CINXE.COM
Search results for: brackish water
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: brackish water</title> <meta name="description" content="Search results for: brackish water"> <meta name="keywords" content="brackish water"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="brackish water" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="brackish water"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8637</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: brackish water</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8637</span> Detection of Brackish Water Biological Fingerprints in Potable Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Mohammad">Abdullah Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Alshemali"> Abdullah Alshemali</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Alsaleh"> Esmaeil Alsaleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chemical composition of desalinated water is modified to make it more acceptable to the end-user. Sometimes, this modification is approached by mixing with brackish water that is known to contain a variety of minerals. Expectedly, besides minerals, brackish water indigenous bacterial communities access the final mixture hence reaching the end consumer. The current project examined the safety of using brackish water as an ingredient in potable water. Pseudomonas aeruginosa strains were detected in potable and brackish water samples collected from storage facilities in residential areas as well as from main water distribution and storage tanks. The application of molecular and biochemical fingerprinting methods, including phylogeny, RFLP (restriction fragment length polymorphism), MLST (multilocus sequence typing) and substrate specificity testing, suggested that the potable water P. aeruginosa strains were most probably originated from brackish water. Additionally, all the sixty-four isolates showed multi-drug resistance (MDR) phenotype and harboured the three genes responsible for biofilm formation. These virulence factors represent serious health hazards compelling the scientific community to revise the WHO (World Health Organization) and USEP (US Environmental Protection Agency) A potable water quality guidelines, particularly those related to the types of bacterial genera that evade the current water quality guidelines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=potable%20water" title="potable water">potable water</a>, <a href="https://publications.waset.org/abstracts/search?q=brackish%20water" title=" brackish water"> brackish water</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas%20aeroginosa" title=" pseudomonas aeroginosa"> pseudomonas aeroginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug%20resistance" title=" multidrug resistance"> multidrug resistance</a> </p> <a href="https://publications.waset.org/abstracts/151234/detection-of-brackish-water-biological-fingerprints-in-potable-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8636</span> Potato Production under Brakish Water and Compost Use</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samih%20Abubaker">Samih Abubaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Abuserhan"> Amjad Abuserhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghandi%20Anfoka"> Ghandi Anfoka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potato yield reduction and soil salt accumulation are the main obstacles of using brackish water in irrigation. This study was carried out at Al- Balqa` Applied University research station, to investigate the impact of compost use on potato production and salt accumulation in the soil under brackish water, during 2014 growing season. Whole tubers of three imported potato cultivars (Spunta, Faluka and Ammbetion) were planted in pots with different soil and compost percentages (0, 20, 40, 60, 80, and 100%) and were irrigated with three water salinity levels (1.25, 5 and 10 ds/cm). A split-split plot design was used, where potato cultivars were arranged in the main plots, the brackish water treatments were in the sub-main and the soil amended treatments were in the sub-sub plots. Potato yield was generally decreased only when pots were irrigated by water of 10 ds/cm salinity compared with 1.25 and 5 ds/cm. Drainage water salinity, however, was increased as compost percentage increased. Nevertheless, salt accumulation in the growing media was decreased as the compost percentage level increased. Therefore, it can be concluded that brackish water, up to 5 ds/cm can be used to irrigate potato especially, when organic amendments were added to the soil to promote plant growth, yield and reduce salt accumulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brackish%20water" title="brackish water">brackish water</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20accumulation" title=" salt accumulation "> salt accumulation </a> </p> <a href="https://publications.waset.org/abstracts/27857/potato-production-under-brakish-water-and-compost-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8635</span> Bacteria Flora in the Gut and Respiratory Organs of Clarias gariepinus in Fresh and Brackish Water Habitats of Ondo State, South/West Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nelson%20R.%20Osungbemiro">Nelson R. Osungbemiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiu%20O.%20Sanni"> Rafiu O. Sanni</a>, <a href="https://publications.waset.org/abstracts/search?q=Rotimi%20F.%20Olaniyan"> Rotimi F. Olaniyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abayomi%20O.%20Olajuyigbe"> Abayomi O. Olajuyigbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacteria flora of Clarias gariepinus collected from two natural habitats namely Owena River (freshwater) and Igbokoda lagoon (brackish water) were examined using standard microbiological procedures. Thirteen bacterial species were identified. The result indicated that from the identified bacteria isolated, Vibrio sp, Proteus sp. Shigella sp. and E. coli were present in both habitats (fresh and brackish waters). Others were habitat-selective such as Salmonella sp., Pseudomonas sp, Enterococcus sp, Staphylococcus sp. that were found only in freshwater habitat. While Branhamella sp, Streptococcus sp. and Micrococcus sp. were found in brackish water habitat. Bacteria load from Owena river (freshwater) was found to be the highest load recorded at 6.21 x 104cfu. T-test analysis also revealed that there was a marked significant difference between bacterial load in guts of sampled Clarias from fresh water and brackish water habitats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria%20flora" title="bacteria flora">bacteria flora</a>, <a href="https://publications.waset.org/abstracts/search?q=gut" title=" gut"> gut</a>, <a href="https://publications.waset.org/abstracts/search?q=Clarias%20gariepinus" title=" Clarias gariepinus"> Clarias gariepinus</a>, <a href="https://publications.waset.org/abstracts/search?q=Owena%20river" title=" Owena river"> Owena river</a> </p> <a href="https://publications.waset.org/abstracts/6024/bacteria-flora-in-the-gut-and-respiratory-organs-of-clarias-gariepinus-in-fresh-and-brackish-water-habitats-of-ondo-state-southwest-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8634</span> Evaluation of Water Quality on the Strength of Simple Concrete: Case Study of Wells in Jipijapa, Manabí, Ecuador</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julio%20Cesar%20Pino%20Tarrag%C3%B3">Julio Cesar Pino Tarragó</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunia%20Lisbet%20Dom%C3%ADnguez%20G%C3%A1lvez"> Dunia Lisbet Domínguez Gálvez</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Alfonso%20Moreno%20Ponce"> Luis Alfonso Moreno Ponce</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhony%20Julio%20Regalado%20Jalca"> Jhony Julio Regalado Jalca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the impact of three distinct types of water on the compressive strength of plain concrete, focusing on samples from wells in Jipijapa, Manabí, Ecuador: Joa water, characterized by high sulfur content; Chade 1 water, with low sulfur content; and Chade 2 water, which is highly brackish. Compressive strength tests were conducted at 7, 14, and 28 days to assess the influence of these water types on the structural integrity of the concrete. The results indicate that both brackish and sulfur-rich water significantly reduces concrete strength, while Chade 1 water, though initially enhancing strength, displays variability in long-term performance. These outcomes underscore the importance of optimizing construction practices in regions like Jipijapa, where potable water is scarce, by exploring sustainable alternatives for using non-potable water, thereby conserving limited water resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=plain%20concrete" title=" plain concrete"> plain concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20water" title=" sulfur water"> sulfur water</a>, <a href="https://publications.waset.org/abstracts/search?q=brackish%20water" title=" brackish water"> brackish water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/189221/evaluation-of-water-quality-on-the-strength-of-simple-concrete-case-study-of-wells-in-jipijapa-manabi-ecuador" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8633</span> Phyto Diversity and Conservation of Pulicat Lake-Andhra Pradesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20M.