant height in both seasons. On the other hand, stomatal conductance and chlorophyll content increased with an increased level of salinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth" title="growth">growth</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=season" title=" season"> season</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/107899/growth-and-yield-response-of-solanum-retroflexum-to-different-level-of-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> A Variable Incremental Conductance MPPT Algorithm Applied to Photovoltaic Water Pumping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Abdourraziq">Sarah Abdourraziq</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Elbachtiri"> Rachid Elbachtiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of solar energy as a source for pumping water is one of the promising areas in the photovoltaic (PV) application. The energy of photovoltaic pumping systems (PVPS) can be widely improved by employing an MPPT algorithm. This will lead consequently to maximize the electrical motor speed of the system. This paper presents a modified incremental conductance (IncCond) MPPT algorithm with direct control method applied to a standalone PV pumping system. The influence of the algorithm parameters on system behavior is investigated and compared with the traditional (INC) method. The studied system consists of a PV panel, a DC-DC boost converter, and a PMDC motor-pump. The simulation of the system by MATLAB-SIMULINK is carried out. Simulation results found are satisfactory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20pumping%20system%20%28PVPS%29" title="photovoltaic pumping system (PVPS)">photovoltaic pumping system (PVPS)</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20conductance%20%28INC%29" title=" incremental conductance (INC)"> incremental conductance (INC)</a>, <a href="https://publications.waset.org/abstracts/search?q=MPPT%20algorithm" title=" MPPT algorithm"> MPPT algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=boost%20converter" title=" boost converter"> boost converter</a> </p> <a href="https://publications.waset.org/abstracts/39379/a-variable-incremental-conductance-mppt-algorithm-applied-to-photovoltaic-water-pumping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Screening of Freezing Tolerance in Eucalyptus Genotypes (Eucalyptus spp.) Using Chlorophyll Fluorescence, Ionic Leakage, Proline Accumulation and Stomatal Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Lahijanian">S. Lahijanian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mobli"> M. Mobli</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Baninasab"> B. Baninasab</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Etemadi"> N. Etemadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low temperature extremes are amongst the major stresses that adversely affect the plant growth and productivity. Cold stress causes oxidative stress, physiological, morphological and biochemical changes in plant cells. Generally, low temperatures similar to salinity and drought exert their negative effects mainly by disrupting the ionic and osmotic equilibrium of the plant cells. Changes in climatic condition leading to more frequent extreme conditions will require adapted crop species on a larger scale in order to sustain agricultural production. Eucalyptus is a diverse genus of flowering trees (and a few shrubs) in the myrtle family, Myrtaceae. Members of this genus dominate the tree flora of Australia. The eucalyptus genus contains more than 580 species and large number of cultivars, which are native to Australia. Large distribution and diversity of compatible eucalyptus cultivars reflect the fact of ecological flexibility of eucalyptus. Some eucalyptus cultivars can sustain hard environmental conditions like high and low temperature, salinity, high level of PH, drought, chilling and freezing which are intensively effective on crops with tropical and subtropical origin. In this study, we tried to evaluate freezing tolerance of 12 eucalyptus genotypes by means of four different morphological and physiological methods: Chlorophyll fluorescence, electrolyte leakage, proline and stomatal density. The studied cultivars include Eucalyptus camaldulensis, E. coccifera, E. darlympleana, E. erythrocorys, E. glaucescens, E. globulus, E. gunnii, E. macrocorpa, E. microtheca, E. rubida, E. tereticornis, and E. urnigera. Except for stomatal density recording, in other methods, plants were exposed to five gradual temperature drops: zero, -5, -10, -15 and -20 degree of centigrade and they remained in these temperatures for at least one hour. Experiment for measuring chlorophyll fluorescence showed that genotypes E. erythrocorys and E. camaldulensis were the most resistant genotypes and E. gunnii and E.coccifera were more sensitive than other genotypes to freezing stress effects. In electrolyte leakage experiment with regard to significant interaction between cultivar and temperature, genotypes E. erythrocorys and E.macrocorpa were shown to be the most tolerant genotypes and E. gunnii, E. urnigera, E. microtheca and E. tereticornis with the more ionic leakage percentage showed to be more sensitive to low temperatures. Results of Proline experiment approved that the most resistant genotype to freezing stress is E. erythrocorys. In the stomatal density experiment, the numbers of stomata under microscopic field were totally counted and the results showed that the E. erythrocorys and E. macrocorpa genotypes had the maximum and E. coccifera and E. darlympleana genotypes had minimum number of stomata under microscopic field (0.0605 mm2). In conclusion, E. erythrocorys identified as the most tolerant genotype; meanwhile E. gunnii classified as the most freezing susceptible genotype in this investigation. Further, remarkable correlation was not obtained between the stomatal density and other cold stress measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20fluorescence" title="chlorophyll fluorescence">chlorophyll fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20stress" title=" cold stress"> cold stress</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20leakage" title=" ionic leakage"> ionic leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=proline" title=" proline"> proline</a>, <a href="https://publications.waset.org/abstracts/search?q=stomatal%20density" title=" stomatal density"> stomatal density</a> </p> <a href="https://publications.waset.org/abstracts/33464/screening-of-freezing-tolerance-in-eucalyptus-genotypes-eucalyptus-spp-using-chlorophyll-fluorescence-ionic-leakage-proline-accumulation-and-stomatal-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> The Effects of Anapana Meditation Training Program Monitored by Skin Conductance and Temperature (SC/ST) Biofeedback on Stress