CINXE.COM
Search results for: dynamical resonant method
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dynamical resonant method</title> <meta name="description" content="Search results for: dynamical resonant method"> <meta name="keywords" content="dynamical resonant method"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dynamical resonant method" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dynamical resonant method"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19234</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dynamical resonant method</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19234</span> Dynamical Systems and Fibonacci Numbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vandana%20N.%20Purav">Vandana N. Purav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Dynamical systems concept is a mathematical formalization for any fixed rule that describes the time dependence of a points position in its ambient space. e.g. pendulum of a clock, the number of fish each spring in a lake, the number of rabbits spring in an enclosure, etc. The Dynamical system theory used to describe the complex nature that is dynamical systems with differential equations called continuous dynamical system or dynamical system with difference equations called discrete dynamical system. The concept of dynamical system has its origin in Newtonian mechanics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamical%20systems" title="dynamical systems">dynamical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Fibonacci%20numbers" title=" Fibonacci numbers"> Fibonacci numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=Newtonian%20mechanics" title=" Newtonian mechanics"> Newtonian mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20dynamical%20system" title=" discrete dynamical system"> discrete dynamical system</a> </p> <a href="https://publications.waset.org/abstracts/25870/dynamical-systems-and-fibonacci-numbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19233</span> A Method of Drilling a Ground Using a Robotic Arm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lotfi%20Beji">Lotfi Beji</a>, <a href="https://publications.waset.org/abstracts/search?q=Laredj%20Benchikh"> Laredj Benchikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underground tunnel face bolting and pipe umbrella reinforcement are one of the most challenging tasks in construction whether industrial or not, and infrastructures such as roads or pipelines. It is one of the first sectors of economic activity in the world. Through a variety of soil and rock, a cyclic Conventional Tunneling Method (CTM) remains the best one for projects with highly variable ground conditions or shapes. CTM is the only alternative for the renovation of existing tunnels and creating emergency exit. During the drilling process, a wide variety of non-desired vibrations may arise, and a method using a robot arm is proposed. The main kinds of drilling through vibration here is the bit-bouncing phenomenon (resonant axial vibration). Hence, assisting the task by a robot arm may play an important role on drilling performances and security. We propose to control the axial-vibration phenomenon along the drillstring at a practical resonant frequency, and embed a Resonant Sonic Drilling Head (RSDH) as a robot end effector for drilling. Many questionable industry drilling criteria and stability are discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drilling" title="drilling">drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20vibration" title=" resonant vibration"> resonant vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20arm" title=" robot arm"> robot arm</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a> </p> <a href="https://publications.waset.org/abstracts/67952/a-method-of-drilling-a-ground-using-a-robotic-arm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19232</span> High-Frequency Half Bridge Inverter Applied to Induction Heating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Zouaoui">Amira Zouaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Belloumi"> Hamed Belloumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferid%20Kourda"> Ferid Kourda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the analysis and design of a DC–AC resonant converter applied to induction heating. The proposed topology based on the series-parallel half-bridge resonant inverter is described. It can operate with Zero-Voltage Switching (ZVS). At the resonant frequency, the secondary current is amplified over the heating coil with small switching angle, which keeps the reactive power low and permits heating with small current through the resonant inductor and the transformer. The operation and control principle of the proposed high frequency inverter is described and verified through simulated and experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20heating" title="induction heating">induction heating</a>, <a href="https://publications.waset.org/abstracts/search?q=inverter" title=" inverter"> inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency" title=" high frequency"> high frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant" title=" resonant"> resonant</a> </p> <a href="https://publications.waset.org/abstracts/8100/high-frequency-half-bridge-inverter-applied-to-induction-heating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19231</span> Projective Lag Synchronization in Drive-Response Dynamical Networks via Hybrid Feedback Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Salmi%20Md%20Noorani">Mohd Salmi Md Noorani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Al-Mahbashi"> Ghada Al-Mahbashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakhinah%20Abu%20Bakar"> Sakhinah Abu Bakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates projective lag synchronization (PLS) behavior in drive response dynamical networks (DRDNs) model with identical nodes. A hybrid feedback control method is designed to achieve the PLS with mismatch and without mismatch terms. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Moreover, the numerical simulations results demonstrate the validity of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drive-response%20dynamical%20network" title="drive-response dynamical network">drive-response dynamical network</a>, <a href="https://publications.waset.org/abstracts/search?q=projective%20lag%20synchronization" title=" projective lag synchronization"> projective lag synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20feedback%20control" title=" hybrid feedback control"> hybrid feedback control</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20theory" title=" stability theory"> stability theory</a> </p> <a href="https://publications.waset.org/abstracts/14139/projective-lag-synchronization-in-drive-response-dynamical-networks-via-hybrid-feedback-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19230</span> Analytical Solutions of Josephson Junctions Dynamics in a Resonant Cavity for Extended Dicke Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.I.Mukhin">S.I.Mukhin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Seidov"> S. Seidov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mukherjee"> A. Mukherjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Dicke model is a key tool for the description of correlated states of quantum atomic systems, excited by resonant photon absorption and subsequently emitting spontaneous coherent radiation in the superradiant state. The Dicke Hamiltonian (DH) is successfully used for the description of the dynamics of the Josephson Junction (JJ) array in a resonant cavity under applied current. In this work, we have investigated a generalized model, which is described by DH with a frustrating interaction term. This frustrating interaction term is explicitly the infinite coordinated interaction between all the spin half in the system. In this work, we consider an array of N superconducting islands, each divided into two sub-islands by a Josephson Junction, taken in a charged qubit / Cooper Pair Box (CPB) condition. The array is placed inside the resonant cavity. One important aspect of the problem lies in the dynamical nature of the physical observables involved in the system, such as condensed electric field and dipole moment. It is important to understand how these quantities behave with time to define the quantum phase of the system. The Dicke model without frustrating term is solved to find the dynamical solutions of the physical observables in analytic form. We have used Heisenberg’s dynamical equations for the operators and on applying newly developed Rotating Holstein Primakoff (HP) transformation and DH we have arrived at the four coupled nonlinear dynamical differential equations for the momentum and spin component operators. It is possible to solve the system analytically using two-time scales. The analytical solutions are expressed in terms of Jacobi's elliptic functions for the metastable ‘bound luminosity’ dynamic state with the periodic coherent beating of the dipoles that connect the two double degenerate dipolar ordered phases discovered previously. In this work, we have proceeded the analysis with the extended DH with a frustrating interaction term. Inclusion of the frustrating term involves complexity in the system of differential equations and it gets difficult to solve analytically. We have solved semi-classical dynamic equations using the perturbation technique for small values of Josephson energy EJ. Because the Hamiltonian contains parity symmetry, thus phase transition can be found if this symmetry is broken. Introducing spontaneous symmetry breaking term in the DH, we have derived the solutions which show the occurrence of finite condensate, showing quantum phase transition. Our obtained result matches with the existing results in this scientific field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dicke%20Model" title="Dicke Model">Dicke Model</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamics" title=" nonlinear dynamics"> nonlinear dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=perturbation%20theory" title=" perturbation theory"> perturbation theory</a>, <a href="https://publications.waset.org/abstracts/search?q=superconductivity" title=" superconductivity"> superconductivity</a> </p> <a href="https://publications.waset.org/abstracts/116732/analytical-solutions-of-josephson-junctions-dynamics-in-a-resonant-cavity-for-extended-dicke-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19229</span> A Small Signal Model for Resonant Tunneling Diode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rania%20M.%20Abdallah">Rania M. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20S.%20Dessouki"> Ahmed A. S. Dessouki</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20H.%20Aly"> Moustafa H. Aly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper has presented a new simple small signal model for a resonant tunnelling diode device. The resonant tunnelling diode equivalent circuit elements were calculated and the results led to good agreement between the calculated equivalent circuit elements and the measurement results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resonant%20tunnelling%20diode" title="resonant tunnelling diode">resonant tunnelling diode</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20signal%20model" title=" small signal model"> small signal model</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20differential%20conductance" title=" negative differential conductance"> negative differential conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20engineering" title=" electronic engineering"> electronic engineering</a> </p> <a href="https://publications.waset.org/abstracts/5891/a-small-signal-model-for-resonant-tunneling-diode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19228</span> Dynamical Heterogeneity and Aging in Turbulence with a Nambu-Goldstone Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahrudin%20Nugroho">Fahrudin Nugroho</a>, <a href="https://publications.waset.org/abstracts/search?q=Halim%20Hamadi"> Halim Hamadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusril%20Yusuf"> Yusril Yusuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Pekik%20Nurwantoro"> Pekik Nurwantoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ari%20Setiawan"> Ari Setiawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiki%20Hidaka"> Yoshiki Hidaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the Nikolaevskiy equation numerically using exponential time differencing method and pseudo-spectral method. This equation develops a long-wavelength modulation that behaves as a Nambu–Goldstone mode, and short-wavelength instability and exhibit turbulence. Using the autocorrelation analysis, the statistical properties of the turbulence governed by the equation are investigated. The autocorrelation then has been fitted with The Kohlrausch– Williams–Watts (KWW) expression. By varying the control parameter, we show a transition from compressed to stretched exponential for the auto-correlation function of Nikolaevskiy turbulence. The compressed exponential is an indicator of the existence of dynamical heterogeneity while the stretched indicates aging process. Thereby, we revealed the existence of dynamical heterogeneity and aging in the turbulence governed by Nikolaevskiy equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20exponential" title="compressed exponential">compressed exponential</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20heterogeneity" title=" dynamical heterogeneity"> dynamical heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolaevskiy%20equation" title=" Nikolaevskiy equation"> Nikolaevskiy equation</a>, <a href="https://publications.waset.org/abstracts/search?q=stretched%20exponential" title=" stretched