%20Basha">S. K. M. Basha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulicat Lake is the second largest brackish water lagoon after Chilika Lake of Orissa along the east coast of India. Estuaries and lagoons have brackish water which shows high biological productivity than fresh or sea water. Hence it has wide range of aquatic, terrestrial flora and fauna. The World Wide Fund for Nature declared that it is a protected area. Present study aims to explore the flora and fauna of the lagoon along with the various threats for its eco-degradation which helps to plan necessary conservation methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytodiversity" title="phytodiversity">phytodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Pulicat%20Lake" title=" Pulicat Lake"> Pulicat Lake</a>, <a href="https://publications.waset.org/abstracts/search?q=threats" title=" threats"> threats</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/5621/phyto-diversity-and-conservation-of-pulicat-lake-andhra-pradesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8632</span> Eco-Degradation and Phytodiversity of Pulicat Lagoon, Eastcoast of Southern India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khasim%20Munir%20Bhasha%20Shaik">Khasim Munir Bhasha Shaik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulicat Lake is the second largest brackish water lagoon after Chilika Lake of Orissa along the east coast of India. Estuaries and lagoons have brackish water which shows high biological productivity than fresh or sea water. Hence, it has a wide range of aquatic, terrestrial flora. The World Wide Fund for Nature declared it as a protected area. The present study aims to explore the flora of the lagoon along with the various threats for its eco-degradation which helps to plan necessary conservation methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytodiversity" title="phytodiversity">phytodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=pulicat%20lake" title=" pulicat lake"> pulicat lake</a>, <a href="https://publications.waset.org/abstracts/search?q=threats" title=" threats"> threats</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/53027/eco-degradation-and-phytodiversity-of-pulicat-lagoon-eastcoast-of-southern-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8631</span> Passive Solar Distiller with Low Cost of Implementation, Operation and Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale">Valentina Alessandra Carvalho do Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiago%20Lins%20C%C3%B6uras%20Ford"> Elmo Thiago Lins Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudson%20de%20Sousa%20Lima"> Rudson de Sousa Lima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Around the planet Earth, access to clean water is a problem whose importance has increased due to population growth and its misuse. Thus, projects that seek to transform water sources improper (salty and brackish) in drinking water sources are current issues. However, this transformation generally requires a high cost of implementation, operation and maintenance. In this context, the aim of this work is the development of a passive solar distiller for brackish water, made from recycled and durable materials such as aluminum, cement, glass and PVC basins. The results reveal factors that influence the performance and viability of the expansion project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20distiller" title="solar distiller">solar distiller</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20distiller" title=" passive distiller"> passive distiller</a>, <a href="https://publications.waset.org/abstracts/search?q=distiller%20with%20pyramidal%20roof" title=" distiller with pyramidal roof"> distiller with pyramidal roof</a>, <a href="https://publications.waset.org/abstracts/search?q=ecologically%20correct" title=" ecologically correct"> ecologically correct</a> </p> <a href="https://publications.waset.org/abstracts/18281/passive-solar-distiller-with-low-cost-of-implementation-operation-and-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8630</span> Molecular Detection of Naegleria fowleri and Fecal Indicator Bacteria in Brackish Water of Lake Pontchartrain, Louisiana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia%20Xue">Jia Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederica%20G.%20Lamar"> Frederica G. Lamar</a>, <a href="https://publications.waset.org/abstracts/search?q=Siyu%20Lin"> Siyu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20G.%20Lamori"> Jennifer G. Lamori</a>, <a href="https://publications.waset.org/abstracts/search?q=Samendra%20Sherchan"> Samendra Sherchan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brackish water samples from Lake Pontchartrain in Louisiana were assessed for the presence of pathogenic amoeba Naegleria fowleri, which causes primary amoebic meningoencephalitis (PAM). In our study, quantitative polymerase chain reaction (qPCR) methods were used to determine N. fowleri, E. coli, and Enterococcus in water collected from Lake Pontchartrain. A total of 158 water samples were analyzed over the 10-month sampling period. Statistically significant positive correlation between water temperature and N. fowleri concentration was observed. N. fowleri target sequence was detected at 35.4% (56/158) of the water samples from ten sites around the Lake ranged from 11.6 GC/100 ml water to 457.8 GC/100 ml water. A single factor (ANOVA) analysis shows the average concentration of N. fowleri in summer (119.8 GC/100 ml) was significantly higher than in winter (58.6 GC/100 ml) (p < 0.01). Statistically significant positive correlations were found between N. fowleri and qPCR E. coli results and N. fowleri and colilert E. coli (culture method), respectively. A weak positive correlation between E. coli and Enterococcus was observed from both qPCR (r = 0.27, p < 0.05) and culture based method (r = 0.52, p < 0.05). Meanwhile, significant positive correlation between qPCR and culture based methods for E. coli (r = 0.30, p < 0.05) and Enterococcus concentration was observed (r = 0.26, p < 0.05), respectively. Future research is needed to determine whether sediment is a source of N. fowleri found in the water column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brackish%20water" title="brackish water">brackish water</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=Enterococcus" title=" Enterococcus"> Enterococcus</a>, <a href="https://publications.waset.org/abstracts/search?q=Naegleria%20fowleri" title=" Naegleria fowleri"> Naegleria fowleri</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20amoebic%20meningoencephalitis%20%28PAM%29" title=" primary amoebic meningoencephalitis (PAM)"> primary amoebic meningoencephalitis (PAM)</a>, <a href="https://publications.waset.org/abstracts/search?q=qPCR" title=" qPCR "> qPCR </a> </p> <a href="https://publications.waset.org/abstracts/77433/molecular-detection-of-naegleria-fowleri-and-fecal-indicator-bacteria-in-brackish-water-of-lake-pontchartrain-louisiana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8629</span> Exergy Analysis of Reverse Osmosis for Potable Water and Land Irrigation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sarai%20Atab">M. Sarai Atab</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Smallbone"> A. Smallbone</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20Roskilly"> A. P. Roskilly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A thermodynamic study is performed on the Reverse Osmosis (RO) desalination process for brackish water. The detailed RO model of thermodynamics properties with and without an energy recovery device was built in Simulink/MATLAB and validated against reported measurement data. The efficiency of desalination plants can be estimated by both the first and second laws of thermodynamics. While the first law focuses on the quantity of energy, the second law analysis (i.e. exergy analysis) introduces quality. This paper used the Main Outfall Drain in Iraq as a case study to conduct energy and exergy analysis of RO process. The result shows that it is feasible to use energy recovery method for reverse osmosis with salinity less than 15000 ppm as the exergy efficiency increases twice. Moreover, this analysis shows that the highest exergy destruction occurs in the rejected water and lowest occurs in the permeate flow rate accounting 37% for 