CINXE.COM
Search results for: herbivorous dung
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: herbivorous dung</title> <meta name="description" content="Search results for: herbivorous dung"> <meta name="keywords" content="herbivorous dung"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="herbivorous dung" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="herbivorous dung"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 81</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: herbivorous dung</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Distribution Frequency, Ecology, and Economic Utility of Coprophilous Mushrooms (Agaricales, Basidiomycota) in Punjab, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amandeep%20Kaur">Amandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20Atri"> N. S. Atri</a>, <a href="https://publications.waset.org/abstracts/search?q=Munruchi%20Kaur"> Munruchi Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herbivorous dung is a special substrate for the growth of fungi. Fungi growing thereon are known as coprophilous. These fungi are amongst the most abundant taxa in the ecosystem, which regulate the decomposition of dung organic matter, nutrient dynamics and maintenance of ecological balance on the earth. The coprophilous fungi represent a diverse group of saprobes, including taxa from most major fungal groups belonging to Zygomycota, Ascomycota and Basidiomycota. The present work, however, has been focused on the basidiomycetous coprophilous mushrooms belonging to the order Agaricales. The research work includes the results of eco-taxonomic studies of coprophilous mushrooms in Punjab, India, on the basis of a survey of dung localities of the state. The mushrooms were collected growing as saprobes on dung of various domesticated and wild herbivorous animals in pastures, grasslands, zoos, and on dung heaps in villages, etc. The present study observed the frequency of distribution of coprophilous mushrooms in different taxonomic categories in different regions of the state in various seasons on different dung types along with their growing habit. The paper also discusses their economic utility as edible, inedible, poisonous, medicinal and hallucinogenic species. The study has shown that animal dung is a good niche for the growth of mushrooms. However, the natural habitats with dung deposits are getting destroyed because of different developmental activities. Livestock in agriculture-based societies like Punjab state in India should be managed in a manner that favors their grazing in the wild places and thereby the growth of coprophilous mushrooms so that a significant role in ecological balance on the earth is established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=herbivorous%20dung" title="herbivorous dung">herbivorous dung</a>, <a href="https://publications.waset.org/abstracts/search?q=psychoactive" title=" psychoactive"> psychoactive</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20availability" title=" seasonal availability"> seasonal availability</a>, <a href="https://publications.waset.org/abstracts/search?q=taxo-ecology" title=" taxo-ecology"> taxo-ecology</a> </p> <a href="https://publications.waset.org/abstracts/172938/distribution-frequency-ecology-and-economic-utility-of-coprophilous-mushrooms-agaricales-basidiomycota-in-punjab-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Resource Assessment of Animal Dung for Power Generation: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gagandeep%20Kaur">Gagandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Yadwinder%20Singh%20Brar"> Yadwinder Singh Brar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Kothari"> D. P. Kothari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper has an aggregate analysis of animal dung for converting it into renewable biomass fuel source that could be used to help the Indian state Punjab to meet rising power demand. In Punjab district Bathinda produces over 4567 tonnes of animal dung daily on a renewable basis. The biogas energy potential has been calculated using values for the daily per head animal dung production and total no. of large animals in Bathinda of Punjab. The 379540 no. of animals in district could produce nearly 116918 m3 /day of biogas as renewable energy. By converting this biogas into electric energy could produce 89.8 Gwh energy annually. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=livestock" title="livestock">livestock</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20dung" title=" animal dung"> animal dung</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/10163/resource-assessment-of-animal-dung-for-power-generation-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Thermodynamic Analysis and Experimental Study of Agricultural Waste Plasma Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20E.%20Messerle">V. E. Messerle</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Ustimenko"> A. B. Ustimenko</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Lavrichshev"> O. A. Lavrichshev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large amount of manure and its irrational use negatively affect the environment. As compared with biomass fermentation, plasma processing of manure enhances makes it possible to intensify the process of obtaining fuel gas, which consists mainly of synthesis gas (CO + H₂), and increase plant productivity by 150–200 times. This is achieved due to the high temperature in the plasma reactor and a multiple reduction in waste processing time. This paper examines the plasma processing of biomass using the example of dried mixed animal manure (dung with a moisture content of 30%). Characteristic composition of dung, wt.%: Н₂О – 30, С – 29.07, Н – 4.06, О – 32.08, S – 0.26, N – 1.22, P₂O₅ – 0.61, K₂O – 1.47, СаО – 0.86, MgO – 0.37. The thermodynamic code TERRA was used to numerically analyze dung plasma gasification and pyrolysis. Plasma gasification and pyrolysis of dung were analyzed in the temperature range 300–3,000 K and pressure 0.1 MPa for the following thermodynamic systems: 100% dung + 25% air (plasma gasification) and 100% dung + 25% nitrogen (plasma pyrolysis). Calculations were conducted to determine the composition of the gas phase, the degree of carbon gasification, and the specific energy consumption of the processes. At an optimum temperature of 1,500 K, which provides both complete gasification of dung carbon and the maximum yield of combustible components (99.4 vol.% during dung gasification and 99.5 vol.% during pyrolysis), and decomposition of toxic compounds of furan, dioxin, and benz(a)pyrene, the following composition of combustible gas was obtained, vol.%: СО – 29.6, Н₂ – 35.6, СО₂ – 5.7, N₂ – 10.6, H₂O – 17.9 (gasification) and СО – 30.2, Н₂ – 38.3, СО₂ – 4.1, N₂ – 13.3, H₂O – 13.6 (pyrolysis). The specific energy consumption of gasification and pyrolysis of dung at 1,500 K is 1.28 and 1.33 kWh/kg, respectively. An installation with a DC plasma torch with a rated power of 100 kW and a plasma reactor with a dung capacity of 50 kg/h was used for dung processing experiments. The dung was gasified in an air (or nitrogen during pyrolysis) plasma jet, which provided a mass-average temperature in the reactor volume of at least 1,600 K. The organic part of the dung was gasified, and the inorganic part of the waste was melted. For pyrolysis and gasification of dung, the specific energy consumption was 1.5 kWh/kg and 1.4 kWh/kg, respectively. The maximum temperature in the reactor reached 1,887 K. At the outlet of the reactor, a gas of the following composition was obtained, vol.