CINXE.COM
Hurewicz theorem in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Hurewicz theorem in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Hurewicz theorem </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/3205/#Item_16" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <blockquote> <p>Not to be confused with the <a class="existingWikiWord" href="/nlab/show/Hurwitz+theorem">Hurwitz theorem</a>.</p> </blockquote> <hr /> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="homotopy_theory">Homotopy theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+theory">(∞,1)-category theory</a>, <a class="existingWikiWord" href="/nlab/show/homotopy+type+theory">homotopy type theory</a></strong></p> <p>flavors: <a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable</a>, <a class="existingWikiWord" href="/nlab/show/equivariant+homotopy+theory">equivariant</a>, <a class="existingWikiWord" href="/nlab/show/rational+homotopy+theory">rational</a>, <a class="existingWikiWord" href="/nlab/show/p-adic+homotopy+theory">p-adic</a>, <a class="existingWikiWord" href="/nlab/show/proper+homotopy+theory">proper</a>, <a class="existingWikiWord" href="/nlab/show/geometric+homotopy+theory">geometric</a>, <a class="existingWikiWord" href="/nlab/show/cohesive+homotopy+theory">cohesive</a>, <a class="existingWikiWord" href="/nlab/show/directed+homotopy+theory">directed</a>…</p> <p>models: <a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological</a>, <a class="existingWikiWord" href="/nlab/show/simplicial+homotopy+theory">simplicial</a>, <a class="existingWikiWord" href="/nlab/show/localic+homotopy+theory">localic</a>, …</p> <p>see also <strong><a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a></strong></p> <p><strong>Introductions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Topology+--+2">Introduction to Basic Homotopy Theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Homotopy+Theory">Introduction to Abstract Homotopy Theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+homotopy+types">geometry of physics – homotopy types</a></p> </li> </ul> <p><strong>Definitions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy">homotopy</a>, <a class="existingWikiWord" href="/nlab/show/higher+homotopy">higher homotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+type">homotopy type</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Pi-algebra">Pi-algebra</a>, <a class="existingWikiWord" href="/nlab/show/spherical+object+and+Pi%28A%29-algebra">spherical object and Pi(A)-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coherent+category+theory">homotopy coherent category theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopical+category">homotopical category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+category">model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+fibrant+objects">category of fibrant objects</a>, <a class="existingWikiWord" href="/nlab/show/cofibration+category">cofibration category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Waldhausen+category">Waldhausen category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+category">homotopy category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Ho%28Top%29">Ho(Top)</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+category+of+an+%28%E2%88%9E%2C1%29-category">homotopy category of an (∞,1)-category</a></li> </ul> </li> </ul> <p><strong>Paths and cylinders</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/left+homotopy">left homotopy</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cylinder+object">cylinder object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cone">mapping cone</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/right+homotopy">right homotopy</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/path+object">path object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cocone">mapping cocone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+universal+bundle">universal bundle</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/interval+object">interval object</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+localization">homotopy localization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/infinitesimal+interval+object">infinitesimal interval object</a></p> </li> </ul> </li> </ul> <p><strong>Homotopy groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+group">fundamental group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+group+of+a+topos">fundamental group of a topos</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brown-Grossman+homotopy+group">Brown-Grossman homotopy group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/categorical+homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">categorical homotopy groups in an (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">geometric homotopy groups in an (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid">fundamental ∞-groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+groupoid">fundamental groupoid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/path+groupoid">path groupoid</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+in+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+of+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%28%E2%88%9E%2C1%29-category">fundamental (∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+category">fundamental category</a></li> </ul> </li> </ul> <p><strong>Basic facts</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+group+of+the+circle+is+the+integers">fundamental group of the circle is the integers</a></li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+theorem+of+covering+spaces">fundamental theorem of covering spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freudenthal+suspension+theorem">Freudenthal suspension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Blakers-Massey+theorem">Blakers-Massey theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+homotopy+van+Kampen+theorem">higher homotopy van Kampen theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nerve+theorem">nerve theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitehead%27s+theorem">Whitehead's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hurewicz+theorem">Hurewicz theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Galois+theory">Galois theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+hypothesis">homotopy hypothesis</a>-theorem</p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#HurewiczHomomorphismSection'>Hurewicz homomorphism</a></li> <ul> <li><a href='#for_topological_spaces'>For topological spaces</a></li> <li><a href='#ForSpectra'>For spectra</a></li> </ul> <li><a href='#HurewiczTheorem'>Hurewicz theorem</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>The first nonzero <a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a> and <a class="existingWikiWord" href="/nlab/show/ordinary+homology">ordinary</a>/<a class="existingWikiWord" href="/nlab/show/singular+homology">singular homology</a> <a class="existingWikiWord" href="/nlab/show/homology+group">group</a> of a <a class="existingWikiWord" href="/nlab/show/simply-connected+topological+space">simply-connected topological space</a> occur in the same dimension and are <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphic</a>.</p> <h2 id="HurewiczHomomorphismSection">Hurewicz homomorphism</h2> <h3 id="for_topological_spaces">For topological spaces</h3> <div class="num_defn" id="HurewiczHomomorphism"> <h6 id="definition">Definition</h6> <p><strong>(Hurewicz homomorphism)</strong></p> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(X,x)</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/pointed+object">pointed</a> <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>, the <strong>Hurewicz homomorphism</strong> is the <a class="existingWikiWord" href="/nlab/show/function">function</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Φ</mi><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><msub><mi>π</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>H</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \Phi \;\colon\; \pi_k(X,x) \to H_k(X) </annotation></semantics></math></div> <p>from the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>th <a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(X,x)</annotation></semantics></math> to the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>th <a class="existingWikiWord" href="/nlab/show/singular+homology">singular homology</a> group defined by sending</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Φ</mi><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mo stretchy="false">(</mo><mi>f</mi><mo lspace="verythinmathspace">:</mo><msup><mi>S</mi> <mi>k</mi></msup><mo>→</mo><mi>X</mi><msub><mo stretchy="false">)</mo> <mo>∼</mo></msub><mo>↦</mo><msub><mi>f</mi> <mo>*</mo></msub><mo stretchy="false">[</mo><msub><mi>S</mi> <mi>k</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex"> \Phi \;\colon\; (f \colon S^k \to X)_{\sim} \mapsto f_*[S_k] </annotation></semantics></math></div> <p>any representative singular <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-sphere <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> to the push-forward along <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> of the <a class="existingWikiWord" href="/nlab/show/fundamental+class">fundamental class</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><msub><mi>S</mi> <mi>k</mi></msub><mo stretchy="false">]</mo><mo>∈</mo><msub><mi>H</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><msup><mi>S</mi> <mi>k</mi></msup><mo stretchy="false">)</mo><mo>≃</mo><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">[S_k] \in H_k(S^k) \simeq \mathbb{Z}</annotation></semantics></math>.</p> </div> <div class="num_remark"> <h6 id="remark">Remark</h6> <p>The Hurewicz homomorphism is a <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Φ</mi><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><msub><mi>π</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>→</mo><msub><mi>H</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \Phi \;\colon\; \pi_k(-) \to H_k(-) </annotation></semantics></math></div> <p>between <a class="existingWikiWord" href="/nlab/show/functors">functors</a> <a class="existingWikiWord" href="/nlab/show/pointed+topological+spaces"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <msup><mi>Top</mi> <mrow><mo>*</mo><mo stretchy="false">/</mo></mrow></msup> </mrow> <annotation encoding="application/x-tex">Top^{\ast/}</annotation> </semantics> </math></a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Ab">Ab</a>.