CINXE.COM
Journal of Physics G: Nuclear and Particle Physics - IOPscience
<!DOCTYPE html> <html xml:lang="en" lang="en"> <head> <!-- Start cookieyes banner --> <!-- End cookieyes banner --> <title>Journal of Physics G: Nuclear and Particle Physics - IOPscience</title> <meta charset="utf-8" /> <meta http-equiv="x-ua-compatible" content="IE=edge" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, minimum-scale=1.0" /> <script> function DeferJS(src) { function downloadJSAtOnload() { var element = document.createElement("script"); element.src = src; document.body.appendChild(element); } if (window.addEventListener) window.addEventListener("load", downloadJSAtOnload, false); else if (window.attachEvent) window.attachEvent("onload", downloadJSAtOnload); else window.onload = downloadJSAtOnload; } </script> <!-- start metadata--><!-- end metadata--> <script type="text/javascript"> //start common.config (function () { let config = {"ENABLE_MATHJAX_BY_DEFAULT":"true","SHOW_REFERENCE_ENTITLEMENT":"true","SECURED_ENVIRONMENT":"true"} || {}; window.config = {...config, ...window.config}; })(); //end common.config </script> <script> var _urconfig = { sid: "defc3a7d-4b34-4b6f-ad1c-0716e0a05a65", aip: 0, usePageProtocol: false }; (function (d, s) { var js = d.createElement(s), sc = d.getElementsByTagName(s)[0]; js.src = "https://hit.uptrendsdata.com/rum.min.js"; js.async = "async"; sc.parentNode.insertBefore(js, sc); } (document, "script")); </script> <!-- uptrends--> <meta name="robots" content="noarchive" /> <!--start home.baiduWebmasterTools.verification--> <!--end home.baiduWebmasterTools.verification--> <!--start home.google.verification--> <!--end home.google.verification--> <!--start common.baidu.statistics.script> --> <!--end common.baidu.statistics.script--> <!--start common.styles--> <link rel="stylesheet" href="https://static.iopscience.com/3.72.3/css/critical-styles.min.css" type="text/css"/> <link rel="stylesheet" href="https://static.iopscience.com/3.72.3/css/main-styles.min.css" media="print" onload="this.media='all'"/> <!--[if lte IE 10]> <link rel="stylesheet" href="https://static.iopscience.com/3.72.3/css/gridset-ie-lte8.css" type="text/css"/> <![endif]--> <!--end common.styles--> <!--start common.gs.head--> <!-- Google Scholar Universal Casa --> <!-- End Google Scholar Universal Casa --> <!--end common.gs.head--> <!--start common.ga.head--> <script> window.iabConfig = { allowedVendors: ['755','804', '1020'], allowedGoogleVendors: [] } </script> <!-- Google Tag Manager --> <script type="text/javascript"> (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push( {'gtm.start': new Date().getTime(), event: 'gtm.js'} ); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-M73Z4W'); </script> <!-- End Google Tag Manager --> <!--end common.ga.head--> <script> const mathjaxVersion = 3; </script> <script async src="https://securepubads.g.doubleclick.net/tag/js/gpt.js"></script> <script> window.googletag = window.googletag || {cmd: []}; googletag.cmd.push(function () { const leaderboard = googletag.sizeMapping().addSize([800, 0], [728, 90]).addSize([640, 690], [180, 150]).addSize([0, 0], [180, 150]).build(); googletag.defineSlot('/21821800277/iopsc/iopsc_m_hp_ap', new Array([728, 90], [300, 250], [180, 150]), 'div-gpt-ad-1562594774007-0').defineSizeMapping(leaderboard).addService(googletag.pubads()); googletag.defineSlot('/21821800277/iopsc/iopsc_x11_hp_ap', [180, 150], 'div-gpt-ad-1562595009103-0').addService(googletag.pubads()); googletag.defineSlot('/21821800277/iopsc/iopsc_pubgrade1_ap', [160, 600], 'div-gpt-ad-1665567578228-0').addService(googletag.pubads()); const googleLeaderboardMapping = googletag.sizeMapping() .addSize([1000, 0], [970, 90]) .addSize([350, 0], [320, 50]) .addSize([0, 0], []) .build(); googletag.defineSlot('/21821800277/iopsc/iopsc_top_hp_ap', new Array([970, 90], [320, 50]), 'div-gpt-ad-1709814088027-0') .defineSizeMapping(googleLeaderboardMapping) .addService(googletag.pubads()); const googleSkyscraperMapping = googletag.sizeMapping().addSize([800, 0], [160, 600]).addSize([350, 250], [300, 250]).addSize([0, 0], []).build(); googletag.defineSlot('/21821800277/iopsc/iopsc_skyscraper1_hp_ap', new Array([160, 600], [300, 250]), 'div-gpt-ad-1669279847892-0').defineSizeMapping(googleSkyscraperMapping).addService(googletag.pubads()); const tagArray = "".split(","); googletag.pubads().enableSingleRequest(); googletag.pubads() .setTargeting("article_tag", tagArray) .setTargeting("pagetype", "jnl_homepage") .setTargeting("iopscience_issn", "0954-3899") .setTargeting("iopscience_vol", "") .setTargeting("iopscience_issue", "") .setTargeting("iopscience_doi", "") .setTargeting("iopscience_isbn", "") .setTargeting("iopscience_chapter_no", ""); // seting page level targeting googletag.pubads().enableSingleRequest(); googletag.pubads().collapseEmptyDivs(); googletag.enableServices(); }); </script> <script>var __uzdbm_1 = "253daccb-9461-40b0-8ea2-7d7d67156c41";var __uzdbm_2 = "ODEyYjk5MGMtY252ai00MjNmLTlhMTUtZjU2ZTE2ZTE3N2JhJDguMjIyLjIwOC4xNDY=";var __uzdbm_3 = "7f600023a88caa-4064-4906-b490-8de2e6c566f817326887034620-2a2fb594c6ee48dc10";var __uzdbm_4 = "false";var __uzdbm_5 = "uzmx";var __uzdbm_6 = "7f900066371ff5-c258-4243-832b-8d15be2806841-17326887034620-41522a7e6613a9d710";var __uzdbm_7 = "iop.org";</script> <script> (function (w, d, e, u, c, g, a, b) { w["SSJSConnectorObj"] = w["SSJSConnectorObj"] || { ss_cid: c, domain_info: "auto", }; w[g] = function (i, j) { w["SSJSConnectorObj"][i] = j; }; a = d.createElement(e); a.async = true; if ( navigator.userAgent.indexOf('MSIE') !== -1 || navigator.appVersion.indexOf('Trident/') > -1 ) { u = u.replace("/advanced/", "/advanced/ie/"); } a.src = u; b = d.getElementsByTagName(e)[0]; b.parentNode.insertBefore(a, b); })( window, document, "script", "https://new.iopscience.iop.org/18f5227b-e27b-445a-a53f-f845fbe69b40/stormcaster.js", "cnvl", "ssConf" ); ssConf("c1", "https://new.iopscience.iop.org"); ssConf("c3", "c99a4269-161c-4242-a3f0-28d44fa6ce24"); ssConf("au", "new.iopscience.iop.org"); ssConf("cu", "validate.perfdrive.com, ssc"); </script></head> <body itemscope itemtype="http://schema.org/Organization" class="issn-0954-3899"> <a id="back-to-top-target" tabindex="-1"></a> <!-- Google Tag Manager (noscript) --> <noscript><iframe title="GA" src="https://www.googletagmanager.com/ns.html?id=GTM-M73Z4W" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="content-grid"> <!-- Start Production toolbar --> <!-- End Production toolbar --> <!-- Start Downtime Banner --> <!-- End Downtime Banner --> <!-- Start of google leaderboard banner on top. --> <aside class="leaderboard-ad content-grid__full-width" role="complementary" aria-label="Leaderboard advert"> <div id='div-gpt-ad-1709814088027-0'> <script> googletag.cmd.push(function() { googletag.display('div-gpt-ad-1709814088027-0'); }); </script> </div> </aside> <!-- End of google leaderboard banner on top. --> <!-- Header starts --> <header class="content-grid__full-width" role="banner" data-nav-group> <a class="sr-skip sr-skip--overlay header__skip" href="#skip-to-content-link-target">Skip to content</a> <div class="accessibility" style="display: none;"> <p><strong>Accessibility Links</strong></p> <ul> <li><a href="#page-content">Skip to content</a></li> <li><a href="/search#contentCol">Skip to search IOPscience</a></li> <li><a href="/journals#contentCol">Skip to Journals list</a></li> <li><a href="/page/accessibility#contentCol">Accessibility help</a></li> </ul> </div> <div class="dgh-showgrid tgh-showgrid cf" name="contentCol"> <nav role="navigation" class="wd-main-nav" aria-label="Site"> <a href="#sidr-main" id="simple-menu" class="nav-top-link" aria-label="Menu"><svg aria-hidden="true" class="fa-icon fa-icon--xlrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--bars--><!--!Font Awesome Free 6.5.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M0 96C0 78.3 14.3 64 32 64H416c17.7 0 32 14.3 32 32s-14.3 32-32 32H32C14.3 128 0 113.7 0 96zM0 256c0-17.7 14.3-32 32-32H416c17.7 0 32 14.3 32 32s-14.3 32-32 32H32c-17.7 0-32-14.3-32-32zM448 416c0 17.7-14.3 32-32 32H32c-17.7 0-32-14.3-32-32s14.3-32 32-32H416c17.7 0 32 14.3 32 32z"/></svg></a> <a href="/" itemprop="url" class="header-logo wd-header-graphic"> <meta itemprop="name" content="IOPscience"> <img height="15" width="100" src="" alt=""> <span class="offscreen-hidden">IOP Science home</span> </a> <a class="btn btn-default" id="accessibility-help" href="/page/accessibility">Accessibility Help</a> <ul id="sidr" class="nav__list"> <li class="nav-search nav-item"> <button class="nav-top-link-drop-down nav-top-link-drop-down--icon" data-nav-trigger="articlelookup"> <svg class="fa-icon fa-icon--lrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--!Font Awesome Free 6.6.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><title>Search</title><path d="M416 208c0 45.9-14.9 88.3-40 122.7L502.6 457.4c12.5 12.5 12.5 32.8 0 45.3s-32.8 12.5-45.3 0L330.7 376c-34.4 25.2-76.8 40-122.7 40C93.1 416 0 322.9 0 208S93.1 0 208 0S416 93.1 416 208zM208 352a144 144 0 1 0 0-288 144 144 0 1 0 0 288z"/></svg> </button> <div class="nav-drop-down nav-drop-down--full-width" data-nav-item="articlelookup"> <div class="wrapper--search cf"> <div id="search" class="wd-header-search art-lookup__search"> <form accept-charset="utf-8,iso-8859-1" class="primary-search" method="get" action="/nsearch" role="search"> <div class="art-lookup__fields-wrapper"> <label for="quickSearch">Search all IOPscience content</label> <input type="search" x-webkit-speech="" name="terms" id="quickSearch" class="art-lookup__field--grow" placeholder="Search all IOPscience content" value="" escapeXml="true"/> <button type="submit" x-webkit-speech="" class="btn btn-default hdr-search-btn bd-0 art-lookup__submit">Search</button> </div> </form> </div> <div id="wd-content-finder" class="art-lookup__content-finder"> <form accept-charset="utf-8,iso-8859-1" method="get" action="/findcontent" name="contentFinderForm" id="wd-find-art-form" class="find-article-issue-display" autocomplete="OFF" aria-labelledby="article-lookup"> <fieldset> <legend id="article-lookup" class="eyebrow eyebrow--blue">Article Lookup</legend> <div class="art-lookup__fields-wrapper"> <label for="CF_JOURNAL" class="offscreen-hidden">Select journal (required)</label> <select name="CF_JOURNAL" class="find-article-select art-lookup__content-finder-field art-lookup__field--grow art-lookup__content-finder-field--first" id="CF_JOURNAL"> <option value="none">Select journal (required)</option><option value="2053-1583">2D Mater. (2014 - present)</option><option value="1004-423X">Acta Phys. Sin. (Overseas Edn) (1992 - 1999)</option><option value="2043-6262">Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)</option><option value="1882-0786">Appl. Phys. Express (2008 - present)</option><option value="1758-5090">Biofabrication (2009 - present)</option><option value="1748-3190">Bioinspir. Biomim. (2006 - present)</option><option value="1748-605X">Biomed. Mater. (2006 - present)</option><option value="2057-1976">Biomed. Phys. Eng. Express (2015 - present)</option><option value="0508-3443">Br. J. Appl. Phys. (1950 - 1967)</option><option value="1009-9271">Chin. J. Astron. Astrophys. (2001 - 2008)</option><option value="1003-7713">Chin. J. Chem. Phys. (1987 - 2007)</option><option value="1674-0068">Chin. J. Chem. Phys. (2008 - 2012)</option><option value="1009-1963">Chinese Phys. (2000 - 2007)</option><option value="1674-1056">Chinese Phys. B (2008 - present)</option><option value="1674-1137">Chinese Phys. C (2008 - present)</option><option value="0256-307X">Chinese Phys. Lett. (1984 - present)</option><option value="0264-9381">Class. Quantum Grav. (1984 - present)</option><option value="0143-0815">Clin. Phys. Physiol. Meas. (1980 - 1992)</option><option value="1364-7830">Combustion Theory and Modelling (1997 - 2004)</option><option value="0253-6102">Commun. Theor. Phys. (1982 - present)</option><option value="1749-4699">Comput. Sci. Discov. (2008 - 2015)</option><option value="2057-1739">Converg. Sci. Phys. Oncol. (2015 - 2018)</option><option value="0967-1846">Distrib. Syst. Engng. (1993 - 1999)</option><option value="2754-2734">ECS Adv. (2022 - present)</option><option value="2162-8734">ECS Electrochem. Lett. (2012 - 2015)</option><option value="2162-8777">ECS J. Solid State Sci. Technol. (2012 - present)</option><option value="2754-2726">ECS Sens. Plus (2022 - present)</option><option value="2162-8750">ECS Solid State Lett. (2012 - 2015)</option><option value="1938-5862">ECS Trans. (2005 - present)</option><option value="0295-5075">EPL (1986 - present)</option><option value="1944-8783">Electrochem. Soc. Interface (1992 - present)</option><option value="1944-8775">Electrochem. Solid-State Lett. (1998 - 2012)</option><option value="2516-1075">Electron. Struct. (2019 - present)</option><option value="2631-8695">Eng. Res. Express (2019 - present)</option><option value="2515-7620">Environ. Res. Commun. (2018 - present)</option><option value="1748-9326">Environ. Res. Lett. (2006 - present)</option><option value="2752-5295">Environ. Res.: Climate (2022 - present)</option><option value="2752-664X">Environ. Res.: Ecology (2022 - present)</option><option value="2753-3751">Environ. Res.: Energy (2024 - present)</option><option value="2976-601X">Environ. Res.: Food Syst. (2024 - present)</option><option value="2752-5309">Environ. Res.: Health (2022 - present)</option><option value="2634-4505">Environ. Res.: Infrastruct. Sustain. (2021 - present)</option><option value="3033-4942">Environ. Res.: Water (2025 - present)</option><option value="0143-0807">Eur. J. Phys. (1980 - present)</option><option value="2058-8585">Flex. Print. Electron. (2015 - present)</option><option value="1873-7005">Fluid Dyn. Res. (1986 - present)</option><option value="2631-6331">Funct. Compos. Struct. (2018 - present)</option><option value="1755-1315">IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)</option><option value="1757-899X">IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)</option><option value="2633-1357">IOPSciNotes (2020 - 2022)</option><option value="2631-7990">Int. J. Extrem. Manuf. (2019 - present)</option><option value="0266-5611">Inverse Problems (1985 - present)</option><option value="1064-5632">Izv. Math. (1993 - present)</option><option value="1752-7163">J. Breath Res. (2007 - present)</option><option value="1475-7516">J. Cosmol. Astropart. Phys. (2003 - present)</option><option value="1945-7111">J. Electrochem. Soc. (1902 - present)</option><option value="1742-2140">J. Geophys. Eng. (2004 - 2018)</option><option value="1126-6708">J. High Energy Phys. (1997 - 2009)</option><option value="1748-0221">J. Inst. (2006 - present)</option><option value="0960-1317">J. Micromech. Microeng. (1991 - present)</option><option value="1741-2552">J. Neural Eng. (2004 - present)</option><option value="0368-3281">J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)</option><option value="0150-536X">J. Opt. (1977 - 1998)</option><option value="2040-8986">J. Opt. (2010 - present)</option><option value="1464-4258">J. Opt. A: Pure Appl. Opt. (1999 - 2009)</option><option value="1464-4266">J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)</option><option value="0022-3689">J. Phys. A: Gen. Phys. (1968 - 1972)</option><option value="0305-4470">J. Phys. A: Math. Gen. (1975 - 2006)</option><option value="0301-0015">J. Phys. A: Math. Nucl. Gen. (1973 - 1974)</option><option value="1751-8121">J. Phys. A: Math. Theor. (2007 - present)</option><option value="0953-4075">J. Phys. B: At. Mol. Opt. Phys. (1988 - present)</option><option value="0022-3700">J. Phys. B: Atom. Mol. Phys. (1968 - 1987)</option><option value="0022-3719">J. Phys. C: Solid State Phys. (1968 - 1988)</option><option value="2399-6528">J. Phys. Commun. (2017 - present)</option><option value="2632-072X">J. Phys. Complex. (2019 - present)</option><option value="0022-3727">J. Phys. D: Appl. Phys. (1968 - present)</option><option value="0022-3735">J. Phys. E: Sci. Instrum. (1968 - 1989)</option><option value="2515-7655">J. Phys. Energy (2018 - present)</option><option value="0305-4608">J. Phys. F: Met. Phys. (1971 - 1988)</option><option value="0954-3899" selected="selected">J. Phys. G: Nucl. Part. Phys. (1989 - present)</option><option value="0305-4616">J. Phys. G: Nucl. Phys. (1975 - 1988)</option><option value="2515-7639">J. Phys. Mater. (2018 - present)</option><option value="2515-7647">J. Phys. Photonics (2018 - present)</option><option value="0953-8984">J. Phys.: Condens. Matter (1989 - present)</option><option value="1742-6596">J. Phys.: Conf. Ser. (2004 - present)</option><option value="0952-4746">J. Radiol. Prot. (1988 - present)</option><option value="3050-2454">J. Reliab. Sci. Eng. (2025 - present)</option><option value="0950-7671">J. Sci. Instrum. (1923 - 1967)</option><option value="1674-4926">J. Semicond. (2009 - present)</option><option value="0260-2814">J. Soc. Radiol. Prot. (1981 - 1987)</option><option value="1742-5468">J. Stat. Mech. (2004 - present)</option><option value="1468-5248">JoT (2000 - 2004)</option><option value="1347-4065">Jpn. J. Appl. Phys. (1962 - present)</option><option value="1555-6611">Laser Phys. (2013 - present)</option><option value="1612-202X">Laser Phys. Lett. (2004 - present)</option><option value="3049-4753">Mach. Learn.: Earth (2025 - present)</option><option value="3049-4761">Mach. Learn.: Eng. (2025 - present)</option><option value="3049-477X">Mach. Learn.: Health (2025 - present)</option><option value="2632-2153">Mach. Learn.: Sci. Technol. (2019 - present)</option><option value="2752-5724">Mater. Futures (2022 - present)</option><option value="2633-4356">Mater. Quantum. Technol. (2020 - present)</option><option value="2053-1591">Mater. Res. Express (2014 - present)</option><option value="0025-5726">Math. USSR Izv. (1967 - 1992)</option><option value="0025-5734">Math. USSR Sb. (1967 - 1993)</option><option value="0957-0233">Meas. Sci. Technol. (1990 - present)</option><option value="2151-2043">Meet. Abstr. (2002 - present)</option><option value="2050-6120">Methods Appl. Fluoresc. (2013 - present)</option><option value="0026-1394">Metrologia (1965 - present)</option><option value="0965-0393">Modelling Simul. Mater. Sci. Eng. (1992 - present)</option><option value="2399-7532">Multifunct. Mater. (2018 - 2022)</option><option value="2632-959X">Nano Ex. (2020 - present)</option><option value="2399-1984">Nano Futures (2017 - present)</option><option value="0957-4484">Nanotechnology (1990 - present)</option><option value="0954-898X">Network (1990 - 2004)</option><option value="2634-4386">Neuromorph. Comput. Eng. (2021 - present)</option><option value="1367-2630">New J. Phys. (1998 - present)</option><option value="0951-7715">Nonlinearity (1988 - present)</option><option value="0335-7368">Nouvelle Revue d'Optique (1973 - 1976)</option><option value="0029-4780">Nouvelle Revue d'Optique Appliquée (1970 - 1972)</option><option value="0029-5515">Nucl. Fusion (1960 - present)</option><option value="1538-3873">PASP (1889 - present)</option><option value="1478-3975">Phys. Biol. (2004 - present)</option><option value="0031-9112">Phys. Bull. (1950 - 1988)</option><option value="0031-9120">Phys. Educ. (1966 - present)</option><option value="0031-9155">Phys. Med. Biol. (1956 - present)</option><option value="1402-4896">Phys. Scr. (1970 - present)</option><option value="2058-7058">Phys. World (1988 - present)</option><option value="1063-7869">Phys.-Usp. (1993 - present)</option><option value="0305-4624">Physics in Technology (1973 - 1988)</option><option value="0967-3334">Physiol. Meas. (1993 - present)</option><option value="0741-3335">Plasma Phys. Control. Fusion (1984 - present)</option><option value="0032-1028">Plasma Physics (1967 - 1983)</option><option value="2516-1067">Plasma Res. Express (2018 - 2022)</option><option value="1009-0630">Plasma Sci. Technol. (1999 - present)</option><option value="0963-0252">Plasma Sources Sci. Technol. (1992 - present)</option><option value="0959-5309">Proc. Phys. Soc. (1926 - 1948)</option><option value="0370-1328">Proc. Phys. Soc. (1958 - 1967)</option><option value="0370-1298">Proc. Phys. Soc. A (1949 - 1957)</option><option value="0370-1301">Proc. Phys. Soc. B (1949 - 1957)</option><option value="1478-7814">Proc. Phys. Soc. London (1874 - 1925)</option><option value="2576-1579">Proc. Vol. (1967 - 2005)</option><option value="2516-1091">Prog. Biomed. Eng. (2018 - present)</option><option value="2516-1083">Prog. Energy (2018 - present)</option><option value="0963-6625">Public Understand. Sci. (1992 - 2002)</option><option value="0963-9659">Pure Appl. Opt. (1992 - 1998)</option><option value="1469-7688">Quantitative Finance (2001 - 2004)</option><option value="1063-7818">Quantum Electron. (1993 - present)</option><option value="0954-8998">Quantum Opt. (1989 - 1994)</option><option value="2058-9565">Quantum Sci. Technol. (2015 - present)</option><option value="1355-5111">Quantum Semiclass. Opt. (1995 - 1998)</option><option value="0034-4885">Rep. Prog. Phys. (1934 - present)</option><option value="1674-4527">Res. Astron. Astrophys. (2009 - present)</option><option value="2515-5172">Research Notes of the AAS (2017 - present)</option><option value="0034-6683">RevPhysTech (1970 - 1972)</option><option value="0036-021X">Russ. Chem. Rev. (1960 - present)</option><option value="0036-0279">Russ. Math. Surv. (1960 - present)</option><option value="1064-5616">Sb. Math. (1993 - present)</option><option value="1468-6996">Sci. Technol. Adv. Mater. (2000 - 2015)</option><option value="0268-1242">Semicond. Sci. Technol. (1986 - present)</option><option value="0964-1726">Smart Mater. Struct. (1992 - present)</option><option value="0049-1748">Sov. J. Quantum Electron. (1971 - 1992)</option><option value="0038-5670">Sov. Phys. Usp. (1958 - 1992)</option><option value="0953-2048">Supercond. Sci. Technol. (1988 - present)</option><option value="2051-672X">Surf. Topogr.: Metrol. Prop. (2013 - present)</option><option value="2977-3504">Sustain. Sci. Technol. (2024 - present)</option><option value="1538-3881">The Astronomical Journal (1849 - present)</option><option value="0004-637X">The Astrophysical Journal (1996 - present)</option><option value="2041-8205">The Astrophysical Journal Letters (2010 - present)</option><option value="0067-0049">The Astrophysical Journal Supplement Series (1996 - present)</option><option value="2632-3338">The Planetary Science Journal (2020 - present)</option><option value="2156-7395">Trans. Amer: Electrochem. Soc. (1930 - 1930)</option><option value="1945-6859">Trans. Electrochem. Soc. (1931 - 1948)</option><option value="1475-4878">Trans. Opt. Soc. (1899 - 1932)</option><option value="2053-1613">Transl. Mater. Res. (2014 - 2018)</option><option value="0959-7174">Waves Random Media (1991 - 2004)</option> </select> <label for="CF_VOLUME" class="offscreen-hidden">Volume number:</label> <input type="text" name="CF_VOLUME" id="CF_VOLUME" class="art-lookup__content-finder-field" placeholder="Volume" x-webkit-speech=""> <label for="CF_ISSUE" class="offscreen-hidden">Issue number (if known):</label> <input type="text" name="CF_ISSUE" id="CF_ISSUE" class="art-lookup__content-finder-field" placeholder="Issue" x-webkit-speech=""> <label for="CF_PAGE" class="offscreen-hidden">Article or page number:</label> <input type="text" name="CF_PAGE" id="CF_PAGE" class="art-lookup__content-finder-field art-lookup__content-finder-field--last" placeholder="Article or page" x-webkit-speech=""> <button type="submit" class="btn btn-default art-lookup__submit" name="submit">Lookup</button> </div> </fieldset> </form> </div> </div> </div> </li> <li class="nav-journals nav-item wd-nav-journal"> <button class="nav-top-link-drop-down" data-nav-trigger="journals">Journals<svg aria-hidden="true" class="fa-icon fa-icon--right fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg></button> <div class="nav-drop-down wd-nav-journal-dd" data-nav-item="journals"> <div class="nav-drop-down__grid"> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/journals">Journals list</a> <span class="nav-drop-down__item-info m-hide">Browse more than 100 science journal titles</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/page/subjects">Subject collections</a> <span class="nav-drop-down__item-info m-hide">Read the very best research published in IOP journals</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/journals?type=partner#js-tab-pubpart">Publishing partners</a> <span class="nav-drop-down__item-info m-hide">Partner organisations and publications</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/info/page/openaccess">Open access</a> <span class="nav-drop-down__item-info m-hide">IOP Publishing open access policy guide</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/conference-series">IOP Conference Series</a> <span class="nav-drop-down__item-info m-hide">Read open access proceedings from science conferences worldwide</span> </div> </div> </div> </li> <li class="nav-books nav-item wd-nav-books"> <a href="/booklistinfo/home" class="nav-top-link">Books</a> </li> <li class="nav-publishing-support nav-item wd-publishing-support"> <a href="https://publishingsupport.iopscience.iop.org" class="nav-top-link">Publishing Support</a> </li> <!-- Header Login starts here --> <li class="nav-login nav-item wd-nav-login"> <button class="nav-top-link-drop-down" id="login-drop-down-user" data-nav-trigger="login"><svg aria-hidden="true" class="fa-icon fa-icon--left" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--circle-user--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M399 384.2C376.9 345.8 335.4 320 288 320H224c-47.4 0-88.9 25.8-111 64.2c35.2 39.2 86.2 63.8 143 63.8s107.8-24.7 143-63.8zM0 256a256 256 0 1 1 512 0A256 256 0 1 1 0 256zm256 16a72 72 0 1 0 0-144 72 72 0 1 0 0 144z"/></svg>Login<svg aria-hidden="true" class="fa-icon fa-icon--right fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg></button> <div class="nav-drop-down wd-nav-login-dd" data-nav-item="login"> <a href="https://myiopscience.iop.org/signin?origin=a0&return=https%3A%2F%2Fiopscience.iop.org%2Fjournal%2F0954-3899" id="wd-login-link">IOPscience login / Sign Up</a> </div> </li> <!-- Header Login ends here --> </ul> </nav> </div> </header> <div class="page-body" > <!-- Start two column layout --> <!-- Start two column layout --> <div class="grid-2-col db-showgrid tb-showgrid cf"> <main id="skip-to-content-link-target"> <!-- Secondary header starts --> <div class="secondary-header cf" id="wd-secondary-header"> <!-- Branded journal header starts --> <!-- Branded journal header starts --> <div class="branded"> <div class="publication-name" id="wd-pub-name"> <h1 class="publication-title" itemprop="name" itemid="periodical"> <!-- Branded journal header starts --> <a href="/journal/0954-3899" itemprop="url">Journal of Physics G: Nuclear and Particle Physics</a> <!-- Journal image link starts --> <!-- Journal image link ends --> </h1> </div> <div class="partner-logos m-hide" id="wd-partner-logos"> <div class="partner-logo-alignment"> <!-- Partner logo starts --> <button class="overlay-launch partner-logo" aria-expanded="false"> <img src="https://cms.iopscience.org/67706039-71b2-11ef-b232-8f9c605a91ff/PLP-Logo.png?guest=true" alt="Purpose-Led Publishing, find out more."> </button> <span class="overlay-set"> <div class="tint-screen"></div> <div role="dialog" aria-label="Purpose-Led Publishing" aria-modal="true" class="overlay-panel"> <button class="close-icon close-overlay" aria-label="Close"><svg aria-hidden="true" class="fa-icon fa-icon--xlrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--circle-xmark--><!--!Font Awesome Free 6.5.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M256 512A256 256 0 1 0 256 0a256 256 0 1 0 0 512zM175 175c9.4-9.4 24.6-9.4 33.9 0l47 47 47-47c9.4-9.4 24.6-9.4 33.9 0s9.4 24.6 0 33.9l-47 47 47 47c9.4 9.4 9.4 24.6 0 33.9s-24.6 9.4-33.9 0l-47-47-47 47c-9.4 9.4-24.6 9.4-33.9 0s-9.4-24.6 0-33.9l47-47-47-47c-9.4-9.4-9.4-24.6 0-33.9z"/></svg></button> <div class="overlay-img"> <img src="https://cms.iopscience.org/67706039-71b2-11ef-b232-8f9c605a91ff/PLP-Logo.png?guest=true" alt="Purpose-Led Publishing logo."/> </div> <div class="overlay-text"> <p><a href="https://www.purposeledpublishing.org/">Purpose-led Publishing</a> is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing.</p> <p>Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications.</p> <p><strong>We are proudly declaring that science is our only shareholder.</strong></p> </div> </div> </span> <!-- Partner logo ends --> </div> </div> </div> <!-- Branded journal header ends --> </div> <!-- Secondary header ends --> <div class="db1 tb1"> <!-- Start Journal Content --> <div class="flex-container"> <!-- Start Journal introduction --> <div class="mb-2" id="wd-jnl-hm-intro"> <div class="pull-left"> <img alt="" width="125" src="https://cms.iopscience.org/07dc7d88-ec1f-11e5-b0b6-759f86a2008e/journal_cover?guest=true" border="0"/> <span><br><strong>ISSN: </strong>1361-6471</span> </div> <div class="media-body"> <strong style="color: #069537">SUPPORTS OPEN ACCESS</strong> <p><em>Journal of Physics G: Nuclear and Particle Physics</em> publishes theoretical, experimental and computational research in nuclear and particle physics including all interface areas between these fields. The journal also publishes articles on nuclear and particle astrophysics. </p> <div class="btn-multi-block"> <a id="jhp-submit" href="https://iopscience.iop.org/journal/0954-3899/page/submission-options" target="_blank" class="btn btn-default" rel="noopener">Submit an article <span class="offscreen-hidden">opens in new tab</span></a> <a id="jhp-track" href="https://publishingsupport.iopscience.iop.org/track-my-article/" target="_blank" class="btn btn-primary" rel="noopener"> Track my article <span class="offscreen-hidden">opens in new tab</span> </a> <div class="jnl-notifications print-hide"> <!-- BEGIN JHP RSS feed link --> <div class="jnl-notifications-wrapper"> <a class="link--decoration-none" href="/journal/rss/0954-3899"> <svg aria-hidden="true" class="fa-icon fa-icon--left" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--rss--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M0 64C0 46.3 14.3 32 32 32c229.8 0 416 186.2 416 416c0 17.7-14.3 32-32 32s-32-14.3-32-32C384 253.6 226.4 96 32 96C14.3 96 0 81.7 0 64zM0 416a64 64 0 1 1 128 0A64 64 0 1 1 0 416zM32 160c159.1 0 288 128.9 288 288c0 17.7-14.3 32-32 32s-32-14.3-32-32c0-123.7-100.3-224-224-224c-17.7 0-32-14.3-32-32s14.3-32 32-32z"/></svg>RSS</a> </div> <!-- END JHP RSS feed link --> <!-- Start Email Alert --> <div class="jnl-notifications-wrapper"> <a class="link--decoration-none loginRequired" href="https://myiopscience.iop.org/signin?origin=a0&return=https%3A%2F%2Fiopscience.iop.org%2Fmyiopscience%2Falerts%2Fsubscribe%3Fjournal%3D0954-3899" id="noId" data-ga-event="journal_alert_sign_up" > <svg aria-hidden="true" class="fa-icon fa-icon--left" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--bell--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M224 0c-17.7 0-32 14.3-32 32V51.2C119 66 64 130.6 64 208v18.8c0 47-17.3 92.4-48.5 127.6l-7.4 8.3c-8.4 9.4-10.4 22.9-5.3 34.4S19.4 416 32 416H416c12.6 0 24-7.4 29.2-18.9s3.1-25-5.3-34.4l-7.4-8.3C401.3 319.2 384 273.9 384 226.8V208c0-77.4-55-142-128-156.8V32c0-17.7-14.3-32-32-32zm45.3 493.3c12-12 18.7-28.3 18.7-45.3H224 160c0 17 6.7 33.3 18.7 45.3s28.3 18.7 45.3 18.7s33.3-6.7 45.3-18.7z"/></svg>Sign up for new issue notifications </a> </div> <!-- End Email Alert --> <!-- End Email Alert --> <!-- End Email Alert --> </div> </div> </div> </div> <!-- End Journal intro --> <!