exponential"> stretched exponential</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/48908/dynamical-heterogeneity-and-aging-in-turbulence-with-a-nambu-goldstone-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19227</span> A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Kayabasi">Ahmet Kayabasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akdagli"> Ali Akdagli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=a-shaped%20compact%20microstrip%20antenna" title="a-shaped compact microstrip antenna">a-shaped compact microstrip antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network%20%28ANN%29" title=" artificial neural network (ANN)"> artificial neural network (ANN)</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20neuro-fuzzy%20inference%20system%20%28ANFIS%29" title=" adaptive neuro-fuzzy inference system (ANFIS)"> adaptive neuro-fuzzy inference system (ANFIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine%20%28SVM%29" title=" support vector machine (SVM)"> support vector machine (SVM)</a> </p> <a href="https://publications.waset.org/abstracts/31100/a-comparative-study-on-ann-anfis-and-svm-methods-for-computing-resonant-frequency-of-a-shaped-compact-microstrip-antennas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19226</span> New Analytical Current-Voltage Model for GaN-based Resonant Tunneling Diodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuang%20Guo">Zhuang Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of GaN-based resonant tunneling diodes (RTDs) simulations, the traditional Tsu-Esaki formalism failed to predict the values of peak currents and peak voltages in the simulated current-voltage(J-V) characteristics. The main reason is that due to the strong internal polarization fields, two-dimensional electron gas(2DEG) accumulates at emitters, resulting in 2D-2D resonant tunneling currents, which become the dominant parts of the total J-V characteristics. By comparison, based on the 3D-2D resonant tunneling mechanism, the traditional Tsu-Esaki formalism cannot predict the J-V characteristics correctly. To overcome this shortcoming, we develop a new analytical model for the 2D-2D resonant tunneling currents generated in GaN-based RTDs. Compared with Tsu-Esaki formalism, the new model has made the following modifications: Firstly, considering the Heisenberg uncertainty, the new model corrects the expression of the density of states around the 2DEG eigenenergy levels at emitters so that it could predict the half width at half-maximum(HWHM) of resonant tunneling currents; Secondly, taking into account the effect of bias on wave vectors on the collectors, the new model modifies the expression of the transmission coefficients which could help to get the values of peak currents closer to the experiment data compared with Tsu-Esaki formalism. The new analytical model successfully predicts the J-V characteristics of GaN-based RTDs, and it also reveals more detailed mechanisms of resonant tunneling happened in GaN-based RTDs, which helps to design and fabricate high-performance GaN RTDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN-based%20resonant%20tunneling%20diodes" title="GaN-based resonant tunneling diodes">GaN-based resonant tunneling diodes</a>, <a href="https://publications.waset.org/abstracts/search?q=tsu-esaki%20formalism" title=" tsu-esaki formalism"> tsu-esaki formalism</a>, <a href="https://publications.waset.org/abstracts/search?q=2D-2D%20resonant%20tunneling" title=" 2D-2D resonant tunneling"> 2D-2D resonant tunneling</a>, <a href="https://publications.waset.org/abstracts/search?q=heisenberg%20uncertainty" title=" heisenberg uncertainty"> heisenberg uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/166160/new-analytical-current-voltage-model-for-gan-based-resonant-tunneling-diodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19225</span> The Effects of the Uniaxial Anisotropy and the Loss Tangent on the Resonant Frequencies in Stacked Rectangular Patches Configuration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boualem%20Mekimah">Boualem Mekimah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderraouf%20Messai"> Abderraouf Messai</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkrim%20Belhedri"> Abdelkrim Belhedri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dielectric substrates have an important attention in the fabrication of microstrip patch antennas. The effects of the uniaxial anisotropy and the loss tangent on resonant frequencies of microstrip patches consist of two perfectly conducting rectangular patches in stacked and offset configuration, embedded in a bilayer medium containing isotropic or uniaxial anisotropic materials. The Green’s functions are discussed in detail and numerical results are validated by comparing the computed results with previously published data. The numerical results show, that the uniaxial anisotropy has more effects on resonant frequencies according to the optical axis. However, the loss tangent of dielectric substrates has almost no effect on resonant frequencies, but it strongly affects the imaginary parts of the resonant frequencies of the antenna. The dielectric constant has no effect on the separation in terms of frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resonant%20frequencies" title="resonant frequencies">resonant frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20tangent" title=" loss tangent"> loss tangent</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20patches" title=" microstrip patches"> microstrip patches</a>, <a href="https://publications.waset.org/abstracts/search?q=stacked" title=" stacked"> stacked</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20materials" title=" anisotropic materials"> anisotropic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20axis" title=" optical axis"> optical axis</a> </p> <a href="https://publications.waset.org/abstracts/28849/the-effects-of-the-uniaxial-anisotropy-and-the-loss-tangent-on-the-resonant-frequencies-in-stacked-rectangular-patches-configuration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19224</span> Symmetrical In-Plane Resonant Gyroscope with Decoupled Modes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shady%20Sayed">Shady Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Samer%20Wagdy"> Samer Wagdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Badawy"> Ahmed Badawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Moutaz%20M.