%: СO – 25.9, H₂ – 32.9, СO₂ – 3.5, N₂ – 37.3 (pyrolysis in nitrogen plasma); СO – 32.6, H₂ – 24.1, СO₂ – 5.7, N₂ – 35.8 (air plasma gasification). The specific heat of combustion of the combustible gas formed during pyrolysis and plasma-air gasification of agricultural waste is 10,500 and 10,340 kJ/kg, respectively. Comparison of the integral indicators of dung plasma processing showed satisfactory agreement between the calculation and experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste" title="agricultural waste">agricultural waste</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20gasification" title=" plasma gasification"> plasma gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20calculation" title=" thermodynamic calculation"> thermodynamic calculation</a> </p> <a href="https://publications.waset.org/abstracts/185728/thermodynamic-analysis-and-experimental-study-of-agricultural-waste-plasma-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Studies on the Feasibility of Cow Dung as a Non-Conventional Energy Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raj%20Kumar%20Rajak">Raj Kumar Rajak</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Mishra"> Bharat Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bio-batteries represent an entirely new long-term, reasonable, reachable and ecofriendly approach to produce sustainable energy. In the present experimental work, we have studied the effect of generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow dung as an electrolyte. C-Mg electrode pair shows maximum voltage and SCC (Short Circuit Current) while C-Zn electrode pair shows less OCV (Open Circuit Voltage) and SCC. We have chosen C-Zn electrodes because Mg electrodes are not economical. By the studies of different electrodes and cow dung, it is found that C-Zn electrode battery is more suitable. This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-batteries" title="bio-batteries">bio-batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity" title=" electricity"> electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=cow-dung" title=" cow-dung"> cow-dung</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodes" title=" electrodes"> electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=non-conventional" title=" non-conventional"> non-conventional</a> </p> <a href="https://publications.waset.org/abstracts/82579/studies-on-the-feasibility-of-cow-dung-as-a-non-conventional-energy-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Diversity and Distribution Ecology of Coprophilous Mushrooms of Family Psathyrellaceae from Punjab, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amandeep%20Kaur">Amandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ns%20Atri"> Ns Atri</a>, <a href="https://publications.waset.org/abstracts/search?q=Munruchi%20Kaur"> Munruchi Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mushrooms have shaped our environment in ways that we are only beginning to understand. The weather patterns, topography, flora and fauna of Punjab state in India create favorable growing conditions for thousands of species of mushrooms, but the complete region was unexplored when it comes to coprophilous mushrooms growing on herbivorous dung. Coprophilous mushrooms are the most specialized fungi ecologically, which germinate and grow directly on different types of animal dung or on manured soil. In the present work, the diversity of coprophilous mushrooms' of Family Psathyrellaceae of the order Agaricales is explored, their relationship to the human world is sketched out, and their supreme significance to life on this planet is revealed. During the investigation, different dung localities from 16 districts of Punjab state have been explored for the collection of material. The macroscopic features of the collected mushrooms were documented on the Field key. The hand cut sections of the various parts of carpophore, such as pileus, gills, stipe and the basidiospores details, were studied microscopically under different magnification. Various authentic publications were consulted for the identification of the investigated taxa. The classification, authentic names and synonyms of the investigated taxa are as per the latest version of Dictionary of Fungi and the MycoBank. The present work deals with the taxonomy of 81 collections belonging to 39 species spread over 05 coprophilous genera, namely Psathyrella, Panaeolus, Parasola, Coprinopsis, and Coprinellus of family Psathyrellaceae. In the text, the investigated taxa have been arranged as they appear in the key to the genera and species investigated. In this work, have been thoroughly examined for their macroscopic, microscopic, ecological, and chemical reaction details. The authors dig deeper to give indication of their ecology and the dung type where they can be obtained. Each taxon is accompanied by a detailed listing of its prominent features and an illustration with habitat photographs and line drawings of morphological and anatomical features. Taxa are organized as per their status in the keys, which allow easy recognition. All the taxa are compared with similar taxa. The study has shown that dung is an important substrate which serves as a favorable niche for the growth of a variety of mushrooms. This paper shows an insight what short-lived coprophilous mushrooms can teach us about sustaining life on earth! <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abundance" title="abundance">abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=basidiomycota" title=" basidiomycota"> basidiomycota</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20availability" title=" seasonal availability"> seasonal availability</a>, <a href="https://publications.waset.org/abstracts/search?q=systematics" title=" systematics"> systematics</a> </p> <a href="https://publications.waset.org/abstracts/172665/diversity-and-distribution-ecology-of-coprophilous-mushrooms-of-family-psathyrellaceae-from-punjab-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Remediation of Crude Oil Contaminated Soils by Indigenous Bacterial Isolates Using Cow Dung as a Bioenhancement Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Osazee">E. Osazee</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20U.%20Bashir"> L. U. Bashir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted at the Department of Biological Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria, to determine the effects of different weights of cow dung on indigenous bacterial isolates in remediation of crude oil contaminated soils. The soil (1kg) was contaminated with 20g of crude oil and this was treated with three (40g, 80g and 120g) weights of cow dung. The soils were amended after two weeks of crude oil contamination. Soil samples were collected from the plastic bags for microbiological analyses. The isolates were cultured to test their ability to grow on crude oil. The ability of the isolates to utilize the crude oil was determined using media dilution technique. Bacteria such as Proteus mirabilis, Bacillus lacterosporus, Morganella morganii, Serratia marcescens and Bacillus alvei were isolated. The variables measured were heterotrophic bacterial populations, hydrocarbon utilizing bacterial populations and the percentage of crude oil degraded in the soils. Data collected were subjected to analysis of variance (ANOVA). Results obtained indicated that all the different weights of cow dung showed appreciable effect in crude oil decontamination. Based on the findings of the experiments, it could be deduced that 120g of cow dung promoted higher degradation of hydrocarbons. Thus, it should be recommended for remediation of crude oil contaminated soil in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20dung" title=" cow dung"> cow dung</a>, <a href="https://publications.waset.org/abstracts/search?q=amendment" title=" amendment"> amendment</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=decontamination" title=" decontamination"> decontamination</a> </p> <a href="https://publications.waset.org/abstracts/180383/remediation-of-crude-oil-contaminated-soils-by-indigenous-bacterial-isolates-using-cow-dung-as-a-bioenhancement-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Increase Daily Production Rate of Methane Through Pasteurization Cow Dung</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Elbadawi%20Elshafea">Khalid Elbadawi Elshafea</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Hassan%20Onsa"> Mahmoud Hassan Onsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of the experiments to measure the impact of pasteurization cows dung on important parameter of anaerobic digestion (retention time) and measure the effect in daily production rate of biogas, were used local materials in these experiments, two experiments were carried out in two bio-digesters (1 and 2) (18.0 L), volume of the mixture 16.0-litre and the mass of dry matter in the mixture 4.0 Kg of cow dung. Pasteurization process has been conducted on the mixture into the digester 2, and put two digesters under room temperature. Digester (1) produced 268.5 liter of methane in period of 49 days with daily methane production rate 1.37L/Kg/day, and digester (2) produced 302.7-liter of methane in period of 26 days with daily methane production rate 2.91 L/Kg/day. This study concluded that the use of system pasteurization cows dung speed up hydrolysis in anaerobic process, because heat to certain temperature in certain time lead to speed up chemical reactions (transfer Protein to Amino acids, Carbohydrate to Sugars and Fat to Long chain fatty acids), this lead to reduce the retention time