-- Start Journal home volume listings --> <div id="wd-jnl-hm-vol-forms" class="mb-2 mid-table-mb-25 clear-fl"> <div class="cf"> <div class="mid-tablet-half-left"> <form id="currentVolumeIssuesForm" class="select-w-btn mb-1 cf" name="currentVolumeIssuesForm" action="/issue" method="get" onsubmit="return false" accept-charset="utf-8,iso-8859-1"> <label for="latestVolumeIssuesSelector" class="cf">Current volume</label> <select name="latestVolumeIssuesSelect" id="latestVolumeIssuesSelector"> <option value="/issue/0954-3899/52/1">Number 1, January 2025</option> </select> <button type="submit" id="latestVolumeIssues" class="btn btn-primary-2 select-w-btn__submit">Go</button> </form> </div> <div class="mid-tablet-half-right"> <form id="allVolumesForm" name="allVolumesForm" class="select-w-btn mb-1 cf" action="/volume" method="get" onsubmit="return false" accept-charset="utf-8,iso-8859-1"> <label for="allVolumesSelector" class="cf">Journal archive</label> <select name="allVolumesSelect" id="allVolumesSelector"> <option value="/volume/0954-3899/52">Vol 52, 2025</option><option value="/volume/0954-3899/51">Vol 51, 2024</option><option value="/volume/0954-3899/50">Vol 50, 2023</option><option value="/volume/0954-3899/49">Vol 49, 2022</option><option value="/volume/0954-3899/48">Vol 48, 2021</option><option value="/volume/0954-3899/47">Vol 47, 2020</option><option value="/volume/0954-3899/46">Vol 46, 2019</option><option value="/volume/0954-3899/45">Vol 45, 2018</option><option value="/volume/0954-3899/44">Vol 44, 2017</option><option value="/volume/0954-3899/43">Vol 43, 2016</option><option value="/volume/0954-3899/42">Vol 42, 2015</option><option value="/volume/0954-3899/41">Vol 41, 2014</option><option value="/volume/0954-3899/40">Vol 40, 2013</option><option value="/volume/0954-3899/39">Vol 39, 2012</option><option value="/volume/0954-3899/38">Vol 38, 2011</option><option value="/volume/0954-3899/37">Vol 37, 2010</option><option value="/volume/0954-3899/36">Vol 36, 2009</option><option value="/volume/0954-3899/35">Vol 35, 2008</option><option value="/volume/0954-3899/34">Vol 34, 2007</option><option value="/volume/0954-3899/32">Vol 32, 2006</option><option value="/volume/0954-3899/33">Vol 33, 2006</option><option value="/volume/0954-3899/31">Vol 31, 2005</option><option value="/volume/0954-3899/30">Vol 30, 2004</option><option value="/volume/0954-3899/29">Vol 29, 2003</option><option value="/volume/0954-3899/28">Vol 28, 2002</option><option value="/volume/0954-3899/27">Vol 27, 2001</option><option value="/volume/0954-3899/26">Vol 26, 2000</option><option value="/volume/0954-3899/25">Vol 25, 1999</option><option value="/volume/0954-3899/24">Vol 24, 1998</option><option value="/volume/0954-3899/23">Vol 23, 1997</option><option value="/volume/0954-3899/22">Vol 22, 1996</option><option value="/volume/0954-3899/21">Vol 21, 1995</option><option value="/volume/0954-3899/20">Vol 20, 1994</option><option value="/volume/0954-3899/19">Vol 19, 1993</option><option value="/volume/0954-3899/18">Vol 18, 1992</option><option value="/volume/0954-3899/17">Vol 17, 1991</option><option value="/volume/0954-3899/16">Vol 16, 1990</option><option value="/volume/0954-3899/15">Vol 15, 1989</option> </select> <button type="submit" id="allVolumes" class="btn btn-primary-2 select-w-btn__submit event_journal-vol">Go</button> </form> </div> <!-- For Conference Series Journal --> <!-- Start Focus issues --> <div class="mid-tablet-half-left"> <form id="allTopicsForm" name="allVolumesForm" class="select-w-btn mb-1 cf" action="/journal" method="get" onsubmit="return false" accept-charset="utf-8,iso-8859-1"> <label for="allFocusIssuesSelector" class="cf">Focus issues</label> <select name="allFocusIssuesSelector" id="allFocusIssuesSelector"> <option value="/collections/jpg-240604-574">Reactor Neutrinos, Neutrino-Nucleon Scattering, and the Physics of Rare Events</option><option value="/collections/multi-231222-01">Focus Issue on the Centenary of Bose Statistics</option><option value="/collections/0954-3899_Focus_on_Dark_Matter">Focus on Dark Matter</option><option value="/collections/jpg-230418-01">Focus on Neutrino-Nucleus Interactions</option> </select> <button type="submit" id="allFocusIssues" class="btn btn-primary-2 select-w-btn__submit">Go</button> </form> </div> <!-- End Focus issues --> </div> </div> <!-- End Journal home volume listings --> </div> <!-- Start Journal Metrics --> <div id="wd-journal-metrics" class="metrics"> <div class="metrics__grid"> <div class="metrics__metric"> <span class="metrics__description">Median submission to first decision before peer review</span> <span class="metrics__score">9 days</span> </div> <div class="metrics__metric"> <span class="metrics__description">Median submission to first decision after peer review</span> <span class="metrics__score">56 days</span> </div> <div class="metrics__metric"> <span class="metrics__description">Impact factor</span> <span class="metrics__score">3.4</span> </div> <div class="metrics__metric"> <span class="metrics__description">Citescore</span> <span class="metrics__score">7.6</span> </div> </div> <a class="metrics__view-more" href="https://iopscience.iop.org/journal/0954-3899/page/about#metrics">Full list of journal metrics</a> </div> <!-- End Journal Metrics --> <div class="cf mb-1"> <!-- Start of Editorial news section --> <!-- End of Editorial news section --> <!-- Start Article listing tabs --> <div class="tabs cf mb-2 mt-1 tabs--vertical" id="wd-jnl-hm-art-list"> <!-- Start Tabs list --> <div role="tablist"> <button role="tab" aria-selected="false" aria-controls="most-read-tab" id="most-read" class="event_tabs" tabindex="-1"> Most read </button> <button role="tab" aria-selected="true" aria-controls="latest-articles-tab" id="latest-articles" class="event_tabs"> Latest articles </button> <button role="tab" aria-selected="false" aria-controls="review-articles-tab" id="review-articles" class="event_tabs" tabindex="-1"> Review articles </button> <button role="tab" aria-selected="false" aria-controls="accepted-manuscripts-tab" id="accepted-manuscripts" class="event_tabs" tabindex="-1"> Accepted manuscripts </button> <button role="tab" aria-selected="false" aria-controls="open-access-articles-tab" id="open-access-articles" class="event_tabs" tabindex="-1"> Open Access </button> </div> <!-- End Tabs list --> <!-- Start Most read tabpanel --> <div tabindex="0" role="tabpanel" id="most-read-tab" aria-labelledby="most-read" hidden="hidden"> <div class=" reveal-container reveal-closed reveal-enabled reveal-container--jnl-tab"> <h2 class="tabpanel__title"> <button type="button" class="reveal-trigger event_tabs-accordion" aria-expanded="false"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg>Most read</button> </h2> <div class="reveal-content tabpanel__content" style="display: none"> <p> <button data-reveal-label-alt="Close all abstracts" class="reveal-all-trigger mr-2 small" data-reveal-text="Open all abstracts" data-link-purpose-append="in this tab" data-link-purpose-append-open="in this tab"> Open all abstracts<span class="offscreen-hidden">, in this tab</span> </button> </p> <!-- articleEntryList start--> <div class="art-list"> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad307f" class="art-list-item-title event_main-link">White paper on light sterile neutrino searches and related phenomenology</a> <p class="small art-list-item-meta"> M A Acero <em>et al</em> 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>51</b> 120501 </p> <div class="art-list-item-tools small wd-abstr-upper"> <a href="/article/10.1088/1361-6471/ad307f/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, White paper on light sterile neutrino searches and related phenomenology</span></a> <a href="/article/10.1088/1361-6471/ad307f/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, White paper on light sterile neutrino searches and related phenomenology</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad307f">https://doi.org/10.1088/1361-6471/ad307f</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ac841a" class="art-list-item-title event_main-link">A next-generation liquid xenon observatory for dark matter and neutrino physics</a> <p class="small art-list-item-meta"> J Aalbers <em>et al</em> 2023 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>50</b> 013001 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="A next-generation liquid xenon observatory for dark matter and neutrino physics" data-link-purpose-append-open="A next-generation liquid xenon observatory for dark matter and neutrino physics">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ac841a/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, A next-generation liquid xenon observatory for dark matter and neutrino physics</span></a> <a href="/article/10.1088/1361-6471/ac841a/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, A next-generation liquid xenon observatory for dark matter and neutrino physics</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ac841a">https://doi.org/10.1088/1361-6471/ac841a</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad1a78" class="art-list-item-title event_main-link">The strong coupling constant: state of the art and the decade ahead</a> <p class="small art-list-item-meta"> D d'Enterria <em>et al</em> 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>51</b> 090501 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="The strong coupling constant: state of the art and the decade ahead" data-link-purpose-append-open="The strong coupling constant: state of the art and the decade ahead">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad1a78/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, The strong coupling constant: state of the art and the decade ahead</span></a> <a href="/article/10.1088/1361-6471/ad1a78/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, The strong coupling constant: state of the art and the decade ahead</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Theoretical predictions for particle production cross sections and decays at colliders rely heavily on perturbative Quantum Chromodynamics (QCD) calculations, expressed as an expansion in powers of the strong coupling constant <i>α</i><sub><i>S</i></sub>. The current <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0954-3899/51/9/090501/revision2/jpgad1a78ieqn1.gif" style="max-width: 100%;" alt="${ \mathcal O }(1 \% )$" align="top"></img></span><script type="math/tex">{ \mathcal O }(1 \% )</script></span></span> uncertainty of the QCD coupling evaluated at the reference Z boson mass, <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0954-3899/51/9/090501/revision2/jpgad1a78ieqn2.gif" style="max-width: 100%;" alt="${\alpha }_{S}({m}_{{\rm{Z}}}^{2})=0.1179\pm 0.0009$" align="top"></img></span><script type="math/tex">{\alpha }_{S}({m}_{{\rm{Z}}}^{2})=0.1179\pm 0.0009</script></span></span>, is one of the limiting factors to more precisely describe multiple processes at current and future colliders. A reduction of this uncertainty is thus a prerequisite to perform precision tests of the Standard Model as well as searches for new physics. This report provides a comprehensive summary of the state-of-the-art, challenges, and prospects in the experimental and theoretical study of the strong coupling. The current <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0954-3899/51/9/090501/revision2/jpgad1a78ieqn3.gif" style="max-width: 100%;" alt="${\alpha }_{S}({m}_{{\rm{Z}}}^{2})$" align="top"></img></span><script type="math/tex">{\alpha }_{S}({m}_{{\rm{Z}}}^{2})</script></span></span> world average is derived from a combination of seven categories of observables: (i) lattice QCD, (ii) hadronic <i>τ</i> decays, (iii) deep-inelastic scattering and parton distribution functions fits, (iv) electroweak boson decays, hadronic final-states in (v) e<sup>+</sup>e<sup>−</sup>, (vi) e–p, and (vii) p–p collisions, and (viii) quarkonia decays and masses. We review the current status of each of these seven <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0954-3899/51/9/090501/revision2/jpgad1a78ieqn4.gif" style="max-width: 100%;" alt="${\alpha }_{S}({m}_{{\rm{Z}}}^{2})$" align="top"></img></span><script type="math/tex">{\alpha }_{S}({m}_{{\rm{Z}}}^{2})</script></span></span> extraction methods, discuss novel <i>α</i><sub><i>S</i></sub> determinations, and examine the averaging method used to obtain the world-average value. Each of the methods discussed provides a 'wish list' of experimental and theoretical developments required in order to achieve the goal of a per-mille precision on <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0954-3899/51/9/090501/revision2/jpgad1a78ieqn5.gif" style="max-width: 100%;" alt="${\alpha }_{S}({m}_{{\rm{Z}}}^{2})$" align="top"></img></span><script type="math/tex">{\alpha }_{S}({m}_{{\rm{Z}}}^{2})</script></span></span> within the next decade.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad1a78">https://doi.org/10.1088/1361-6471/ad1a78</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ac865e" class="art-list-item-title event_main-link">The Forward Physics Facility at the High-Luminosity LHC</a> <p class="small art-list-item-meta"> Jonathan L Feng <em>et al</em> 2023 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>50</b> 030501 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="The Forward Physics Facility at the High-Luminosity LHC" data-link-purpose-append-open="The Forward Physics Facility at the High-Luminosity LHC">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ac865e/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, The Forward Physics Facility at the High-Luminosity LHC</span></a> <a href="/article/10.1088/1361-6471/ac865e/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, The Forward Physics Facility at the High-Luminosity LHC</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ac865e">https://doi.org/10.1088/1361-6471/ac865e</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/abf3ba" class="art-list-item-title event_main-link">The Large Hadron–Electron Collider at the HL-LHC</a> <p class="small art-list-item-meta"> P Agostini <em>et al</em> 2021 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>48</b> 110501 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="The Large Hadron–Electron Collider at the HL-LHC" data-link-purpose-append-open="The Large Hadron–Electron Collider at the HL-LHC">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/abf3ba/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, The Large Hadron–Electron Collider at the HL-LHC</span></a> <a href="/article/10.1088/1361-6471/abf3ba/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, The Large Hadron–Electron Collider at the HL-LHC</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>The Large Hadron–Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron–proton and proton–proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton–nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron–hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/abf3ba">https://doi.org/10.1088/1361-6471/abf3ba</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ab4574" class="art-list-item-title event_main-link">Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider</a> <p class="small art-list-item-meta"> Juliette Alimena <em>et al</em> 2020 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>47</b> 090501 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider" data-link-purpose-append-open="Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ab4574/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider</span></a> <a href="/article/10.1088/1361-6471/ab4574/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments—as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER—to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ab4574">https://doi.org/10.1088/1361-6471/ab4574</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/0954-3899/43/8/084001" class="art-list-item-title event_main-link">Letter of intent for KM3NeT 2.0</a> <p class="small art-list-item-meta"> S Adrián-Martínez <em>et al</em> 2016 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>43</b> 084001 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Letter of intent for KM3NeT 2.0" data-link-purpose-append-open="Letter of intent for KM3NeT 2.0">Open abstract</span> </button> <a href="/article/10.1088/0954-3899/43/8/084001/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Letter of intent for KM3NeT 2.0</span></a> <a href="/article/10.1088/0954-3899/43/8/084001/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Letter of intent for KM3NeT 2.0</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/0954-3899/43/8/084001">https://doi.org/10.1088/0954-3899/43/8/084001</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1088/0954-3899/37/7A/075021" class="art-list-item-title event_main-link">Review of Particle Physics</a> <p class="small art-list-item-meta"> K Nakamura and (Particle Data Group) 2010 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>37</b> 075021 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Review of Particle Physics" data-link-purpose-append-open="Review of Particle Physics">Open abstract</span> </button> <a href="/article/10.1088/0954-3899/37/7A/075021/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Review of Particle Physics</span></a> <a href="/article/10.1088/0954-3899/37/7A/075021/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Review of Particle Physics</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>This biennial <i>Review</i> summarizes much of particle physics. Using data from previous editions, plus 2158 new measurements from 551 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on neutrino mass, mixing, and oscillations, QCD, top quark, CKM quark-mixing matrix, <i>V<sub>ud</sub></i> & <i>V<sub>us</sub></i>, <i>V<sub>cb</sub></i> & <i>V<sub>ub</sub></i>, fragmentation functions, particle detectors for accelerator and non-accelerator physics, magnetic monopoles, cosmological parameters, and big bang cosmology. </p><p> A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full <i>Review</i>. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: <a href="http://pdg.lbl.gov">pdg.lbl.gov</a>.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/0954-3899/37/7A/075021">https://doi.org/10.1088/0954-3899/37/7A/075021</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1088/0954-3899/33/1/001" class="art-list-item-title event_main-link">Review of Particle Physics</a> <p class="small art-list-item-meta"> (W-M Yao et al) 2006 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>33</b> 1 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Review of Particle Physics" data-link-purpose-append-open="Review of Particle Physics">Open abstract</span> </button> <a href="/article/10.1088/0954-3899/33/1/001/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Review of Particle Physics</span></a> <a href="/article/10.1088/0954-3899/33/1/001/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Review of Particle Physics</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>This biennial <i>Review</i> summarizes much of particle physics. Using data from previous editions, plus 2633 new measurements from 689 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 110 reviews are many that are new or heavily revised including those on CKM quark-mixing matrix, <i>V<sub>ud</sub></i> & <i>V<sub>us</sub></i>, <i>V<sub>cb</sub></i> & <i>V<sub>ub</sub></i>, top quark, muon anomalous magnetic moment, extra dimensions, particle detectors, cosmic background radiation, dark matter, cosmological parameters, and big bang cosmology. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full <i>Review</i>. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: <a href="http://pdg.lbl.gov">http://pdg.lbl.gov</a>.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/0954-3899/33/1/001">https://doi.org/10.1088/0954-3899/33/1/001</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ac8890" class="art-list-item-title event_main-link">Horizons: nuclear astrophysics in the 2020s and beyond</a> <p class="small art-list-item-meta"> H Schatz <em>et al</em> 2022 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>49</b> 110502 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Horizons: nuclear astrophysics in the 2020s and beyond" data-link-purpose-append-open="Horizons: nuclear astrophysics in the 2020s and beyond">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ac8890/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Horizons: nuclear astrophysics in the 2020s and beyond</span></a> <a href="/article/10.1088/1361-6471/ac8890/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Horizons: nuclear astrophysics in the 2020s and beyond</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ac8890">https://doi.org/10.1088/1361-6471/ac8890</a> </div> </div> </div> </div> </div> <!-- articleEntryList end--> </div> </div> </div> <!-- End Most read tabpanel --> <!-- Start Latest tabpanel --> <div tabindex="0" role="tabpanel" id="latest-articles-tab" aria-labelledby="latest-articles"> <div class=" reveal-container reveal-closed reveal-enabled reveal-container--jnl-tab"> <h2 class="tabpanel__title"> <button type="button" class="reveal-trigger event_tabs-accordion" aria-expanded="false"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg>Latest articles</button> </h2> <div class="reveal-content tabpanel__content" style="display: none"> <p> <button data-reveal-label-alt="Close all abstracts" class="reveal-all-trigger mr-2 small" data-reveal-text="Open all abstracts" data-link-purpose-append="in this tab" data-link-purpose-append-open="in this tab"> Open all abstracts<span class="offscreen-hidden">, in this tab</span> </button> </p> <!-- articleEntryList start--> <div class="art-list"> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1088/1361-6471/ad8cf3" class="art-list-item-title event_main-link">Probing anomalous <i>Z</i><i>γ</i><i>γ</i><i>γ</i> couplings at a future muon collider</a> <p class="small art-list-item-meta"> H Amarkhail <em>et al</em> 2025 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>52</b> 015001 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Probing anomalous Zγγγ couplings at a future muon collider" data-link-purpose-append-open="Probing anomalous Zγγγ couplings at a future muon collider">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad8cf3/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Probing anomalous Zγγγ couplings at a future muon collider</span></a> <a href="/article/10.1088/1361-6471/ad8cf3/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Probing anomalous Zγγγ couplings at a future muon collider</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>The sensitivity to anomalous quartic gauge couplings (AQGCs) of the <i>γ</i><i>γ</i><i>γ</i><i>Z</i> interaction is studied in the <i>μ</i><sup>+</sup><i>μ</i><sup>−</sup> → <i>μ</i><sup>+</sup><i>γ</i><i>γ</i><i>μ</i><sup>−</sup> scattering at a future muon collider with unpolarized beams. The anomalous <i>γ</i><i>γ</i><i>γ</i><i>Z</i> vertex is described by two couplings, <i>ζ</i><sub>1</sub> and <i>ζ</i><sub>2</sub>. The differential and total cross sections are calculated for the center-of-mass energies of 3 TeV, 14 TeV, and 100 TeV. For these values of the collision energy the 95% C.L. exclusion regions for AQGCs are obtained depending on the systematic error. In particular, for the 14 TeV muon collider with the integrated luminosity <i>L</i> = 20 ab<sup>−1</sup> the best sensitivities are derived to be <i>ζ</i><sub>1</sub> = 3.1 <b>×</b> 10<sup>−5</sup> TeV<sup>−4</sup> and <i>ζ</i><sub>2</sub> = 6.5 <b>×</b>10<sup>−5</sup> TeV<sup>−4</sup>. These constraints are three orders of magnitude stronger than the bounds obtained for the 27 TeV HE-LHC with <i>L</i> = 15 ab<sup>−1</sup>. At the 100 TeV muon collider with <i>L</i> = 1000 ab<sup>−1</sup> AQGCs can be probed up to 1.64 <b>×</b> 10<sup>−8</sup> TeV<sup>−4</sup> and 3.4 <b>×</b> 10<sup>−8</sup> TeV<sup>−4</sup> for <i>ζ</i><sub>1</sub> and <i>ζ</i><sub>2</sub>, respectively. The partial-wave unitarity constraints on couplings <i>ζ</i><sub>1</sub>, <i>ζ</i><sub>2</sub> are evaluated. It is shown that the unitarity is not violated in the region of the AQGCs examined in the present paper.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad8cf3">https://doi.org/10.1088/1361-6471/ad8cf3</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1088/1361-6471/ad8249" class="art-list-item-title event_main-link">Flattenicity as centrality estimator in p–Pb collisions simulated with PYTHIA/Angantyr</a> <p class="small art-list-item-meta"> Antonio Ortiz <em>et al</em> 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>51</b> 125003 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Flattenicity as centrality estimator in p–Pb collisions simulated with PYTHIA/Angantyr" data-link-purpose-append-open="Flattenicity as centrality estimator in p–Pb collisions simulated with PYTHIA/Angantyr">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad8249/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Flattenicity as centrality estimator in p–Pb collisions simulated with PYTHIA/Angantyr</span></a> <a href="/article/10.1088/1361-6471/ad8249/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Flattenicity as centrality estimator in p–Pb collisions simulated with PYTHIA/Angantyr</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>In this paper, a centrality estimator based on flattenicity is studied using PYTHIA 8.312 Angantyr, whose existing implementation is enough to study the particle production in p–Pb collisions in the absence of medium effects. The number of binary nucleon–nucleon collisions for different centrality estimators are compared. The studies include forward multiplicity, forward flattenicity and midrapidity multiplicity. The results using flattenicity show the smallest deviations (<8%) with respect to the results which use impact parameter for centrality classes. On the other hand, the multiplicity-based estimators exhibit huge deviations (up to a factor 2) with respect to the results using impact parameter. The particle ratios (proton-to-pion and kaon-to-pion ratios) and nuclear modification factors as a function of <i>p</i><sub>T</sub> are also studied for the different centrality estimators. The studies presented here are relevant to help in the investigation of the plethora of effects, which have been reported by experiments at the Large Hadron Collider.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad8249">https://doi.org/10.1088/1361-6471/ad8249</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1088/1361-6471/ad8767" class="art-list-item-title event_main-link">Theoretical analysis and predictions for the two-neutrino double electron capture of <sup>124</sup>Xe</a> <p class="small art-list-item-meta"> O Niţescu <em>et al</em> 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>51</b> 125103 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Theoretical analysis and predictions for the two-neutrino double electron capture of 124Xe" data-link-purpose-append-open="Theoretical analysis and predictions for the two-neutrino double electron capture of 124Xe">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad8767/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Theoretical analysis and predictions for the two-neutrino double electron capture of 124Xe</span></a> <a href="/article/10.1088/1361-6471/ad8767/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Theoretical analysis and predictions for the two-neutrino double electron capture of 124Xe</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>We provide a complete theoretical description of the two-neutrino electron capture in <sup>124</sup>Xe, improving both the nuclear and the atomic structure calculations. We improve the general formalism through the use of the Taylor expansion method, leading to higher-order terms in the decay rate of the process. The nuclear part is treated with pn-QRPA and interacting shell model (ISM) methods. The nuclear matrix elements (NMEs) are calculated with the pn-QRPA method with isospin restoration by fixing the input parameters so that the experimental decay rate is reproduced, resulting in values significantly lower than in previous calculations. The validity of the pn-QRPA NMEs is tested by showing their values to be comparable with the ones for double-beta decay with the emission of two antineutrinos of <sup>128,130</sup>Te, which have similar pairing features. Within the ISM, we reproduce the total experimental half-life within a factor of two and predict the capture fraction to the KK channel of about 74%. We also predict the capture fractions to other decay channels and show that for the cumulative decay to the KL<sub>1</sub>–KO<sub>1</sub> channels, a capture fraction of about 24% could be observed experimentally. On the atomic side, calculations are improved by accounting for the Pauli blocking of the decay of innermost nucleon states and by considering all <i>s</i>-wave electrons available for capture, expanding beyond the K and L<sub>1</sub> orbitals considered in previous studies. We also provide improved atomic relaxation energies of the final atomic states of <sup>124</sup>Te, which may be used as input for background modeling in liquid Xenon experiments.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad8767">https://doi.org/10.1088/1361-6471/ad8767</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad8769" class="art-list-item-title event_main-link">Application of the surrogate reaction ratio method to measure the (<i>n, xp</i>) cross sections for nuclei with <i>A</i> ≈ 50–60</a> <p class="small art-list-item-meta"> Ramandeep Gandhi and S Santra 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>51</b> 125102 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Application of the surrogate reaction ratio method to measure the (n, xp) cross sections for nuclei with A ≈ 50–60" data-link-purpose-append-open="Application of the surrogate reaction ratio method to measure the (n, xp) cross sections for nuclei with A ≈ 50–60">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad8769/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Application of the surrogate reaction ratio method to measure the (n, xp) cross sections for nuclei with A ≈ 50–60</span></a> <a href="/article/10.1088/1361-6471/ad8769/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Application of the surrogate reaction ratio method to measure the (n, xp) cross sections for nuclei with A ≈ 50–60</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>We explore the applicability of the surrogate reaction (SR) ratio method for determining (<i>n</i>, <i>xp</i>) cross sections, where an incoming neutron induces the emission of at least one proton from a nuclear target with a mass range of <i>A</i> ≈ 50–60. These cross sections are relevant for advanced nuclear technologies. Our findings reveal that, under specific conditions, the SR ratio method can yield reliable (<i>n</i>,<i> xp</i>) cross sections, similar to its success in determining (<i>n</i>, <i>f</i>) cross sections in actinides. However, not all SR pairs meet these conditions across the entire excitation energy range, necessitating careful application of the SR ratio method for determining (<i>n</i>,<i> xp</i>) cross sections.