</p> </div> <h3 id="ForSpectra">For spectra</h3> <p>The above construction has an immediate analog in <a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable homotopy theory</a>:</p> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/ring">ring</a>, its <a class="existingWikiWord" href="/nlab/show/Eilenberg-MacLane+spectrum">Eilenberg-MacLane spectrum</a> is an <a class="existingWikiWord" href="/nlab/show/E-infinity+ring">E-infinity ring</a> and hence receives a canonical <a class="existingWikiWord" href="/nlab/show/unit">unit</a> homomorphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕊</mi><mo>⟶</mo><mi>H</mi><mi>R</mi></mrow><annotation encoding="application/x-tex">\mathbb{S} \longrightarrow H R</annotation></semantics></math> from the <a class="existingWikiWord" href="/nlab/show/sphere+spectrum">sphere spectrum</a>.</p> <p>Under <a class="existingWikiWord" href="/nlab/show/smash+product">smash product</a> and passing to <a class="existingWikiWord" href="/nlab/show/stable+homotopy+group">stable homotopy group</a>, this induces a <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a> from <a class="existingWikiWord" href="/nlab/show/stable+homotopy+groups">stable homotopy groups</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> (its <a class="existingWikiWord" href="/nlab/show/stable+homotopy+homology+theory">stable homotopy homology theory</a>) to <a class="existingWikiWord" href="/nlab/show/ordinary+homology">ordinary homology</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> with <a class="existingWikiWord" href="/nlab/show/coefficients">coefficients</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>π</mi> <mo>•</mo> <mi>st</mi></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msub><mi>π</mi> <mo>•</mo></msub><mo stretchy="false">(</mo><mi>𝕊</mi><mo>∧</mo><msub><mi>X</mi> <mo>+</mo></msub><mo stretchy="false">)</mo><mo>⟶</mo><msub><mi>π</mi> <mo>•</mo></msub><mo stretchy="false">(</mo><mi>H</mi><mi>R</mi><mo>∧</mo><msub><mi>X</mi> <mo>+</mo></msub><mo stretchy="false">)</mo><mo>≃</mo><msub><mi>H</mi> <mo>•</mo></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>R</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \pi^{st}_\bullet(X) \;\simeq\; \pi_\bullet( \mathbb{S} \wedge X_+ ) \longrightarrow \pi_\bullet( H R \wedge X_+ ) \simeq H_\bullet(X,R) \,. </annotation></semantics></math></div> <p>If here the <a class="existingWikiWord" href="/nlab/show/Eilenberg-MacLane+spectrum">Eilenberg-MacLane spectrum</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>H</mi><mi>R</mi></mrow><annotation encoding="application/x-tex">H R</annotation></semantics></math> is replaced by any other <a class="existingWikiWord" href="/nlab/show/E-infinity+ring+spectrum">E-infinity ring spectrum</a> the analogous construction is called the <em><a class="existingWikiWord" href="/nlab/show/Boardman+homomorphism">Boardman homomorphism</a></em>.</p> <h2 id="HurewiczTheorem">Hurewicz theorem</h2> <p>In general, <a class="existingWikiWord" href="/nlab/show/homology+theory">homology</a> is a coarser invariant than <a class="existingWikiWord" href="/nlab/show/homotopy+type">homotopy</a>, and <a class="existingWikiWord" href="/nlab/show/ordinary+homology">ordinary homology</a> is the coarsest of all <a class="existingWikiWord" href="/nlab/show/generalized+homology">generalized homology</a>-invariants. Therefore the Hurewicz homomorphism (Def. <a class="maruku-ref" href="#HurewiczHomomorphism"></a>) is bound to lose information, in general.</p> <p>Indeed, the Hurewicz homomorphism exhibits a kind of abelianization of the <a class="existingWikiWord" href="/nlab/show/homotopy+type">homotopy type</a> (in the sense of <a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable homotopy theory</a>, see at <em><a class="existingWikiWord" href="/nlab/show/Boardman+homomorphism">Boardman homomorphism</a></em> for more on this), a statement that in low degrees is true in the plain sense of <em><a class="existingWikiWord" href="/nlab/show/abelianization">abelianization</a></em>: this is the content of Prop. <a class="maruku-ref" href="#HurewiczTheoremInDegreeZero"></a> and Prop. <a class="maruku-ref" href="#HurewiczTheoremInDegreeOne"></a> below.</p> <p>While in higher degrees the Hurewicz homomorphism is in general far from being an isomorphism, the thrust of the Hurewicz theorem is to show that high connectivity is a sufficient condition to ensure that it is. This is Theorem <a class="maruku-ref" href="#HurewiczTheoremInDegreeTwoAndHigher"></a> below.