CINXE.COM
Search results for: saccharomyces boulardii
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: saccharomyces boulardii</title> <meta name="description" content="Search results for: saccharomyces boulardii"> <meta name="keywords" content="saccharomyces boulardii"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="saccharomyces boulardii" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="saccharomyces boulardii"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 93</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: saccharomyces boulardii</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> The Antagonistic/Synergistic Effect of Probiotic Yeast Saccharomyces boulardii on Candida glabrata Adhesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zorica%20Tomi%C4%8Di%C4%87">Zorica Tomičić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ru%C5%BEica%20Tomi%C4%8Di%C4%87"> Ružica Tomičić</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Raspor"> Peter Raspor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growing resistance of pathogenic yeast Candida glabrata to many classes of antifungal drugs has stimulated efforts to discover new agents to combat a rising number of invasive C. glabrata infections, which deserves a great deal of concern due to the high mortality rate in immunocompromised populations. One promising strategy is the use of probiotic microorganisms, which, when administered in adequate amounts, confers a health benefit. A selected number of probiotic organisms, Saccharomyces boulardii among them, have been tested as potential biotherapeutic agents. The aim of this study was to investigate the effect of the probiotic yeast S. boulardii on the adhesion of clinical isolates of C. glabrata at different temperatures, pH values, and in the presence of three clinically important antifungal drugs, such as fluconazole, itraconazole and amphotericin B. The method used to assess adhesion was crystal violet staining. The selection of antimycotics concentrations used in the adhesion assay was based on minimum inhibitory concentrations (MICs) obtained by the preliminarily performed microdilution modification of the Reference method for broth dilution antifungal susceptibility testing of yeast (Clinical and Laboratory Standards Institute (CLSI), standard M27-A2). the results showed that despite the nonadhesiveness of S. boulardii cells, probiotic yeast significantly suppressed the adhesion of C. glabrata strains. Besides, at specific strain ratios, a slight stimulatory effect was observed in some C. glabrata strains, which highlights the importance of strain specificity and opens up further research interests. When environmental conditions are considered, temperature and pH significantly influenced co-culture adhesion of C. glabrata and S. boulardii. The adhesion of C. glabrata strains was relatively equally reduced over all tested temperature range (28°C, 37°C, 39°C and 42°C) in the presence of S. boulardii cells, while the adhesion of a few C. glabrata strains were significantly stimulated at 28°C and suppressed at 42°C. Further, the adhesion was highly dependent on pH, with the highest adherence at pH 4 and lowest at pH 8.5. It was observed that S. boulardii did not manage to suppress the adhesion of C. glabrata strains at high pH. Antimycotics on the other hand showed a greater impact, since S. boulardii failed to affect co-culture adhesion at higher antimycotics concentrations. As expected, exposure to various concentrations of amphotericin B significantly reduced the adherence ability of C.glabrata strains both in a single culture and co-culture with S. boulardii. Therefore, it can be speculated that S. boulardii could substitute the effect of antimycotics in a range concentrations and with specific type of strains. This would certainly change the view on the treatment of yeast infections in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=antimycotics" title=" antimycotics"> antimycotics</a>, <a href="https://publications.waset.org/abstracts/search?q=candida%20glabrata" title=" candida glabrata"> candida glabrata</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20boulardii" title=" saccharomyces boulardii"> saccharomyces boulardii</a> </p> <a href="https://publications.waset.org/abstracts/171716/the-antagonisticsynergistic-effect-of-probiotic-yeast-saccharomyces-boulardii-on-candida-glabrata-adhesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Development of Probiotic Edible Film Coated Extruded Food Product</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manab%20Bandhu%20Bera">Manab Bandhu Bera</a>, <a href="https://publications.waset.org/abstracts/search?q=Navdeep%20Singh"> Navdeep Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Paramjit%20Singh%20Panesar"> Paramjit Singh Panesar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In view of exploiting the health benefits of probiotic yeast S.boulardii NCDC 363 and make it available in the form of non-dairy food products, study was undertaken. In this, probiotic yeast S.boulardii NCDC 363 was incorporated in the edible film made from sodium alginate (SA), whey protein concentrate (WPC) and glycerol (50%). Response surface methodology was used to optimize process variables such as; concentration of SA (0.25-0.75%), WPC (1-2%) and temperature (70-80°C) and also to investigate effect of these process variables on viability of probiotic yeast and hardness when applied as an edible coat on extruded food products. Accelerated storage stability of optimized probiotic extruded food products samples was determined at 38 C and 90% RH. The optimized products were packed in high-density polyethylene (HDPE) and aluminum laminated polyethylene (ALP) pouches at 38°C and relative humidity maintained was 90%. It was observed that product stored in ALP had better stability in terms of moisture absorption, hardness and viability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probiotic%20yeast" title="probiotic yeast">probiotic yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=extruded%20food%20product" title=" extruded food product"> extruded food product</a>, <a href="https://publications.waset.org/abstracts/search?q=WPC" title=" WPC"> WPC</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a> </p> <a href="https://publications.waset.org/abstracts/51806/development-of-probiotic-edible-film-coated-extruded-food-product" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Concentration of D-Pinitol from Carob Kibble Using Submerged Fermentation by Saccharomyces cerevisiae </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Huong%20Vu">Thi Huong Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Jayasena"> Vijay Jayasena</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongxiang%20Fang"> Zhongxiang Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Dykes"> Gary Dykes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> D-pinitol (3-O-methyl ether of D-chiro-inosito) has been known to have health benefits for diabetic patients. Carob kibble has received attention due to the presence of high value D-pinitol and polyphenol antioxidants. D-pinitol was concentrated from carob kibble using submerged fermentation with Saccharomyces cerevisiae. Total carbohydrates and D-pinitol were determined by the phenol-sulphuric acid method and HPLC, respectively. The content of D-pinitol increased from approximately 43 to 70 mg/g dry weight after fermentation. The yeast consumed over 70% of total carbohydrates in carob kibble without any negative effect on D-pinitol content. A range of substrate medium pH’s from 5.0 – 7.0 had no significant effect on the removal of carbohydrates and D-pinitol. This method may provide a practical solution for production of D-pinitol from carob in a cost effective manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carob%20kibble" title="carob kibble">carob kibble</a>, <a href="https://publications.waset.org/abstracts/search?q=d-pinitol" title=" d-pinitol"> d-pinitol</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20fermentation" title=" submerged fermentation"> submerged fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20carbohydrates" title=" total carbohydrates"> total carbohydrates</a> </p> <a href="https://publications.waset.org/abstracts/54361/concentration-of-d-pinitol-from-carob-kibble-using-submerged-fermentation-by-saccharomyces-cerevisiae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Efficacy of Microbial Metabolites Obtained from Saccharomyces cerevisiae as Supplement for Quality Milk Production in Dairy Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20ur%20Rahman">Sajjad ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Azam"> Mariam Azam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukarram%20Bashir"> Mukarram Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Seemal%20Javaid"> Seemal Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoun%20Muhammad"> Aoun Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir"> Muhammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawad"> Jawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannan%20Khan"> Hannan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zohaib"> Muhammad Zohaib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Partially fermented soya hulls and wheat bran through Saccharomyces cerevisiae (DL-22 S/N) substantiated as a natural source for quality milk production. Saccharomyces cerevisiae (DL-22 S/N) were grown under in-vivo conditions and processed through two-step fermentation with substrates. The extra pure metabolites (XPM) were dried and processed for maintaining 1mm mesh size particles for supplementation of pelleted feed. Two groups of a cow (Holstein