4.3% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brackish%20water" title="brackish water">brackish water</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis%20%28RO%29" title=" reverse osmosis (RO)"> reverse osmosis (RO)</a> </p> <a href="https://publications.waset.org/abstracts/76069/exergy-analysis-of-reverse-osmosis-for-potable-water-and-land-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8628</span> Geoelectical Resistivity Method in Aquifer Characterization at Opic Estate, Isheri-Osun River Basin, South Western Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Faleye">B. R. Faleye</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Titocan"> M. I. Titocan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Ibitola"> M. P. Ibitola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation was carried out at Opic Estate in Isheri-Osun River Basin environment using Electrical Resistivity method to study saltwater intrusion into a fresh water aquifer system from the proximal estuarine water body. The investigation is aimed at aquifer characterisation using electrical resistivity method in order to provide the depth to which fresh water fit for both domestic and industrial consumption. The 2D Electrical Resistivity and Vertical Electrical Resistivity techniques alongside Laboratory analysis of water samples obtained from the boreholes were adopted. Three traverses were investigated using Wenner and Pole-Dipole array with multi-electrode system consisting of 84 electrodes and a spread of 581 m, 664 m and 830 m were attained on the traverses. The main lithologies represented in the study area are Sand, Clay and Clayey Sand of which Sand constitutes the aquifer in the study area. Vertical Electrical Sounding data obtained at different lateral distance on the traverses have indicated that the water in the aquifer in the subsurface is brackish. Brackish water is represented by lowelectrical resistivity value signature while fresh water is characterized by relatively high electrical resistivity and in some regionfresh water is existent at depth greater than 200 m. Results of laboratory analysis of samples showed that the pH, Salinity, Total Dissolved Solid and Conductivity indicated existence of water with poor quality, indicating that salinity, TDS and Conductivity is higher in the Northern part of the study area. The 2D electrical resistivity and Vertical Electrical Sounding methods indicate that fresh water region is at ≥200m depth. Aquifers not fit for domestic use in the study area occur downwards to about 200 m in depth. In conclusion, it is recommended that wells should be sunkbeyond 220 m for the possible procurement of portable fresh water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20electrical%20resistivity" title="2D electrical resistivity">2D electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=aquifer" title=" aquifer"> aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=brackish%20water" title=" brackish water"> brackish water</a>, <a href="https://publications.waset.org/abstracts/search?q=lithologies" title=" lithologies"> lithologies</a> </p> <a href="https://publications.waset.org/abstracts/76268/geoelectical-resistivity-method-in-aquifer-characterization-at-opic-estate-isheri-osun-river-basin-south-western-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8627</span> The Technics of Desalination Water in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Aburideh">H. Aburideh</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.Tigrine"> Z.Tigrine</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ziou"> D. Ziou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hout"> S. Hout</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bellatreche"> R. Bellatreche</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Belhout"> D. Belhout</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Belgroun"> Z. Belgroun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abbas"> M. Abbas </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Faced with climate hazards in recent decades and the constant increase of the population, Algeria is making considerable efforts to provide water resources and water availability, both for its nascent industry, agriculture and for the drinking water supply of cities and arid region of the country. Following a remarkable worldwide technological breakthrough in seawater and brackish water desalination, known in recent years, the specialists have seen that the use of desalination of sea water in Algeria is a promising alternative as long as it has a coastline of 1200 km. Seawater is clean and virtually inexhaustible resource; mainly for population and industry that have high water consumption and are close to the sea. The purpose of this work is to present information on the number of sea water desalination stations and demineralization plants existing in Algeria. The constraints related to the operation of certain stations; those which are operational, those that are not operational as well as the seawater desalination program that was hired to cover 49 desalination plants across the country at the end of 2019 with the aim of increasing and diversifying water resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalination" title="desalination">desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=demineralization" title=" demineralization"> demineralization</a> </p> <a href="https://publications.waset.org/abstracts/8779/the-technics-of-desalination-water-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8626</span> Salinity Reduction from Saharan Brackish Water by Fluoride Removal on Activated Natural Materials: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Ramadni">Amina Ramadni</a>, <a href="https://publications.waset.org/abstracts/search?q=Safia%20Taleb"> Safia Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20D%C3%A9ratani"> André Dératani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study presents, firstly, to characterize the physicochemical quality of brackish groundwater of the Terminal Complex (TC) from the region of Eloued-souf and to investigate the presence of fluoride, and secondly, to study the comparison of adsorbing power of three materials, such as (activated alumina AA, sodium clay SC and hydroxyapatite HAP) against the groundwater in the region of Eloued-souf. To do this, a sampling campaign over 16 wells and consumer taps was undertaken. The results show that the groundwater can be characterized by very high fluoride content and excessive mineralization that require in some cases, specific treatment before supply. The study of adsorption revealed removal efficiencies fluoride by three adsorbents, maximum adsorption is achieved after 45 minutes at 90%, 83.4% and 73.95%, and with an adsorbed fluoride content of 0.22 mg/L, 0.318 mg/L and 0.52 mg/L for AA, HAP and SC, respectively. The acidity of the medium significantly affects the removal fluoride. Results deducted from the adsorption isotherms also showed that the retention follows the Langmuir model. The adsorption tests by adsorbent materials show that the physicochemical characteristics of brackish water are changed after treatment. The adsorption mechanism is an exchange between the OH<sup>-</sup> ions and fluoride ions. Three materials are proving to be effective adsorbents for fluoride removal that could be developed into a viable technology to help reduce the salinity of the Saharan hyper-fluorinated waters. Finally, a comparison between the results obtained from the different adsorbents allowed us to conclude that the defluoridation by AA is the process of choice for many waters of the region of Eloued-souf, because it was shown to be a very interesting and promising technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluoride%20removal" title="fluoride removal">fluoride removal</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrochemical%20characterization%20of%20groundwater" title=" hydrochemical characterization of groundwater"> hydrochemical characterization of groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20materials" title=" natural materials"> natural materials</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiltration" title=" nanofiltration"> nanofiltration</a> </p> <a href="https://publications.waset.org/abstracts/52585/salinity-reduction-from-saharan-brackish-water-by-fluoride-removal-on-activated-natural-materials-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8625</span> Magnetic Treatment of Irrigation Water and Its Effect on Water Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Waqar%20Ashraf">Muhammad Waqar Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of magnetic field on the structure of water and aqueous solutions are similar and can alter the physical and chemical properties of water-dispersed systems. With the application of magnetic field, hydration of salt ions and other impurities slides down and improve the