in Bachelor’s Degree Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ormanee%20Patarathipakorn">Ormanee Patarathipakorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Stress was the major psychological problem that affecting to physical and mental health among undergraduate students. Aim of study was to determine the effective of meditation training program (MTP) for stress reduction measured by biofeedback (BB) machine. Material and Methods: This was quasi-experimental study conducted in Faculty of Dentistry, Thammasat University, Thailand. Study period was between August and December 2023. Participants were the first-year Dentistry students. MTP was concentration meditation (Anapana meditation). Stress measurement was evaluated by using Thai version perceived stress scale (T-PSS-10) was performed at one week before study, 14 and 18 weeks. Stress evaluation by biofeedback machine (skin conductance: SC and skin temperature: ST) were performed at one week before study, 4, 8, 14 and 18 weeks. Data from T-PSS-10 and SC/ST biofeedback were collected and analyzed. Results: A total of 28 subjects were recruited. The mean age of participant was 18.4 years old. Two-thirds (19/28) was female. Stress reduction from MTP was detected since 4 and 8 weeks by STBB and SCBB, respectively. T-PSS 10 scores before MTP, 14 and 18 weeks were 17.7± 5.4, 9.8 ± 3.1 and 8.4 ± 3.1 with statistical significance. Conclusion: Meditation training program could reduce stress and measured by skin conductance and temperature biofeedback. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress" title="stress">stress</a>, <a href="https://publications.waset.org/abstracts/search?q=meditation" title=" meditation"> meditation</a>, <a href="https://publications.waset.org/abstracts/search?q=biofeedback" title=" biofeedback"> biofeedback</a>, <a href="https://publications.waset.org/abstracts/search?q=student" title=" student"> student</a> </p> <a href="https://publications.waset.org/abstracts/189478/the-effects-of-anapana-meditation-training-program-monitored-by-skin-conductance-and-temperature-scst-biofeedback-on-stress-in-bachelors-degree-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Evaluation of the Role of Bacteria-Derived Flavins as Plant Growth Promoting Molecules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nivethika%20Ajeethan">Nivethika Ajeethan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lord%20Abbey"> Lord Abbey</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Yurge"> Svetlana Yurge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Riboflavin is a water-soluble vitamin and the direct precursor of the flavin cofactors flavin mononucleotide and flavin adenine dinucleotide. Flavins (FLs) are bioactive molecules that have a beneficial effect on plant growth and development. Sinorhizobium meliloti strain 1021 is an α-proteobacterium that forms agronomically important N₂-fixing symbiosis with Medicago plants and secretes a considerable amount of FLs (FL⁺ strain). This strain was also implicated in plant growth promotion in its association with non-legume host plants. However, the mechanism of this plant growth promotion is not well understood. In this study, we evaluated the growth and development of tomato plants inoculated with S. meliloti 1021 and its mutant (FL⁻ strain) with limited ability to secrete FLs. Our preliminary experiments indicated that inoculation with FL⁺ strain significantly increased seedlings' root and shoot length and surface area compared to those of plants inoculated with FL⁻ strain. For example, the root lengths of 9-day old seedlings inoculated with FL⁺ strain were 35% longer than seedlings inoculated with the mutant. Proteomic approaches combined with the analysis of plant physiological responses such as growth and photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll content will be used to evaluate the host-plant response to bacteria-derived FLs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flavin" title="flavin">flavin</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth%20promotion" title=" plant growth promotion"> plant growth promotion</a>, <a href="https://publications.waset.org/abstracts/search?q=riboflavin" title=" riboflavin"> riboflavin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinorhizobium%20meliloti" title=" Sinorhizobium meliloti"> Sinorhizobium meliloti</a> </p> <a href="https://publications.waset.org/abstracts/135412/evaluation-of-the-role-of-bacteria-derived-flavins-as-plant-growth-promoting-molecules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Foliar Feeding of Methyl Jasmonate Induces Resistance in Normal and Salinity Stressed Tomato Plants, at Different Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Manan">Abdul Manan</a>, <a href="https://publications.waset.org/abstracts/search?q=Choudhary%20Muhammad%20Ayyub"> Choudhary Muhammad Ayyub</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashid%20Ahmad"> Rashid Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Adnan%20Bukhari"> Muhammad Adnan Bukhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A project was designed to investigate the effect of foliar application of methyl jasmonate (MeJA) on physiological, biochemical and ionic attributes of salinity stressed and normal tomato plants at different stages. Salinity stress at every stage markedly reduced the net photosynthetic rate, stomatal conductance, transpiration rate, water relations parameters, protein contents, total free aminoacids and potassium (K+) contents. While, antioxidant enzymes (peroxidase (POX) and catalase (CAT)), sodium (Na+) contents and proline contents were increased substantially. Foliar application of MeJA ameliorated the drastic effects of salinity regime by recovery of physiological and biochemical attributes by enhanced production of antioxidant enzymes and osmoprotectants. The efficacy of MeJA at very initial stage (15 days after sowing (15 DAS)).proved effective for attenuating the deleterious effects of salinity stress than other stages (15 days after transplanting (15 DAT) and 30 days after transplanting (30 DAT)). To the best of our knowledge, different times of foliar feeding of MeJA was observed first time for amelioration of salinity stress in tomato plants that would be of pivotal significance for scientist to better understand the dynamics of physiological and biochemical processes in tomato. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methyl%20jasmonate" title="methyl jasmonate">methyl jasmonate</a>, <a href="https://publications.waset.org/abstracts/search?q=osmoregulation" title=" osmoregulation"> osmoregulation</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20stress" title=" salinity stress"> salinity stress</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20tolerance" title=" stress tolerance"> stress tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a> </p> <a href="https://publications.waset.org/abstracts/54170/foliar-feeding-of-methyl-jasmonate-induces-resistance-in-normal-and-salinity-stressed-tomato-plants-at-different-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Magnetic versus Non-Magnetic Adatoms in Graphene Nanoribbons: Tuning of Spintronic Applications and the Quantum Spin Hall Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Basu">Saurabh Basu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudin%20Ganguly"> Sudin Ganguly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conductance in graphene nanoribbons (GNR) in presence of magnetic (for example, Iron) and non-magnetic (for example, Gold) adatoms are explored theoretically within a Kane-Mele model for their possible spintronic applications and topologically non-trivial properties. In our work, we have considered the magnetic adatoms to induce a Rashba spin-orbit coupling (RSOC) and an exchange bias field, while the non-magnetic ones induce an RSOC and an intrinsic spin-orbit (SO) coupling. Even though RSOC is present in both, they, however, represent very different physical situations, where the magnetic adatoms do not preserve the time reversal symmetry, while the non-magnetic case does. This has important implications on the topological properties. For example, the non-magnetic adatoms, for moderately strong values of SO, the GNR denotes a quantum spin Hall insulator as evident from a 2e²/h plateau in the longitudinal conductance and presence of distinct conducting edge states with an insulating bulk. Since the edge states are protected by time reversal symmetry, the magnetic adatoms in GNR yield trivial insulators and do not possess any non-trivial topological property. However, they have greater utility than the non-magnetic adatoms from the point of view of spintronic applications. Owing to the broken spatial symmetry induced by the presence of adatoms of either type, all the x, y and z components of the spin-polarized conductance become non-zero (only the y-component survives in pristine Graphene owing to a mirror symmetry present there) and hence become suitable for spintronic applications. However, the values of the spin polarized conductances are at least two orders of magnitude larger in the case of magnetic adatoms than their non-magnetic counterpart, thereby ensuring more efficient spintronic applications. Further the applications are tunable by altering the adatom densities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20and%20non-magnetic%20adatoms" title="magnetic and non-magnetic adatoms">magnetic and non-magnetic adatoms</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20spin%20hall%20phase" title=" quantum spin hall phase"> quantum spin hall phase</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronic%20applications" title=" spintronic applications"> spintronic applications</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20polarized%20conductance" title=" spin polarized conductance"> spin polarized conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20reversal%20symmetry" title=" time reversal symmetry"> time reversal symmetry</a> </p> <a href="https://publications.waset.org/abstracts/76194/magnetic-versus-non-magnetic-adatoms-in-graphene-nanoribbons-tuning-of-spintronic-applications-and-the-quantum-spin-hall-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Design and Implementation of DC-DC Converter with Inc-Cond Algorithm </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Engin%20Ba%C5%9Fo%C4%9Flu">Mustafa Engin Başoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekir%20%C3%87ak%C4%B1r"> Bekir Çakır</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most important component affecting the efficiency of photovoltaic power systems are solar panels. Efficiency of these systems are significantly affected because of being low efficiency of solar panel. Therefore, solar panels should be operated under maximum power point conditions through a power converter. In this study, design boost converter with maximum power point tracking (MPPT) operation has been designed and performed with Incremental Conductance (Inc-Cond) algorithm by using direct duty control. Furthermore, it is shown that performance of boost converter with MPPT operation fails under low load resistance connection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boost%20converter" title="boost converter">boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20conductance%20%28Inc-Cond%29" title=" incremental conductance (Inc-Cond)"> incremental conductance (Inc-Cond)</a>, <a href="https://publications.waset.org/abstracts/search?q=MPPT" title=" MPPT"> MPPT</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20panel" title=" solar panel"> solar panel</a> </p> <a href="https://publications.waset.org/abstracts/18408/design-and-implementation-of-dc-dc-converter-with-inc-cond-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1046</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Evaluation of Photovoltaic System with Different Research Methods of Maximum Power Point Tracking </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ameur">Mehdi Ameur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Essadki"> Ahmed Essadki</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamou%20Nasser"> Tamou Nasser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is the evaluation of photovoltaic system with MPPT techniques. This system is developed by combining the models of established solar module and DC-DC converter with the algorithms of perturbing and observing (P&O), incremental conductance (INC) and fuzzy logic controller (FLC). The system is simulated under different climate conditions and MPPT algorithms to determine the influence of these conditions on characteristic power-voltage of PV system. According to the comparisons of the simulation results, the photovoltaic system can extract the maximum power with precision and rapidity using the MPPT algorithms discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic%20controller" title="fuzzy logic controller">fuzzy logic controller</a>, <a href="https://publications.waset.org/abstracts/search?q=FLC" title=" FLC"> FLC</a>, <a href="https://publications.waset.org/abstracts/search?q=hill%20climbing" title=" hill climbing"> hill climbing</a>, <a href="https://publications.waset.org/abstracts/search?q=HC" title=" HC"> HC</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20conductance%20%28INC%29" title=" incremental conductance (INC)"> incremental conductance (INC)</a>, <a href="https://publications.waset.org/abstracts/search?q=perturb%20and%20observe%20%28P%26O%29" title=" perturb and observe (P&O)"> perturb and observe (P&O)</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20point" title=" maximum