%20Hegaze"> Moutaz M. Hegaze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A symmetrical single mass resonant gyroscope is discussed in this paper. The symmetrical design allows matched resonant frequencies for driving and sensing vibration modes, which leads to amplifying the sensitivity of the gyroscope by the mechanical quality factor of the sense mode. It also achieves decoupled vibration modes for getting a low zero-rate output shift and more stable operation environment. A new suspension beams design is developed to get a symmetrical gyroscope with matched and decoupled modes at the same time. Finite element simulations are performed using ANSYS software package to verify the theoretical calculations. The gyroscope is fabricated from aluminum alloy 2024 substrate, the measured drive and sense resonant frequencies of the fabricated model are matched and equal 81.4 Hz with 5.7% error from the simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decoupled%20mode%20shapes" title="decoupled mode shapes">decoupled mode shapes</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20sensor" title=" resonant sensor"> resonant sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetrical%20gyroscope" title=" symmetrical gyroscope"> symmetrical gyroscope</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulation" title=" finite element simulation"> finite element simulation</a> </p> <a href="https://publications.waset.org/abstracts/59351/symmetrical-in-plane-resonant-gyroscope-with-decoupled-modes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19223</span> Finite Time Blow-Up and Global Solutions for a Semilinear Parabolic Equation with Linear Dynamical Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xu%20Runzhang">Xu Runzhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yanbing"> Yang Yanbing</a>, <a href="https://publications.waset.org/abstracts/search?q=Niu%20Yi"> Niu Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Mingyou"> Zhang Mingyou</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Yu"> Liu Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a class of semilinear parabolic equations with linear dynamical boundary conditions in a bounded domain, we obtain both global solutions and finite time blow-up solutions when the initial data varies in the phase space H1(Ω). Our main tools are the comparison principle, the potential well method and the concavity method. In particular, we discuss the behavior of the solutions with the initial data at critical and high energy level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20energy%20level" title="high energy level">high energy level</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20energy%20level" title=" critical energy level"> critical energy level</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20dynamical%20boundary%20condition" title=" linear dynamical boundary condition"> linear dynamical boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=semilinear%20parabolic%20equation" title=" semilinear parabolic equation"> semilinear parabolic equation</a> </p> <a href="https://publications.waset.org/abstracts/24012/finite-time-blow-up-and-global-solutions-for-a-semilinear-parabolic-equation-with-linear-dynamical-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19222</span> Modeling and Controlling Nonlinear Dynamical Effects in Non-Contact Superconducting and Diamagnetic Suspensions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Kuznetsov">Sergey Kuznetsov</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Urman"> Yuri Urman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present an approach to investigate non-linear dynamical effects occurring in the noncontact superconducting and diamagnetic suspensions, when levitated body has finite size. This approach is based on the calculation of interaction energy between spherical finite size superconducting or diamagnetic body with external magnetic field. Effects of small deviations from spherical shape may be also taken into account by introducing small corrections to the energy. This model allows investigating dynamical effects important for practical applications, such as nonlinear resonances, change of vibration plane, coupling of rotational and translational motions etc. We also show how the geometry of suspension affects various dynamical effects and how an inverse problem may be formulated to enforce or diminish various dynamical effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=levitation" title="levitation">levitation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20dynamics" title=" non-linear dynamics"> non-linear dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=superconducting" title=" superconducting"> superconducting</a>, <a href="https://publications.waset.org/abstracts/search?q=diamagnetic%20stability" title=" diamagnetic stability "> diamagnetic stability </a> </p> <a href="https://publications.waset.org/abstracts/47249/modeling-and-controlling-nonlinear-dynamical-effects-in-non-contact-superconducting-and-diamagnetic-suspensions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19221</span> Effect of Inductance Ratio on Operating Frequencies of a Hybrid Resonant Inverter </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Ghodsi">Mojtaba Ghodsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Ziaifar"> Hamidreza Ziaifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mohammadzaheri"> Morteza Mohammadzaheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Payam%20Soltani"> Payam Soltani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the performance of a medium power (25 kW/25 kHz) hybrid inverter with a reactive transformer is investigated. To analyze the sensitivity of the inverster, the RSM technique is employed to manifest the effective factors in the inverter to minimize current passing through the Insulated Bipolar Gate Transistors (IGBTs) (current stress). It is revealed that the ratio of the axillary inductor to the effective inductance of resonant inverter (N), is the most effective parameter to minimize the current stress in this type of inverter. In practice, proper selection of N mitigates the current stress over IGBTs by five times. This reduction is very helpful to keep the IGBTs at normal temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20analysis" title="analytical analysis">analytical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20resonant%20inverter" title=" hybrid resonant inverter"> hybrid resonant inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20transformer" title=" reactive transformer"> reactive transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20method" title=" response surface method"> response surface method</a> </p> <a href="https://publications.waset.org/abstracts/118780/effect-of-inductance-ratio-on-operating-frequencies-of-a-hybrid-resonant-inverter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19220</span> Effect of Plastic Fines on Liquefaction Resistance of Sandy Soil Using Resonant Column Test </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Naeini">S. A. Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghorbani%20Tochaee"> M. Ghorbani Tochaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to assess the influence of plastic fines content on sand-clay mixtures on maximum shear modulus and liquefaction resistance using a series of resonant column tests. A high plasticity clay called bentonite was added to 161 Firoozkooh sand at the percentages of 10, 15, 20, 25, 30 and 35 by dry weight. The resonant column tests were performed on the remolded specimens at constant confining pressure of 100 KPa and then the values of G<sub>max</sub> and liquefaction resistance were investigated. The maximum shear modulus and cyclic resistance ratio (CRR) are examined in terms of fines content. Based on the results, the maximum shear modulus and liquefaction resistance tend to decrease within the increment of fine contents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gmax" title="Gmax">Gmax</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20fines" title=" plastic fines"> plastic fines</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20column" title=" resonant column"> resonant column</a>, <a href="https://publications.waset.org/abstracts/search?q=sand-clay%20mixtures" title=" sand-clay mixtures"> sand-clay mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a> </p> <a href="https://publications.waset.org/abstracts/120346/effect-of-plastic-fines-on-liquefaction-resistance-of-sandy-soil-using-resonant-column-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19219</span> Calculating Non-Unique Sliding Modes for Switched Dynamical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Stepanov">Eugene Stepanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Arkadi%20Ponossov"> Arkadi Ponossov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20dynamical%20systems" title="hybrid dynamical systems">hybrid dynamical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20perturbation%20analysis" title=" singular perturbation analysis"> singular perturbation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20modes" title=" sliding modes"> sliding modes</a>, <a href="https://publications.waset.org/abstracts/search?q=switched%20dynamics" title=" switched dynamics"> switched dynamics</a> </p> <a href="https://publications.waset.org/abstracts/86304/calculating-non-unique-sliding-modes-for-switched-dynamical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19218</span> Model-Free Distributed Control of Dynamical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Khazaei">Javad Khazaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Rick%20Blum"> Rick Blum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consensus%20tracking" title="consensus tracking">consensus tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20control" title=" distributed control"> distributed control</a>, <a href="https://publications.waset.org/abstracts/search?q=model-free%20control" title=" model-free control"> model-free control</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20identification%20of%20dynamical%20systems" title=" sparse identification of dynamical systems"> sparse identification of dynamical systems</a> </p> <a href="https://publications.waset.org/abstracts/144452/model-free-distributed-control-of-dynamical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19217</span> Parameter Estimation in Dynamical Systems Based on Latent Variables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov">Arcady Ponosov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel mathematical approach is suggested, which facilitates a compressed representation and efficient validation of parameter-rich ordinary differential equation models describing the dynamics of complex, especially biology-related, systems and which is based on identification of the system's latent variables. In particular, an efficient parameter estimation method for the compressed non-linear dynamical systems is developed. The method is applied to the so-called 'power-law systems' being non-linear differential equations typically used in Biochemical System Theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20law%20of%20mass%20action" title="generalized law of mass action">generalized law of mass action</a>, <a href="https://publications.waset.org/abstracts/search?q=metamodels" title=" metamodels"> metamodels</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20components" title=" principal components"> principal components</a>, <a href="https://publications.waset.org/abstracts/search?q=synergetic%20systems" title=" synergetic systems"> synergetic systems</a> </p> <a href="https://publications.waset.org/abstracts/42041/parameter-estimation-in-dynamical-systems-based-on-latent-variables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19216</span> Multiple Negative-Differential Resistance Regions Based on AlN/GaN Resonant Tunneling Structures by the Vertical Growth of Molecular Beam Epitaxy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao%20Jiajia">Yao Jiajia</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu%20Guanlin"> Wu Guanlin</a>, <a href="https://publications.waset.org/abstracts/search?q=LIU%20Fang"> LIU Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xue%20Junshuai"> Xue Junshuai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Jincheng"> Zhang Jincheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Yue"> Hao Yue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resonant tunneling diodes (RTDs) based on GaN have been extensively studied. However, no results of multiple logic states achieved by RTDs were reported by the methods of epitaxy in the GaN materials. In this paper, the multiple negative-differential resistance regions by combining two discrete double-barrier RTDs in series have been first demonstrated. Plasma-assisted molecular beam epitaxy (PA-MBE) was used to grow structures consisting of two vertical RTDs. The substrate was a GaN-on-sapphire template. Each resonant tunneling structure was composed of a double barrier of AlN and a single well of GaN with undoped 4-nm space layers of GaN on each side. The AlN barriers were 1.5 nm thick, and the GaN well was 2 nm thick. The resonant tunneling structures were separated from each other by 30-nm thick n+ GaN layers. The bottom and top layers of the structures, grown neighboring to the spacer layers that consist of 200-nm-thick n+ GaN. These devices with two tunneling structures exhibited uniform peaks and valleys current and also had two negative differential resistance NDR regions equally spaced in bias voltage. The current-voltage (I-V) characteristics of resonant tunneling structures with diameters of 1 and 2 μm were analyzed in this study. These structures exhibit three stable operating points, which are investigated in detail. This research demonstrates that using molecular beam epitaxy MBE to vertically grow multiple resonant tunneling structures is a promising method for achieving multiple negative differential resistance regions and stable logic states. These findings have significant implications for the development of digital circuits capable of multi-value logic, which can be achieved with a small number of devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN" title="GaN">GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=AlN" title=" AlN"> AlN</a>, <a href="https://publications.waset.org/abstracts/search?q=RTDs" title=" RTDs"> RTDs</a>, <a href="https://publications.waset.org/abstracts/search?q=MBE" title=" MBE"> MBE</a>, <a href="https://publications.waset.org/abstracts/search?q=logic%20state" title=" logic state"> logic state</a> </p> <a href="https://publications.waset.org/abstracts/165676/multiple-negative-differential-resistance-regions-based-on-alngan-resonant-tunneling-structures-by-the-vertical-growth-of-molecular-beam-epitaxy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19215</span> Temperature Dependence of Relative Permittivity: A Measurement Technique Using Split Ring Resonators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreedevi%20P.