</p> <p> <div class='num_prop' id='HurewiczTheoremInDegreeZero'> <h6>Proposition</h6> <p><strong>(in degree 0)</strong> <br /> For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> a topological space, the Hurewicz homomorphism (Def. <a class="maruku-ref" href="#HurewiczHomomorphism"></a>) in degree 0 exhibits an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a> between the <a class="existingWikiWord" href="/nlab/show/free+abelian+group">free abelian group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℤ</mi><mo stretchy="false">[</mo><msub><mi>π</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">\mathbb{Z}[\pi_0(X)]</annotation></semantics></math> on the set of <a class="existingWikiWord" href="/nlab/show/connected+components">connected components</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> and the degree-0 singular homlogy:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>ℤ</mi><mo stretchy="false">[</mo><msub><mi>π</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>≃</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \mathbb{Z}[\pi_0(X)] \simeq H_0(X) \,. </annotation></semantics></math></div> <p></p> </div> </p> <p>Since a <a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a> in <a class="existingWikiWord" href="/nlab/show/positive+number">positive</a> degree depends on the <a class="existingWikiWord" href="/nlab/show/homotopy+type">homotopy type</a> of the <a class="existingWikiWord" href="/nlab/show/connected+component">connected component</a> of the base point, while the <a class="existingWikiWord" href="/nlab/show/ordinary+homology">ordinary homology</a> does not depend on a basepoint, it is interesting to compare these groups only for the case that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is connected:</p> <p> <div class='num_prop' id='HurewiczTheoremInDegreeOne'> <h6>Proposition</h6> <p><strong>(in degree 1)</strong> <br /> For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/connected+topological+space">connected topological space</a> the <a class="existingWikiWord" href="/nlab/show/Hurewicz+homomorphism">Hurewicz homomorphism</a> (Def. <a class="maruku-ref" href="#HurewiczHomomorphism"></a>) in degree 1</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Φ</mi><mo lspace="verythinmathspace">:</mo><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>⟶</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \Phi \colon \pi_1(X,x) \longrightarrow H_1(X) </annotation></semantics></math></div> <p>is <a class="existingWikiWord" href="/nlab/show/surjection">surjective</a>. Its <a class="existingWikiWord" href="/nlab/show/kernel">kernel</a> is the <a class="existingWikiWord" href="/nlab/show/commutator+subgroup">commutator subgroup</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi_1(X,x)</annotation></semantics></math>. Therefore it induces an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a> from the <a class="existingWikiWord" href="/nlab/show/abelianization">abelianization</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>x</mi><msup><mo stretchy="false">)</mo> <mi>ab</mi></msup><mo>≔</mo><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mo stretchy="false">[</mo><msub><mi>π</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">\pi_1(X,x)^{ab} \coloneqq \pi_1(X,x)/[\pi_1,\pi_1]</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>x</mi><msup><mo stretchy="false">)</mo> <mi>ab</mi></msup><mover><mo>⟶</mo><mo>≃</mo></mover><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \pi_1(X,x)^{ab} \overset{\simeq}{\longrightarrow} H_1(X) \,. </annotation></semantics></math></div> <p></p> </div> </p> <p> <div class='num_theorem' id='HurewiczTheoremInDegreeTwoAndHigher'> <h6>Theorem</h6> <p><strong>(in degree <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≥</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">\geq 2</annotation></semantics></math>)</strong> <br /> If a <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a> (or <a class="existingWikiWord" href="/nlab/show/infinity-groupoid">infinity-groupoid</a>) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/n-connected+object+in+an+%28infinity%2C1%29-topos">(n-1)-connected</a> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">n \geq 2</annotation></semantics></math> then the <a class="existingWikiWord" href="/nlab/show/Hurewicz+homomorphism">Hurewicz homomorphism</a>, Def. <a class="maruku-ref" href="#HurewiczHomomorphism"></a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Φ</mi><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><msub><mi>π</mi> <mi>n</mi></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>⟶</mo><msub><mi>H</mi> <mi>n</mi></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \Phi \;\colon\; \pi_n(X,x) \longrightarrow H_n(X) </annotation></semantics></math></div> <p>is an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a>.</p> <p></p> </div> </p> <p>A proof is spelled out for instance with theorem 2.1 in (<a href="#Hutchings">Hutchings</a>).</p> <div class="num_remark"> <h6 id="remark_2">Remark</h6> <p>With the <a class="existingWikiWord" href="/nlab/show/universal+coefficient+theorem">universal coefficient theorem</a> a corresponding statement follows for the <a class="existingWikiWord" href="/nlab/show/cohomology+group">cohomology group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H^n(X,A)</annotation></semantics></math>.</p> </div> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Boardman+homomorphism">Boardman homomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hopf+degree+theorem">Hopf degree theorem</a></p> </li> <li> <p>The <em><a class="existingWikiWord" href="/nlab/show/Adams+spectral+sequence">Adams spectral sequence</a></em> is a vast generalization of the computation of <a class="existingWikiWord" href="/nlab/show/homotopy+groups">homotopy groups</a> from <a class="existingWikiWord" href="/nlab/show/cohomology+groups">cohomology groups</a> via the Hurewicz theorem.