power point"> maximum power point</a>, <a href="https://publications.waset.org/abstracts/search?q=MPP" title=" MPP"> MPP</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20point%20tracking" title=" maximum power point tracking"> maximum power point tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=MPPT" title=" MPPT"> MPPT</a> </p> <a href="https://publications.waset.org/abstracts/12073/evaluation-of-photovoltaic-system-with-different-research-methods-of-maximum-power-point-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Analysis and Modeling of Photovoltaic System with Different Research Methods of Maximum Power Point Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ameur">Mehdi Ameur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Essakdi"> Ahmed Essakdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamou%20Nasser"> Tamou Nasser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is the analysis and modeling of the photovoltaic system with MPPT techniques. This system is developed by combining the models of established solar module and DC-DC converter with the algorithms of perturb and observe (P&O), incremental conductance (INC) and fuzzy logic controller(FLC). The system is simulated under different climate conditions and MPPT algorithms to determine the influence of these conditions on characteristic power-voltage of PV system. According to the comparisons of the simulation results, the photovoltaic system can extract the maximum power with precision and rapidity using the MPPT algorithms discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20array" title="photovoltaic array">photovoltaic array</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20point%20tracking" title=" maximum power point tracking"> maximum power point tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=MPPT" title=" MPPT"> MPPT</a>, <a href="https://publications.waset.org/abstracts/search?q=perturb%20and%20observe" title=" perturb and observe"> perturb and observe</a>, <a href="https://publications.waset.org/abstracts/search?q=P%26O" title=" P&O"> P&O</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20conductance" title=" incremental conductance"> incremental conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=INC" title=" INC"> INC</a>, <a href="https://publications.waset.org/abstracts/search?q=hill%20climbing" title=" hill climbing"> hill climbing</a>, <a href="https://publications.waset.org/abstracts/search?q=HC" title=" HC"> HC</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic%20controller" title=" fuzzy logic controller"> fuzzy logic controller</a>, <a href="https://publications.waset.org/abstracts/search?q=FLC" title=" FLC"> FLC</a> </p> <a href="https://publications.waset.org/abstracts/11862/analysis-and-modeling-of-photovoltaic-system-with-different-research-methods-of-maximum-power-point-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Moctezuma">J. C. Moctezuma</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bre%C3%B1a-Medina"> V. Breña-Medina</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Luis%20Nunez-Yanez"> Jose Luis Nunez-Yanez</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20P.%20McGeehan">Joseph P. McGeehan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work we make a bifurcation analysis for a single compartment representation of Traub model, one of the most important conductance-based models. The analysis focus in two principal parameters: current and leakage conductance. Study of stable and unstable solutions are explored; also Hop-bifurcation and frequency interpretation when current varies is examined. This study allows having control of neuron dynamics and neuron response when these parameters change. Analysis like this is particularly important for several applications such as: tuning parameters in learning process, neuron excitability tests, measure bursting properties of the neuron, etc. Finally, a hardware implementation results were developed to corroborate these results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Traub%20model" title="Traub model">Traub model</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinsky-Rinzel%20model" title=" Pinsky-Rinzel model"> Pinsky-Rinzel model</a>, <a href="https://publications.waset.org/abstracts/search?q=Hopf%20bifurcation" title=" Hopf bifurcation"> Hopf bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=single-compartment%20models" title=" single-compartment models"> single-compartment models</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation%20analysis" title=" bifurcation analysis"> bifurcation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=neuron%20modeling" title=" neuron modeling"> neuron modeling</a> </p> <a href="https://publications.waset.org/abstracts/10310/neuron-dynamics-of-single-compartment-traub-model-for-hardware-implementations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Bacillus thuringiensis CHGP12 Uses a Multifaceted Strategy to Suppress Fusarium Wilt of Chickpea and to Enhance the Total Biomass of Chickpea Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naveed%20Aslam">Muhammad Naveed Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rida%20Fatima"> Rida Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Anam%20Moosa"> Anam Moosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Taimoor%20Shakeel"> Muhammad Taimoor Shakeel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacillus strains produce antifungal secondary metabolites making them potential candidates for suppressing Fusarium wilt of chickpea disease. In this study, eighteen Bacillus strains were evaluated for their antagonistic effect against Fusarium oxysporum f. sp. ciceris causing Fusarium wilt of chickpea disease. In a direct antifungal assay, thirteen strains showed significant inhibition zones while the remaining five strains did not produce inhibition zones of FOC. Bacillus thuringiensis CHGP12 was the most promising strain exhibiting the highest inhibition of FOC. Antifungal lipopeptides were extracted from CHGP12 strain which showed significant inhibition of the pathogen. Liquid chromatography mass spectrometry (LCMS) analysis revealed that CHGP12 was positive for the presence of iturin, fengycin, surfactin, bacillaene, bacillibactin, plantazolicin, and bacilysin. CHGP12 was tested for biochemical determinants in an in vitro qualitative test where it showed the ability to produce lipase, amylase, cellulase, protease, siderophores, and indole 3-acetic acid (IAA). Furthermore, in a greenhouse experiment CHGP12 also showed a significant decrease in the disease severity in treated plants compared to control. Moreover, CHGP12 also exhibited a significant increase in plant growth parameters viz, root and shoot growth parameters, stomatal conductance, and photosynthesis rate. Conclusively, our findings present the promising potential of Bacillus strain CHGP12 to suppress Fusarium wilt of chickpea and to promote plant growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography%20mass%20spectrometry" title="liquid chromatography mass spectrometry">liquid chromatography mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20promotion" title=" growth promotion"> growth promotion</a>, <a href="https://publications.waset.org/abstracts/search?q=antagonism" title=" antagonism"> antagonism</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolytic%20enzymes" title=" hydrolytic enzymes"> hydrolytic enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopeptides." title=" lipopeptides."