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad8769">https://doi.org/10.1088/1361-6471/ad8769</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1088/1361-6471/ad8899" class="art-list-item-title event_main-link">Magnetic Monopole Phenomenology at Future Hadron Colliders</a> <p class="small art-list-item-meta"> Ijaz Ahmed <em>et al</em> 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>51</b> 125006 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Magnetic Monopole Phenomenology at Future Hadron Colliders" data-link-purpose-append-open="Magnetic Monopole Phenomenology at Future Hadron Colliders">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad8899/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Magnetic Monopole Phenomenology at Future Hadron Colliders</span></a> <a href="/article/10.1088/1361-6471/ad8899/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Magnetic Monopole Phenomenology at Future Hadron Colliders</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>In the grand tapestry of Physics, the magnetic monopole (MM) is a holy grail. Therefore, numerous efforts are underway in search of this hypothetical particle at CMS, ATLAS, and MoEDAL experiments of Large Hadron Collider (LHC) by employing different production mechanisms. The cornerstone of our comprehension of monopoles lies in Dirac's theory which outlines their characteristics and dynamics. Within this theoretical framework, an effective <i>U</i>(1) gauge field theory, derived from conventional models, delineates the interaction between spin magnetically-charged fields and ordinary photons under electric–magnetic dualization. The focus of this paper is the production of MMs through Drell–Yan (DY) and the Photon-Fusion (PF) mechanisms to generate velocity-dependent scalar, fermionic, and vector monopoles of spin angular momentum <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0954-3899/51/12/125006/revision3/jpgad8899ieqn1.gif" style="max-width: 100%;" alt="$0,\tfrac{1}{2},1$" align="top"></img></span><script type="math/tex">0,\tfrac{1}{2},1</script></span></span> respectively at LHC. A computational study compares the monopole pair-production cross-sections for both methods at various center-of-mass energies (<span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0954-3899/51/12/125006/revision3/jpgad8899ieqn2.gif" style="max-width: 100%;" alt="$\sqrt{s}$" align="top"></img></span><script type="math/tex">\sqrt{s}</script></span></span>) with different magnetic dipole moments. The comparison of kinematic distributions of monopoles at Parton and reconstructed level are demonstrated for both DY and PF mechanisms. Extracted results showcase how modern machine-learning techniques can be used to study the production of MMs at the future proton-proton particle colliders at 100 TeV. We demonstrate the observability of MMs against the most relevant Standard Model background using multivariate methods such as Boosted Decision Trees, Likelihood, and Multilayer Perceptron. This study compares the performance of these classifiers with traditional cut-based and counting approaches, proving the superiority of our methods.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad8899">https://doi.org/10.1088/1361-6471/ad8899</a> </div> </div> </div> </div> </div> <!-- articleEntryList end--> </div> </div> </div> <!-- End Latest tabpanel --> <!-- Express Letters tabpanel --> <!-- Express Letters tabpanel --> <!-- Start Review tabpanel --> <div tabindex="0" role="tabpanel" id="review-articles-tab" aria-labelledby="review-articles" hidden="hidden"> <div class=" reveal-container reveal-closed reveal-enabled reveal-container--jnl-tab"> <h2 class="tabpanel__title"> <button type="button" class="reveal-trigger event_tabs-accordion" aria-expanded="false"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg>Review articles</button> </h2> <div class="reveal-content tabpanel__content" style="display: none"> <p> <button data-reveal-label-alt="Close all abstracts" class="reveal-all-trigger mr-2 small" data-reveal-text="Open all abstracts" data-link-purpose-append="in this tab" data-link-purpose-append-open="in this tab"> Open all abstracts<span class="offscreen-hidden">, in this tab</span> </button> </p> <!-- articleEntryList start--> <div class="art-list"> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad6a2b" class="art-list-item-title event_main-link">Applications of emulation and Bayesian methods in heavy-ion physics</a> <p class="small art-list-item-meta"> Jean-François Paquet 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>51</b> 103001 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Applications of emulation and Bayesian methods in heavy-ion physics" data-link-purpose-append-open="Applications of emulation and Bayesian methods in heavy-ion physics">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad6a2b/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Applications of emulation and Bayesian methods in heavy-ion physics</span></a> <a href="/article/10.1088/1361-6471/ad6a2b/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Applications of emulation and Bayesian methods in heavy-ion physics</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Heavy-ion collisions provide a window into the properties of many-body systems of deconfined quarks and gluons. Understanding the collective properties of quarks and gluons is possible by comparing models of heavy-ion collisions to measurements of the distribution of particles produced at the end of the collisions. These model-to-data comparisons are extremely challenging, however, because of the complexity of the models, the large amount of experimental data, and their uncertainties. Bayesian inference provides a rigorous statistical framework to constrain the properties of nuclear matter by systematically comparing models and measurements. This review covers model emulation and Bayesian methods as applied to model-to-data comparisons in heavy-ion collisions. Replacing the model outputs (observables) with Gaussian process emulators is key to the Bayesian approach currently used in the field, and both current uses of emulators and related recent developments are reviewed. The general principles of Bayesian inference are then discussed along with other Bayesian methods, followed by a systematic comparison of seven recent Bayesian analyses that studied quark-gluon plasma properties, such as the shear and bulk viscosities. The latter comparison is used to illustrate sources of differences in analyses, and what it can teach us for future studies.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad6a2b">https://doi.org/10.1088/1361-6471/ad6a2b</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad1658" class="art-list-item-title event_main-link">Searches for baryon number violation in neutrino experiments: a white paper</a> <p class="small art-list-item-meta"> P S B Dev <em>et al</em> 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>51</b> 033001 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Searches for baryon number violation in neutrino experiments: a white paper" data-link-purpose-append-open="Searches for baryon number violation in neutrino experiments: a white paper">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad1658/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Searches for baryon number violation in neutrino experiments: a white paper</span></a> <a href="/article/10.1088/1361-6471/ad1658/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Searches for baryon number violation in neutrino experiments: a white paper</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Baryon number conservation is not guaranteed by any fundamental symmetry within the standard model, and therefore has been a subject of experimental and theoretical scrutiny for decades. So far, no evidence for baryon number violation has been observed. Large underground detectors have long been used for both neutrino detection and searches for baryon number violating processes. The next generation of large neutrino detectors will seek to improve upon the limits set by past and current experiments and will cover a range of lifetimes predicted by several Grand Unified Theories. In this White Paper, we summarize theoretical motivations and experimental aspects of searches for baryon number violation in neutrino experiments.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad1658">https://doi.org/10.1088/1361-6471/ad1658</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad11f9" class="art-list-item-title event_main-link">Probing beyond the standard model physics with double-beta decays</a> <p class="small art-list-item-meta"> Elisabetta Bossio and Matteo Agostini 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>51</b> 023001 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Probing beyond the standard model physics with double-beta decays" data-link-purpose-append-open="Probing beyond the standard model physics with double-beta decays">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad11f9/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Probing beyond the standard model physics with double-beta decays</span></a> <a href="/article/10.1088/1361-6471/ad11f9/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Probing beyond the standard model physics with double-beta decays</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Nuclear double-beta decays are a unique probe to search for new physics beyond the standard model. Hypothesized particles, non-standard interactions, or the violation of fundamental symmetries would affect the decay kinematics, creating detectable and characteristic experimental signatures. In particular, the energy distribution of the electrons emitted in the decay gives an insight into the decay mechanism and has been studied in several isotopes and experiments. No deviations from the prediction of the standard model have been reported yet. However, several new experiments are underway or in preparation and will soon increase the sensitivity of these beyond-the-standard-model physics searches, exploring uncharted parts of the parameter space. This review brings together phenomenological and experimental aspects related to new-physics searches in double-beta decay experiments, focusing on the testable models, the most-sensitive detection techniques, and the discovery opportunities of this field.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad11f9">https://doi.org/10.1088/1361-6471/ad11f9</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ace824" class="art-list-item-title event_main-link">The exploration of hot and dense nuclear matter: introduction to relativistic heavy-ion physics</a> <p class="small art-list-item-meta"> Hannah Elfner and Berndt Müller 2023 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>50</b> 103001 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="The exploration of hot and dense nuclear matter: introduction to relativistic heavy-ion physics" data-link-purpose-append-open="The exploration of hot and dense nuclear matter: introduction to relativistic heavy-ion physics">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ace824/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, The exploration of hot and dense nuclear matter: introduction to relativistic heavy-ion physics</span></a> <a href="/article/10.1088/1361-6471/ace824/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, The exploration of hot and dense nuclear matter: introduction to relativistic heavy-ion physics</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>This article summarizes our present knowledge about nuclear matter at the highest energy densities and its formation in relativistic heavy ion collisions. We review what is known about the structure and properties of the quark-gluon plasma and survey the observables that are used to glean information about it from experimental data.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ace824">https://doi.org/10.1088/1361-6471/ace824</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/acd1a3" class="art-list-item-title event_main-link">Models and potentials in hadron spectroscopy</a> <p class="small art-list-item-meta"> Sreelakshmi M and Akhilesh Ranjan 2023 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>50</b> 073001 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Models and potentials in hadron spectroscopy" data-link-purpose-append-open="Models and potentials in hadron spectroscopy">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/acd1a3/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Models and potentials in hadron spectroscopy</span></a> <a href="/article/10.1088/1361-6471/acd1a3/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Models and potentials in hadron spectroscopy</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>In the past twenty years, hadron spectroscopy has made immense progress. Experimental facilities have observed different multiquark states during these years. There are different models and phenomenological potentials to study the nature of interquark interaction. In this work, we have reviewed different quark potentials and models used in hadron spectroscopy.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/acd1a3">https://doi.org/10.1088/1361-6471/acd1a3</a> </div> </div> </div> </div> </div> <!-- articleEntryList end--> </div> </div> </div> <!-- End Review tabpanel --> <!-- Start Featured tabpanel --> <!-- End Featured tabpanel --> <!-- Start Editor's chocie tabpanel --> <!-- End Editor's chocie tabpanel --> <!-- Start AM tabpanel --> <div tabindex="0" role="tabpanel" id="accepted-manuscripts-tab" aria-labelledby="accepted-manuscripts" hidden="hidden"> <div class="reveal-container reveal-closed reveal-enabled reveal-container--jnl-tab"> <h2 class="tabpanel__title"> <button type="button" class="reveal-trigger event_tabs-accordion" aria-expanded="false"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg>Accepted manuscripts</button> </h2> <div class="reveal-content tabpanel__content" style="display: none;"> <!-- accepted manuscript listing start--> <p id="jnl-issue-disp-links" class="cf"> <button data-reveal-label-alt="Close all abstracts" class="reveal-all-trigger mr-2 small" data-reveal-text="Open all abstracts" data-link-purpose-append="in this tab" data-link-purpose-append-open="in this tab">Open all abstracts<span class="offscreen-hidden">, in this tab</span></button> </p> <!-- Start AM list content --> <div class="art-list" id="wd-jnl-issue-art-list"> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1088/1361-6471/ad975f" class="art-list-item-title event_main-link">Machine learning the in-medium correction factor on nucleon-nucleon elastic cross section</a> <p class="small art-list-item-meta"> Wei et al </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Machine learning the in-medium correction factor on nucleon-nucleon elastic cross section" data-link-purpose-append-open="Machine learning the in-medium correction factor on nucleon-nucleon elastic cross section">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad975f/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View accepted manuscript<span class="offscreen-hidden">, Machine learning the in-medium correction factor on nucleon-nucleon elastic cross section</span></a> <a href="/article/10.1088/1361-6471/ad975f/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Machine learning the in-medium correction factor on nucleon-nucleon elastic cross section</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"> <p>The nuclear equation of state cannot be directly measured in the heavy-ion collision experiments; it is usually inferred from the comparison between transport model simulations and experimental measurements. The in-medium correction factor (F , which is defined as the ratio of the cross section in the nuclear medium to that in free space) on the nucleon-nucleon elastic cross section is one of the important inputs of the transport model, and its magnitude is still debated. The advent of Machine Learning (ML) has profoundly influenced the way scientists study the natural world and has provided a new paradigm that merges traditional investigation with advanced datadriven techniques. The aim of this work is to present a ML-based method to study the in-medium correction factor F . The ultra-relativistic quantum molecular dynamics (UrQMD) transport model is used to simulate 132Sn + 124Sn collisions at beam energy of 0.27 GeV/nucleon with different impact parameters. The value of F is randomly selected from 0.4 to 0.8 for the simulation of each event. Several observables simulated by the UrQMD model with different F , which are thought to be probably sensitive to the in-medium nucleon-nucleon cross sections, are fed into the LightGBM (Light Gradient Boosting Machine, which is a modern decision tree-based ML algorithm) to establish the mapping between the observables and F . The mean absolute error (MAE), which is the absolute difference between the true and the predicted F , is about 0.080 and 0.021 by using event-by-event and 40-event summed observables, respectively. It indicates that ML can recognize information about the F factor. Furthermore, according to the results of Shapley Additive exPlanations (SHAP), an interpretability analysis method in ML, features that have the greatest effect on the F are identified. ML combined with the transport model may open a new venue to study the F factor. In addition, the interpretability analysis of the ML algorithm may also offer valuable insights for subsequent research.