possible technological characteristics of the water. Magnetic field can enhance the characteristic of water i.e. better salt solubility, kinetic changes in salt crystallization, accelerated coagulation, etc. Gulf countries are facing critical problem due to depletion of water resources and increasing food demands to cover the human needs; therefore water shortage is being increasingly accepted as a major limitation for increased agricultural production and food security. In arid and semi-arid regions sustainable agricultural development is influenced to a great extent by water quality that might be used economically and effectively in developing agriculture programs. In the present study, the possibility of using magnetized water to desalinate the soil is accounted for the enhanced dissolving capacity of the magnetized water. Magnetic field has been applied to treat brackish water. The study showed that the impact of magnetic field on saline water is sustained up to three hours (with and without shaking). These results suggest that even low magnetic field can decrease the electrical conductivity and total dissolved solids which are good for the removal of salinity from the irrigated land by using magnetized water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20treatment" title="magnetic treatment">magnetic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=saline%20water" title=" saline water"> saline water</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20of%20water" title=" hardness of water"> hardness of water</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20of%20salinity" title=" removal of salinity"> removal of salinity</a> </p> <a href="https://publications.waset.org/abstracts/18133/magnetic-treatment-of-irrigation-water-and-its-effect-on-water-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8624</span> Identifying Artifacts in SEM-EDS of Fouled RO Membranes Used for the Treatment of Brackish Groundwater Through Raman and ICP-MS Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Soti">Abhishek Soti</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Sharma"> Aditya Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhilendra%20Bhushan%20Gupta"> Akhilendra Bhushan Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fouled reverse osmosis membranes are primarily characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectrometer (EDS) for a detailed investigation of foulants; however, this has severe limitations on several accounts. Apart from inaccuracy in spectral properties and inevitable interferences and interactions between sample and instrument, misidentification of elements due to overlapping peaks is a significant drawback of EDS. This paper discusses this limitation by analyzing fouled polyamide RO membranes derived from community RO plants of Rajasthan treating brackish water via a combination of results obtained from EDS and Raman spectroscopy and cross corroborating with ICP-MS analysis of water samples prepared by dissolving the deposited salts. The anomalous behavior of different morphic forms of CaCO₃ in aqueous suspensions tends to introduce false reporting of the presence of certain heavy metals and rare earth metals in the scales of the fouled RO membranes used for treating brackish groundwater when analyzed using the commonly adopted techniques like SEM-EDS or Raman spectrometry. Peaks of CaCO₃ reflected in EDS spectra of the membrane were found to be misinterpreted as Scandium due to the automatic assignment of elements by the software. Similarly, the morphic forms merged with the dominant peak of CaCO₃ might be reflected as a single peak of Molybdenum in the Raman spectrum. A subsequent ICP-MS analysis of the deposited salts showed that both Sc and Mo were below detectable levels. It is always essential to cross-confirm the results through a destructive analysis method to avoid such interferences. It is further recommended to study different morphic forms of CaCO₃ scales, as they exhibit anomalous properties like reverse solubility with temperature and hence altered precipitation tendencies, for an accurate description of the composition of scales, which is vital for the smooth functioning of RO systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title="reverse osmosis">reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=foulant%20analysis" title=" foulant analysis"> foulant analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=EDS" title=" EDS"> EDS</a>, <a href="https://publications.waset.org/abstracts/search?q=artifacts" title=" artifacts"> artifacts</a> </p> <a href="https://publications.waset.org/abstracts/167736/identifying-artifacts-in-sem-eds-of-fouled-ro-membranes-used-for-the-treatment-of-brackish-groundwater-through-raman-and-icp-ms-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8623</span> Experimental Study on Modified Double Slope Solar Still and Modified Basin Type Double Slope Multiwick Solar Still</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piyush%20Pal">Piyush Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Dev"> Rahul Dev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is essential for life and fresh water is a finite resource that is becoming scarce day by day even though it is recycled by hydrological cycle. The fresh water reserves are being polluted due to expanding irrigation, industries, urban population and its development. Contaminated water leads to several health problems. With the increasing demand of fresh water, solar distillation is an alternate solution which uses solar energy to evaporate water and then to condense it, thereby collecting distilled water within or outside the same system to use it as potable water. The structure that houses the process is known as a 'solar still'. In this paper, ‘Modified double slope solar still (MDSSS)’ & 'Modified double slope basin type multiwick solar still (MDSBMSS)' have been designed to convert saline, brackish water into drinking water. In this work two different modified solar stills are fabricated to study the performance of these solar stills. For modification of solar stills, Fibre Reinforced Plastic (FRP) and Acrylic sheets are used. The experiments in MDSBMSS and MDSSS was carried on 10 September 2015 & 5 November 2015 respectively. Performances of the stills were investigated. The amount of distillate has been found 3624 Ml/day in MDSBMSS on 10 September 2015 and 2400 Ml/day in MDSSS on 5 November 2015. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminated%20water" title="contaminated water">contaminated water</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20solar%20still" title=" conventional solar still"> conventional solar still</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20solar%20still" title=" modified solar still"> modified solar still</a>, <a href="https://publications.waset.org/abstracts/search?q=wick" title=" wick"> wick</a> </p> <a href="https://publications.waset.org/abstracts/37145/experimental-study-on-modified-double-slope-solar-still-and-modified-basin-type-double-slope-multiwick-solar-still" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8622</span> A Performance Analysis Study of an Active Solar Still Integrating Fin at the Basin Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Ansari">O. Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hafs"> H. Hafs</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bah"> A. Bah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Asbik"> M. Asbik</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Malha"> M. Malha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bakhouya"> M. Bakhouya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is one of the most important and vulnerable natural resources due to human activities and climate change. Water-level continues declining year after year and it is primarily caused by sustained, extensive, and traditional usage methods. Improving water utilization becomes an urgent issue in order satisfy the increasing population needs. Desalination of seawater or brackish water could help in increasing water potential. However, a cost-effective desalination process is required. The most appropriate method for performing this desalination is solar-driven distillation, given its simplicity, low cost and especially the availability of the solar energy source. The main objective of this paper is to demonstrate the influence of coupling integrated basin plate by fins with preheating by solar collector on the performance of solar still. The energy balance equations for the various elements of the solar still are introduced. A numerical example is used to show the efficiency of the proposed solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20solar%20still" title="active solar still">active solar still</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=fins" title=" fins"> fins</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a> </p> <a href="https://publications.waset.org/abstracts/79883/a-performance-analysis-study-of-an-active-solar-still-integrating-fin-at-the-basin-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8621</span> Stand Alone Multiple Trough Solar Desalination with Heat Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahmane%20Diaf">Abderrahmane Diaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Benabdellaziz"> Kamel Benabdellaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Remote arid areas of the vast expanses of the African deserts hold huge subterranean reserves of brackish water resources waiting for economic development. This work presents design guidelines as well as initial performance data of new autonomous solar desalination equipment which could help local communities produce their own fresh water using solar energy only and, why not, contribute to transforming desert lands into lush gardens. The output of solar distillation equipment is typically low and in the range of 3 l/m2/day on the average. This new design with an integrated, water-based, environmentally-friendly solar heat storage system produced 5 l/m2/day in early spring weather. Equipment output during summer exceeded 9 liters per m2 per day. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20trough%20distillation" title="multiple trough distillation">multiple trough distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20desalination" title=" solar desalination"> solar desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20distillation%20with%20heat%20storage" title=" solar distillation with heat storage"> solar distillation with heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20based%20heat%20storage%20system" title=" water based heat storage system"> water based heat storage system</a> </p> <a href="https://publications.waset.org/abstracts/30827/stand-alone-multiple-trough-solar-desalination-with-heat-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8620</span> Silver Nanoparticles in Drinking Water Purification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Pooja%20Pragati">S. Pooja Pragati</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Sudarsan"> B. Sudarsan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rajkumar"> S. Rajkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanoparticles (AgNP) are known for their excellent antimicrobial agents, and thus can be used as alternative disinfectant agents. However, released silver nanoparticles is a threat to naturally occurring microorganisms. This paper exhibits information on the environmental fate, toxicological effects, and application of AgNP and the current estimate on the physicochemical and antimicrobial properties of AgNP in different aqueous solutions, as well as their application as alternative disinfectants in water-treatment systems. It also gives a better approximation and experimental data of AgNP’s antimicrobial properties at different water chemistry conditions. A saturation-type fitting curve was established, showing the survival of bacteria under different water chemistry conditions as a function of the size of the nanoparticles. The results obtained show that silver nanoparticles in surface water, ground water, and brackish water are stable. The paper demonstrates the comparative study of AgNP-impregnated point-of-use ceramic water filters and ceramic filters impregnated with silver nitrate. It is observed that AgNP-impregnated ceramic water filters are more appropriate for this application due to the lesser amount of silver desorbed. Experimental data of the comparison of a polymer-based quaternary amine functionalized silsesquioxanes compound and AgNP are also tabulated and conclusions are analysed with the goal of optimizing. The simplicity of synthesis and application of Silver nanoparticles enables us to consider its effective modified version for the purification of water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disinfectant%20agent" title="disinfectant agent">disinfectant agent</a>, <a href="https://publications.waset.org/abstracts/search?q=purification%20of%20water" title=" purification of water"> purification of water</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20particles" title=" nano particles"> nano particles</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment "> water treatment </a> </p> <a href="https://publications.waset.org/abstracts/29418/silver-nanoparticles-in-drinking-water-purification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8619</span> Feasibility of Small Autonomous Solar-Powered Water Desalination Units for Arid Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ahmed%20M.%20Azab">Mohamed Ahmed M. Azab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shortage of fresh water is a major problem in several areas of the world such as arid regions and coastal zones in several countries of Arabian Gulf. Fortunately, arid regions are exposed to high levels of solar irradiation most the year, which makes the utilization of solar energy a promising solution to such problem with zero harmful emission (Green System). The main objective of this work is to conduct a feasibility study of utilizing small autonomous water desalination units powered by photovoltaic modules as a green renewable energy resource to be employed in different isolated zones as a source of drinking water for some scattered societies where the installation of huge desalination stations are discarded owing to the unavailability of electric grid. Yanbu City is chosen as a case study where the Renewable Energy Center exists and equipped with all sensors to assess the availability of solar energy all over the year. The study included two types of available water: the first type is brackish well water and the second type is seawater of coastal regions. In the case of well water, two versions of desalination units are involved in the study: the first version is based on day operation only. While the second version takes into consideration night operation also, which requires energy storage system as batteries to provide the necessary electric power at night. According to the feasibility study results, it is found that utilization of small autonomous desalinations unit is applicable and economically accepted in the case of brackish well water. While in the case of seawater the capital costs are extremely high and the cost of desalinated water will not be economically feasible unless governmental subsidies are provided. In addition, the study indicated that, for the same water production, the utilization of energy storage version (day-night) adds additional capital cost for batteries, and extra running cost for their replacement, which makes the unit price not only incompetent with day-only unit but also with conventional units powered by diesel generator (fossil fuel) owing to the low prices of fuel in the kingdom. However, the cost analysis shows that the price of the produced water per cubic meter of day-night unit is similar to that produced from the day-only unit provided that the day-night unit operates theoretically for a longer period of 50%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20desalination" title=" water desalination"> water desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20regions" title=" arid regions"> arid regions</a> </p> <a href="https://publications.waset.org/abstracts/16602/feasibility-of-small-autonomous-solar-powered-water-desalination-units-for-arid-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8618</span> Evaluation of Groundwater Quality and Its Suitability for Drinking and Agricultural Purposes Using Self-Organizing Maps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Belkhiri">L. Belkhiri</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Mouni"> L. Mouni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tiri"> A. Tiri</a>, <a href="https://publications.waset.org/abstracts/search?q=T.S.%20Narany"> T.S. Narany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the self-organizing map (SOM) clustering technique was applied to identify homogeneous clusters of hydrochemical parameters in El Milia plain, Algeria, to assess the quality of groundwater for potable and agricultural purposes. The visualization of SOM-analysis indicated that 35 groundwater samples collected in the study area were classified into three clusters, which showed progressive increase in electrical conductivity from cluster one to cluster three. Samples belonging to cluster one are mostly located in the recharge zone showing hard fresh water type, however, water type gradually changed to hard-brackish type in the discharge zone, including clusters two and three. Ionic ratio studies indicated the role of carbonate rock dissolution in increases on groundwater hardness, especially in cluster one. However, evaporation and evapotranspiration are the main processes increasing salinity in cluster two and three. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20quality" title="groundwater quality">groundwater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=self-organizing%20maps" title=" self-organizing maps"> self-organizing maps</a>, <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title=" drinking water"> drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20water" title=" irrigation water"> irrigation water</a> </p> <a href="https://publications.waset.org/abstracts/62284/evaluation-of-groundwater-quality-and-its-suitability-for-drinking-and-agricultural-purposes-using-self-organizing-maps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8617</span> Distribution and Characterization of Thermal Springs in Northern Oman</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Al%20Shidi">Fahad Al Shidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reginald%20Victor"> Reginald Victor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted in Northern Oman to assess the physical and chemical characteristics of 40 thermal springs distributed in Al Hajar Mountains in northern Oman. Physical measurements of water samples were carried out in two main seasons in Oman (winter and summer 2019). Studied springs were classified into three groups based on water temperature, four groups based on water pH values and two groups based on conductivity. Ten thermal alkaline springs that originated in Ophiolite (Samail Napp) were dominated by high pH (> 11), elevated concentration of Cl- and Na+ ions, relatively low temperature and discharge ratio. Other springs in the Hajar Super Group massif recorded high concentrations of Ca<sup>2</sup>+ and SO<sup>2-</sup><sub>4</sub> ions controlled by rock dominance, geochemistry processes, and mineralization. There was only one spring which has brackish water with very high conductivity (5500 µs/cm) and Total Dissolved Solids and it is not suitable for irrigation purposes because of the high abundance of Na+, Cl−, and Ca<sup>2</sup>+ ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20springs" title="alkaline springs">alkaline springs</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal" title=" geothermal"> geothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=HSG" title=" HSG"> HSG</a>, <a href="https://publications.waset.org/abstracts/search?q=ophiolite" title=" ophiolite"> ophiolite</a> </p> <a href="https://publications.waset.org/abstracts/131791/distribution-and-characterization-of-thermal-springs-in-northern-oman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8616</span> Investigation of Irrigation Water Quality at Al-Wafra Agricultural Area, Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mosab%20Aljeri">Mosab Aljeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abdulraheem"> Ali Abdulraheem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The water quality of five water types at Al-Wuhaib farm, Al-Wafra area, was studies through onsite field measurements, including pH, temperature, electrical conductivity (EC), and dissolved oxygen (DO), for four different water types. Biweekly samples were collected and analyzed for two months to obtain data of chemicals, nutrients, organics, and heavy metals. The field and laboratory results were compared with irrigation standards of Kuwait Environmental Public Authority (KEPA). The pH values of the five samples sites were within the maximum and minimum limits of KEPA standards. Based on EC values, two groups of water types were observed. The first group represents freshwater quality originated from freshwater Ministry of Electricity & Water & Renewable Energy (MEWRE) line or from freshwater tanks or treated wastewater. The second group represents brackish water type originated from groundwater or treated water mixed with groundwater. The study indicated that all nitrogen forms (ammonia, Total Kjeldahl nitrogen (TKN), Total nitrogen (TN)), total phosphate concentrations and all tested heavy metals for the five water types were below KEPA standards. These macro and micro nutrients are essential for plant growth and can be used as fertilizers. The study suggest that the groundwater should be treated and disinfected in the farming area. Also, these type of studies shall be carried out routinely to all farm areas to ensure safe water use and safe agricultural produce. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate" title=" phosphate"> phosphate</a> </p> <a href="https://publications.waset.org/abstracts/172549/investigation-of-irrigation-water-quality-at-al-wafra-agricultural-area-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8615</span> A Spatio-Temporal Analysis and Change Detection of Wetlands in Diamond Harbour, West Bengal, India Using Normalized Difference Water Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lopita%20Pal">Lopita Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20V.%20Madha"> Suresh V. Madha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wetlands are areas of marsh, fen, peat land or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres. The rapidly expanding human population, large scale changes in land use/land cover, burgeoning development projects and improper use of watersheds all has caused a substantial decline of wetland resources in the world. Major degradations have been impacted from agricultural, industrial and urban developments leading to various types of pollutions and hydrological perturbations. Regular fishing activities and unsustainable grazing of animals are degrading the wetlands in a slow pace. The paper focuses on the spatio-temporal change detection of the area of the water body and the main cause of this depletion. The total area under study (22°19’87’’ N, 88°20’23’’ E) is a wetland region in West Bengal of 213 sq.km. The procedure used is the Normalized Difference Water Index (NDWI) from multi-spectral imagery and Landsat to detect the presence of surface water, and the datasets have been compared of the years 2016, 2006 and 1996. The result shows a sharp decline in the area of water body due to a rapid increase in the agricultural practices and the growing urbanization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20change" title="spatio-temporal change">spatio-temporal change</a>, <a href="https://publications.waset.org/abstracts/search?q=NDWI" title=" NDWI"> NDWI</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=wetland" title=" wetland"> wetland</a> </p> <a href="https://publications.waset.org/abstracts/60756/a-spatio-temporal-analysis-and-change-detection-of-wetlands-in-diamond-harbour-west-bengal-india-using-normalized-difference-water-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8614</span> Hydrogeophysical Investigations of Groundwater Resources and Demarcation of Saltwater-Freshwater Interface in Kilwa Kisiwani Island, Se Tanzania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simon%20R.%20Melchioly">Simon R. Melchioly</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahimu%20C.%20Mjemah"> Ibrahimu C. Mjemah</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20M.%20Marobhe"> Isaac M. Marobhe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research was to identify new potential sources of groundwater resources using geophysical methods and also to demarcate the saltwater - freshwater interface. Kilwa Kisiwani Island geologically is covered mostly by Quaternary alluvial sediments, sand, and gravel. The geophysical techniques employed during the research include Vertical Electrical Sounding (VES), Earth Resistivity Tomography (ERT), and Transient Electromagnetics (TEM). Two-dimensional interpolated geophysical results show that there exist freshwater lenses formations that are potential aquifers on the Island with resistivity values ranging from 11.68 Ωm to 46.71 Ωm. These freshwater lenses are underlain by formation with brackish water in which the resistivity values are varying between 3.89 Ωm and 1.6 Ωm. Saltwater with resistivity less than 1 Ωm is found at the bottom being overlaid by brackish saturated formation. VES resistivity results show that 89% (16 out of 18) of the VES sites are potential for groundwater resources drilling while TEM results indicate that 75% (12 out of 16) of TEM sites are potential for groundwater borehole drilling. The recommended drilling depths for potential sites in Kilwa Kisiwani Island show that the maximum depth is 25 m and the minimum being 10 m below ground surface. The aquifer structure in Kilwa Kisiwani Island is a shallow, unconfined freshwater lenses floating above the seawater and the maximum thickness of the aquifer is 25 m for few selected VES and TEM sites while the minimum thickness being 10 m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeophysical" title=" hydrogeophysical"> hydrogeophysical</a>, <a href="https://publications.waset.org/abstracts/search?q=Kilwa%20Kisiwani" title=" Kilwa Kisiwani"> Kilwa