> lipopeptides.</a> </p> <a href="https://publications.waset.org/abstracts/158702/bacillus-thuringiensis-chgp12-uses-a-multifaceted-strategy-to-suppress-fusarium-wilt-of-chickpea-and-to-enhance-the-total-biomass-of-chickpea-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar">Arvind Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar"> Manoj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Dattatraya%20H.%20Nagaraj"> Dattatraya H. Nagaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanpreet%20Singh"> Amanpreet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayanthi%20Prattapati"> Jayanthi Prattapati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=incremental%20conductance%20algorithm" title="incremental conductance algorithm">incremental conductance algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20of%20PV%20panel" title=" modeling of PV panel"> modeling of PV panel</a>, <a href="https://publications.waset.org/abstracts/search?q=perturb%20and%20observe%20algorithm" title=" perturb and observe algorithm"> perturb and observe algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20system%20and%20simulation%20results" title=" photovoltaic system and simulation results"> photovoltaic system and simulation results</a> </p> <a href="https://publications.waset.org/abstracts/11193/implementation-of-mppt-algorithm-for-grid-connected-pv-module-with-ic-and-po-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Reintroduction and in vitro Propagation of Declapeis arayalpathra: A Critically Endangered Plant of Western Ghats, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zishan%20Ahmad">Zishan Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Shahzad"> Anwar Shahzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present studies describe a protocol for high frequency in vitro propagation through nodal segments and shoot tips in D. arayalpathra, a critically endangered medicinal liana of the Western Ghats, India. Nodal segments were more responsive than shoot tips in terms of shoot multiplication. Murashige and Skoog’s (MS) basal medium supplemented with 2.5 µM 6-benzyladenine (BA) was optimum for shoot induction through both the explants. Among different combinations of plant growth regulator (PGRs) and growth additive screened, MS medium supplemented with BA (2.5 µM) + indole-3-acetic acid (IAA) (0.25 µM) + adenine sulphate (ADS) (10.0 µM) induced a maximum of 9.0 shoots per nodal segment and 3.9 shoots per shoot tip with mean shoot length of 8.5 and 3.9 cm respectively. Half-strength MS medium supplemented with Naphthaleneacetic acid (NAA) (2.5 µM) was the best for in vitro root induction. After successful acclimatization in SoilriteTM, 92 % plantlets were survived in field conditions. Acclimatized plantlets were studied for chlorophyll and carotenoid content, net photosynthetic rate (PN) and related attributes such as stomatal conductance (Gs) and transpiration rate during subsequent days of acclimatization. The rise and fall of different biochemical enzymes (SOD, CAT, APX and GR) were also studies during successful days of acclimatization. Moreover, the effect of acclimatization on the synthesis of 2-hydroxy-4-methoxy benzaldehyde (2H4MB) was also studied in relation to the biomass production. Maximum fresh weight (2.8 gm/plant), dry weight (0.35 gm/plant) of roots and 2H4MB content (8.5 µg/ ml of root extract) were recorded after 8 weeks of acclimatization. The screening of in vitro raised plantlet root was also carried out by using GC-MS analysis which witnessed more than 25 compounds. The regenerated plantlets were also screened for homogeneity by using RAPD and ISSR. The proposed protocol surely can be used for the conservation and commercial production of the plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=6-benzyladenine" title="6-benzyladenine">6-benzyladenine</a>, <a href="https://publications.waset.org/abstracts/search?q=PGRs" title=" PGRs"> PGRs</a>, <a href="https://publications.waset.org/abstracts/search?q=RAPD" title=" RAPD"> RAPD</a>, <a href="https://publications.waset.org/abstracts/search?q=2H4MB" title=" 2H4MB"> 2H4MB</a> </p> <a href="https://publications.waset.org/abstracts/78270/reintroduction-and-in-vitro-propagation-of-declapeis-arayalpathra-a-critically-endangered-plant-of-western-ghats-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramdan%20B.%20A.%20Koad">Ramdan B. A. Koad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20F.%20Zobaa"> Ahmed F. Zobaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the output characteristics of Photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum Power Point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a Maximum Power Point Tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), and Particle Swarm Optimization (PSO) algorithm for (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20systems" title="photovoltaic systems">photovoltaic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20point%20tracking" title=" maximum power point tracking"> maximum power point tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=perturb%20and%20observe%20method" title=" perturb and observe method"> perturb and observe method</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20conductance" title=" incremental conductance"> incremental conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=methods%20and%20practical%20swarm%20optimization%20algorithm" title=" methods and practical swarm optimization algorithm"> methods and practical swarm optimization algorithm</a> </p> <a href="https://publications.waset.org/abstracts/6085/comparison-between-the-conventional-methods-and-pso-based-mppt-algorithm-for-photovoltaic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Evaluation of MPPT Algorithms for Photovoltaic Generator by Comparing Incremental Conductance Method, Perturbation and Observation Method and the Method Using Fuzzy Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmahdi%20Elgharbaoui">Elmahdi Elgharbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamou%20Nasser"> Tamou Nasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Essadki"> Ahmed