Friesian) having 8 animals of similar age and lactation were given the experimental concentrates. Group A was fed daily with 12gm of XPM and 22% protein-pelleted feed, while Group B was provided with no metabolites in their feed. In thirty-nine days of trial, improvement in the overall health, body score, milk protein, milk fat, ash, and solid not fat (SNF), yield, and incidence rate of mastitis was observed. The collected data revealed an improvement in milk production of 2.02 liter/h/d. However, a reduction (3.75%) in the milk fats and an increase in the milk SNF was around 0.58%. The ash content ranged between 6.4-7.5%. The incidence of mastitis was reduced to less than 2%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20metabolites" title="microbial metabolites">microbial metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title=" milk production"> milk production</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites" title=" post-biotic metabolites"> post-biotic metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity" title=" immunity"> immunity</a> </p> <a href="https://publications.waset.org/abstracts/165949/efficacy-of-microbial-metabolites-obtained-from-saccharomyces-cerevisiae-as-supplement-for-quality-milk-production-in-dairy-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Effect of Alcoholic and Acetous Fermentations on Phenolic Acids of Kei-Apple (Dovyalis Caffra L.) Fruit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neil%20Jolly">Neil Jolly</a>, <a href="https://publications.waset.org/abstracts/search?q=Louisa%20%20Beukes"> Louisa Beukes</a>, <a href="https://publications.waset.org/abstracts/search?q=Santiago%20Benito-SaEz"> Santiago Benito-SaEz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kei-apple is a tree found on the African continent. Limited information exists on the effect of alcoholic and acetous fermentation on the phytochemicals. The fruit has increased L-malic, ascorbic, and phenolic acids. Juice was co-inoculated with Schizosaccharomyces pombe and Saccharomyces cerevisiae to induce alcoholic fermentation and acetous fermentation using acetic acid bacteria. Saccharomyces cerevisiae+S. pombe wines and vinegars had highest pH. Total acidity, soluble solids and L-malic acid decreased during alcoholic and acetous fermentation with highest in S. cerevisiae wines and vinegars. Volatile acidity was highest in S. pombe vinegars but not different from S. cerevisiae and S. cerevisiae+S. pombe. Gallic acid was highest in S. pombe wines and vinegars. Syringic acid was highest in S. cerevisiae wines and vinegars. S. cerevisiae+S. pombe wines were highest in caffeic, p-coumaric and protocatechuic acids. Schizosaccharomyces pombe vinegars were highest in caffeic and p-coumaric acids. Ferulic and sinapic acids were highest in S. pombe and S. cerevisiae wines, respectively. Chlorogenic acid was most abundant in both wines and vinegars. Saccharomyces cerevisiae+S. pombe and S. cerevisiae had a positive effect on most phenolic acids. Saccharomyces cerevisiae +acetic acid bacteria had an increased effect on syringic and chlorogenic acids. Schizosaccharomyces pombe+acetic acid bacteria resulted in an increase in gallic, caffeic and p-coumaric acids. Acetic acid bacteria had minimal performance with respect to volatile acidity production in comparison to commercial vinegars. Acetic acid bacteria selection should therefore be reconsidered and the decrease of certain phenolic acids during acetous fermentation needs to be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid%20bacteria" title="acetic acid bacteria">acetic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolics" title=" phenolics"> phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=schizosaccharomyces%20pombe" title=" schizosaccharomyces pombe"> schizosaccharomyces pombe</a> </p> <a href="https://publications.waset.org/abstracts/133987/effect-of-alcoholic-and-acetous-fermentations-on-phenolic-acids-of-kei-apple-dovyalis-caffra-l-fruit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> FWGE Production From Wheat Germ Using Co-culture of Saccharomyces cerevisiae and Lactobacillus plantarum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valiollah%20Babaeipour">Valiollah Babaeipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Rahaie"> Mahdi Rahaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> food supplements are rich in specific nutrients and bioactive compounds that eliminate free radicals and improve cellular metabolism. The major bioactive compounds are found in bran and cereal sprouts. Secondary metabolites of these microorganisms have antioxidant properties that can be used alone or in combination with chemotherapy and radiation therapy to treat cancer. Biologically active compounds such as benzoquinone derivatives extracted from fermented wheat germ extract (FWGE) have several positive effects on the overall state of human health and strengthen the immune system. The present work describes the discontinuous fermentation of raw wheat germ for FWGE production through the simultaneous culture process using the probiotic strains of Saccharomyces cerevisiae, Lactobacillus plantarum, and the possibility of using solid waste. To increase production efficiency, first to select important factors in the optimization of each fermentation process, using a factorial statistical scheme of stirring fraction (120 to 200 rpm), dilution of solids to solvent (1 to 8-12), fermentation time (16 to 24 hours) and strain to wheat germ ratio (20% to 50%) were studied and then simultaneous culture was performed to increase the yields of 2 and 6 dimethoxybenzoquinone (2,6-DMBQ). Since 2 and 6 dimethoxy benzoquinone were fermented as the main biologically active compound in wheat germ extract, UV-Vis analysis was performed to confirm the presence of 2 and 6 dimethoxy benzoquinone in the final product. In addition, 2,6-DMBQ of some products was isolated in a non-polar C-18 column and quantified using high performance liquid chromatography (HPLC). Based on our findings, it can be concluded that the increase of 2 and 6 dimethoxybenzoquinone in the simultaneous culture of Saccharomyces cerevisiae - Lactobacillus plantarum compared to pure culture of Saccharomyces cerevisiae (from 1.89 mg / g) to 28.9% (2.66 mg / g) Increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat%20germ" title="wheat germ">wheat germ</a>, <a href="https://publications.waset.org/abstracts/search?q=FWGE" title=" FWGE"> FWGE</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus%20plantarum" title=" lactobacillus plantarum"> lactobacillus plantarum</a>, <a href="https://publications.waset.org/abstracts/search?q=co-culture" title=" co-culture"> co-culture</a>, <a href="https://publications.waset.org/abstracts/search?q=2" title=" 2"> 2</a>, <a href="https://publications.waset.org/abstracts/search?q=6-DMBQ" title=" 6-DMBQ"> 6-DMBQ</a> </p> <a href="https://publications.waset.org/abstracts/150707/fwge-production-from-wheat-germ-using-co-culture-of-saccharomyces-cerevisiae-and-lactobacillus-plantarum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Effect of Initial pH and Fermentation Duration on Total Phenolic Content and Antioxidant Activity of Carob Kibble Fermented with Saccharomyces cerevisiae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Huong%20Vu">Thi Huong Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haelee%20Fenton"> Haelee Fenton</a>, <a href="https://publications.waset.org/abstracts/search?q=Thi%20Huong%20Tra%20Nguyen"> Thi Huong Tra Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Dykes"> Gary Dykes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a submerged fermentation of carob kibble with Saccharomyces cerevisiae (S. cerevisiae) was performed. The total phenolic content and antioxidant activity in fermented carob kibble were determined by Folin–Ciocalteu method and scavenging capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The study showed that S. cerevisiae improved total phenolic content by 45 % and 50 % in acetone and water extracts respectively. Similarly, the antioxidant capacity of water extracts increased by 25 % and 41%, while acetone extracts indicated by 70% and 80% in DPPH and ABTS respectively. It is also found that initial pH 7.0 was more effective in improvement of total phenolic content and antioxidant activity. The efficiency of treatment was recorded at 15 h. This report suggested that submerged fermentation with S. cerevisiae is a potential and cost effective manner to further increase bioactive compounds in carob kibble, which are in use for food, cosmetic and pharmaceutical industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=carob%20kibble" title=" carob kibble"> carob kibble</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20fermentation" title=" submerged fermentation"> submerged fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolics" title=" total phenolics"> total phenolics</a> </p> <a href="https://publications.waset.org/abstracts/54669/effect-of-initial-ph-and-fermentation-duration-on-total-phenolic-content-and-antioxidant-activity-of-carob-kibble-fermented-with-saccharomyces-cerevisiae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> The Effect of Saccharomyces cerevisiae Live Yeast Culture on Microbial Nitrogen Supply to Small Intestine in Male Kivircik Yearlings Fed with Different Ratio of Forage and Concentrate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurcan%20Cetinkaya">Nurcan Cetinkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadide%20Hulya%20Ozdemir"> Nadide Hulya Ozdemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to investigate the effect of Saccharomyces cerevisiae (SC) live yeast culture on microbial protein supply to the small intestine in Kivircik male yearlings when fed with different ratio of forage and concentrate diets. Four Kivircik male yearlings with permanent rumen canula were used in the experiment. . The treatments were allocated to a 4x4 Latin square design. Diet I consisted of 70% alfalfa hay and 30% concentrate, Diet II consisted of 30% alfalfa hay and 70% concentrate, Diet I and II were supplemented with a SC. Daily urine was collected and stored at -20°C until analysis. Calorimetric methods were used for the determination of urinary allantoin and creatinin levels. The estimated microbial N supply to small intestine for Diets I, I+SC, II and II+SC were 2.51, 2.64, 2.95 and 3.43 g N/d respectively. Supplementation of Diets I and II with SC significantly affected the allantoin levels in µmol/W0. 