&#xD;</p> </div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad975f">https://doi.org/10.1088/1361-6471/ad975f</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1088/1361-6471/ad9760" class="art-list-item-title event_main-link">α-decays of even-even actinides and superheavy nuclei to the first rotational 2<sup>+</sup> states of daughter nuclei</a> <p class="small art-list-item-meta"> Seif et al </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="α-decays of even-even actinides and superheavy nuclei to the first rotational 2+ states of daughter nuclei" data-link-purpose-append-open="α-decays of even-even actinides and superheavy nuclei to the first rotational 2+ states of daughter nuclei">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad9760/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View accepted manuscript<span class="offscreen-hidden">, α-decays of even-even actinides and superheavy nuclei to the first rotational 2+ states of daughter nuclei</span></a> <a href="/article/10.1088/1361-6471/ad9760/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, α-decays of even-even actinides and superheavy nuclei to the first rotational 2+ states of daughter nuclei</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"> <p>The alpha-decays of even-even isotopes of actinides and superheavy nuclei to the ground 0+ and first 2+ states of their daughter nuclei are studied. The conditions for the maximum intensity of alpha-decay from the ground state to the lowest 2+ state are analyzed in detail based on existing experimental data. The decays to the first 2+ states reach their maximum intensity relative to those to corresponding ground states of daughter nuclei at ND = 136, due to the corresponding increasing Qα(2+). This correlates with relatively strong negative octupole deformation of daughter nucleus and is also accompanied by decreasing E(2+). For the alpha-decays of heavy nuclei up to Og, the half-lives and population probabilities of the 0+ and 2+ states of the daughter nucleus are described and predicted employing the preformed cluster model.</p> </div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad9760">https://doi.org/10.1088/1361-6471/ad9760</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1088/1361-6471/ad961f" class="art-list-item-title event_main-link">CPT-Odd effects on the electromagnetic properties of charged leptons in the Standard Model Extension</a> <p class="small art-list-item-meta"> Hurtado-Silva et al </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="CPT-Odd effects on the electromagnetic properties of charged leptons in the Standard Model Extension" data-link-purpose-append-open="CPT-Odd effects on the electromagnetic properties of charged leptons in the Standard Model Extension">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad961f/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View accepted manuscript<span class="offscreen-hidden">, CPT-Odd effects on the electromagnetic properties of charged leptons in the Standard Model Extension</span></a> <a href="/article/10.1088/1361-6471/ad961f/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, CPT-Odd effects on the electromagnetic properties of charged leptons in the Standard Model Extension</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"> <p>The impact of the CPT-Odd electroweak gauge sector of the Standard Model Extension on the electromagnetic properties of charged leptons is studied. This gauge sector is characterized by the $(k_1)_\mu$ and $(k_2)_\mu$ Lorentz violation (LV) coefficients, which have positive mass dimension because they are associated with a $U_Y(1)$-invariant and with an $SU_L(2)$-invariant dimension-three operators, respectively. They belong to the category of relevant interactions, which can have strong effects on low-energy observables. We present a comprehensive study on the impact of this sector on the magnetic dipole moment (MDM) and the electric dipole moment (EDM) of charged leptons, up to second order in these LV coefficients, both at the tree and one-loop levels. We find that the $O(k_i)$ contributions at the tree and one-loop levels depend on energy, while $O(k^2_i)$ ones at the tree-level do not. As for $O(k^2_i)$ one-loop effects, there are both energy-dependent and energy-independent contributions, but we have focused only on those of the latter type. We find that the EDM only is generated at $O(k_i)$ up to one-loop level, whereas the MDM receives contributions from both $O(k_i)$ and $O(k^2_i)$ at both tree and one-loop levels. The contributions of $O(k_i)$ to the MDM are found to be suppressed relative to the corresponding contributions to the EDM by approximately three orders of magnitude. Using a recent experimental limit on the electron EDM the $|(k_2)_0-|\mathbf{k_2}|\cos\theta_\gamma|<0.86\, m_e$ bound was obtained. As far as the contributions of $O(k^2_i)$ are concerned, we find that the tree-level contributions are suppressed with respect to the one-loop ones by at least a factor of $\left(m^2_l/m^2_Z\right)$. We find that the contribution to the electron MDM is by far the dominant one, as it can be up to four and seven orders of magnitude greater than those of the muon and tau, respectively. The Lorentz coefficient $(k_{AF})_\mu$ of the Carroll-Field-Jackiw's QED is given by a linear combination of the $(k_1)_\mu$ and $(k_2)_\mu$ vectors. Assuming that $|k^2_1|, |k^2_2|\gg |k^2_{AF}|$ and taking $(k_{AF})_\mu=0$, which implies that $(k_1)_\mu$ and $(k_2)_\mu$ are collinear, we obtain an upper bound of $\left|\frac{ k^2_2}{m^2_e} \right|<4.36\times 10^{-10}$. The fact that $k^2_2$ is an observer Lorentz invariant allows us to introduce a new-physics scale through $\sqrt{k^2_2}=\Lambda_{CPT}$, for which we obtain the upper limit $\Lambda_{CPT}< 2.08 \times 10^{-5}\, m_e$. The physical implications derived from the fact that the LV coefficients have positive mass units are discussed. </p> </div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad961f">https://doi.org/10.1088/1361-6471/ad961f</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1088/1361-6471/ad95a7" class="art-list-item-title event_main-link">The finite volume effects of the Nambu-Jona-Lasinio model with the running coupling constant</a> <p class="small art-list-item-meta"> Su et al </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="The finite volume effects of the Nambu-Jona-Lasinio model with the running coupling constant" data-link-purpose-append-open="The finite volume effects of the Nambu-Jona-Lasinio model with the running coupling constant">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad95a7/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View accepted manuscript<span class="offscreen-hidden">, The finite volume effects of the Nambu-Jona-Lasinio model with the running coupling constant</span></a> <a href="/article/10.1088/1361-6471/ad95a7/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, The finite volume effects of the Nambu-Jona-Lasinio model with the running coupling constant</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"> <p>With the Schwinger's proper-time formalism of the Nambu-Jona-Lasinio model, we investigate the finite volume effects with the antiperiodic boundary condition in the presence of magnetic fields. The model is solved with a running coupling constant $G(B)$ which is properly fitted by the lattice average $(\Sigma_u+\Sigma_d)/2$ and the difference $\Sigma_u-\Sigma_d$. For the model in finite or infinite volume, the magnetic fields can increase the constituent quark mass $M$ while the temperatures can decrease it. $M$ is close to the infinite volume limit when the box length $L$ is appropriately large. For sufficiently small value of $L$, $M$ is close to the chiral limit. The finite volume effects behave intensely in the narrow ranges of $L$ where the partial derivative $\partial M/\partial L$ is greater than zero. These narrow ranges can be reduced by stronger magnetic fields and by higher temperatures. In addition, the chiral limit can be restored by sufficiently small finite volume and be broke by sufficiently strong magnetic fields. Finally, we discuss the thermal susceptibility and the crossover phase transition depending on the temperature in finite volume in the presence of magnetic fields.</p> </div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad95a7">https://doi.org/10.1088/1361-6471/ad95a7</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1088/1361-6471/ad95a8" class="art-list-item-title event_main-link">Right-handed neutrino dark matter in <i>U</i>(1)<i><sub>X</sub></i>SSM</a> <p class="small art-list-item-meta"> Liu et al </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Right-handed neutrino dark matter in U(1)XSSM" data-link-purpose-append-open="Right-handed neutrino dark matter in U(1)XSSM">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad95a8/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View accepted manuscript<span class="offscreen-hidden">, Right-handed neutrino dark matter in U(1)XSSM</span></a> <a href="/article/10.1088/1361-6471/ad95a8/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Right-handed neutrino dark matter in U(1)XSSM</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"> <p>There is strong evidence for the existence of dark matter in a number of current experiments. We study dark matter using the $U(1)_X$SSM obtained from the $U(1)_X$ extension of the minimal supersymmetric standard model (MSSM). In the $U(1)_X$SSM, we use the right-handed neutrino as a dark matter candidate, whose lightest mass eigenstate has cold dark matter features. In this paper, the relic density of right-handed neutrino as dark matter is investigated. For dark matter scattering, both spin-independent and spin-dependent cross sections are studied. In the final numerical results obtained, some parameter spaces can satisfy the constraints of the relic density and dark matter direct detection experiments.</p> </div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad95a8">https://doi.org/10.1088/1361-6471/ad95a8</a> </div> </div> </div> </div> </div> <!-- End AM list content --> <p> <a href="/journal/0954-3899/acceptedmanuscripts/1">More Accepted manuscripts</a> </p> <!-- accepted manuscript listing end--> </div> </div> </div> <!-- End AM tabpanel --> <!-- Start Trending tabpanel --> <!-- End Trending tabpanel --> <!-- Start Open Access tabpanel --> <div tabindex="0" role="tabpanel" id="open-access-articles-tab" aria-labelledby="open-access-articles" hidden="hidden"> <div class=" reveal-container reveal-closed reveal-enabled reveal-container--jnl-tab"> <h2 class="tabpanel__title"> <button type="button" class="reveal-trigger event_tabs-accordion" aria-expanded="false"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg>Open access</button> </h2> <div class="reveal-content tabpanel__content" style="display: none"> <p> <button data-reveal-label-alt="Close all abstracts" class="reveal-all-trigger mr-2 small" data-reveal-text="Open all abstracts" data-link-purpose-append="in this tab" data-link-purpose-append-open="in this tab"> Open all abstracts<span class="offscreen-hidden">, in this tab</span> </button> </p> <!-- articleEntryList start--> <div class="art-list"> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad9345" class="art-list-item-title event_main-link">Mode entanglement and isospin pairing in two-nucleon systems</a> <p class="small art-list-item-meta"> József Kovács <em>et al</em> 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b></b> </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Mode entanglement and isospin pairing in two-nucleon systems" data-link-purpose-append-open="Mode entanglement and isospin pairing in two-nucleon systems">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad9345/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Mode entanglement and isospin pairing in two-nucleon systems</span></a> <a href="/article/10.1088/1361-6471/ad9345/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Mode entanglement and isospin pairing in two-nucleon systems</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>In this study, we explore the entanglement and correlation in two-nucleon systems using isospin formalism. With the help of Slater decomposition, we derive analytical expressions for various entanglement measures. Specifically, we analyse the one- and two-mode entropies, mutual informations, and a basis-independent characteristic known as the one-body entanglement entropy.&#xD;&#xD;To understand the impact of pairing, we consider interactions involving isovector and isoscalar L=0 pairing terms. Our findings show that certain pairing interactions can maximize one-body entanglement entropy of ground states when both total angular momentum and total isospin have zero projections.&#xD;&#xD;We provide numerical examples for the sd shell and explore the mutual informations in LS coupled and jj coupled single-particle bases. We find that the shell structure and angular momentum coupling significantly impact the measures of entanglement. We outline the implications of conserving angular momentum and isospin on one-mode entropies, irrespective of particle number.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad9345">https://doi.org/10.1088/1361-6471/ad9345</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad9296" class="art-list-item-title event_main-link">Variational inference of effective range parameters for <sup>3</sup>He-<sup>4</sup>He scattering</a> <p class="small art-list-item-meta"> Andrius Burnelis <em>et al</em> 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b></b> </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Variational inference of effective range parameters for 3He-4He scattering" data-link-purpose-append-open="Variational inference of effective range parameters for 3He-4He scattering">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad9296/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Variational inference of effective range parameters for 3He-4He scattering</span></a> <a href="/article/10.1088/1361-6471/ad9296/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Variational inference of effective range parameters for 3He-4He scattering</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>We use two different methods, Monte Carlo sampling and variational inference (VI), to perform a Bayesian calibration of the effective-range parameters in <sup>3</sup>He-<sup>4</sup>He elastic scattering. The parameters are calibrated to data from a recent set of <sup>3</sup>He-<sup>4</sup>He elastic scattering differential cross section measurements. Analysis of these data for E<sub>lab</sub> ≤ 4.3 MeV yields a unimodal posterior for which both methods obtain the same structure. However, the effective-range expansion amplitude does not account for the 7/2<sup>-</sup> state of <sup>7</sup>Be so, even after calibration, the description of data at the upper end of this energy range is poor. The data up to E<sub>lab</sub>=2.6 MeV can be well described, but calibration to this lower-energy subset of the data yields a bimodal posterior. After adapting VI to treat such a multi-modal posterior we find good agreement between the VI results and those obtained with parallel-tempered Monte Carlo sampling.