Essadki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the era of sustainable development, photovoltaic (PV) technology has shown significant potential as a renewable energy source. Photovoltaic generators (GPV) have a non-linear current-voltage characteristic, with a maximum power point (MPP) characterized by an optimal voltage, and depends on environmental factors such as temperature and irradiation. To extract each time the maximum power available at the terminals of the GPV and transfer it to the load, an adaptation stage is used, consisting of a boost chopper controlled by a maximum power point tracking technique (MPPT) through a stage of pulse width modulation (PWM). Our choice has focused on three techniques which are: the perturbation and observation method (P&O), the incremental conductance method (InCond) and the last is that of control using the fuzzy logic. The implementation and simulation of the system (photovoltaic generator, chopper boost, PWM and MPPT techniques) are then performed in the Matlab/Simulink environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20generator" title="photovoltaic generator">photovoltaic generator</a>, <a href="https://publications.waset.org/abstracts/search?q=technique%20MPPT" title=" technique MPPT"> technique MPPT</a>, <a href="https://publications.waset.org/abstracts/search?q=boost%20chopper" title=" boost chopper"> boost chopper</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM" title=" PWM"> PWM</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=P%26O" title=" P&O"> P&O</a>, <a href="https://publications.waset.org/abstracts/search?q=InCond" title=" InCond"> InCond</a> </p> <a href="https://publications.waset.org/abstracts/11368/evaluation-of-mppt-algorithms-for-photovoltaic-generator-by-comparing-incremental-conductance-method-perturbation-and-observation-method-and-the-method-using-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Changes in Forest Cover Regulate Streamflow in Central Nigerian Gallery Forests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahila%20Yilangai">Rahila Yilangai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonali%20Saha"> Sonali Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Amartya%20Saha"> Amartya Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Augustine%20Ezealor"> Augustine Ezealor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gallery forests in sub-Saharan Africa are drastically disappearing due to intensive anthropogenic activities thus reducing ecosystem services, one of which is water provisioning. The role played by forest cover in regulating streamflow and water yield is not well understood, especially in West Africa. This pioneering 2-year study investigated the interrelationships between plant cover and hydrology in protected and unprotected gallery forests. Rainfall, streamflow, and evapotranspiration (ET) measurements/estimates over 2015-2016 were obtained to form a water balance for both catchments. In addition, transpiration in the protected gallery forest with high vegetation cover was calculated from stomatal conductance readings of selected species chosen from plot level data of plant diversity and abundance. Results showed that annual streamflow was significantly higher in the unprotected site than the protected site, even when normalized by catchment area. However, streamflow commenced earlier and lasted longer in the protected site than the degraded unprotected site, suggesting regulation by the greater tree density in the protected site. Streamflow correlated strongly with rainfall with the highest peak in August. As expected, transpiration measurements were less than potential evapotranspiration estimates, while rainfall exceeded ET in the water cycle. The water balance partitioning suggests that the lower vegetation cover in the unprotected catchment leads to a larger runoff in the rainy season and less infiltration, thereby leading to streams drying up earlier, than in the protected catchment. This baseline information is important in understanding the contribution of plants in water cycle regulation, for modeling integrative water management in applied research and natural resource management in sustaining water resources with changing the land cover and climate uncertainties in this data-poor region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title="evapotranspiration">evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=gallery%20forest" title=" gallery forest"> gallery forest</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=streamflow" title=" streamflow"> streamflow</a>, <a href="https://publications.waset.org/abstracts/search?q=transpiration" title=" transpiration"> transpiration</a> </p> <a href="https://publications.waset.org/abstracts/95088/changes-in-forest-cover-regulate-streamflow-in-central-nigerian-gallery-forests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Modified 'Perturb and Observe' with 'Incremental Conductance' Algorithm for Maximum Power Point Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Fuad%20Usman">H. Fuad Usman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rafay%20Khan%20Sial"> M. Rafay Khan Sial</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahzaib%20Hamid"> Shahzaib Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The trend of renewable energy resources has been amplified due to global warming and other environmental related complications in the 21st century. Recent research has very much emphasized on the generation of electrical power through renewable resources like solar, wind, hydro, geothermal, etc. The use of the photovoltaic cell has become very public as it is very useful for the domestic and commercial purpose overall the world. Although a single cell gives the low voltage output but connecting a number of cells in a series formed a complete module of the photovoltaic cells, it is becoming a financial investment as the use of it fetching popular. This also reduced the prices of the photovoltaic cell which gives the customers a confident of using this source for their electrical use. Photovoltaic cell gives the MPPT at single specific point of operation at a given temperature and level of solar intensity received at a given surface whereas the focal point changes over a large range depending upon the manufacturing factor, temperature conditions, intensity for insolation, instantaneous conditions for shading and aging factor for the photovoltaic cells. Two improved algorithms have been proposed in this article for the MPPT. The widely used algorithms are the ‘Incremental Conductance’ and ‘Perturb and Observe’ algorithms. To extract the maximum power from the source to the load, the duty cycle of the convertor will be effectively controlled. After assessing the previous techniques, this paper presents the improved and reformed idea of