an therefore increase the daily methane production rate with 212%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methane" title="methane">methane</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20dung" title=" cow dung"> cow dung</a>, <a href="https://publications.waset.org/abstracts/search?q=daily%20production" title=" daily production"> daily production</a>, <a href="https://publications.waset.org/abstracts/search?q=pasteurization" title=" pasteurization"> pasteurization</a>, <a href="https://publications.waset.org/abstracts/search?q=increase" title=" increase"> increase</a> </p> <a href="https://publications.waset.org/abstracts/46498/increase-daily-production-rate-of-methane-through-pasteurization-cow-dung" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Tunisian Dung Beetles Fauna: Composition and Biogeographic Affinities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Labidi">Imen Labidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Nouira"> Said Nouira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dung beetles Scarabaeides of Tunisia constitute a major component of soil fauna, especially in the Mediterranean region. In the first phase of the present study, an intensive investigation of this group following the gathering of all the bibliographic, museological data and based on a recent collection of 17020 specimens in 106 localities in Tunisia, allowed to confirm with certainty the presence of 94 species distributed in 43 genera, 4 families and 3 sub-families. Only 81 species distributed in 38 genres, 4 families, and 3 sub-families, have been found during our prospections. The population of dung beetles Scarabaeides is composed of 58% of Aphodiidae, 39.51% of Scarabaeidae, and 8.64% of Geotrupidae. Biogeographic affinities of the species were determined and showed that 42% of the identified species have a wide Palaearctic distribution, the endemism is very low, only 3 species are endemic to Tunisia Mecynodes demoflysi, Neobodilus marani, and Thorectes demoflysi, 29 species have a wide distribution, 35 are northern and 17 are southern species. Moreover, others are dependent on very specific Biotopes like Sisyphus schaefferi linked to the northwest of Tunisia and Scarabaeus semipunctatus related to the coastal area north of Tunisia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dung%20beetles" title="dung beetles">dung beetles</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title=" Tunisia"> Tunisia</a>, <a href="https://publications.waset.org/abstracts/search?q=composition" title=" composition"> composition</a>, <a href="https://publications.waset.org/abstracts/search?q=biogeography" title=" biogeography"> biogeography</a> </p> <a href="https://publications.waset.org/abstracts/87008/tunisian-dung-beetles-fauna-composition-and-biogeographic-affinities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Wastewater Treatment Sludge as a Potential Source of Heavy Metal Contamination in Livestock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glynn%20K.%20Pindihama">Glynn K. Pindihama</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabelani%20Mudzielwana"> Rabelani Mudzielwana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ndamulelo%20Lilimu"> Ndamulelo Lilimu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater treatment effluents, particularly sludges, are known to be potential sources of heavy metal contamination in the environment, depending on how the sludge is managed. Maintenance of wastewater treatment infrastructure in developing countries such as South Africa has become an issue of grave concern, with many wastewater treatment facilities in dilapidating states. Among the problems is the vandalism of the periphery fence to many wastewater treatment facilities, resulting in livestock, such as cows from neighboring villages, grazing within the facilities. This raises human health risks since dried sludge from the treatment plants is usually spread on the grass around the plant, resulting in heavy metal contamination. Animal products such as meat and milk from these cows thus become an indirect route to heavy metals to humans. This study assessed heavy metals in sludges from 3 wastewater treatment plants in Limpopo Province of South Africa. In addition, cow dung and sludge liquors were collected from these plants and evaluated for their heavy metal content. The sludge and cow dung were microwave-digested using the aqua-regia method, and all samples were analyzed for heavy metals using ICP-OES. The loadings of heavy metals in the sludge were in the order Cu>Zn>Ni>Cr>Cd>As>Hg. In cow dung, the heavy metals were in the order Fe>Cu>Mn>Zn>Cr>Pb>Co>Cd. The levels of Zn and Cu in the sludge liquors where the animals were observed drinking were, in some cases, above the permissible limit for livestock consumption. Principal component and correlation analysis are yet to be done to determine if there is a correlation between the heavy metals in the cow dung and sludge and sludge liquors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cow%20dung" title="cow dung">cow dung</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment%20plants" title=" wastewater treatment plants"> wastewater treatment plants</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge." title=" sludge."> sludge.</a> </p> <a href="https://publications.waset.org/abstracts/184496/wastewater-treatment-sludge-as-a-potential-source-of-heavy-metal-contamination-in-livestock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Vermicomposting of Textile Industries’ Dyeing Sludge by Using Eisenia foetida</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunwar%20D.%20Yadav">Kunwar D. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Dayanand%20Sharma"> Dayanand Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surat City in India is famous for textile and dyeing industries which generate textile sludge in huge quantity. Textile sludge contains harmful chemicals which are poisonous and carcinogenic. The safe disposal and reuse of textile dyeing sludge are challenging for owner of textile industries and government of the state. The aim of present study was the vermicomposting of textile industries dyeing sludge with cow dung and <em>Eisenia foetida </em>as earthworm spices. The vermicompost reactor of 0.3 m<sup>3</sup> capacity was used for vermicomposting. Textile dyeing sludge was mixed with cow dung in different proportion, i.e., 0:100 (C1), 10:90 (C2), 20:80 (C3), 30:70 (C4). Vermicomposting duration was 120 days. All the combinations of the feed mixture, the pH was increased to a range 7.45-7.78, percentage of total organic carbon was decreased to a range of 31-33.3%, total nitrogen was decreased to a range of 1.15-1.32%, total phosphorus was increased in the range of 6.2-7.9 (g/kg). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cow%20dung" title="cow dung">cow dung</a>, <a href="https://publications.waset.org/abstracts/search?q=Eisenia%20foetida" title=" Eisenia foetida"> Eisenia foetida</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20sludge" title=" textile sludge"> textile sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/80034/vermicomposting-of-textile-industries-dyeing-sludge-by-using-eisenia-foetida" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Effects of Organic Manure on the Growth of Jatropha curcas in Kogi State North Central Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Amhakhian">S. O. Amhakhian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Idenyi"> M. Idenyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pot experiment was conducted to assess the effects of organic manure on the growth of Jatropha curcas L seedlings at the Faculty of Agriculture, Kogi State University, Anyigba. There were seven treatments, namely, three (3) levels of poultry droppings (PD) (20g, 40g and 60g/kg soil) designated as T1, T2 and T3 respectively, three (3) levels of solid cattle dung (CD) (40g, 80g and 120g/kg soil designated as T4, T5, and T6) respectively, and control (no organic manure) designated as T7. All the treatments were replicated three (3) times. Jathopha curcas L seeds were sown into the polythene pot and observed for the period of six (6) weeks. Growth parameters measured were plant height, leaf count, stem girth, numbers of branches, and fresh weight. Mean separation using F-LSD0.05 showed that 120g cow dung/kg soil (T6) gave optional level of organic manure required for Jatropha curcas throughout the growth period of the seedlings. All the treatments having organic manure were significantly better than the control (P < 0.05) except at two weeks after planting where all the treatments gave the same number of leaves and at the sixth week after planting where only 120g cow dung/kg soil (T6) showed significant difference (P <0.05) in the number of branches. As a result, 120g cow dung/kg soil (T6) is therefore recommended for raising Jatrophus curcas L seedlings in Anyigba, Kogi State. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title="Jatropha curcas">Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=cow-dungs" title=" cow-dungs"> cow-dungs</a>, <a href="https://publications.waset.org/abstracts/search?q=seedlings" title=" seedlings"> seedlings</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20dropping" title=" poultry dropping"> poultry dropping</a>, <a href="https://publications.waset.org/abstracts/search?q=polythene-pot" title=" polythene-pot"> polythene-pot</a> </p> <a href="https://publications.waset.org/abstracts/36950/effects-of-organic-manure-on-the-growth-of-jatropha-curcas-in-kogi-state-north-central-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Influence of Settlements and Human Activities on Beetle Diversity and Assemblage Structure at Small Islands of the Kepulauan Seribu Marine National Park and Nearby Java</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shinta%20Holdsworth">Shinta Holdsworth</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Axmacher"> Jan Axmacher</a>, <a href="https://publications.waset.org/abstracts/search?q=Darren%20J.%20Mann"> Darren J. Mann </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beetles represent the most diverse insect taxon, and they contribute significantly to a wide range of vital ecological functions. Examples include decomposition by bark beetles, nitrogen recycling and dung processing by dung beetles or pest control by predatory ground beetles. Nonetheless, research into the distribution patterns, species richness and functional diversity of beetles particularly from tropical regions remains extremely limited. In our research, we aim to investigate the distribution and diversity patterns of beetles and the roles they play in small tropical island ecosystems in the Kepulauan Seribu Marine National Park and on Java. Our research furthermore provides insights into the effects anthropogenic activities have on the assemblage composition and diversity of beetles on the small islands. We recorded a substantial number of highly abundant small island species, including a substantial number of unique small island species across the study area, highlighting these islands’ potential importance for the regional conservation of genetic resources. The highly varied patterns observed in relation to the use of different trapping types - pitfall traps and flight interception traps (FITs) - underscores the need for complementary trapping strategies that combine multiple methods for beetle community surveys in tropical islands. The significant impacts of human activities have on the small island beetle faunas were also highlighted in our research. More island beetle species encountered in settlement than forest areas shows clear trend of positive links between anthropogenic activities and the overall beetle species richness. However, undisturbed forests harboured a high number of unique species, also in comparison to disturbed forests. Finally, our study suggests that, with regards to different feeding guilds, the diversity of herbivorous beetles on islands is strongly affected by the different levels of forest cover encountered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beetle%20diversity" title="beetle diversity">beetle diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20disturbance" title=" forest disturbance"> forest disturbance</a>, <a href="https://publications.waset.org/abstracts/search?q=island%20biogeography" title=" island biogeography"> island biogeography</a>, <a href="https://publications.waset.org/abstracts/search?q=island%20settlement" title=" island settlement"> island settlement</a> </p> <a href="https://publications.waset.org/abstracts/87189/influence-of-settlements-and-human-activities-on-beetle-diversity-and-assemblage-structure-at-small-islands-of-the-kepulauan-seribu-marine-national-park-and-nearby-java" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Analysis of Generated Biogas from Anaerobic Digestion of Piggery Dung</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babatope%20Alabadan">Babatope Alabadan</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeyinka%20Adesanya"> Adeyinka Adesanya</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20E.%20Afangideh"> I. E. Afangideh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of energy is paramount to human existence. Every activity globally revolves round it. Over the years, different sources of energy (petroleum fuels predominantly) have been utilized. Animal waste treatment on the farm is a phenomenon that has called for rapt research attention. Generated wastes on farm pollute the environment in diverse ways. Waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. The objective of this work is to generate methane (CH4) gas from the anaerobic digestion of piggery dung. A retention time of 15 and 30 days and a mesophilic temperature range were selected. The generated biogas composition was methane (CH4), carbondioxide (CO2), hydrogen sulphide (H2S) and ammonia (NH3) using gas chromatography method. At 15 days retention time, 60% of (CH4) was collected while CO2 and traces of H2S and NH3 accounted for 40%. At 30 days retention time, 75% of CH4, 20% of CO2 was collected while traces of H2S and NH3 amounted to 5%. For on and off farm uses, biogas can be upgraded to biomethane by removing the CO2, NH3 and H2S. This product (CH4) can meet heating and power needs or serve as transportation fuels <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=methane" title=" methane"> methane</a>, <a href="https://publications.waset.org/abstracts/search?q=piggery%20dung" title=" piggery dung"> piggery dung</a> </p> <a href="https://publications.waset.org/abstracts/66260/analysis-of-generated-biogas-from-anaerobic-digestion-of-piggery-dung" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Influence of Agricultural Utilization of Sewage Sludge Vermicompost on Plant Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meiyan%20Xing">Meiyan Xing</a>, <a href="https://publications.waset.org/abstracts/search?q=Cenran%20Li"> Cenran Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Xiang"> Liang Xiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impacts of excess sludge vermicompost on the germination and early growth of plant were tested. The better effect of cow dung vermicompost (CV) on seed germination and seedling growth proved that cow dung was indeed the preferred additive in sludge vermicomposting as reported by plentiful researchers worldwide. The effects and the best amount of application of CV were further discussed. Results demonstrated that seed germination and seedling growth (seedlings number, plant height, stem diameter) were the best and heavy metal (Zn, Pb, Cr and As) contents of plant were the lowest when soil amended with CV by 15%. Additionally, CV fostered higher contents of chlorophyll a and chlorophyll b compared to the control when concentration ranged from 5 to 15%, thereafter a slight increase in chlorophyll content was observed form 15% to 25%. Thus, CV at the optimum proportion of 15% could serve as a feasible and satisfactory way of sludge agricultural utilization of sewage sludge. In summary, sewage sludge can be gainfully utilized in producing organic fertilizer via vermicomposting, thereby not only providing a means of sewage sludge treatment and disposal, but also stimulating the growth of plant and the ability to resist disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cow%20dung%20vermicompost" title="cow dung vermicompost">cow dung vermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title=" seed germination"> seed germination</a>, <a href="https://publications.waset.org/abstracts/search?q=seedling%20growth" title=" seedling growth"> seedling growth</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20utilization" title=" sludge utilization"> sludge utilization</a> </p> <a href="https://publications.waset.org/abstracts/59981/influence-of-agricultural-utilization-of-sewage-sludge-vermicompost-on-plant-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Assessment of Potential Spontaneous Plants Seed Dispersal in Camels and Small Ruminants Faeces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Trabelsi">H. Trabelsi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chehma"> A. Chehma</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Benseddik"> I. Benseddik </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Animals can play an important role in the seed dispersal cycle through the active or passive uptake of seeds and the subsequent external (epizoochory) or internal transport (endozoochory) of seeds. In Algeria, small ruminants and camels are generally conducted in extensive livestock exploiting the Saharan and steppe rangelands. To get an idea on the ecological potential role of these animals in the spontaneous plants proliferation, we propose to make a study of seeds dispersal and germination possibilities by camel faeces compared to those of small ruminants. Manual faeces decortication of the two animals categories has allowed to inventory 72 seed which 71% are in good condition, while 29% of the seeds that are encountered are partially altered and could not be identified. The species that have been identified, from small ruminants dung are weeds of cultures, while those identified from camel dung are spontaneous plants of Saharan rangeland. Concerning germination in the laboratory, only 3 species seeds were germinated from camel feces, whose germination rate varies from 25% to 100%. Contrary to Sheep-Goat feces, a single species germinated with 71%. The three months seed germination in greenhouse allowed to identify 10 species belonging to 4 botanical families (5 species from small ruminants dung and 3 species from Camel dung). In general, the results show the positive effect played by two animals categories for plants seed dispersal with the camel particularity for spontaneous plants due to its capacity to cover long distances in different rangeland types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algeria" title="Algeria">Algeria</a>, <a href="https://publications.waset.org/abstracts/search?q=camel" title=" camel"> camel</a>, <a href="https://publications.waset.org/abstracts/search?q=endozoochory" title=" endozoochory"> endozoochory</a>, <a href="https://publications.waset.org/abstracts/search?q=seeds" title=" seeds"> seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep-goat" title=" sheep-goat"> sheep-goat</a>, <a href="https://publications.waset.org/abstracts/search?q=rangeland" title=" rangeland"> rangeland</a> </p> <a href="https://publications.waset.org/abstracts/26723/assessment-of-potential-spontaneous-plants-seed-dispersal-in-camels-and-small-ruminants-faeces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Value-Based Argumentation Frameworks and Judicial Moral Reasoning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Anand%20Knowlton">Sonia Anand Knowlton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the use of Artificial Intelligence is becoming increasingly integrated in virtually every area of life, the need and interest to logically formalize the law and judicial reasoning is growing tremendously. The study of argumentation frameworks (AFs) provides promise in this respect. AF’s provide a way of structuring human reasoning using a formal system of non-monotonic logic. P.M. Dung first introduced this framework and demonstrated that certain arguments must prevail and certain arguments must perish based on whether they are logically “attacked” by other arguments. Dung labelled the set of prevailing arguments as the “preferred extension” of the given argumentation framework. Trevor Bench-Capon’s Value-based Argumentation Frameworks extended Dung’s AF system by allowing arguments to derive their force from the promotion of “preferred” values. In VAF systems, the success of an attack from argument A to argument B (i.e., the triumph of argument A) requires that argument B does not promote a value that is preferred to argument A. There has been thorough discussion of the application of VAFs to the law within the computer science literature, mainly demonstrating that legal cases can be effectively mapped out using VAFs. This article analyses VAFs from a jurisprudential standpoint to provide a philosophical and theoretical analysis of what VAFs tell the legal community about the judicial reasoning, specifically distinguishing between legal and moral reasoning. It highlights the limitations of using VAFs to account for judicial moral reasoning in theory and in practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonmonotonic%20logic" title="nonmonotonic logic">nonmonotonic logic</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20formalization" title=" legal formalization"> legal formalization</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20science" title=" computer science"> computer science</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=morality" title=" morality"> morality</a> </p> <a href="https://publications.waset.org/abstracts/172011/value-based-argumentation-frameworks-and-judicial-moral-reasoning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Effects of Different Processing Methods of Typha Grass on Feed Intake Milk Yield/Composition and Blood Parameters of Diry Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alhaji%20Musa%20Abdullahi">Alhaji Musa Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Abdullahi"> Usman Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adamu%20%20Lawan"> Adamu Lawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aminu%20Maidala"> Aminu Maidala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract 16 healthy lactating cows will be randomly selected for the trial and will be randomly divided in to 4 groups with 4 cows in each. They will be kept under similar management condition (conventional management system). Animals of relatively same weight and age will be used. After 11days for adaptation, feed intake and performance of the experimental animals will be determine. Milk sample will be collected at each milking in the morning and afternoon to determine; Milk yield, Milk fat percentage, Solid not fat percentage, Total solid percentage of milk. Cows dung will be observe to determine; Score 1 very loose watery stool, Score 2 semi solid with undigested raw material, Score 3 semi solid with less undigested raw material, Score 4 solid with very less undigested raw material, Score 5 good dung no undigested raw material. At the end of the experiment, blood samples will be analyzed for full blood counts and differentials {White Blood Cells (WBC), Red Blood Cells (RBC), Hemoglobin (Hb), Packed Cell Volume (PCV), Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin (MCH), Mean Corpuscular Hemoglobin Concentration (MCHC), Platelets (PLT), Lymphocytes (LYM), Basophils, Eosinophils and Monocytes Proportion (MXD) and Neutrophils (NEUT)} using automated hematology analyzer. Serum samples will be analyzed for heat shock transcription factors, heat shock proteins and hormones (Serum glucocorticoid, prolactin and cortisol). Moreover, biochemical analysis will also be conducted to check for Total protein (TP), Albumen (ALB), Globulin (GBL), Total cholesterol (TCH), glucose (G), sodium (Na+), potassium (K+), chloride (Cl-) and pH. Keywords: Lactating cows, milk composition, dung score and blood parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lactating%20cows" title="Lactating cows ">Lactating cows </a>, <a href="https://publications.waset.org/abstracts/search?q=Milk%20yield" title=" Milk yield "> Milk yield </a>, <a href="https://publications.waset.org/abstracts/search?q=Dung%20score" title=" Dung score "> Dung score </a>, <a href="https://publications.waset.org/abstracts/search?q=Blood%20parameters" title=" Blood parameters "> Blood parameters </a> </p> <a href="https://publications.waset.org/abstracts/135286/effects-of-different-processing-methods-of-typha-grass-on-feed-intake-milk-yieldcomposition-and-blood-parameters-of-diry-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Small Scale Batch Anaerobic Digestion of Rice Straw</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20H.%20Nguyen">V. H. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Castalone"> A. Castalone</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Jamieson"> C. Jamieson</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gummert"> M. Gummert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice straw is an abundant biomass resource in Asian countries that can be used for bioenergy. In continuously flooded rice fields, it can be removed without reducing the levels of soil organic matter. One suitable bioenergy technology is anaerobic digestion (AD), but it needs to be further verified using rice straw as a feedstock. For this study, a batch AD system was developed using rice straw and cow dung. It is low cost, farm scale, with the batch capacity ranging from 5 kg to 200 kg of straw mixed with 10% of cow dung. The net energy balance obtained was from 3000 to 4000 MJ per ton of straw input at 15-18% moisture content. Net output energy obtained from biogas and digestate ranged from 4000 to 5000 MJ per ton of straw. This indicates AD as a potential solution for converting rice straw from a waste to a clean fuel, reducing the environmental footprint caused by current disposal practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20straw" title="rice straw">rice straw</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=bioenergy" title=" bioenergy"> bioenergy</a> </p> <a href="https://publications.waset.org/abstracts/54846/small-scale-batch-anaerobic-digestion-of-rice-straw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Biomass Energy: "The Boon for the Would"</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Giri%20Goswami">Shubham Giri Goswami</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20Tiwari"> Yogesh Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today’s developing world, India and other countries are developing different instruments and accessories for the better standard and life to be happy and prosper. But rather than this we human-beings have been using different energy sources accordingly, many persons such as scientist, researchers etc have developed many Energy sources like renewable and non-renewable energy sources. Like fossil fuel, coal, gas, petroleum products as non-renewable sources, and solar, wind energy as renewable energy source. Thus all non-renewable energy sources, these all Created pollution as in form of air, water etc. due to ultimate use of these sources by human the future became uncertain. Thus to minimize all this environmental affects and destroy the healthy environment we discovered a solution as renewable energy source. Renewable energy source in form of biomass energy, solar, wind etc. We found different techniques in biomass energy, that good energy source for people. The domestic waste, and is a good source of energy as daily extract from cow in form of dung and many other domestic products naturally can be used eco-friendly fertilizers. Moreover, as from my point of view the cow is able to extract 08-12 kg of dung which can be used to make wormy compost fertilizers. Furthermore, the calf urine as insecticides and use of such a compounds will lead to destroy insects and thus decrease communicable diseases. Therefore, can be used by every person and biomass energy can be in those areas such as rural areas where non-renewable energy sources cannot reach easily. Biomass can be used to develop fertilizers, cow-dung plants and other power generation techniques, and this energy is clean and pollution free and is available everywhere thus saves our beautiful planet or blue or life giving planet called as “EARTH”. We can use the biomass energy, which may be boon for the world in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=human" title=" human"> human</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable" title=" renewable"> renewable</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sources" title=" sources"> sources</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind "> wind </a> </p> <a href="https://publications.waset.org/abstracts/6874/biomass-energy-the-boon-for-the-would" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Optimization and Validation for Determination of VOCs from Lime Fruit Citrus aurantifolia (Christm.) with and without California Red Scale Aonidiella aurantii (Maskell) Infested by Using HS-SPME-GC-FID/MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Mohammed">K. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Agarwal"> M. Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Mewman"> J. Mewman</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ren"> Y. Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An optimum technic has been developed for extracting volatile organic compounds which contribute to the aroma of lime fruit (<em>Citrus aurantifolia</em>). The volatile organic compounds of healthy and infested lime fruit with California red scale <em>Aonidiella</em> <em>aurantii</em> were characterized using headspace solid phase microextraction (HS-SPME) combined with gas chromatography (GC) coupled flame ionization detection (FID) and gas chromatography with mass spectrometry (GC-MS) as a very simple, efficient and nondestructive extraction method. A three-phase 50/30 μm PDV/DVB/CAR fibre was used for the extraction process. The optimal sealing and fibre exposure time for volatiles reaching equilibrium from whole lime fruit in the headspace of the chamber was 16 and 4 hours respectively. 5 min was selected as desorption time of the three-phase fibre. Herbivorous activity induces indirect plant defenses, as the emission of herbivorous-induced plant volatiles (HIPVs), which could be used by natural enemies for host location. GC-MS analysis showed qualitative differences among volatiles emitted by infested and healthy lime fruit. The GC-MS analysis allowed the initial identification of 18 compounds, with similarities higher than 85%, in accordance with the NIST mass spectral library. One of these were increased by <em>A. aurantii</em> infestation, D-limonene, and three were decreased, Undecane, α-Farnesene and 7-epi-α-selinene. From an applied point of view, the application of the above-mentioned VOCs may help boost the efficiency of biocontrol programs and natural enemies’ production techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lime%20fruit" title="lime fruit">lime fruit</a>, <a href="https://publications.waset.org/abstracts/search?q=Citrus%20aurantifolia" title=" Citrus aurantifolia"> Citrus aurantifolia</a>, <a href="https://publications.waset.org/abstracts/search?q=California%20red%20scale" title=" California red scale"> California red scale</a>, <a href="https://publications.waset.org/abstracts/search?q=Aonidiella%20aurantii" title=" Aonidiella aurantii"> Aonidiella aurantii</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs" title=" VOCs"> VOCs</a>, <a href="https://publications.waset.org/abstracts/search?q=HS-SPME%2FGC-FID-MS" title=" HS-SPME/GC-FID-MS"> HS-SPME/GC-FID-MS</a> </p> <a href="https://publications.waset.org/abstracts/71759/optimization-and-validation-for-determination-of-vocs-from-lime-fruit-citrus-aurantifolia-christm-with-and-without-california-red-scale-aonidiella-aurantii-maskell-infested-by-using-hs-spme-gc-fidms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Effects of Chemical and Biological Fertilizer on, Yield, Nitrogen Uptake and Nitrogen Harvest Index of Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azin%20Nasrollah%20Zadeh">Azin Nasrollah Zadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A factorial experiment was applied to evaluate the effect of chemical and biological fertilizer on yield, total nitrogen uptake and NHI of rice. Four biological treatments including:(M1:no fertilizer),( M2:10 ton/ha cow dung ),(M3:20 ton/ha cow dung) and (M4:5 ton/ha azolla compost) and four chemical fertilizer treatments including: (S1: no fertilizer),(S2:40 kg N /ha),(S3:60 kg N /ha) and ( S4:80 kg N /ha ) were compared. Results showed that highest rate of yield (3387 kg/ha) and total nitrogen uptake (81.4 kg/ha) were reached the highest value at M4. Among the chemical fertilizers the highest grain yield (3373 kg/ha) and total nitrogen uptake (87.7) belonged to highest nitrogen level (S4).Also biological and chemical fertilizers were no significant on Harvest index (NHI). Interaction effect of chemical × biological fertilizers didn't show significant difference between all parameters except of yield, as the most grain yield were obtained in M4S4. So it can be concluded that using of bioilogical fertilizers at appropriate rate and type, considering plant requirement, may improve grain yield, nitrogen uptake and use efficiency in rice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azolla" title="azolla">azolla</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title=" fertilizer"> fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20uptake" title=" nitrogen uptake"> nitrogen uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/28466/effects-of-chemical-and-biological-fertilizer-on-yield-nitrogen-uptake-and-nitrogen-harvest-index-of-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Kinetic Modeling Study and Scale-Up of Niogas Generation Using Garden Grass and Cattle Dung as Feedstock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng">Tumisang Seodigeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto"> Hilary Rutto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study we investigate the use of a laboratory batch digester to derive kinetic parameters for anaerobic digestion of garden grass and cattle dung. Laboratory experimental data from a 5 liter batch digester operating at mesophilic temperature of 32 C is used to derive parameters for Michaelis-Menten kinetic model. These fitted kinetics are further used to predict the scale-up parameters of a batch digester using DynoChem modeling and scale-up software. The scale-up model results are compared with performance data from 20 liter, 50 liter, and 200 liter batch digesters. Michaelis-Menten kinetic model shows to be a very good and easy to use model for kinetic parameter fitting on DynoChem and can accurately predict scale-up performance of 20 liter and 50 liter batch reactor based on parameters fitted on a 5 liter batch reactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biogas" title="Biogas">Biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=DynoChem%20Scale-up" title=" DynoChem Scale-up"> DynoChem Scale-up</a>, <a href="https://publications.waset.org/abstracts/search?q=Michaelis-Menten" title=" Michaelis-Menten "> Michaelis-Menten </a> </p> <a href="https://publications.waset.org/abstracts/33007/kinetic-modeling-study-and-scale-up-of-niogas-generation-using-garden-grass-and-cattle-dung-as-feedstock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Evaluation of Monoterpenes Induction in Ugni molinae Ecotypes Subjected to a Red Grape Caterpillar (Lepidoptera: Arctiidae) Herbivory </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Chacon-Fuentes">Manuel Chacon-Fuentes</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20Bardehle"> Leonardo Bardehle</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20Lizama"> Marcelo Lizama</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Reyes"> Claudio Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Andres%20Quiroz"> Andres Quiroz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The insect-plant interaction is a complex process in which the plant is able to release chemical signaling that modifies the behavior of insects. Insect herbivory can trigger mechanisms that allow the increase in the production of secondary metabolites that allow coping against the herbivores. Monoterpenes are a kind of secondary metabolites involved in direct defense acting as repellents of herbivorous or even in indirect defense acting as attractants for insect predators. In addition, an increase of the monoterpenes concentration is an effect commonly associated with the herbivory. Hence, plants subjected to damage by herbivory increase the monoterpenes production in comparison to plants without herbivory. In this framework, co-evolutionary aspects play a fundamental role in the adaptation of the herbivorous to their host and in the counter-adaptive strategies of the plants to avoid the herbivorous. In this context, Ugni molinae 'murtilla' is a native shrub from Chile characterized by its antioxidant activity mainly related to the phenolic compounds presents in its fruits. The larval stage of the red grape caterpillar Chilesia rudis Butler (Lepidoptera: Arctiidae) has been reported as an important defoliator of U. molinae. This insect is native from Chile and probably has been involved in a co-evolutionary process with murtilla. Therefore, we hypothesized that herbivory by the red grape caterpillar increases the emission of monoterpenes in Ugni molinae. Ecotypes 19-1 and 22-1 of murtilla were established and maintained at 25° C in the Laboratorio de Química Ecológica at Universidad de La Frontera. Red grape caterpillars of ⁓40 mm were collected near to Temuco (Chile) from grasses, and they were deprived of food for 24 h before performing the assays. Ten caterpillars were placed on the foliage of the ecotypes 19-1 and 22-1 and allowed to feed during 48 h. After this time, caterpillars were removed from the ecotypes and monoterpenes were collected. A glass chamber was used to enclose the ecotypes and a Porapak-Q column was used to trap the monoterpenes. After 24 h of capturing, columns were desorbed with hexane. Then, samples were injected in a gas chromatograph coupled to mass spectrometer and monoterpenes were determined according to the NIST library. All the experiments were performed in triplicate. Results showed that α-pinene, β-phellandrene, limonene, and 1,8 cineole were the main monoterpenes released by murtilla ecotypes. For the ecotype 19-1, the abundance of α-pinene was significantly higher in plants subjected to herbivory (100%) in relation to control plants (54.58%). Moreover, β-phellandrene and 1,8 cineole were observed only in control plants. For ecotype 22-1, there was no significant difference in monoterpenes abundance. In conclusion, the results suggest a trade-off of β-phellandrene and 1,8 cineole in response to herbivory damage by red grape caterpillar generating an increase in α-pinene abundance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chilesia%20rudis" title="Chilesia rudis">Chilesia rudis</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=monoterpenes" title=" monoterpenes"> monoterpenes</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugni%20molinae" title=" Ugni molinae"> Ugni molinae</a> </p> <a href="https://publications.waset.org/abstracts/108703/evaluation-of-monoterpenes-induction-in-ugni-molinae-ecotypes-subjected-to-a-red-grape-caterpillar-lepidoptera-arctiidae-herbivory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> A Comparative Study on Fish Raised with Feed Formulated with Various Organic Wastes and Commercial Feed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Chijioke%20Dike">Charles Chijioke Dike</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugh%20Clifford%20Chima%20Maduka"> Hugh Clifford Chima Maduka</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinwe%20A.%20Isibor"> Chinwe A. Isibor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish is among the products consumed at a very high rate. In most countries of the world, fish are used as part of the daily meal. The high cost of commercial fish feeds in Africa has made it necessary the development of an alternative source of fish feed processing from organic waste. The objective of this research is to investigate the efficacy of fish feeds processed from various animal wastes in order to know whether those feeds shall be alternatives to commercial feeds. This work shall be carried out at the Research Laboratory Unit of the Department of Human Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Nnamdi Azikiwe University (NAU), Nnewi Campus, Anambra State. The fingerlings to be used shall be gotten from the Agricultural Department of NAU, Awka, Anambra State, and allowed to acclimatize for 14 d. Animal and food wastes shall be gotten from Nnewi. The fish shall be grouped into 1-13 (Chicken manure only, cow dung only, pig manure only, chicken manure + yeast, cow dung + yeast, pig manure + yeast, chicken manure + other wastes + yeast, cow dung + other wastes + yeast, and pig manure + other wastes + yeast. Feed assessment shall be carried out by determining bulk density, feed water absorption, feed hardness, feed oil absorption, and feed water stability. The nutritional analysis shall be carried out on the feeds processed. The risk assessment shall be done on the fish by determining methylmercury (MeHg), polycyclic aromatic hydrocarbons (PAHs), and dichloro-diphenyl-trichloroethane (DDT) in the fish. The results from this study shall be analyzed statistically using SPSS statistical software, version 25. The hypothesis is that fish feeds processed from animal wastes are efficient in raising catfish. The outcome of this study shall provide the basis for the formulation of fish feeds from organic wastes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=feeds" title=" feeds"> feeds</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk" title=" health risk"> health risk</a>, <a href="https://publications.waset.org/abstracts/search?q=wastes" title=" wastes"> wastes</a> </p> <a href="https://publications.waset.org/abstracts/161292/a-comparative-study-on-fish-raised-with-feed-formulated-with-various-organic-wastes-and-commercial-feed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Rubbish to Rupees: The Story of Bishanpur Tzeco Panchayat, Bhagalpur District, State- Bihar, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar">Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bishanpur Tzecho Panchayat presents exemplary evidence of community efforts