%20Chakyar">Sreedevi P. Chakyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jolly%20Andrews"> Jolly Andrews</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Joseph"> V. P. Joseph </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compact method for measuring the relative permittivity of a dielectric material at different temperatures using a single circular Split Ring Resonator (SRR) metamaterial unit working as a test probe is presented in this paper. The dielectric constant of a material is dependent upon its temperature and the <em>LC</em> resonance of the SRR depends on its dielectric environment. Hence, the temperature of the dielectric material in contact with the resonator influences its resonant frequency. A single SRR placed between transmitting and receiving probes connected to a Vector Network Analyser (VNA) is used as a test probe. The dependence of temperature between 30 <sup>o</sup>C and 60 <sup>o</sup>C on resonant frequency of SRR is analysed. Relative permittivities ‘ε’ of test samples for different temperatures are extracted from a calibration graph drawn between the relative permittivity of samples of known dielectric constant and their corresponding resonant frequencies. This method is found to be an easy and efficient technique for analysing the temperature dependent permittivity of different materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metamaterials" title="metamaterials">metamaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20permeability" title=" negative permeability"> negative permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=permittivity%20measurement%20techniques" title=" permittivity measurement techniques"> permittivity measurement techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20ring%20resonators" title=" split ring resonators"> split ring resonators</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20dependent%20dielectric%20constant" title=" temperature dependent dielectric constant"> temperature dependent dielectric constant</a> </p> <a href="https://publications.waset.org/abstracts/50478/temperature-dependence-of-relative-permittivity-a-measurement-technique-using-split-ring-resonators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19214</span> CDM-Based Controller Design for High-Frequency Induction Heating System with LLC Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Helaimi">M. Helaimi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Taleb"> R. Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Benyoucef"> D. Benyoucef</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Belmadani"> B. Belmadani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design of a polynomial controller with coefficient diagram method (CDM). This controller is used to control the output power of high frequency resonant inverter with LLC tank. One of the most important problems associated with the proposed inverter is achieving ZVS operating during the induction heating process. To overcome this problem, asymmetrical voltage cancellation (AVC) control technique is proposed. The phased look loop (PLL) is used to track the natural frequency of the system. The small signal model of the system with the proposed control is obtained using extending describing function method (EDM). The validity of the proposed control is verified by simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20heating" title="induction heating">induction heating</a>, <a href="https://publications.waset.org/abstracts/search?q=AVC%20control" title=" AVC control"> AVC control</a>, <a href="https://publications.waset.org/abstracts/search?q=CDM" title=" CDM"> CDM</a>, <a href="https://publications.waset.org/abstracts/search?q=PLL" title=" PLL"> PLL</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20inverter" title=" resonant inverter "> resonant inverter </a> </p> <a href="https://publications.waset.org/abstracts/18666/cdm-based-controller-design-for-high-frequency-induction-heating-system-with-llc-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">664</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19213</span> Periodically Forced Oscillator with Noisy Chaotic Dynamics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adedayo%20Oke%20Adelakun">Adedayo Oke Adelakun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chaotic dynamics of periodically forced oscillators with smooth potential has been extensively investigated via theoretical, numerical and experimental simulations. With the advent of the study of chaotic dynamics by means of method of multiple time scale analysis, Melnikov theory, bifurcation diagram, Poincare's map, bifurcation diagrams and Lyapunov exponents, it has become necessary to seek for a better understanding of nonlinear oscillator with noisy term. In this paper, we examine the influence of noise on complex dynamical behaviour of periodically forced F6 - Duffing oscillator for specific choice of noisy parameters. The inclusion of noisy term improves the dynamical behaviour of the oscillator which may have wider application in secure communication than smooth potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20structure" title="hierarchical structure">hierarchical structure</a>, <a href="https://publications.waset.org/abstracts/search?q=periodically%20forced%20oscillator" title=" periodically forced oscillator"> periodically forced oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=noisy%20parameters" title=" noisy parameters"> noisy parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20behaviour" title=" dynamical behaviour"> dynamical behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=F6%20-%20duffing%20oscillator" title=" F6 - duffing oscillator"> F6 - duffing oscillator</a> </p> <a href="https://publications.waset.org/abstracts/47494/periodically-forced-oscillator-with-noisy-chaotic-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19212</span> Reconstruction and Rejection of External Disturbances in a Dynamical System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iftikhar%20Ahmad">Iftikhar Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benallegue"> A. Benallegue</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El%20Hadri"> A. El Hadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have proposed an observer for the reconstruction and a control law for the rejection application of unknown bounded external disturbance in a dynamical system. The strategy of both the observer and the controller is designed like a second order sliding mode with a proportional-integral (PI) term. Lyapunov theory is used to prove the exponential convergence and stability. Simulations results are given to show the performance of this method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20systems" title="non-linear systems">non-linear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20observer" title=" sliding mode observer"> sliding mode observer</a>, <a href="https://publications.waset.org/abstracts/search?q=disturbance%20rejection" title=" disturbance rejection"> disturbance rejection</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control" title=" nonlinear control"> nonlinear control</a> </p> <a href="https://publications.waset.org/abstracts/44910/reconstruction-and-rejection-of-external-disturbances-in-a-dynamical-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19211</span> On the Topological Entropy of Nonlinear Dynamical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Graziano%20Chesi">Graziano Chesi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The topological entropy plays a key role in linear dynamical systems, allowing one to establish the existence of stabilizing feedback controllers for linear systems in the presence of communications constraints. This paper addresses the determination of a robust value of the topological entropy in nonlinear dynamical systems, specifically the largest value of the topological entropy over all linearized models in a region of interest of the state space. It is shown that a sufficient condition for establishing upper bounds of the sought robust value of the topological entropy can be given in terms of a semidefinite program (SDP), which belongs to the class of convex optimization problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20system" title="non-linear system">non-linear system</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20constraint" title=" communication constraint"> communication constraint</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20entropy" title=" topological entropy"> topological entropy</a> </p> <a href="https://publications.waset.org/abstracts/45742/on-the-topological-entropy-of-nonlinear-dynamical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19210</span> Stationary Energy Partition between Waves in a Carbyne Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Nikitenkova">Svetlana Nikitenkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Kovriguine"> Dmitry Kovriguine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stationary energy partition between waves in a one dimensional carbyne chain at ambient temperatures is investigated. The study is carried out by standard asymptotic methods of nonlinear dynamics in the framework of classical mechanics, based on a simple mathematical model, taking into account central and noncentral interactions between carbon atoms. Within the first-order nonlinear approximation analysis, triple-mode resonant ensembles of quasi-harmonic waves are revealed. Any resonant triad consists of a single primary high-frequency longitudinal mode and a pair of secondary low-frequency transverse modes of oscillations. In general, the motion of the carbyne chain is described by a superposition of resonant triads of various spectral scales. It is found that the stationary energy distribution is obeyed to the classical Rayleigh–Jeans law, at the expense of the proportional amplitude dispersion, except a shift in the frequency band, upwards the spectrum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resonant%20triplet" title="resonant triplet">resonant triplet</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%E2%80%93Jeans%20law" title=" Rayleigh–Jeans law"> Rayleigh–Jeans law</a>, <a href="https://publications.waset.org/abstracts/search?q=amplitude%20dispersion" title=" amplitude dispersion"> amplitude dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=carbyne" title=" carbyne"> carbyne</a> </p> <a href="https://publications.waset.org/abstracts/35622/stationary-energy-partition-between-waves-in-a-carbyne-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19209</span> Characterization of Printed Reflectarray Elements on Variable Substrate Thicknesses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Ismail">M. Y. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Arslan%20Kiyani"> Arslan Kiyani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Narrow bandwidth and high loss performance limits the use of reflectarray antennas in some applications. This article reports on the feasibility of employing strategic reflectarray resonant elements to characterize the reflectivity performance of reflectarrays in X-band frequency range. Strategic reflectarray resonant elements incorporating variable substrate thicknesses ranging from 0.016λ to 0.052λ have been analyzed in terms of reflection loss and reflection phase performance. The effect of substrate thickness has been validated by using waveguide scattering parameter technique. It has been demonstrated that as the substrate thickness is increased from 0.508mm to 1.57mm the measured reflection loss of dipole element decreased from 5.66dB to 3.70dB with increment in 10% bandwidth of 39MHz to 64MHz. Similarly the measured reflection loss of triangular loop element is decreased from 20.25dB to 7.02dB with an increment in 10% bandwidth of 12MHz to 23MHz. The results also show a significant decrease in the slope of reflection phase curve as well. A Figure of Merit (FoM) has also been defined for the comparison of static phase range of resonant elements under consideration. Moreover, a novel numerical model based on analytical equations has been established incorporating the material properties of dielectric substrate and electrical properties of different reflectarray resonant elements to obtain the progressive phase distribution for each individual reflectarray resonant element. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title="numerical model">numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectarray%20resonant%20elements" title=" reflectarray resonant elements"> reflectarray resonant elements</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20parameter%20measurements" title=" scattering parameter measurements"> scattering parameter measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20substrate%20thickness" title=" variable substrate thickness"> variable substrate thickness</a> </p> <a href="https://publications.waset.org/abstracts/5509/characterization-of-printed-reflectarray-elements-on-variable-substrate-thicknesses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19208</span> Three-Dimensional Vibration Characteristics of Piezoelectric Semi-Spherical Shell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsi%20Huang">Yu-Hsi Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying-Der%20Tsai"> Ying-Der Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric circular plates can provide out-of-plane vibrational displacements on low frequency and in-plane vibrational displacements on high frequency. Piezoelectric semi-spherical shell, which is double-curvature structure, can induce three-dimensional vibrational displacements over a large frequency range. In this study, three-dimensional vibrational characteristics of piezoelectric semi-spherical shells with free boundary conditions are investigated using three experimental methods and finite element numerical modeling. For the experimental measurements, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to obtain resonant frequencies and radial and azimuthal mode shapes. This optical technique utilizes a full-field and non-contact optical system that measures both the natural frequency and corresponding vibration mode shape simultaneously in real time. The second experimental technique used, laser displacement meter is a point-wise displacement measurement method that determines the resonant frequencies of the piezoelectric shell. An impedance analyzer is used to determine the in-plane resonant frequencies of the piezoelectric semi-spherical shell. The experimental results of the resonant frequencies and mode shapes for the piezoelectric shell are verified with the result from finite element analysis. Excellent agreement between the experimental measurements and numerical calculation is presented on the three-dimensional vibrational characteristics of the piezoelectric semi-spherical shell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20semi-spherical%20shell" title="piezoelectric semi-spherical shell">piezoelectric semi-spherical shell</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shape" title=" mode shape"> mode shape</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20frequency" title=" resonant frequency"> resonant frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20speckle%20pattern%20interferometry" title=" electronic speckle pattern interferometry"> electronic speckle pattern interferometry</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20vibration" title=" radial vibration"> radial vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=azimuthal%20vibration" title=" azimuthal vibration"> azimuthal vibration</a> </p> <a href="https://publications.waset.org/abstracts/81423/three-dimensional-vibration-characteristics-of-piezoelectric-semi-spherical-shell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19207</span> A Combined Error Control with Forward Euler Method for Dynamical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Vigneswaran">R. Vigneswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Thilakanathan"> S. Thilakanathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptivity" title="adaptivity">adaptivity</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20point" title=" fixed point"> fixed point</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20time%20simulations" title=" long time simulations"> long time simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20system" title=" linear system"> linear system</a> </p> <a href="https://publications.waset.org/abstracts/48246/a-combined-error-control-with-forward-euler-method-for-dynamical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19206</span> Exact Solutions of Discrete Sine-Gordon Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao-Qing%20Dai">Chao-Qing Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two families of exact travelling solutions for the discrete sine-Gordon equation are constructed based on the variable-coefficient Jacobian elliptic function method and different transformations. When the modulus of Jacobian elliptic function solutions tends to 1, soliton solutions can be obtained. Some soliton solutions degenerate into the known solutions in literatures. Moreover, dynamical properties of exact solutions are investigated. Our analysis and results may have potential values for certain applications in modern nonlinear science and textile engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title="exact solutions">exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=variable-coefficient%20Jacobian%20elliptic%20function%20method" title=" variable-coefficient Jacobian elliptic function method"> variable-coefficient Jacobian elliptic function method</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20sine-Gordon%20equation" title=" discrete sine-Gordon equation"> discrete sine-Gordon equation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20behaviors" title=" dynamical behaviors"> dynamical behaviors</a> </p> <a href="https://publications.waset.org/abstracts/48966/exact-solutions-of-discrete-sine-gordon-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19205</span> Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Asadi">Farhad Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Mollakazemi"> Mohammad Javad Mollakazemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20series" title="time series">time series</a>, <a href="https://publications.waset.org/abstracts/search?q=fluctuation%20in%20statistical%20characteristics" title=" fluctuation in statistical characteristics"> fluctuation in statistical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20learning" title=" optimal learning"> optimal learning</a>, <a href="https://publications.waset.org/abstracts/search?q=change-point%20algorithm" title=" change-point algorithm"> change-point algorithm</a> </p> <a href="https://publications.waset.org/abstracts/18167/investigation-on-performance-of-change-point-algorithm-in-time-series-dynamical-regimes-and-effect-of-data-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamical%20resonant%20method&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamical%20resonant%20method&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamical%20resonant%20method&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamical%20resonant%20method&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamical%20resonant%20method&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamical%20resonant%20method&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamical%20resonant%20method&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamical%20resonant%20method&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamical%20resonant%20method&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamical%20resonant%20method&page=641">641</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamical%20resonant%20method&page=642">642</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamical%20resonant%20method&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>