harvesting maximum power point from the photovoltaic cells. A thoroughly go through of the previous ideas has been observed before constructing the improvement in the traditional technique of MPP. Each technique has its own importance and boundaries at various weather conditions. An improved technique of implementing the use of both ‘Perturb and Observe’ and ‘Incremental Conductance’ is introduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=duty%20cycle" title="duty cycle">duty cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=MPPT%20%28Maximum%20Power%20Point%20Tracking%29" title=" MPPT (Maximum Power Point Tracking)"> MPPT (Maximum Power Point Tracking)</a>, <a href="https://publications.waset.org/abstracts/search?q=perturb%20and%20observe%20%28P%26O%29" title=" perturb and observe (P&O)"> perturb and observe (P&O)</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20module" title=" photovoltaic module"> photovoltaic module</a> </p> <a href="https://publications.waset.org/abstracts/78799/modified-perturb-and-observe-with-incremental-conductance-algorithm-for-maximum-power-point-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Hydroponic Cultivation Enhances the Morpho-Physiological Traits and Quality Flower Production in Tagetes patula L</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ujala">Ujala</a>, <a href="https://publications.waset.org/abstracts/search?q=Diksha%20Sharma"> Diksha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahinder%20Partap"> Mahinder Partap</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20R.%20Warghat"> Ashish R. Warghat</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavya%20Bhargava"> Bhavya Bhargava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In soil-less agriculture, hydroponic is considered a potential farming system for the production of uniform quality plant material in significantly less time. Therefore, for the first time, the current investigation corroborates the effect of different cultivation conditions (open-field, poly-house, and hydroponic) on morpho-physiological traits, phenolic content, and essential oil components analysis in three flower color variants (yellow, scarlet red, and orange) of Tagetes patula. The results revealed that the maximum plant height, number of secondary branches, number of flowers, photosynthesis, stomatal conductance, and transpiration rate were observed under the hydroponic system as compared to other conditions. However, the maximum content of gallic acid (0.82 mg/g DW), syringic acid (3.98 mg/g DW), epicatechin (0.48 mg/g DW), p-coumaric acid (7.28 mg/g DW), protocatechuic acid (0.59 mg/g DW), ferulic acid (2.58 mg/g DW), and luteolin (8.24 mg/g DW) were quantified maximally under open-field conditions. However, under hydroponic conditions, the higher content of vanillic acid (0.43 mg/g DW), caffeic acid (0.49 mg/g DW), and quercetin (0.92 mg/g DW) were quantified. Moreover, a total of nineteen volatile components were identified in the essential oil of different flower color variants of T. patula cultivated under different conditions. The major reported volatile components in essential oil were (-)-caryophyllene oxide, trans-β-caryophyllene, trans-geraniol, 3 methyl-benzyl alcohol, and 2,2’:5’,2”-terthiophene. It has also been observed that the volatile component percentage range in all variants was observed in open-field (70.85 % to 90.54 %), poly-house (59.03 % to 77.93 %), and hydroponic (68.78 % to 89.41 %). In conclusion, the research highlighted that morpho-physiological performance with flower production was enhanced in the hydroponic system. However, phenolic content and volatile components were maximally observed in open-field conditions. However, significant results have been reported under hydroponic conditions in all studied parameters, so it could be a potential strategy for quality biomass production in T. patula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tagetes%20patula" title="Tagetes patula">Tagetes patula</a>, <a href="https://publications.waset.org/abstracts/search?q=cultivation%20conditions" title=" cultivation conditions"> cultivation conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroponic" title=" hydroponic"> hydroponic</a>, <a href="https://publications.waset.org/abstracts/search?q=morpho-physiology" title=" morpho-physiology"> morpho-physiology</a> </p> <a href="https://publications.waset.org/abstracts/171884/hydroponic-cultivation-enhances-the-morpho-physiological-traits-and-quality-flower-production-in-tagetes-patula-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Magneto-Transport of Single Molecular Transistor Using Anderson-Holstein-Caldeira-Leggett Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manasa%20Kalla">Manasa Kalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Narasimha%20Raju%20Chebrolu"> Narasimha Raju Chebrolu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Chatterjee"> Ashok Chatterjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied the quantum transport properties of a single molecular transistor in the presence of an external magnetic field using the Keldysh Green function technique. We also used the Anderson-Holstein-Caldeira-Leggett Model to describe the single molecular transistor that consists of a molecular quantum dot (QD) coupled to two metallic leads and placed on a substrate that acts as a heat bath. The phonons are eliminated by the Lang-Firsov transformation and the effective Hamiltonian is used to study the effect of an external magnetic field on the spectral density function, Tunneling Current, Differential Conductance and Spin polarization. A peak in the spectral function corresponds to a possible excitation. In the presence of a magnetic field, the spin-up and spin-down states are degenerate and this degeneracy is lifted by the magnetic field leading to the splitting of the central peak of the spectral function. The tunneling current decreases with increasing magnetic field. We have observed that even the differential conductance peak in the zero magnetic field curve is split in the presence electron-phonon interaction. As the magnetic field is increased, each peak splits into two peaks. And each peak indicates the existence of an energy level. Thus the number of energy levels for transport in the bias window increases with the magnetic field. In the presence of the electron-phonon interaction, Differential Conductance in general gets reduced and decreases faster with the magnetic field. As magnetic field strength increases, the spin polarization of the current is increasing. Our results show that a strongly interacting QD coupled to metallic leads in the presence of external magnetic field parallel to the plane of QD acts as a spin filter at zero temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anderson-Holstein%20model" title="Anderson-Holstein