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad9296">https://doi.org/10.1088/1361-6471/ad9296</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad91d1" class="art-list-item-title event_main-link">Challenges in the extraction of physics beyond the Standard Model from electron scattering</a> <p class="small art-list-item-meta"> Xuan-Gong Wang and Anthony W Thomas 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b></b> </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Challenges in the extraction of physics beyond the Standard Model from electron scattering" data-link-purpose-append-open="Challenges in the extraction of physics beyond the Standard Model from electron scattering">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad91d1/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Challenges in the extraction of physics beyond the Standard Model from electron scattering</span></a> <a href="/article/10.1088/1361-6471/ad91d1/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Challenges in the extraction of physics beyond the Standard Model from electron scattering</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Precise measurements of electron and positron scattering, including parity violation, offer great promise in the search for physics beyond the Standard Model. In this context it is crucial to understand the corrections which might arise from charge symmetry violation, as well as the less well known strange and charm quark distributions. Our analysis, using state of the art parton distributions, suggests that these contributions lead to corrections in the extraction of the weak couplings $g^{eq}_{AV}$ and $g^{eq}_{VA}$ of the order $(1-2)\%$, while they are as large as $4\%$ for $g^{eq}_{AA}$, at a typical scale of $Q^2 = 10\ {\rm GeV}^2$. These results underline the importance of carrying out high precision measurements, which will not only provide information on physics beyond the Standard Model but also reduce the current uncertainties on our knowledge of the strange and charm quark distributions in the proton.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad91d1">https://doi.org/10.1088/1361-6471/ad91d1</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad8769" class="art-list-item-title event_main-link">Application of the surrogate reaction ratio method to measure the (<i>n, xp</i>) cross sections for nuclei with <i>A</i> ≈ 50–60</a> <p class="small art-list-item-meta"> Ramandeep Gandhi and S Santra 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>51</b> 125102 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Application of the surrogate reaction ratio method to measure the (n, xp) cross sections for nuclei with A ≈ 50–60" data-link-purpose-append-open="Application of the surrogate reaction ratio method to measure the (n, xp) cross sections for nuclei with A ≈ 50–60">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad8769/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Application of the surrogate reaction ratio method to measure the (n, xp) cross sections for nuclei with A ≈ 50–60</span></a> <a href="/article/10.1088/1361-6471/ad8769/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Application of the surrogate reaction ratio method to measure the (n, xp) cross sections for nuclei with A ≈ 50–60</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>We explore the applicability of the surrogate reaction (SR) ratio method for determining (<i>n</i>, <i>xp</i>) cross sections, where an incoming neutron induces the emission of at least one proton from a nuclear target with a mass range of <i>A</i> ≈ 50–60. These cross sections are relevant for advanced nuclear technologies. Our findings reveal that, under specific conditions, the SR ratio method can yield reliable (<i>n</i>,<i> xp</i>) cross sections, similar to its success in determining (<i>n</i>, <i>f</i>) cross sections in actinides. However, not all SR pairs meet these conditions across the entire excitation energy range, necessitating careful application of the SR ratio method for determining (<i>n</i>,<i> xp</i>) cross sections.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad8769">https://doi.org/10.1088/1361-6471/ad8769</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad903a" class="art-list-item-title event_main-link">Preponderance of triaxial shapes in atomic nuclei predicted by the proxy-SU(3) symmetry</a> <p class="small art-list-item-meta"> Dennis Bonatsos <em>et al</em> 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b></b> </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Preponderance of triaxial shapes in atomic nuclei predicted by the proxy-SU(3) symmetry" data-link-purpose-append-open="Preponderance of triaxial shapes in atomic nuclei predicted by the proxy-SU(3) symmetry">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad903a/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Preponderance of triaxial shapes in atomic nuclei predicted by the proxy-SU(3) symmetry</span></a> <a href="/article/10.1088/1361-6471/ad903a/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Preponderance of triaxial shapes in atomic nuclei predicted by the proxy-SU(3) symmetry</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>The proxy-SU(3) symmetry predicts, in a parameter-free way, based only on the Pauli principle and the short-range nature of the nucleon-nucleon interaction, non-vanishing values of the collective variable gamma almost everywhere across the nuclear chart. Substantial triaxiality with gamma between 15 and 45 degrees is proved to be expected along horizontal and vertical stripes on the nuclear chart, covering the nucleon numbers 22-26, 34-48, 74-80, 116-124, 172-182. Empirical support for these stripes is found by collecting all even-even nuclei for which the first two excited 2+ states are known, along with the B(E2)s connecting them, as well as the second 2+ state to the ground state. The stripes are related to regions in which oblate SU(3) irreducible representations appear, bearing similarity to the appearance of triaxiality within the SU(3)* dynamical symmetry of the interacting boson model-2. Detailed comparisons of the proxy-SU(3) predictions to the data and to predictions by state-of-the-art Monte Carlo shell model calculations for deformed N=94, 96, 98 isotones in the rare earth region show good overall agreement, with the exception of Z=70 and N=94, which correspond to fully symmetric proxy-SU(3) irreps, suggesting that the latter are an artifact of the method which can be amended by considering the influence of the neighboring irreps.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad903a">https://doi.org/10.1088/1361-6471/ad903a</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad903b" class="art-list-item-title event_main-link">Review of nonflow estimation methods and uncertainties in relativistic heavy-ion collisions</a> <p class="small art-list-item-meta"> Yicheng Feng and Fuqiang Wang 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b></b> </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Review of nonflow estimation methods and uncertainties in relativistic heavy-ion collisions" data-link-purpose-append-open="Review of nonflow estimation methods and uncertainties in relativistic heavy-ion collisions">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad903b/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Review of nonflow estimation methods and uncertainties in relativistic heavy-ion collisions</span></a> <a href="/article/10.1088/1361-6471/ad903b/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Review of nonflow estimation methods and uncertainties in relativistic heavy-ion collisions</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Collective anisotropic flow, where particles are correlated over the entire event, is a prominent phenomenon in relativistic heavy-ion collisions and is sensitive to the properties of the matter created in those collisions. It is often measured by two- and multi-particle correlations and is therefore contaminated by nonflow, those genuine few-body correlations unrelated to the global event-wise correlations. Many methods have been devised to estimate nonflow contamination with various degrees of successes and difficulties. Here, we review those methods pedagogically, discussing the pros and cons of each method, and give examples of ballpark estimate of nonflow contamination and associated uncertainties in relativistic heavy-ion collisions. We hope such a review of the various nonflow estimation methods in a single place would prove helpful to future researches.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad903b">https://doi.org/10.1088/1361-6471/ad903b</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad8465" class="art-list-item-title event_main-link">Triaxial deformation, shell structure, shell corrections and the connection to alpha-clustering in nuclei</a> <p class="small art-list-item-meta"> Georgina Clark <em>et al</em> 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>51</b> 125101 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Triaxial deformation, shell structure, shell corrections and the connection to alpha-clustering in nuclei" data-link-purpose-append-open="Triaxial deformation, shell structure, shell corrections and the connection to alpha-clustering in nuclei">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad8465/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Triaxial deformation, shell structure, shell corrections and the connection to alpha-clustering in nuclei</span></a> <a href="/article/10.1088/1361-6471/ad8465/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Triaxial deformation, shell structure, shell corrections and the connection to alpha-clustering in nuclei</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>We explore the connection between the appearance of quasi-stable structures in mean-field type calculations, which arise as a result of the evolution of the underlying shell structure as a function of deformation, and <i>α</i>-clustering in light even–even nuclei. The Nilsson–Strutinsky mean-field approach employs a macroscopic liquid-drop whose energy is modified by a shell correction term derived using the Strutinsky method. This method reflects the variations in the energies of the single-particle states with deformation. As such, there is no obvious connection to clustering. Here we use the changing level scheme of the deformed harmonic oscillator as a function of triaxial deformation to fully explore the variation in stability of <i>α</i>-cluster structures in light even–even nuclei. The energies of the harmonic oscillator levels are used to deduce the energy required to disrupt the <i>α</i>-cluster as a function of the triaxial deformation. We find that there is good agreement between variations in the shell correction energy in the mean-field method and the energy required to disrupt the <i>α</i>-cluster. This provides a necessary link between understanding of the appearance of quasi-stable <i>α</i>-cluster structures and quasi-stable shapes appearing in mean-field calculations.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad8465">https://doi.org/10.1088/1361-6471/ad8465</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad8ee2" class="art-list-item-title event_main-link">Impact of reactor neutrino uncertainties on coherent scattering's discovery potential</a> <p class="small art-list-item-meta"> Leendert Hayen 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b></b> </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Impact of reactor neutrino uncertainties on coherent scattering's discovery potential" data-link-purpose-append-open="Impact of reactor neutrino uncertainties on coherent scattering's discovery potential">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad8ee2/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Impact of reactor neutrino uncertainties on coherent scattering's discovery potential</span></a> <a href="/article/10.1088/1361-6471/ad8ee2/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Impact of reactor neutrino uncertainties on coherent scattering's discovery potential</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Nuclear power reactors are the most intense man-made source of antineutrino's and have long been recognized as promising sources for coherent elastic neutrino-nucleus scattering (CE$\nu$NS) studies. Its observation and the spectral shape of the associated recoil spectrum is sensitive to a variety of exotic new physics scenarios and many experimental efforts are underway. Within the context of the reactor antineutrino anomaly, which initially indicated eV-scale sterile neutrino's, the modeling of the reactor antineutrino spectrum has seen a significant evolution in the last decade. Even so, uncertainties remain due to a variety of nuclear structure effects, incomplete information in nuclear databases and fission dynamics complexities. Here, we investigate the effects of these uncertainties on one's ability to accurately distinguish new physics signals. For the scenarios discussed here, we find that reactor spectral uncertainties are similar in magnitude to the projected sensitivities pointing towards a need for $\beta$ spectroscopy measurements below the inverse $\beta$ decay threshold.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad8ee2">https://doi.org/10.1088/1361-6471/ad8ee2</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad307f" class="art-list-item-title event_main-link">White paper on light sterile neutrino searches and related phenomenology</a> <p class="small art-list-item-meta"> M A Acero <em>et al</em> 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>51</b> 120501 </p> <div class="art-list-item-tools small wd-abstr-upper"> <a href="/article/10.1088/1361-6471/ad307f/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, White paper on light sterile neutrino searches and related phenomenology</span></a> <a href="/article/10.1088/1361-6471/ad307f/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, White paper on light sterile neutrino searches and related phenomenology</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad307f">https://doi.org/10.1088/1361-6471/ad307f</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.1088/1361-6471/ad1a78" class="art-list-item-title event_main-link">The strong coupling constant: state of the art and the decade ahead</a> <p class="small art-list-item-meta"> D d'Enterria <em>et al</em> 2024 <em>J. Phys. G: Nucl. Part. Phys.