75 (p<0.05). Mean creatinine values in µmol/W0. 75 and allantoin:creatinin ratios were not significantly different among diets. In conclusion, supplementation with SC live yeast culture had a significant effect on urinary allantoin excretion and microbial protein supply to small intestine in Kivircik yearlings fed with high concentrate Diet II (P<0.05). Hence urinary allantoin excretion may be used as a tool for estimating microbial protein supply in Kivircık yearlings. However, further studies are necessary to understand the metabolism of Saccharomyces cerevisiae live yeast culture with different forage: concentrate ratio in Kıvırcık Yearlings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allantoin" title="allantoin">allantoin</a>, <a href="https://publications.waset.org/abstracts/search?q=creatinin" title=" creatinin"> creatinin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kivircik%20yearling" title=" Kivircik yearling"> Kivircik yearling</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20nitrogen" title=" microbial nitrogen"> microbial nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisia" title=" Saccharomyces cerevisia"> Saccharomyces cerevisia</a> </p> <a href="https://publications.waset.org/abstracts/35729/the-effect-of-saccharomyces-cerevisiae-live-yeast-culture-on-microbial-nitrogen-supply-to-small-intestine-in-male-kivircik-yearlings-fed-with-different-ratio-of-forage-and-concentrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Immunoprotective Role of Baker's Yeast (Saccharomyces cerevisiae) against Experimentally Induced Aflatoxicosis in Broiler Chicks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zain%20Ul%20Abadeen">Zain Ul Abadeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zargham%20Khan"> Muhammad Zargham Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Kashif%20Saleemi"> Muhammad Kashif Saleemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahrar%20Khan"> Ahrar Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ijaz%20Javed%20Hassan"> Ijaz Javed Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Khatoon"> Aisha Khatoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Qasim%20Altaf"> Qasim Altaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxins are secondary metabolites produced by toxigenic fungi, and there are four types of aflatoxins include AFB1, AFB2, AFG1 and AFG2. Aflatoxin B1 (AFB1) is considered as most toxic form. It is mainly responsible for the contamination of poultry feed and produces a condition called aflatoxicosis leads to immunosuppression in poultry birds. Saccharomyces cerevisiae is a single cell microorganism and acts as a source of growth factors, minerals and amino acids which improve the immunity and digestibility in poultry birds as probiotics. Saccharomyces cerevisiae is well recognized to cause the biological degradation of mycotoxins (toxin binder) because its cell wall contains β-glucans and mannans which specifically bind with aflatoxins and reduce their absorption or transfer them to some non-toxic compounds. The present study was designed to investigate the immunosuppressive effects of aflatoxins in broiler chicks and the reduction of severity of these effects by the use of Baker’s Yeast (Saccharomyces cerevisiae). One-day-old broiler chicks were procured from local hatchery and were divided into various groups (A-I). These groups were treated with different levels of AFB1 @ 400 µg/kg and 600 µg/kg along with different levels of Baker’s Yeast (Saccharomyces cerevisiae) 0.1% and 0.5 % in the feed. The total duration of the experiment was six weeks and different immunological parameters including the cellular immune response by injecting PHA-P (Phytohemagglutinin-P) in the skin of the birds, phagocytic function of mononuclear cells by Carbon clearance assay from blood samples and humoral immune response against intravenously injected sheep RBCs from the serum samples were determined. The birds from each group were slaughtered at the end of the experiment to determine the presence of gross lesions in the immune organs and these tissues were fixed in 10% neutral buffered formalin for histological investigations. The results showed that AFB1 intoxicated groups had reduced body weight gain, feed intake, organs weight and immunological responses compared to the control and Baker’s Yeast (Saccharomyces cerevisiae) treated groups. Different gross and histological degenerative changes were recorded in the immune organs of AFB1 intoxicated groups compared to control and Baker’s Yeast (Saccharomyces cerevisiae) treated groups. The present study concluded that Baker’s Yeast (Saccharomyces cerevisiae) addition in the feed helps to ameliorate the immunotoxigenic effects produced by AFB1 in broiler chicks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxins" title="aflatoxins">aflatoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20weight%20gain" title=" body weight gain"> body weight gain</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20intake" title=" feed intake"> feed intake</a>, <a href="https://publications.waset.org/abstracts/search?q=immunological%20response" title=" immunological response"> immunological response</a>, <a href="https://publications.waset.org/abstracts/search?q=toxigenic%20effect" title=" toxigenic effect"> toxigenic effect</a> </p> <a href="https://publications.waset.org/abstracts/72717/immunoprotective-role-of-bakers-yeast-saccharomyces-cerevisiae-against-experimentally-induced-aflatoxicosis-in-broiler-chicks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Genome Sequencing of the Yeast Saccharomyces cerevisiae Strain 202-3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yina%20A.%20Cifuentes%20Triana">Yina A. Cifuentes Triana</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9s%20M.%20Pinz%C3%B3n%20Vel%C3%A1sco"> Andrés M. Pinzón Velásco</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADo%20E.%20Vel%C3%A1squez%20Lozano"> Marío E. Velásquez Lozano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work the sequencing and genome characterization of a natural isolate of Saccharomyces cerevisiae yeast (strain 202-3), identified with potential for the production of second generation ethanol from sugarcane bagasse hydrolysates is presented. This strain was selected because its capability to consume xylose during the fermentation of sugarcane bagasse hydrolysates, taking into account that many strains of S. cerevisiae are incapable of processing this sugar. This advantage and other prominent positive aspects during fermentation profiles evaluated in bagasse hydrolysates made the strain 202-3 a candidate strain to improve the production of second-generation ethanol, which was proposed as a first step to study the strain at the genomic level. The molecular characterization was carried out by genome sequencing with the Illumina HiSeq 2000 platform paired end; the assembly was performed with different programs, finally choosing the assembler ABYSS with kmer 89. Gene prediction was developed with the approach of hidden Markov models with Augustus. The genes identified were scored based on similarity with public databases of nucleotide and protein. Records were organized from ontological functions at different hierarchical levels, which identified central metabolic functions and roles of the S. cerevisiae strain 202-3, highlighting the presence of four possible new proteins, two of them probably associated with the positive consumption of xylose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulosic%20ethanol" title="cellulosic ethanol">cellulosic ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=genome%20sequencing" title=" genome sequencing"> genome sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=xylose%20consumption" title=" xylose consumption"> xylose consumption</a> </p> <a href="https://publications.waset.org/abstracts/65772/genome-sequencing-of-the-yeast-saccharomyces-cerevisiae-strain-202-3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Effect of Nanoparticles Concentration, pH and Agitation on Bioethanol Production by Saccharomyces cerevisiae BY4743: An Optimization Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeyemi%20Isaac%20Sanusi">Adeyemi Isaac Sanusi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gueguim%20E.%20B.