model">Anderson-Holstein model</a>, <a href="https://publications.waset.org/abstracts/search?q=Caldeira-Leggett%20model" title=" Caldeira-Leggett model"> Caldeira-Leggett model</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-polarization" title=" spin-polarization"> spin-polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a> </p> <a href="https://publications.waset.org/abstracts/93952/magneto-transport-of-single-molecular-transistor-using-anderson-holstein-caldeira-leggett-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Performance of Derna Steam Power Plant at Varying Super-Heater Operating Conditions Based on Exergy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Idris%20Elfeituri">Idris Elfeituri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, energy and exergy analysis of a 65 MW steam power plant was carried out. This study investigated the effect of variations of overall conductance of the super heater on the performance of an existing steam power plant located in Derna, Libya. The performance of the power plant was estimated by a mathematical modelling which considers the off-design operating conditions of each component. A fully interactive computer program based on the mass, energy and exergy balance equations has been developed. The maximum exergy destruction has been found in the steam generation unit. A 50% reduction in the design value of overall conductance of the super heater has been achieved, which accordingly decreases the amount of the net electrical power that would be generated by at least 13 MW, as well as the overall plant exergy efficiency by at least 6.4%, and at the same time that would cause an increase of the total exergy destruction by at least 14 MW. The achieved results showed that the super heater design and operating conditions play an important role on the thermodynamics performance and the fuel utilization of the power plant. Moreover, these considerations are very useful in the process of the decision that should be taken at the occasions of deciding whether to replace or renovate the super heater of the power plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Exergy" title="Exergy">Exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=Super-heater" title=" Super-heater"> Super-heater</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouling%3B%20Steam%20power%20plant%3B%20Off-design." title=" Fouling; Steam power plant; Off-design."> Fouling; Steam power plant; Off-design.</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouling%3B" title=" Fouling;"> Fouling;</a>, <a href="https://publications.waset.org/abstracts/search?q=Super-heater" title=" Super-heater"> Super-heater</a>, <a href="https://publications.waset.org/abstracts/search?q=Steam%20power%20plant" title=" Steam power plant"> Steam power plant</a> </p> <a href="https://publications.waset.org/abstracts/60015/performance-of-derna-steam-power-plant-at-varying-super-heater-operating-conditions-based-on-exergy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Increase of Quinoa Tolerance to High Salinity Involves Agrophysiological Parameters Improvement by Soil Amendments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bourhim%20Mohammad%20Redouane">Bourhim Mohammad Redouane</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheto%20Said"> Cheto Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Qaddoury%20Ahmed"> Qaddoury Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirich%20Abdelaziz"> Hirich Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghoulam%20Cherki"> Ghoulam Cherki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several abiotic stresses cause disruptions in the properties of agricultural soils and hence their loss worldwide. Among these abiotic stresses, Salinity to which most crops were exposed caused an important reduction in their productivity. Therefore, in order to deal with this challenging problem, we rely on cultivating alternative plants that can tolerate the adverse salinity stress, such as quinoa (Chenopodium quinoa). Although even it was qualified as tolerant to Salinity, the quinoa’s performance could be negatively affected under high salinity levels. Thus, our study aims to assess the effects of the application of soil amendments to improve quinoa tolerance levels under high Salinity. Thus, three quinoa varieties (Puno, ICBA-Q5, and Titicaca) were grown on agricultural soil under a greenhouse with five amendments; Biochar “Bc,” compost “Cp,” black soldier insect frass “If,” cow manure “Fb” and phosphogypsum “Pg.” Two controls without amendment were adopted consisting of the salinized negative one “T(-)” and the non-salinized positive one “T(+).” After 20 days from sowing, the plants were irrigated with a saline solution of 16 dS/m prepared with NaCl for a period of 60 days. Then plant tolerance was assessed based on agrophysiological parameters. The results showed that salinity stress negatively affected the quinoa plants for all the analyzed agrophysiological parameters in the three varieties compared to their corresponding controls “T(+).” However, most of these parameters were significantly enhanced by the application of soil amendments compared to their negative controls “T(-).” For instance, the biomass was improved by 91.8% and 69.4%, respectively, for Puno and Titicaca varieties amended with “Bc.” The total nitrogen amount was increased by 220% for Titicaca and ICBA-Q5 plants cultivated in the soil amended with “If.” One of the most important improvements was noted for potassium content in Titicaca amended with “Pg,” which was six times higher compared to the negative control. Besides, the plants of Puno amended with “Cp” showed an improvement of 75.9% for the stomatal conductance and 58.5% for nitrate reductase activity. Nevertheless, the pronounced varietal difference was registered between Puno and Titicaca, presenting the highest performances mainly for the soil amended with “If,” “Bc,” and “Pg.” <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chenopodium%20quinoa" title="chenopodium quinoa">chenopodium quinoa</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20amendments" title=" soil amendments"> soil amendments</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20reductase" title=" nitrate reductase"> nitrate reductase</a> </p> <a href="https://publications.waset.org/abstracts/163236/increase-of-quinoa-tolerance-to-high-salinity-involves-agrophysiological-parameters-improvement-by-soil-amendments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stomatal%20conductance&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stomatal%20conductance&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stomatal%20conductance&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stomatal%20conductance&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>