</em> <b>51</b> 090501 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="The strong coupling constant: state of the art and the decade ahead" data-link-purpose-append-open="The strong coupling constant: state of the art and the decade ahead">Open abstract</span> </button> <a href="/article/10.1088/1361-6471/ad1a78/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, The strong coupling constant: state of the art and the decade ahead</span></a> <a href="/article/10.1088/1361-6471/ad1a78/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, The strong coupling constant: state of the art and the decade ahead</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Theoretical predictions for particle production cross sections and decays at colliders rely heavily on perturbative Quantum Chromodynamics (QCD) calculations, expressed as an expansion in powers of the strong coupling constant <i>α</i><sub><i>S</i></sub>. The current <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0954-3899/51/9/090501/revision2/jpgad1a78ieqn1.gif" style="max-width: 100%;" alt="${ \mathcal O }(1 \% )$" align="top"></img></span><script type="math/tex">{ \mathcal O }(1 \% )</script></span></span> uncertainty of the QCD coupling evaluated at the reference Z boson mass, <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0954-3899/51/9/090501/revision2/jpgad1a78ieqn2.gif" style="max-width: 100%;" alt="${\alpha }_{S}({m}_{{\rm{Z}}}^{2})=0.1179\pm 0.0009$" align="top"></img></span><script type="math/tex">{\alpha }_{S}({m}_{{\rm{Z}}}^{2})=0.1179\pm 0.0009</script></span></span>, is one of the limiting factors to more precisely describe multiple processes at current and future colliders. A reduction of this uncertainty is thus a prerequisite to perform precision tests of the Standard Model as well as searches for new physics. This report provides a comprehensive summary of the state-of-the-art, challenges, and prospects in the experimental and theoretical study of the strong coupling. The current <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0954-3899/51/9/090501/revision2/jpgad1a78ieqn3.gif" style="max-width: 100%;" alt="${\alpha }_{S}({m}_{{\rm{Z}}}^{2})$" align="top"></img></span><script type="math/tex">{\alpha }_{S}({m}_{{\rm{Z}}}^{2})</script></span></span> world average is derived from a combination of seven categories of observables: (i) lattice QCD, (ii) hadronic <i>τ</i> decays, (iii) deep-inelastic scattering and parton distribution functions fits, (iv) electroweak boson decays, hadronic final-states in (v) e<sup>+</sup>e<sup>−</sup>, (vi) e–p, and (vii) p–p collisions, and (viii) quarkonia decays and masses. We review the current status of each of these seven <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0954-3899/51/9/090501/revision2/jpgad1a78ieqn4.gif" style="max-width: 100%;" alt="${\alpha }_{S}({m}_{{\rm{Z}}}^{2})$" align="top"></img></span><script type="math/tex">{\alpha }_{S}({m}_{{\rm{Z}}}^{2})</script></span></span> extraction methods, discuss novel <i>α</i><sub><i>S</i></sub> determinations, and examine the averaging method used to obtain the world-average value. Each of the methods discussed provides a 'wish list' of experimental and theoretical developments required in order to achieve the goal of a per-mille precision on <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0954-3899/51/9/090501/revision2/jpgad1a78ieqn5.gif" style="max-width: 100%;" alt="${\alpha }_{S}({m}_{{\rm{Z}}}^{2})$" align="top"></img></span><script type="math/tex">{\alpha }_{S}({m}_{{\rm{Z}}}^{2})</script></span></span> within the next decade.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1088/1361-6471/ad1a78">https://doi.org/10.1088/1361-6471/ad1a78</a> </div> </div> </div> </div> </div> <!-- articleEntryList end--> <p> <a href="/nsearch?currentPage=1&terms=&nextPage=2&previousPage=-1&searchDatePeriod=anytime&journals=0954-3899&accessType=open-access&orderBy=newest&pageLength=20">More Open Access articles</a> </p> </div> </div> </div> <!-- End Open Access tabpanel --> <!-- Start Spotlights tabpanel --> <!-- End Spotlights tabpanel --> </div> <!-- End Article listing tabs --> <!-- Google adverts start --> <!-- Start of google banners in the middle. --> <aside aria-label="Main column advert"> <div id='div-gpt-ad-1562594774007-0' style='width: 728px; height: 90px; display: block;'> <script> googletag.cmd.push(function () { googletag.display('div-gpt-ad-1562594774007-0'); }); </script> </div> </aside> <!-- End of google banners in the middle. --> <!-- Google adverts end --> </div> <!-- End Journal Content --> </div> </main> <div class="db2 tb2"> <div class="side-and-below"> <!-- Start Journal links --> <div class="sidebar-list" id="wd-jnl-links"> <h2 class="sidebar-list__heading">Journal links</h2> <ul class="sidebar-list__list"><li><a href = "https://iopscience.iop.org/journal/0954-3899/page/submission-options" target="_blank"><strong>Submit an article</strong></a></li> <li><a href="https://publishingsupport.iopscience.iop.org/journals/journal-of-physics-g-nuclear-and-particle-physics/about-journal-physics-g-nuclear-particle-physics/">About the journal</a></li> <li><a href="https://publishingsupport.iopscience.iop.org/journals/journal-of-physics-g-nuclear-and-particle-physics/editorial-board/">Editorial Board</a></li> <li><a href="https://publishingsupport.iopscience.iop.org/journals/journal-of-physics-g-nuclear-and-particle-physics/">Author guidelines</a></li> <li><a href="https://publishingsupport.iopscience.iop.org/questions/volunteering-to-be-a-journal-reviewer">Review for this journal</li> <li><a href="https://publishingsupport.iopscience.iop.org/journals/journal-of-physics-g-nuclear-and-particle-physics/about-journal-physics-g-nuclear-particle-physics/#publication-charges">Publication charges</a></li> <li><a href="https://publishingsupport.iopscience.iop.org/questions/journal-of-physics-g-nuclear-and-particle-physics-outstanding-reviewer-awards-2023/">Awards</a></li> <li><a href="/0954-3899/page/journal-collections">Journal collections</a></li> <li><a href="https://ioppublishing.org/librarians/">Pricing and ordering</a></li> <li><a href="/0954-3899/page/Contact us">Contact us</a></li></ul> </div> <!-- End Journal links --> <!-- Google adverts start --> <!-- Start of google banners on right hand side. --> <aside role="complementary" aria-label="Right sidebar adverts"> <div id='div-gpt-ad-1669279847892-0' style='min-width: 160px; min-height: 250px;'> <script> googletag.cmd.push(function () { googletag.display('div-gpt-ad-1669279847892-0'); }); </script> </div> </aside> <!-- End of google banners on right hand side. --> <!-- Google adverts end --> <!-- Start journal partners list --> <!-- End journal partners list --> <!-- Start Journal history --> <div class="sidebar-list" id="wd-jnl-history"> <h2 class="sidebar-list__heading">Journal information</h2> <ul class="sidebar-list__list"> <li class="sidebar-list__list-item">1989-present <br/> Journal of Physics G: Nuclear and Particle Physics <br/> doi: 10.1088/issn.0954-3899<br/> Online ISSN: 1361-6471<br/> Print ISSN: 0954-3899<br/> </li> </ul> <br/> <h2 class="sidebar-list__heading">Journal history</h2> <ul class="sidebar-list__list"> <li class="sidebar-list__list-item">1989-present <br/> <a href="/journal/0954-3899">Journal of Physics G: Nuclear and Particle Physics</a> </li> <li class="sidebar-list__list-item">1975-1988 <br/> <a href="/journal/0305-4616">Journal of Physics G: Nuclear Physics</a> </li> </ul> </div> <!-- End Journal history --> <!-- End Journal Sidebar --> </div> </div> </div> <!-- End two column layout --> </div> <div data-scroll-header="" class="data-header-anchor" id="exp"></div> <!-- Footer starts --> <footer class="footer content-grid__full-width" data-footer-content role="contentinfo"> <nav aria-label="Further resources" class="footer__grid"> <div> <h2 class="footer__heading">IOPscience</h2> <ul class="footer__list"> <li class="footer__item"> <a class="link--colour--white" href="/journalList">Journals</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/booklistinfo/home">Books</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/conference-series">IOP Conference Series</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/aboutiopscience">About IOPscience</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/about-us/contact-us/">Contact Us</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/info/page/developing-countries-access">Developing countries access</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/open_access/">IOP Publishing open access policy</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/accessibility">Accessibility</a> </li> </ul> </div> <div> <h2 class="footer__heading">IOP Publishing</h2> <ul class="footer__list"> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/legal/copyright/">Copyright 2024 IOP Publishing</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/terms">Terms and Conditions</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/disclaimer">Disclaimer</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/legal/privacy-cookies-policy/">Privacy and Cookie Policy</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/legal/textanddataminingpolicy/">Text and Data mining policy</a> </li> </ul> </div> <div> <h2 class="footer__heading">Publishing Support</h2> <ul class="footer__list"> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/">Authors</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/publishing-support/reviewers/">Reviewers</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/publishing-support/organisers/">Conference Organisers</a> </li> </ul> </div> </nav> <!-- end nav --> <div class="footer__notice"> <div class="footer__notice-inner"> <div class="footer__notice-text"> <svg aria-hidden="true" class="footer__cookie fa-icon" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M257.5 27.6c-.8-5.4-4.9-9.8-10.3-10.6c-22.1-3.1-44.6 .9-64.4 11.4l-74 39.5C89.1 78.4 73.2 94.9 63.4 115L26.7 190.6c-9.8 20.1-13 42.9-9.1 64.9l14.5 82.8c3.9 22.1 14.6 42.3 30.7 57.9l60.3 58.4c16.1 15.6 36.6 25.6 58.7 28.7l83 11.7c22.1 3.1 44.6-.9 64.4-11.4l74-39.5c19.7-10.5 35.6-27 45.4-47.2l36.7-75.5c9.8-20.1 13-42.9 9.1-64.9c-.9-5.3-5.3-9.3-10.6-10.1c-51.5-8.2-92.8-47.1-104.5-97.4c-1.8-7.6-8-13.4-15.7-14.6c-54.6-8.7-97.7-52-106.2-106.8zM208 144a32 32 0 1 1 0 64 32 32 0 1 1 0-64zM144 336a32 32 0 1 1 64 0 32 32 0 1 1 -64 0zm224-64a32 32 0 1 1 0 64 32 32 0 1 1 0-64z"/> </svg> <span><strong>This site uses cookies</strong>. By continuing to use this site you agree to our use of cookies.</span></div> <div class="footer__socials"> <div class="footer__social-icons"> <a class="link--colour--white replicate-hover" href="https://twitter.com/ioppublishing?lang=en"> <span class="sr-only">IOP Publishing Twitter page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.facebook.com/ioppublishing/"> <span class="sr-only">IOP Publishing Facebook page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M504 256C504 119 393 8 256 8S8 119 8 256c0 123.78 90.69 226.38 209.25 245V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.28c-30.8 0-40.41 19.12-40.41 38.73V256h68.78l-11 71.69h-57.78V501C413.31 482.38 504 379.78 504 256z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.linkedin.com/company/iop-publishing"> <span class="sr-only">IOP Publishing LinkedIn page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 448 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M100.28 448H7.4V148.9h92.88zM53.79 108.1C24.09 108.1 0 83.5 0 53.8a53.79 53.79 0 0 1 107.58 0c0 29.7-24.1 54.3-53.79 54.3zM447.9 448h-92.68V302.4c0-34.7-.7-79.2-48.29-79.2-48.29 0-55.69 37.7-55.69 76.7V448h-92.78V148.9h89.08v40.8h1.3c12.4-23.5 42.69-48.3 87.88-48.3 94 0 111.28 61.9 111.28 142.3V448z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.youtube.com/channel/UC6sGrQTcmY8NpmfGEfRqRrg"> <span class="sr-only">IOP Publishing Youtube page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 60 576 395" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M549.655 124.083c-6.281-23.65-24.787-42.276-48.284-48.597C458.781 64 288 64 288 64S117.22 64 74.629 75.486c-23.497 6.322-42.003 24.947-48.284 48.597-11.412 42.867-11.412 132.305-11.412 132.305s0 89.438 11.412 132.305c6.281 23.65 24.787 41.5 48.284 47.821C117.22 448 288 448 288 448s170.78 0 213.371-11.486c23.497-6.321 42.003-24.171 48.284-47.821 11.412-42.867 11.412-132.305 11.412-132.305s0-89.438-11.412-132.305zm-317.51 213.508V175.185l142.739 81.205-142.739 81.201z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://ioppublishing.org/wp-content/uploads/2020/11/WeChat-QR-Code.png"> <span class="sr-only">IOP Publishing WeChat QR code</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 576 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M385.2 167.6c6.4 0 12.6.3 18.8 1.1C387.4 90.3 303.3 32 207.7 32 100.5 32 13 104.8 13 197.4c0 53.4 29.3 97.5 77.9 131.6l-19.3 58.6 68-34.1c24.4 4.8 43.8 9.7 68.2 9.7 6.2 0 12.1-.3 18.3-.8-4-12.9-6.2-26.6-6.2-40.8-.1-84.9 72.9-154 165.3-154zm-104.5-52.9c14.5 0 24.2 9.7 24.2 24.4 0 14.5-9.7 24.2-24.2 24.2-14.8 0-29.3-9.7-29.3-24.2.1-14.7 14.6-24.4 29.3-24.4zm-136.4 48.6c-14.5 0-29.3-9.7-29.3-24.2 0-14.8 14.8-24.4 29.3-24.4 14.8 0 24.4 9.7 24.4 24.4 0 14.6-9.6 24.2-24.4 24.2zM563 319.4c0-77.9-77.9-141.3-165.4-141.3-92.7 0-165.4 63.4-165.4 141.3S305 460.7 397.6 460.7c19.3 0 38.9-5.1 58.6-9.9l53.4 29.3-14.8-48.6C534 402.1 563 363.2 563 319.4zm-219.1-24.5c-9.7 0-19.3-9.7-19.3-19.6 0-9.7 9.7-19.3 19.3-19.3 14.8 0 24.4 9.7 24.4 19.3 0 10-9.7 19.6-24.4 19.6zm107.1 0c-9.7 0-19.3-9.7-19.3-19.6 0-9.7 9.7-19.3 19.3-19.3 14.5 0 24.4 9.7 24.4 19.3.1 10-9.9 19.6-24.4 19.6z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.weibo.com/u/2931886367"> <span class="sr-only">IOP Publishing Weibo page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M407 177.6c7.6-24-13.4-46.8-37.4-41.7-22 4.8-28.8-28.1-7.1-32.8 50.1-10.9 92.3 37.1 76.5 84.8-6.8 21.2-38.8 10.8-32-10.3zM214.8 446.7C108.5 446.7 0 395.3 0 310.4c0-44.3 28-95.4 76.3-143.7C176 67 279.5 65.8 249.9 161c-4 13.1 12.3 5.7 12.3 6 79.5-33.6 140.5-16.8 114 51.4-3.7 9.4 1.1 10.9 8.3 13.1 135.7 42.3 34.8 215.2-169.7 215.2zm143.7-146.3c-5.4-55.7-78.5-94-163.4-85.7-84.8 8.6-148.8 60.3-143.4 116s78.5 94 163.4 85.7c84.8-8.6 148.8-60.3 143.4-116zM347.9 35.1c-25.9 5.6-16.8 43.7 8.3 38.3 72.3-15.2 134.8 52.8 111.7 124-7.4 24.2 29.1 37 37.4 12 31.9-99.8-55.1-195.9-157.4-174.3zm-78.5 311c-17.1 38.8-66.8 60-109.1 46.3-40.8-13.1-58-53.4-40.3-89.7 17.7-35.4 63.1-55.4 103.4-45.1 42 10.8 63.1 50.2 46 88.5zm-86.3-30c-12.9-5.4-30 .3-38 12.9-8.3 12.9-4.3 28 8.6 34 13.1 6 30.8.3 39.1-12.9 8-13.1 3.7-28.3-9.7-34zm32.6-13.4c-5.1-1.7-11.4.6-14.3 5.4-2.9 5.1-1.4 10.6 3.7 12.9 5.1 2 11.7-.3 14.6-5.4 2.8-5.2 1.1-10.9-4-12.9z"/> </svg> </a> </div> <a href="https://ioppublishing.org/"> <img alt="IOP Publishing" class="footer__social-logo" src=''/> </a> </div> </div> </div> </footer> <!-- Footer ends --> </div> <script> let imgBase = "https://static.iopscience.com/3.72.3/img"; let scriptBase = "https://static.iopscience.com/3.72.3/js"; /* Cutting the mustard - http://responsivenews.co.uk/post/18948466399/cutting-the-mustard */ /* This is the original if statement, from the link above. I have amended it to turn of JS on all IE browsers less than 10. This is due to a function in the iop.jquery.toolbar.js line 35/36. Uses .remove which is not native js supported in IE9 or lower */ /* if('querySelector' in document && 'localStorage' in window && 'addEventListener' in window) { */ /* This is the updated selector, taken from: https://justmarkup.com/log/2015/02/26/cut-the-mustard-revisited/ */ if('visibilityState' in document) { /*! loadJS: load a JS file asynchronously. [c]2014 @scottjehl, Filament Group, Inc. (Based on http://goo.gl/REQGQ by Paul Irish).. Licensed MIT */ function loadJS( src, cb ){ "use strict"; let ref = window.document.getElementsByTagName( "script" )[ 0 ]; let script = window.document.createElement( "script" ); script.src = src; script.async = true; ref.parentNode.insertBefore( script, ref ); if (cb && typeof(cb) === "function") { script.onload = cb; } return script; } } </script> <script>loadJS( scriptBase + "/scripts.min.js" );</script> <!-- Pop-up banner --> <script> (function(g,e,o,t,a,r,ge,tl,y){ t=g.getElementsByTagName(e)[0];y=g.createElement(e);y.async=true; var a=window,b=g.documentElement,c=g.getElementsByTagName('body')[0],w=a.innerWidth||b.clientWidth||c.clientWidth,h=a.innerHeight||b.clientHeight||c.clientHeight; y.src='https://g9706132415.co/gp?id=-N-2MD8QdW3dNu4Sq7Do&refurl='+g.referrer+'&winurl='+encodeURIComponent(window.location)+'&cw='+w+'&ch='+h; t.parentNode.insertBefore(y,t); })(document,'script');</script> <script> (function(g,e,o,t,a,r,ge,tl,y){ let s=function(){let def="geotargetlygeocontent1630585676742_default",len=g.getElementsByClassName(def).length; if(len>0){for(let i=0;i<len;i++){g.getElementsByClassName(def)[i].style.display='inline';}}}; t=g.getElementsByTagName(e)[0];y=g.createElement(e); y.async=true;y.src='https://g1584674684.co/gc?winurl='+encodeURIComponent(window.location)+'&refurl='+g.referrer+'&id='+"-MiaTiCEOcFuuh3oEof1"; t.parentNode.insertBefore(y,t);y.onerror=function(){s()};})(document,'script'); </script> <noscript> <style>.geotargetlygeocontent1630585676742_default{display:inline !important}</style> </noscript> </body> </html>