%20Kana"> Gueguim E. B. Kana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoparticles have received attention of the scientific community due to their biotechnological potentials. They exhibit advantageous size, shape and concentration-dependent catalytic, stabilizing, immunoassays and immobilization properties. This study investigates the impact of metallic oxide nanoparticles (NPs) on ethanol production by Saccharomyces cerevisiae BY4743. Nine different nanoparticles were synthesized using precipitation method and microwave treatment. The nanoparticles synthesized were characterized by Fourier Transform Infra-Red spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fermentation processes were carried out at varied NPs concentrations (0 – 0.08 wt%). Highest ethanol concentrations were achieved after 24 h using Cobalt NPs (5.07 g/l), Copper NPs (4.86 g/l) and Manganese NPs (4.74 g/l) at 0.01 wt% NPs concentrations, which represent 13%, 8.7% and 5.4% increase respectively over the control (4.47 g/l). The lowest ethanol concentration (0.17 g/l) was obtained when 0.08 wt% of Silver NPs was used. And lower ethanol concentrations were observed at higher NPs concentration. Ethanol concentration decrease after 24 h for all the processes. In all set up with NPs, the pH was observed to be stable and the stability was directly proportional to nanoparticles concentrations. These findings suggest that the presence of some of the NPs in the bioprocesses has catalytic and pH stabilizing potential. Ethanol production by Saccharomyces cerevisiae BY4743 was enhanced in the presence of Cobalt NPs, Copper NPs and Manganese NPs. Optimization study using response surface methodology (RSM) will further elucidate the impact of these nanoparticles on bioethanol production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agitation" title="agitation">agitation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles%20concentration" title=" nanoparticles concentration"> nanoparticles concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20value" title=" pH value"> pH value</a> </p> <a href="https://publications.waset.org/abstracts/83836/effect-of-nanoparticles-concentration-ph-and-agitation-on-bioethanol-production-by-saccharomyces-cerevisiae-by4743-an-optimization-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Production of High-Content Fructo-Oligosaccharides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Nobre">C. Nobre</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Castro"> C. C. Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=A.-L.%20Hantson"> A.-L. Hantson</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Teixeira"> J. A. Teixeira</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20R.%20Rodrigues"> L. R. Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20De%20Weireld"> G. De Weireld</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fructo-oligosaccharides (FOS) are produced from sucrose by Aureobasidium pullulans in yields between 40-60% (w/w). To increase the amount of FOS it is necessary to remove the small, non-prebiotic sugars, present. Two methods for producing high-purity FOS have been developed: the use of microorganisms able to consume small saccharides; and the use of continuous chromatography to separate sugars: simulated moving bed (SMB). It is herein proposed the combination of both methods. The aim of this study is to optimize the composition of the fermentative broth (in terms of salts and sugars) that will be further purified by SMB. A yield of 0.63 gFOS.g Sucrose-1 was obtained with A. pullulans using low amounts of salts in the initial fermentative broth. By removing the small sugars, Saccharomyces cerevisiae and Zymomonas mobilis increased the percentage of FOS from around 56.0% to 83% (w/w) in average, losing only 10% (w/w) of FOS during the recovery process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fructo-oligosaccharides" title="fructo-oligosaccharides">fructo-oligosaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20treatment" title=" microbial treatment"> microbial treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=Zymomonas%20mobilis" title=" Zymomonas mobilis"> Zymomonas mobilis</a> </p> <a href="https://publications.waset.org/abstracts/16472/production-of-high-content-fructo-oligosaccharides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Metabolic and Adaptive Laboratory Evolutionary Engineering (ALE) of Saccharomyces cerevisiae for Second Generation Biofuel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Yusuf">Farnaz Yusuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Naseem%20A.%20Gaur"> Naseem A. Gaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in environmental concerns, rapid depletion of fossil fuel reserves and intense interest in achieving energy security has led to a global research effort towards developing renewable sources of fuels. Second generation biofuels have attracted more attention recently as the use of lignocellulosic biomass can reduce fossil fuel dependence and is environment-friendly. Xylose is the main pentose and second most abundant sugar after glucose in lignocelluloses. Saccharomyces cerevisiae does not readily uptake and use pentose sugars. For an economically feasible biofuel production, both hexose and pentose sugars must be fermented to ethanol. Therefore, it is important to develop S. cerevisiae host platforms with more efficient xylose utilization. This work aims to construct a xylose fermenting yeast strains with engineered oxido-reductative pathway for xylose metabolism. Engineered strain was further improved by adaptive evolutionary engineering approach. The engineered strain is able to grow on xylose as sole carbon source with the maximum ethanol yield of 0.39g/g xylose and productivity of 0.139g/l/h at 96 hours. The further improvement in strain development involves over expression of pentose phosphate pathway and protein engineering of xylose reductase/xylitol dehydrogenase to change their cofactor specificity in order to reduce xylitol accumulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuel" title="biofuel">biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title=" lignocellulosic biomass"> lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=xylose" title=" xylose"> xylose</a> </p> <a href="https://publications.waset.org/abstracts/60367/metabolic-and-adaptive-laboratory-evolutionary-engineering-ale-of-saccharomyces-cerevisiae-for-second-generation-biofuel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Tetracycline as Chemosensor for Simultaneous Recognition of Al³⁺: Application to Bio-Imaging for Living Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jesus%20Alfredo%20Ortega%20Granados">Jesus Alfredo Ortega Granados</a>, <a href="https://publications.waset.org/abstracts/search?q=Pandiyan%20Thangarasu"> Pandiyan Thangarasu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibiotic tetracycline presents as a micro-contaminant in fresh water, wastewater and soils, causing environmental and health problems. In this work, tetracycline (TC) has been employed as chemo-sensor for the recognition of Al³⁺ without interring other ions, and the results show that it enhances the fluorescence intensity for Al³⁺ and there is no interference from other coexisting cation ions (Cd²⁺, Ni²⁺, Co²⁺, Sr²⁺, Mg²⁺, Fe³⁺, K⁺, Sm³⁺, Ag⁺, Na⁺, Ba²⁺, Zn²⁺, and Mn²⁺). For the addition of Cu²⁺ to [TET-Al³⁺], it appears that the intensity of fluorescence has been quenched. Other combinations of metal ions in addition to TC do not change the fluorescence behavior. The stoichiometry determined by Job´s plot for the interaction of TC with Al³⁺ was found to be 1:1. Importantly, the detection of Al³⁺⁺ successfully employed in the real samples like living cells, and it was found that TC efficiently performs as a fluorescent probe for Al³⁺ ion in living systems, especially in Saccharomyces cerevisiae; this is confirmed by confocal laser scanning microscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemo-sensor" title="chemo-sensor">chemo-sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=recognition%20of%20Al%C2%B3%E2%81%BA%20ion" title=" recognition of Al³⁺ ion"> recognition of Al³⁺ ion</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracycline" title=" tetracycline"> tetracycline</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/94375/tetracycline-as-chemosensor-for-simultaneous-recognition-of-al3-application-to-bio-imaging-for-living-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> The Effect of High-Pressure Processing on the Inactivation of Saccharomyces cerevisiae in Different Concentration of Manuka Honey and Its Relation with ° Brix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Akhmazillah%20Fauzi">Noor Akhmazillah Fauzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mehdi%20Farid"> Mohammed Mehdi Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Filipa%20V.%20Silva"> Filipa V. Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to investigate if different concentration of Manuka honey (as a model food) has a major influence on the inactivation of Saccharomyces cerevisiae (as the testing microorganism) after subjecting it to HPP. Honey samples with different sugar concentrations (20, 30, 40, 50, 60 and 70 °Brix) were prepared aseptically using sterilized distilled water. No dilution of honey was made for the 80 °Brix sample. For the 0 °Brix sample (control), sterilized distilled water was used. Thermal treatment at 55 °C for 10 min (conventionally applied in honey pasteurisation in industry) was carried out for comparison purpose. S. cerevisiae cell numbers in honey samples were established before and after each HPP and thermal treatment. The number of surviving cells was determined after a proper dilution of the untreated and treated samples by the viable plate count method. S. cerevisiae cells, in different honey concentrations (0 to 80 °Brix), subjected to 600 MPa (at ambient temperature) showed an increasing resistance to inactivation with °Brix. A significant correlation (p < 0.05) between cell reduction and °Brix was found. Cell reduction in high pressure-treated samples varied linearly with °Brix (R2 > 0.9), confirming that the baroprotective effect of the food is due to sugar content. This study has practical implications in establishing efficient process design for commercial manufacturing of high sugar food products and on the potential use of HPP for such products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20processing" title="high pressure processing">high pressure processing</a>, <a href="https://publications.waset.org/abstracts/search?q=honey" title=" honey"> honey</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=%C2%B0Brix" title=" °Brix"> °Brix</a> </p> <a href="https://publications.waset.org/abstracts/43341/the-effect-of-high-pressure-processing-on-the-inactivation-of-saccharomyces-cerevisiae-in-different-concentration-of-manuka-honey-and-its-relation-with-brix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Comparative Growth Kinetic Studies of Two Strains Saccharomyces cerevisiae Isolated from Dates and a Commercial Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Chaira">Nizar Chaira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dates, main products of the oases, due to their therapeutic interests, are considered highly nutritious fruit. Several studies on the valuation biotechnology and technology of dates are made, and several products are already prepared. Isolation of the yeast Saccharomyces cerevisiae, naturally presents in a scrap of date, optimization of growth in the medium based on date syrup and production biomass can potentially expand the range of secondary products of dates. To this end, this paper tries to study the suitability for processing dates technology and biotechnology to use the date pulp as a carbon source for biological transformation. Two strains of Saccharomyces cerevisiae isolated from date syrup (S1, S2) and a commercial strain have used for this study. After optimization of culture conditions, production in a fermenter on two different media (date syrup and beet molasses) was performed. This is followed by studying the kinetics of growth, protein production and consumption of sugars in crops strain 1, 2 and the commercial strain and on both media. The results obtained showed that a concentration of 2% sugar, 2.5 g/l yeast extract, pH 4.5 and a temperature between 25 and 35°C are the optimal conditions for cultivation in a bioreactor. The exponential phase of the specific growth rate of a strain on both media showed that it is about 0.3625 h-1 for the production of a medium based on date syrup and 0.3521 h-1 on beet molasses with a generation time equal to 1.912 h and on the medium based on date syrup, yeast consumes preferentially the reducing sugars. For the production of protein, we showed that this latter presents an exponential phase when the medium starts to run out of reducing sugars. For strain 2, the specific growth rate is about 0.261h-1 for the production on a medium based on date syrup and 0207 h-1 on beet molasses and the base medium syrup date of the yeast consumes preferentially reducing sugars. For the invertase and other metabolits, these increases rapidly after exhaustion of reducing sugars. The comparison of productivity between the three strains on the medium based on date syrup showed that the maximum value is obtained with the second strain: p = 1072 g/l/h as it is about of 0923 g/l/h for strain 1 and 0644 g/l/h for the commercial strain. Thus, isolates of date syrup are more competitive than the commercial strain and can give the same performance in a shorter time with energy gain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=date%20palm" title="date palm">date palm</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=molasses" title=" molasses"> molasses</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces" title=" Saccharomyces"> Saccharomyces</a>, <a href="https://publications.waset.org/abstracts/search?q=syrup" title=" syrup"> syrup</a> </p> <a href="https://publications.waset.org/abstracts/57047/comparative-growth-kinetic-studies-of-two-strains-saccharomyces-cerevisiae-isolated-from-dates-and-a-commercial-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Evaluation of the Capabilities of Saccharomyces cerevisiae and Lactobacillus plantarum in Improvement of Total Phenolic Content and Antioxidant Activity in Carob Kibble</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Huong%20Vu">Thi Huong Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Jayasena"> Vijay Jayasena</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongxiang%20Fang"> Zhongxiang Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Dykes"> Gary Dykes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carob kibble has recently received attention due to the presence of high level of polyphenol antioxidants. The capacity of microorganisms to improve antioxidant activities and total phenolics in carob kibble was investigated in the study. Two types of microorganisms including lactic acid bacteria Lactobacillus plantarum (L. plantarum) and yeast Saccharomyces cerevisiae (S. cerevisiae) were used in single and in their combination as starters. The total phenolic content was determined by the Folin–Ciocalteu method. Antioxidant activities were assessed scavenging capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The study found that S. cerevisiae alone considerably improved 55% total phenolics content at 15 h, while L. plantarum caused in a loss of 20% through the process. Antioxidant capacity of the yeast-fermented samples significantly increased by 43 % and 10 % in ABTS and DPPH assays, respectively. However, reduction of 13 % and 32 % inhibition were recorded in the carob treated with L. plantarum. In the combination of S. cerevisiae and L. plantarum (1:1), both total phenolic content and antioxidant activity of carob kibble were a similar trend as these of S. cerevisiae single, but a lower improvement. The antioxidant power of the extracts was linearly correlated to their total phenolic contents (R=0.75). The results suggested that S. cerevisiae alone was the better for enhancement of both total phenolic content and antioxidant activity in carob kibble using submerged fermentation. The efficiency of fermentation reached the highest at 15h. Thus submerged fermentation with S. cerevisiae offers a tool with simple and cost effective to further increase the bioactive potential of carob kibble, which is in use for food, cosmetic and pharmaceutical industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=carob%20kibble" title=" carob kibble"> carob kibble</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus%20plantarum" title=" lactobacillus plantarum"> lactobacillus plantarum</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolics" title=" total phenolics"> total phenolics</a> </p> <a href="https://publications.waset.org/abstracts/54352/evaluation-of-the-capabilities-of-saccharomyces-cerevisiae-and-lactobacillus-plantarum-in-improvement-of-total-phenolic-content-and-antioxidant-activity-in-carob-kibble" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Production of Ethanol from Mission Grass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darin%20Khumsupan">Darin Khumsupan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tidarat%20Komolwanich"> Tidarat Komolwanich</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirirat%20Prasertwasu"> Sirirat Prasertwasu</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanyalak%20Chaisuwan"> Thanyalak Chaisuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Apanee%20Luengnaruemitchai"> Apanee Luengnaruemitchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujitra%20Wongkasemjit"> Sujitra Wongkasemjit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioethanol production has become a subject of interest for many researchers due to its potential to replace fossil fuels. Since the most popular sources of bioethanol originate from food crops including corn and sugarcane, many people become more concerned with increasing demand for food supply. Lignocellulosic biomass, such as grass, could be a practical alternative to replace the conventional fossil fuels due to its low cost, renewability, and abundance in nature. Mission grass (Pennisetum polystachion) is one of the candidates for bioethanol production. This research is focused on the detoxification and fermentation of hydrolysate from mission grass. Glucose in the hydrolysate was detoxified by overliming process at various pH. Although overliming at pH 12 gave the highest yeast population, the ethanol yield was low due to glucose degradation. Overliming at pH 10 showed the highest yield of ethanol production. Various strains of Baker’s yeast (Saccharomyces cerevisiae) will be utilized to produce ethanol at the optimal overliming pH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pennisetum%20polystachion" title="Pennisetum polystachion">Pennisetum polystachion</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title=" lignocellulosic biomass"> lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol%20production" title=" bioethanol production"> bioethanol production</a>, <a href="https://publications.waset.org/abstracts/search?q=detoxification" title=" detoxification"> detoxification</a>, <a href="https://publications.waset.org/abstracts/search?q=overliming" title=" overliming"> overliming</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a> </p> <a href="https://publications.waset.org/abstracts/2722/production-of-ethanol-from-mission-grass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Determination of Inactivation and Recovery of Saccharomyces cerevisiae Cells after the Gas-Phase Plasma Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Herceg">Z. Herceg</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Stulic"> V. Stulic</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Vukusic"> T. Vukusic</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rezek%20Jambrak"> A. Rezek Jambrak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas phase plasma treatment is a new nonthermal technology used for food and water decontamination. In this study, we have investigated influence of the gas phase plasma treatment on yeast cells of S. cerevisiae. Sample was composed of 10 mL of yeast suspension and 190 mL of 0.01 M NaNO₃ with a medium conductivity of 100 µS/cm. Samples were treated in a glass reactor with a point- to-plate electrode configuration (high voltage electrode-titanium wire in the gas phase and grounded electrode in the liquid phase). Air or argon were injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min and positive polarity were defined parameters. Inactivation was higher with the applied higher frequency, longer treatment time and injected argon. Inactivation was not complete which resulted in complete recovery. Cellular leakage (260 nm and 280 nm) was higher with a longer treatment time and higher frequency. Leakage at 280 nm which defines a leakage of proteins was higher than leakage at 260 nm which defines a leakage of nucleic acids. The authors would like to acknowledge the support by Croatian Science Foundation and research project 'Application of electrical discharge plasma for preservation of liquid foods'. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title="Saccharomyces cerevisiae">Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=inactivation" title=" inactivation"> inactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-phase%20plasma%20treatment" title=" gas-phase plasma treatment"> gas-phase plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20leakage" title=" cellular leakage"> cellular leakage</a> </p> <a href="https://publications.waset.org/abstracts/90155/determination-of-inactivation-and-recovery-of-saccharomyces-cerevisiae-cells-after-the-gas-phase-plasma-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Biosynthesis of Natural and Halogenated Plant Alkaloids in Yeast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beata%20J.%20Lehka">Beata J. Lehka</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20A.%20Bradley"> Samuel A. Bradley</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederik%20G.%20Hansson"> Frederik G. Hansson</a>, <a href="https://publications.waset.org/abstracts/search?q=Khem%20B.%20Adhikari"> Khem B. Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Rago"> Daniela Rago</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Rubaszka"> Paulina Rubaszka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20K.%20Haidar"> Ahmad K. Haidar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20Chen"> Ling Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Lea%20G.%20Hansen"> Lea G. Hansen</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Gudich"> Olga Gudich</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantina%20Giannakou"> Konstantina Giannakou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoko%20Nakamura"> Yoko Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Dug%C3%A9%20de%20Bernonville"> Thomas Dugé de Bernonville</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Koudounas"> Konstantinos Koudounas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20E.%20O%E2%80%99Connor"> Sarah E. O’Connor</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Courdavault"> Vincent Courdavault</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20D.%20Keasling"> Jay D. Keasling</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Zhang"> Jie Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20K.%20Jensen"> Michael K. Jensen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monoterpenoid indole alkaloids (MIAs) represent a large class of natural plant products with marketed pharmaceutical activities against a wide range of applications, including cancer and mental disorders. Halogenated MIAs have shown improved pharmaceutical properties; however, characterisation and synthesis of new-to-nature halogenated MIAs remain a challenge in slow-growing plants with limited genetic tractability. Here, we demonstrate a platform for de novo biosynthesis of two bioactive MIAs, serpentine and alstonine, in baker’s yeast Saccharomyces cerevisiae, reaching titers of 8.85 mg/L and 4.48 mg/L, respectively, when cultivated in fed-batch micro bioreactors. Using this MIA biosynthesis platform, we undertake a systematic exploration of the derivative space surrounding these compounds and produce halogenated MIAs. The aim of the current study is to develop a fermentation process for halogenated MIAs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monoterpenoid%20indole%20alkaloids" title="monoterpenoid indole alkaloids">monoterpenoid indole alkaloids</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=halogenated%20derivatives" title=" halogenated derivatives"> halogenated derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/150245/biosynthesis-of-natural-and-halogenated-plant-alkaloids-in-yeast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Inhibitory Effect of Helichrysum arenarium Essential Oil on the Growth of Food Contaminated Microorganisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohamadi%20Sani">Ali Mohamadi Sani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine the antimicrobial effect of Helichrysum arenarium L. essential oil in "in-vitro" condition on the growth of seven microbial species including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Saccharomyces cereviciae, Candida albicans, Aspergillus flavus and Aspergillus parasiticus using microdilution method. The minimum inhibitory concentration (MIC) and minimum bactericidal or fungicidal concentration (MBC, MFC) were determined for the essential oil at ten concentrations. Finally, the sensitivity of tested microbes to the essential oil of H. arenarium was investigated. Results showed that Bacillus subtilis (MIC=781.25 and MBC=6250 µg/ml) was more resistance than two other bacterial species. Among the tested yeasts, Saccharomyces cereviciae (MIC=97.65 and MFC=781.25 µg/ml) was more sensitive than Candida albicans, while among the fungal species, growth of Aspergillus parasiticus inhibited at lower concentration of oil than the Aspergillus flavus. The extracted essential oil exhibited the same MIC value in the liquid medium against all fungal strains (48.82 µg/ml), while different activity against A. flavus and A. parasiticus was observed in this medium with MFC values of 6250 and 390.625µg/ml, respectively. The results of the present study indicated that Helichrysum arenarium L essential oil had significant (P<0.05) antimicrobial activity; therefore, it can be used as a natural preservation to increase the shelf life of food products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helichrysum%20arenarium" title="Helichrysum arenarium">Helichrysum arenarium</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=MIC" title=" MIC"> MIC</a> </p> <a href="https://publications.waset.org/abstracts/12259/inhibitory-effect-of-helichrysum-arenarium-essential-oil-on-the-growth-of-food-contaminated-microorganisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> All Types of Base Pair Substitutions Induced by γ-Rays in Haploid and Diploid Yeast Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Koltovaya">Natalia Koltovaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadezhda%20Zhuchkina"> Nadezhda Zhuchkina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20Lyubimova"> Ksenia Lyubimova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the biological effects induced by ionizing radiation in view of therapeutic exposure and the idea of space flights beyond Earth's magnetosphere. In particular, we examine the differences between base pair substitution induction by ionizing radiation in model haploid and diploid yeast <em>Saccharomyces cerevisiae</em> cells. Such mutations are difficult to study in higher eukaryotic systems. In our research, we have used a collection of six isogenic <em>trp5</em>-strains and 14 isogenic haploid and diploid <em>cyc1</em>-strains that are specific markers of all possible base-pair substitutions. These strains differ from each other only in single base substitutions within codon-50 of the <em>trp5</em> gene or codon-22 of the <em>cyc1</em> gene. Different mutation spectra for two different haploid genetic <em>trp5</em>- and <em>cyc1</em>-assays and different mutation spectra for the same genetic <em>cyc1</em>-system in cells with different ploidy — haploid and diploid — have been obtained. It was linear function for dose-dependence in haploid and exponential in diploid cells. We suggest that the differences between haploid yeast strains reflect the dependence on the sequence context, while the differences between haploid and diploid strains reflect the different molecular mechanisms of mutations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20pair%20substitutions" title="base pair substitutions">base pair substitutions</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-rays" title=" γ-rays"> γ-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=haploid%20and%20diploid%20cells" title=" haploid and diploid cells"> haploid and diploid cells</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast%20Saccharomyces%20cerevisiae" title=" yeast Saccharomyces cerevisiae"> yeast Saccharomyces cerevisiae</a> </p> <a href="https://publications.waset.org/abstracts/91922/all-types-of-base-pair-substitutions-induced-by-gh-rays-in-haploid-and-diploid-yeast-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Efficiency of Microbial Metabolites on Quality Milk Production in Nili Ravi Breed of