Kisiwani</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwater" title=" freshwater"> freshwater</a>, <a href="https://publications.waset.org/abstracts/search?q=saltwater" title=" saltwater"> saltwater</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a> </p> <a href="https://publications.waset.org/abstracts/60810/hydrogeophysical-investigations-of-groundwater-resources-and-demarcation-of-saltwater-freshwater-interface-in-kilwa-kisiwani-island-se-tanzania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8613</span> Effective Water Purification by Impregnated Carbon Nanotubes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raviteja%20Chintala">Raviteja Chintala </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water shortage in many areas of the world have predominantly increased the demand for efficient methods involved in the production of drinking water, So purification of water invoking cost effective and efficient methods is a challenging field of research. In this regard, Reverse osmosis membrane desalination of both seawater and inland brackish water is currently being deployed in various locations around the world. In the present work an attempt is made to integrate these existing technologies with novel method, Wherein carbon nanotubes at the lab scale are prepared which further replace activated carbon tubes being used traditionally. This has proven to enhance the efficiency of the water filter, Effectively neutralising most of the organic impurities. Furthermore, This ensures the reduction in TDS. Carbon nanotubes have wide range in scope of applications such as composite reinforcements, Field emitters, Sensors, Energy storage and energy conversion devices and catalysts support phases, Because of their unusual mechanical, Electrical, Thermal and structural properties. In particular, The large specific surface area, as well as the high chemical and thermal stability, Makes carbon nanotube an attractive adsorbent in waste water treatment. Carbon nanotubes are effective in eliminating these harmful media from water as an adsorbent. In this work, Candle soot method has been incorporated for the preparation of carbon nanotubes and mixed with activated charcoal in different compositions. The effect of composition change is monitored by using TDS measuring meter. As the composition of Nano carbon increases, The TDS of the water gradually decreases. In order to enhance the life time for carbon filter, Nano tubes are provided with larger surface area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TDS%20%28Total%20Dissolved%20Solids%29" title="TDS (Total Dissolved Solids)">TDS (Total Dissolved Solids)</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=candle%20soot" title=" candle soot"> candle soot</a> </p> <a href="https://publications.waset.org/abstracts/3674/effective-water-purification-by-impregnated-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8612</span> Mathematical Modelling, Simulation and Prototype Designing of Potable Water System on Basis of Forward Osmosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridhish%20Kumar">Ridhish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudeep%20Nadukkandy"> Sudeep Nadukkandy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anirban%20Roy"> Anirban Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of reverse osmosis happened in 1960. Along the years this technique has been widely accepted all over the world for varied applications ranging from seawater desalination to municipal water treatment. Forward osmosis (FO) is one of the foremost technologies for low energy consuming solutions for water purification. In this study, we have carried out a detailed analysis on selection, design, and pricing for a prototype of potable water system for purifying water in emergency situations. The portable and light purification system is envisaged to be driven by FO. This pouch will help to serve as an emergency water filtration device. The current effort employs a model to understand the interplay of permeability and area on the rate of purification of water from any impure source/brackish water. The draw solution for the FO pouch is considered to be a combination of salt and sugar such that dilution of the same would result in an oral rehydration solution (ORS) which is a boon for dehydrated patients. However, the effort takes an extra step to actually estimate the cost and pricing of designing such a prototype. While the mathematical model yields the best membrane (compositions are taken from literature) combination in terms of permeability and area, the pricing takes into account the feasibility of such a solution to be made available as a retail item. The product is envisaged to be a market competitor for packaged drinking water and ORS combination (costing around $0.5 combined) and thus, to be feasible has to be priced around the same range with greater margins in order to have a better distribution. Thus a proper business plan and production of the same has been formulated in order to be a feasible solution for unprecedented calamities and emergency situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forward%20osmosis" title="forward osmosis">forward osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20rehydration%20solution" title=" oral rehydration solution"> oral rehydration solution</a>, <a href="https://publications.waset.org/abstracts/search?q=prototype" title=" prototype"> prototype</a> </p> <a href="https://publications.waset.org/abstracts/87604/mathematical-modelling-simulation-and-prototype-designing-of-potable-water-system-on-basis-of-forward-osmosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8611</span> Design of a Small Mobile PV Driven RO Water Desalination Plant to be Deployed at the North West Coast of Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hosam%20A.%20Shawky">Hosam A. Shawky</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20A.%20Abdel%20Fatah"> Amr A. Abdel Fatah</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20M.%20S.%20Abo%20ElFad"> Moustafa M. S. Abo ElFad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Hameed%20M.%20El-Aassar"> Abdel Hameed M. El-Aassar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water desalination projects based on reverse osmosis technology are being introduced in Egypt to combat drinking water shortage in remote areas. Reverse osmosis (RO) desalination is a pressure driven process. This paper focuses on the design of an integrated brackish water and seawater RO desalination and solar Photovoltaic (PV) technology. A small Mobile PV driven RO desalination plant prototype without batteries is designed and tested. Solar-driven reverse osmosis desalination can potentially break the dependence of conventional desalination on fossil fuels, reduce operational costs, and improve environmental sustainability. Moreover, the innovative features incorporated in the newly designed PV-RO plant prototype are focusing on improving the cost effectiveness of producing drinkable water in remote areas. This is achieved by maximizing energy yield through an integrated automatic single axis PV tracking system with programmed tilting angle adjustment. An autonomous cleaning system for PV modules is adopted for maximizing energy generation efficiency. RO plant components are selected so as to produce 4-5 m3/day of potable water. A basic criterion in the design of this PV-RO prototype is to produce a minimum amount of fresh water by running the plant during peak sun hours. Mobility of the system will provide potable water to isolated villages and population as well as ability to provide good drinking water to different number of people from any source that is not drinkable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a> </p> <a href="https://publications.waset.org/abstracts/16507/design-of-a-small-mobile-pv-driven-ro-water-desalination-plant-to-be-deployed-at-the-north-west-coast-of-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8610</span> Potential Use of Spore-Forming Biosurfactant Producing Bacteria in Oil-Pollution Bioremediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Al-Bahry">S. N. Al-Bahry</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Al-Wahaibi"> Y. M. Al-Wahaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Joshi"> S. J. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Elshafie"> E. A. Elshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Al-Bimani"> A. S. Al-Bimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oman is one of the oil producing countries in the Arabian Peninsula and the Gulf region. About 30-40 % of oil produced from the Gulf is transported globally along the seacoast of Oman. Oil pollution from normal tanker operations, ballast water, illegal discharges and accidental spills are always serious threats to terrestrial and marine habitats. Due to Oman’s geographical location at arid region where the temperature ranges between high 40s and low 50s Celsius in summers with low annual rainfall, the main source of fresh water is desalinated sea and brackish water. Oil pollution, therefore, pose a major threat to drinking water. Biosurfactants are secondary metabolites produced by microorganisms in hydrophobic environments to release nutrients from solid surfaces, such as oil. In this study, indigenous oil degrading thermophilic spore forming bacteria were isolated from oil fields contaminated soil. The isolates were identified using MALDI-TOF biotyper and 16s RNA. Their growth conditions were optimized for the production of biosurfactant. Surface tension, interfacial tensions and microbial oil biodegradation capabilities were tested. Some thermophilic bacteria degraded either completely or partially heavy crude oil (API 10-15) within 48h suggesting their high potential in oil spill bioremediation and avoiding the commonly used physical and chemical methods which usually lead to other environmental pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=crude-oil-pollution" title=" crude-oil-pollution"> crude-oil-pollution</a> </p> <a href="https://publications.waset.org/abstracts/23753/potential-use-of-spore-forming-biosurfactant-producing-bacteria-in-oil-pollution-bioremediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8609</span> Optimization of Water Desalination System Powered by High Concentrated Photovoltaic Panels in Kuwait Climate Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20A.%20Ghoneim">Adel A. Ghoneim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Desalination using solar energy is an interesting option specifically at regions with abundant solar radiation since such areas normally have scarcity of clean water resources. Desalination is the procedure of eliminating dissolved minerals from seawater or brackish water to generate fresh water. In this work, a simulation program is developed to determine the performance of reverse osmosis (RO) water desalination plant powered by high concentrated photovoltaic (HCPV) panels in Kuwait climate conditions. The objective of such a photovoltaic thermal system is to accomplish a double output, i.e., co-generation of both electricity and fresh water that is applicable for rural regions with high solar irradiation. The suggested plan enables to design an RO plant that does not depend on costly batteries or additional land and significantly reduce the government costs to subsidize the water generation cost. Typical weather conditions for Kuwait is employed as input to the simulation program. The simulation program is utilized to optimize the system efficiency as well as the distillate water production. The areas and slopes of HCPV modules are varied to attain maximum yearly power production. Maximum yearly distillate production and HCPV energy generation are found to correspond to HCPV facing south with tilt of 27° (Kuwait latitude-3°). The power needed to produce 1 l of clean drinking water ranged from 2 to 8 kW h/m³, based on the salinity of the feed water and the system operating conditions. Moreover, adapting HCPV systems achieve an avoided greenhouse gases emission by about 1128 ton CO₂ annually. Present outcomes certainly illustrate environmental advantages of water desalination system powered by high concentrated photovoltaic systems in Kuwait climate conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalination" title="desalination">desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20concentrated%20photovoltaic%20systems" title=" high concentrated photovoltaic systems"> high concentrated photovoltaic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation" title=" solar radiation"> solar radiation</a> </p> <a href="https://publications.waset.org/abstracts/82842/optimization-of-water-desalination-system-powered-by-high-concentrated-photovoltaic-panels-in-kuwait-climate-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8608</span> Juvenile Fish Associated with Pondweed and Charophyte Habitat: A Case Study Using Upgraded Pop-up Net in the Estuarine Part of the Curonian Lagoon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bu%C4%8Das">M. Bučas</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Skersonas"> A. Skersonas</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ivanauskas"> E. Ivanauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Lesutien%C4%97"> J. Lesutienė</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Nika"> N. Nika</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Sr%C4%97balien%C4%97"> G. Srėbalienė</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ti%C5%A1kus"> E. Tiškus</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Gintauskas"> J. Gintauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%C5%A0a%C5%A1kov"> A.Šaškov</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Martin"> G. Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Submerged vegetation enhances heterogeneity of sublittoral habitats; therefore, macrophyte stands are essential elements of aquatic ecosystems to maintain a diverse fish fauna. Fish-habitat relations have been extensively studied in streams and coastal waters, but in lakes and estuaries are still underestimated. The aim of this study is to assess temporal (diurnal and seasonal) patterns of fish juvenile assemblages associated with common submerged macrophyte habitats, which have significantly spread during the recent decade in the upper littoral part of the Curonian Lagoon. The assessment was performed by means of an upgraded pop-up net approach resulting in much precise sampling versus other techniques. The optimal number of samples (i.e., pop-up nets) required to cover>80% of the total number of fish species depended on the time of the day in both study sites: at least 7and 9 nets in the evening (18-24 pm) in the Southern and Northern study sites, respectively. In total, 14 fish species were recorded, where perch and roach dominated (respectively 48% and 24%). From multivariate analysis, water salinity and seasonality (temperature or sampling month) were primary factors determining fish assemblage composition. The southern littoral area, less affected by brackish water conditions, hosted a higher number of species (13) than in the Northern site (8). In the latter site, brackish water tolerant species (three-spined and nine-spined sticklebacks, spiny loach, roach, and round goby) were more abundant than in the Southern site. Perch and ruffe dominated in the Southern site. Spiny loach and nine-spined stickleback were more frequent in September, while ruffe, perch, and roach occurred more in July. The diel dynamics of the common species such as perch, roach, and ruffe followed the general pattern, but it was species specific and depended on the study site, habitat, and month. The species composition between macrophyte habitats did not significantly differ; however, it differed from the results obtained in 2005 at both study sites indicating the importance of expanded charophyte stands during the last decade in the littoral zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diel%20dynamics" title="diel dynamics">diel dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=charophytes" title=" charophytes"> charophytes</a>, <a href="https://publications.waset.org/abstracts/search?q=pondweeds" title=" pondweeds"> pondweeds</a>, <a href="https://publications.waset.org/abstracts/search?q=herbivorous%20and%20benthivorous%20fishes" title=" herbivorous and benthivorous fishes"> herbivorous and benthivorous fishes</a>, <a href="https://publications.waset.org/abstracts/search?q=littoral" title=" littoral"> littoral</a>, <a href="https://publications.waset.org/abstracts/search?q=nursery%20habitat" title=" nursery habitat"> nursery habitat</a>, <a href="https://publications.waset.org/abstracts/search?q=shelter" title=" shelter"> shelter</a> </p> <a href="https://publications.waset.org/abstracts/141088/juvenile-fish-associated-with-pondweed-and-charophyte-habitat-a-case-study-using-upgraded-pop-up-net-in-the-estuarine-part-of-the-curonian-lagoon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brackish%20water&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brackish%20water&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brackish%20water&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brackish%20water&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brackish%20water&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brackish%20water&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brackish%20water&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brackish%20water&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brackish%20water&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brackish%20water&page=287">287</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brackish%20water&page=288">288</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brackish%20water&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>