</p> </li> </ul> <h2 id="references">References</h2> <p>The original reference:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Witold+Hurewicz">Witold Hurewicz</a>: <em>Beiträge zur Topologie der Deformationen (II. Homotopie- und Homologigruppen)</em>, Proc. Akad. Wet. Amsterdam <strong>38</strong> (1935) 521–528 [<a href="https://dwc.knaw.nl/DL/publications/PU00016726.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Hurewicz-BeitraegeII.pdf" title="pdf">pdf</a>]</li> </ul> <p>reproduced on pages 341–348 of:</p> <ul> <li>Krystyna Kuperberg (ed.): <em>Collected Works of Witold Hurewicz</em>, American Mathematical Society (1995) [ISBN 0-8218-0011-6, <a href="https://bookstore.ams.org/cworks-4">ams:cworks-4</a>]</li> </ul> <p>The <a class="existingWikiWord" href="/nlab/show/simplicial+homotopy+theory">simplicial</a> version is due to</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Daniel+M.+Kan">Daniel M. Kan</a>, <em>The Hurewicz theorem</em>, 1958 Symposium internacional de topología algebraica (International symposium on algebraic topology), pp. 225–231 Universidad Nacional Autónoma de México and UNESCO, Mexico City.</li> </ul> <p>The basic statement is for instance in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Allen+Hatcher">Allen Hatcher</a>, <em>Algebraic Topology</em> (<a href="http://www.math.cornell.edu/~hatcher/AT/ATpage.html">web</a>)</li> </ul> <p>Lecture notes:</p> <ul> <li id="Hutchings"> <p><a class="existingWikiWord" href="/nlab/show/Michael+Hutchings">Michael Hutchings</a>, <em>Introduction to higher homotopy groups and obstruction theory</em> (2011) (<a href="http://math.berkeley.edu/~hutching/teach/215b-2011/homotopy.pdf">pdf</a>)</p> </li> <li id="Kobin16"> <p>Andrew Kobin, Section 7.3 of: <em>Algebraic Topology</em>, 2016 (<a class="existingWikiWord" href="/nlab/files/KobinAT2016.pdf" title="pdf">pdf</a>)</p> </li> </ul> <p>For discussion in <a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable homotopy theory</a> modeled on <a class="existingWikiWord" href="/nlab/show/symmetric+spectra">symmetric spectra</a> is in</p> <ul> <li id="Schwede12"><a class="existingWikiWord" href="/nlab/show/Stefan+Schwede">Stefan Schwede</a>, part II, prop. 6.30 of <em><a class="existingWikiWord" href="/nlab/show/Symmetric+spectra">Symmetric spectra</a></em>, 2012 (<a href="http://www.math.uni-bonn.de/~schwede/SymSpec-v3.pdf">pdf</a>)</li> </ul> <p>See also:</p> <ul> <li>Wikipedia: <em><a href="http://en.wikipedia.org/wiki/Hurewicz_theorem">Hurewicz theorem</a></em></li> </ul> <p>In the generality of the <a class="existingWikiWord" href="/nlab/show/Boardman+homomorphism">Boardman homomorphism</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Frank+Adams">Frank Adams</a>, Part II.6 of <em><a class="existingWikiWord" href="/nlab/show/Stable+homotopy+and+generalised+homology">Stable homotopy and generalised homology</a></em>, 1974</li> </ul> <p>Discussion of the stable Hurewicz homomorphism includes</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Akhil+Mathew">Akhil Mathew</a>, <em>Torsion exponents in stable homotopy and the Hurewicz homomorphism</em>, Algebr. Geom. Topol. 16 (2016) 1025-1041 (<a href="https://arxiv.org/abs/1501.07561">arXiv:1501.07561</a>)</li> </ul> <p>Proof of the <a class="existingWikiWord" href="/nlab/show/Hurewicz+theorem">Hurewicz theorem</a> in <a class="existingWikiWord" href="/nlab/show/homotopy+type+theory">homotopy type theory</a>, hence in general <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-toposes">(∞,1)-toposes</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Daniel+Christensen">Daniel Christensen</a>, <a class="existingWikiWord" href="/nlab/show/Luis+Scoccola">Luis Scoccola</a>, <em>The Hurewicz theorem in Homotopy Type Theory</em> (<a href="https://arxiv.org/abs/2007.05833">arXiv:2007.05833</a>)</li> </ul> <p>Discussion of <a class="existingWikiWord" href="/nlab/show/persistent+homotopy">persistent homotopy</a> with focus on the <a class="existingWikiWord" href="/nlab/show/van+Kampen+theorem">van Kampen theorem</a>, <a class="existingWikiWord" href="/nlab/show/excision">excision</a> and the <a class="existingWikiWord" href="/nlab/show/Hurewicz+theorem">Hurewicz theorem</a>:</p> <ul> <li>Mehmet Ali Batan, Mehmetcik Pamuk, Hanife Varli, <em>Persistent Homotopy</em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://arxiv.org/abs/1909.08865">arXiv:1909.08865</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on October 26, 2024 at 18:10:34. See the <a href="/nlab/history/Hurewicz+theorem" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Hurewicz+theorem" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/3205/#Item_16">Discuss</a><span class="backintime"><a href="/nlab/revision/Hurewicz+theorem/28" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Hurewicz+theorem" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Hurewicz+theorem" accesskey="S" class="navlink" id="history" rel="nofollow">History (28 revisions)</a> <a href="/nlab/show/Hurewicz+theorem/cite" style="color: black">Cite</a> <a href="/nlab/print/Hurewicz+theorem" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Hurewicz+theorem" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>