Buffalos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ur%20Rahman">Sajjad Ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir"> Muhammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukarram%20Bashir"> Mukarram Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawad"> Jawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoun%20Muhammad"> Aoun Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zohaib"> Muhammad Zohaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannan%20Khan"> Hannan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Seemal%20Javaid"> Seemal Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Azam"> Mariam Azam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of natural metabolites obtained from partially fermented soya hulls and wheat bran using Saccharomyces cerevisiae (DL-22 S/N) ensures a potential impact on the total milk yield and quality of milk production. On attaining a moderate number of Saccharomyces cerevisiae cells around 1×10⁹ CFU/ml, the concentrate was further elevated under in-vivo conditions to study the quality of milk production in lactating buffalo. Ten lactating buffalos of the Nili Ravi breed having the same physical factors were given 12 gm of microbial metabolites daily, along with the palleted feed having 22 % proteins. Another group of 10 lactating animals with the same characteristics was maintained without metabolites. The body score, overall health, incidence of mastitis, milk fat, milk proteins, ash and solid not fat (SNF) were elevated on a weekly basis up to thirty days of trial. It was recorded that the average total increase in quality milk production was 0.9 liter/h/d, whereas SNF in the milk was enhanced to 0.71, and fats were decreased to 0.09 %. Moreover, during all periods of the trial, the overall non-specific immunity of buffalo was increased, as indicated by less than 0.2 % of mastitis incidence compared to 1.8% in the untreated buffalos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20metabolites" title="natural metabolites">natural metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20milk" title=" quality milk"> quality milk</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20yield" title=" milk yield"> milk yield</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonspecific%20immunity" title=" nonspecific immunity"> nonspecific immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=better%20performing%20animals" title=" better performing animals"> better performing animals</a> </p> <a href="https://publications.waset.org/abstracts/164255/efficiency-of-microbial-metabolites-on-quality-milk-production-in-nili-ravi-breed-of-buffalos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Screening and Optimization of Pretreatments for Rice Straw and Their Utilization for Bioethanol Production Using Developed Yeast Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20Dattatraya%20Saratale">Ganesh Dattatraya Saratale</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Kyu%20Oh"> Min Kyu Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice straw is one of the most abundant lignocellulosic waste materials and its annual production is about 731 Mt in the world. This study treats the subject of effective utilization of this waste biomass for biofuels production. We have showed a comparative assessment of numerous pretreatment strategies for rice straw, comprising of major physical, chemical and physicochemical methods. Among the different methods employed for pretreatment alkaline pretreatment in combination with sodium chlorite/acetic acid delignification found efficient pretreatment with significant improvement in the enzymatic digestibility of rice straw. A cellulase dose of 20 filter paper units (FPU) released a maximum 63.21 g/L of reducing sugar with 94.45% hydrolysis yield and 64.64% glucose yield from rice straw, respectively. The effects of different pretreatment methods on biomass structure and complexity were investigated by FTIR, XRD and SEM analytical techniques. Finally the enzymatic hydrolysate of rice straw was used for ethanol production using developed Saccharomyces cerevisiae SR8. The developed yeast strain enabled efficient fermentation of xylose and glucose and produced higher ethanol production. Thus development of bioethanol production from lignocellulosic waste biomass is generic, applicable methodology and have great implication for using ‘green raw materials’ and producing ‘green products’ much needed today. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20straw" title="rice straw">rice straw</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=FPU" title=" FPU"> FPU</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae%20SR8" title=" Saccharomyces cerevisiae SR8"> Saccharomyces cerevisiae SR8</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol%20fermentation" title=" ethanol fermentation"> ethanol fermentation</a> </p> <a href="https://publications.waset.org/abstracts/24154/screening-and-optimization-of-pretreatments-for-rice-straw-and-their-utilization-for-bioethanol-production-using-developed-yeast-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Efficiency of Natural Metabolites on Quality Milk Production in Mixed Breed Cows.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Azam">Mariam Azam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ur%20Rahman"> Sajjad Ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukarram%20Bashir"> Mukarram Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir"> Muhammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Seemal%20Javaid"> Seemal Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawad"> Jawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoun%20Muhammad"> Aoun Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zohaib"> Muhammad Zohaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannan%20Khan"> Hannan Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Products of microbial origin are of great importance as they have proved their value in healthcare and nutrition, use of these microbial metabolites acquired from partially fermented soya hulls and wheat bran along with Saccharomyces cerevisiae (DL-22 S/N) substantiates to be a great source for an increase in the total milk production and quality yield.1×109 CFU/ml cells of Saccharomyces cerevisiae (DL-22 S/N) were further grown under in-vivo conditions for the assessment of quality milk production. Two groups with twelve cows, each having the same physical characteristics (Group A and Group B), were under study, Group A was daily fed with 12gm of biological metabolites and 22% protein-pelleted feed. On the other hand, the animals of Group B were provided with no metabolites in their feed. In thirty days of trial, improvement in the overall health, body score, milk protein, milk fat, yield, incidence rate of mastitis, ash, and solid not fat (SNF) was observed. The collected data showed that the average quality milk production was elevated up to 0.45 liter/h/d. However, a reduction in the milk fats up to 0.45% and uplift in the SNF value up to 0.53% of cow milk was also observed. At the same time, the incidence rate of mastitis recorded for the animals under trial was reduced to half, and improved non specific immunity was reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20metabolites" title="microbial metabolites">microbial metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=post-biotics" title=" post-biotics"> post-biotics</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20supplements" title=" animal supplements"> animal supplements</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20nutrition" title=" animal nutrition"> animal nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=proteins" title=" proteins"> proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20production" title=" animal production"> animal production</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/164404/efficiency-of-natural-metabolites-on-quality-milk-production-in-mixed-breed-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Computational Identification of Signalling Pathways in Protein Interaction Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angela%20U.%20Makolo">Angela U. Makolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Temitayo%20A.%20Olagunju"> Temitayo A. Olagunju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20networks" title="Bayesian networks">Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20interaction%20networks" title=" protein interaction networks"> protein interaction networks</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=signalling%20pathways" title=" signalling pathways"> signalling pathways</a> </p> <a href="https://publications.waset.org/abstracts/22095/computational-identification-of-signalling-pathways-in-protein-interaction-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Biofuel Potential and Invasive Species Control: Exploring Prosopis Juliflora Pod Mash for Sustainable Energy Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mebrahtu%20Haile">Mebrahtu Haile</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuels obtained from renewable resources have garnered significant enthusiasm in recent decades due to concerns about fossil fuel depletion and climate change. This study aimed to investigate the potential of Prosopis juliflora pods mash for bio-ethanol production and its hydrolysis solid waste for solid fuel. Various parameters, such as acid concentration, hydrolysis times, fermentation times, fermentation temperature, and pH, were evaluated for their impact on bio-ethanol production using Saccharomyces cerevisiae yeast. The results showed that increasing acid concentration (up to 1 molar H₂SO₄) led to an increase in sugar content, reaching a maximum of 96.13%v/v. Optimal conditions for bio-ethanol production were found at 1 molar H₂SO₄ concentration (4.2%v/v), 48 hours fermentation time (5.1%v/v), 20 minutes hydrolysis time (5.57%v/v), 30°C fermentation temperature (5.57%v/v), and pH 5 (6.01%v/v), resulting in a maximum bio-ethanol yield of 6.01%v/v. The solid waste remaining after bio-ethanol production exhibited potential for use as a solid fuel, with a calorific value of 18.22 MJ/kg. These findings demonstrate the promising potential of Prosopis juliflora pods mash for bio-ethanol production and suggest a viable solution for addressing disposal challenges associated with solid waste, contributing to the exploration of renewable fuel sources in the face of fossil fuel depletion and climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prosopis%20juliflora" title="prosopis juliflora">prosopis juliflora</a>, <a href="https://publications.waset.org/abstracts/search?q=pods%20mash" title=" pods mash"> pods mash</a>, <a href="https://publications.waset.org/abstracts/search?q=invasive%20species" title=" invasive species"> invasive species</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-ethanol" title=" bio-ethanol"> bio-ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20fuel" title=" solid fuel"> solid fuel</a> </p> <a href="https://publications.waset.org/abstracts/188197/biofuel-potential-and-invasive-species-control-exploring-prosopis-juliflora-pod-mash-for-sustainable-energy-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Schizosaccharomyces pombe, Saccharomyces cerevisiae Yeasts and Acetic Acid Bacteria in Alcoholic and Acetous Fermentations: Effect on Phenolic Acids of Kei-Apple (Dovyalis caffra L.) Vinegar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Minnaar">Phillip Minnaar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20Jolly"> Neil Jolly</a>, <a href="https://publications.waset.org/abstracts/search?q=Louisa%20Beukes"> Louisa Beukes</a>, <a href="https://publications.waset.org/abstracts/search?q=Santiago%20Benito-Saez"> Santiago Benito-Saez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dovyalis caffra is a tree found on the African continent. Limited information exists on the effect of acetous fermentation on the phytochemicals of Kei-apple fruit. The phytochemical content of vinegars is derived from compounds present in the fruit the vinegar is made of. Kei-apple fruit juice was co-inoculated with Schizosaccharomyces pombe and Saccharomyces cerevisiae to induce alcoholic fermentation (AF). Acetous fermentation followed AF, using an acetic acid bacteria consortium as an inoculant. Juice had the lowest pH and highest total acidity (TA). The wine had the highest pH and vinegars lowest TA. Total soluble solids and L-malic acid decreased during AF and acetous fermentation. Volatile acidity concentration was not different among vinegars. Gallic, syringic, caffeic, p-coumaric, and chlorogenic acids increased during acetous fermentation, whereas ferulic, sinapic, and protocatechuic acids decreased. Chlorogenic acid was the most abundant phenolic acid in both wines and vinegars. It is evident from this investigation that Kei-apple vinegar is a source of plant-derived phenolics, which evolved through fermentation. However, the AAB selection showed minimal performance with respect to VA production. Acetic acid bacteria selection for acetous fermentation should be reconsidered, and the reasons for the decrease of certain phenolic acids during acetous fermentation needs to be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid%20bacteria" title="acetic acid bacteria">acetic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=acetous%20fermentation" title=" acetous fermentation"> acetous fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20acids" title=" phenolic acids"> phenolic acids</a> </p> <a href="https://publications.waset.org/abstracts/128490/schizosaccharomyces-pombe-saccharomyces-cerevisiae-yeasts-and-acetic-acid-bacteria-in-alcoholic-and-acetous-fermentations-effect-on-phenolic-acids-of-kei-apple-dovyalis-caffra-l-vinegar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> A Novel Marketable Dried Mixture for High-Quality Sweet Wine Production in Domestic Refrigerator Using Tubular Cellulose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganatsios%20Vassilios">Ganatsios Vassilios</a>, <a href="https://publications.waset.org/abstracts/search?q=Terpou%20Antonia"> Terpou Antonia</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Kanellaki"> Maria Kanellaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekatorou%20Argyro"> Bekatorou Argyro</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasios%20Koutinas"> Athanasios Koutinas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a new fermentation technology is proposed with potential application in home wine-making. Delignified cellulosic material was used to preserve Tubular Cellulose (TC), an effective fermentation support material in high osmotic pressure, low temperature, and alcohol concentration. The psychrotolerant yeast strain Saccharomyces cerevisiae AXAZ-1 was immobilized on TC to preserve a novel home wine making biocatalyst (HWB) and the entrapment was examined by SEM. Various concentrations of HWB was added in high-density grape must and the mixture was dried immediately. The dried mixture was stored for various time intervals and its fermentation examined after addition of potable water. The percentage of added water was also examined to succeed high alcohol and residual sugar concentration. The effect of low temperature (1-10 oC) on fermentation kinetics was studied revealing the ability of HBW on low-temperature sweet wine making. Sweet wines SPME GC-MS analysis revealed the promotion effect of TC on volatile by-products formation in comparison with free cells. Kinetics results and aromatic profile of final product encouraged the efforts of high-quality sweet wine making in domestic refrigerator and potential marketable opportunities are also assessed and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tubular%20cellulose" title="tubular cellulose">tubular cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=sweet%20wine" title=" sweet wine"> sweet wine</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae%20AXAZ-1" title=" Saccharomyces cerevisiae AXAZ-1"> Saccharomyces cerevisiae AXAZ-1</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20sugar%20concentration" title=" residual sugar concentration"> residual sugar concentration</a> </p> <a href="https://publications.waset.org/abstracts/16045/a-novel-marketable-dried-mixture-for-high-quality-sweet-wine-production-in-domestic-refrigerator-using-tubular-cellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Influence of Yeast Strains on Microbiological Stability of Wheat Bread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Soboleva">E. Soboleva</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Sergachyova"> E. Sergachyova</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Davydenko"> S. G. Davydenko</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20V.%20Meledina"> T. V. Meledina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problem of food preservation is extremely important for mankind. Viscous damage ("illness") of bread results from development of Bacillus spp. bacteria. High temperature resistant spores of this microorganism are steady against 120°C) and remain in bread during pastries, potentially causing spoilage of the final product. Scientists are interested in further characterization of bread spoiling Bacillus spp. species. Our aim was to find weather yeast Saccharomyces cerevisiae strains that are able to produce natural antimicrobial killer factor can preserve bread illness. By diffusion method, we showed yeast antagonistic activity against spore-forming bacteria. Experimental technological parameters were the same as for bakers' yeasts production on the industrial scale. Risograph test during dough fermentation demonstrated gas production. The major finding of the study was a clear indication of the presence of killer yeast strain antagonistic activity against rope in bread causing bacteria. After demonstrating antagonistic effect of S. cerevisiae on bacteria using solid nutrient medium, we tested baked bread under provocative conditions. We also measured formation of carbon dioxide in the dough, dough-making duration and quality of the final products, when using different strains of S. cerevisiae. It is determined that the use of yeast S. cerevisiae RCAM 01730 killer strain inhibits appearance of rope in bread. Thus, natural yeast antimicrobial killer toxin, produced by some S. cerevisiae strains is an anti-rope in bread protector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bakers%27%20yeasts" title="bakers' yeasts">bakers' yeasts</a>, <a href="https://publications.waset.org/abstracts/search?q=killer%20toxin" title="killer toxin">killer toxin</a>, <a href="https://publications.waset.org/abstracts/search?q=rope%20in%20bread" title="rope in bread">rope in bread</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisi%C3%A6" title=" Saccharomyces cerevisiæ"> Saccharomyces cerevisiæ</a> </p> <a href="https://publications.waset.org/abstracts/44902/influence-of-yeast-strains-on-microbiological-stability-of-wheat-bread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saccharomyces%20boulardii&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saccharomyces%20boulardii&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saccharomyces%20boulardii&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saccharomyces%20boulardii&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>