backed by convergent action by the district water and sanitation mission in management of solid waste enhancing prosperity in the area and improvement in the quality of life. BishanpurTzeco Panchayat faced a major problem of waste management with garbage, cow dung piling up in public places leading to protests by residents. To address this problem, in collaboration with the Agriculture University and support of district administration, PHED ( Public Health & Engineering Department) and the district and block coordinators of SBM ( Swachh Bharat Mission), communities decided to go for vermicomposting to get rid of the menace of cow dung and other solid home and farm waste. Today, Bishanpur is largely garbage free, as the people realize the value of waste and how can it contribute to their well-being and prosperity. The people of the Panchayat have demonstrated that waste is a resource. Bishanpur Tzecho is a panchayat of Goradih Block of Bhagalpur district, the silk city of Bihar, India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20management%20in%20Bishanpur%20Tzeco%20Panchayat" title="solid waste management in Bishanpur Tzeco Panchayat">solid waste management in Bishanpur Tzeco Panchayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhagalpur%20district" title=" Bhagalpur district"> Bhagalpur district</a>, <a href="https://publications.waset.org/abstracts/search?q=State-%20Bihar" title=" State- Bihar"> State- Bihar</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/35389/rubbish-to-rupees-the-story-of-bishanpur-tzeco-panchayat-bhagalpur-district-state-bihar-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Use of Fruit Beetles, Waxworms Larvae and Tiger Worms in Waste Conditioning for Composting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20S.%20Alwaneen">Waleed S. Alwaneen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many countries, cow dung is used as farm manure and for biogas production. Several bacterial strains associated with cow dung such as <em>Campylobacter</em>, <em>Salmonella</em> sp. and <em>Escherichia</em> <em>coli</em> cause serious human diseases. The objective of the present study was to investigate the use of insect larvae including fruit beetle, waxworms and tiger worms to improve the breakdown of agricultural wastes and reduce their pathogen loads. Fresh cow faeces were collected from a cattle farm and distributed into plastic boxes (100 g/box). Each box was provided with 10 larvae of fruit beetle, Waxworms and Tiger worms, respectively. There were 3 replicates in each treatment including the control. Bacteria were isolated weekly from both control and cow faeces to which larvae were added to determine the bacterial populations. Results revealed that the bacterial load was higher in the cow faeces treated with fruit beetles than in the control, while the bacterial load was lower in the cow faeces treated with waxworms and tiger worms than in the control. The activities of the fruit beetle larvae led to the cow faeces being liquefied which provided a more conducive growing media for bacteria. Therefore, higher bacterial load in the cow faeces treated with fruit beetle might be attributed to the liquefaction of cow faeces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fruit%20beetle" title="fruit beetle">fruit beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=waxworms" title=" waxworms"> waxworms</a>, <a href="https://publications.waset.org/abstracts/search?q=tiger%20worms" title=" tiger worms"> tiger worms</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20conditioning" title=" waste conditioning"> waste conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a> </p> <a href="https://publications.waset.org/abstracts/73415/use-of-fruit-beetles-waxworms-larvae-and-tiger-worms-in-waste-conditioning-for-composting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Guidelines for the Management and Sustainability Development of Forest Tourism Kamchanoad Baan Dung, Udon Thani</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pennapa%20Palapin">Pennapa Palapin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to examine the management and development of forest tourism Kamchanoad. Ban Dung, Udon Thani sustainability. Data were collected by means of qualitative research including in-depth interviews, semi-structured, and then the data were summarized and discussed in accordance with the objectives. And make a presentation in the form of lectures. The target population for the study consisted of 16 people, including representatives from government agencies, community leaders and the community. The results showed that Guidelines for the Management and Development of Forest Tourism Kamchanoad include management of buildings and infrastructure such as roads, water, electricity, toilets. Other developments are the establishment of a service center that provides information and resources to facilitate tourists.; nature trails and informative signage to educate visitors on the path to the jungle Kamchanoad; forest activities for tourists who are interested only in occasional educational activities such as vegetation, etc.; disseminating information on various aspects of tourism through various channels in both Thailand and English, as well as a website to encourage community involvement in the planning and management of tourism together with the care and preservation of natural resources and preserving the local cultural tourist area of Kamchanoad. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guidelines%20for%20the%20management%20and%20development" title="guidelines for the management and development">guidelines for the management and development</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20tourism" title=" forest tourism"> forest tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamchanoad" title=" Kamchanoad"> Kamchanoad</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/19440/guidelines-for-the-management-and-sustainability-development-of-forest-tourism-kamchanoad-baan-dung-udon-thani" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Comparative Analysis of Biodegradation on Polythene and Plastics Buried in Fadama Soil Amended With Organic and Inorganic Fertilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baba%20John">Baba John</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullahi%20Mohammed"> Abdullahi Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to compare the analysis of biodegradation on polythene and plastics buried in fadama soil amended with Organic and Inorganic fertilizer. Physico- chemical properties of the samples were determined. Bacteria and Fungi implicated in the biodegradation were identified and enumerated. Physico- chemical properties before the analysis indicated pH range of the samples from 4.28 – 5.80 , While the percentage Organic carbon and Organic matter was highest in cow dung samples with 3.89% and 6.69% respectively. The total Nitrogen percentage was recorded to be highest in Chicken dropping (0.68), while the availability of Phosphorus (P), Sodium (Na), Pottasium (K), and Magnessium (mg) was recorded to be highest in F – soil (Control), with values to be 37ppm, 1.63 Cmolkg-1, 0.35 Cmolkg-1 and 1.18 Cmolkg-1 respectively, except for calcium which was recorded to be highest in Cow dung (5.80 Cmolkg-1). However, physico – chemical properties of the samples after analysis indicated pH range of 4.6 – 5.80, Percentage Organic carbon and Organic matter was highest in Fadama soil mixed with fertilizer, having 0.7% and 1.2% respectively. Total Percentage Nitrogen content was found to be highest (0.56) in Fadama soil mixed with poultry dropping. Availability of Sodium (Na), Pottasium (K), and Calcium (Ca) was recorded to be highest in Fadama Soil mixed with Cow dung with values to be 0.64 Cmolkg-1, 2.07 Cmolkg-1 and 3.36 Cmolkg-1 respectively. The percentage weight loss of polythene and plastic bags after nine months in fadama soil mixed with poultry dropping was 11.9% for polythene and 6.0% for plastics. Weight loss in fadama soil mixed with cow dung was 18.1% for polythene and 4.7% for plastics. Weight loss of polythene and plastic in fadama soil mixed with fertilizer (NPK) was 7.4% for polythene and 3.3% for plastics. While, the percentage weight loss of polythene and plastics after nine months of burial in fadama soil (control) was 3.5% and 0.0% respectively. The bacteria species isolated from Fadama soil, organic and inorganic fertilizers before amendments include: S. aureus, Micrococcus sp, Streptococcus. pyogenes, Psuedomonas aeruginosa Bacillus subtilis and Bacillus cereus. The fungi species include: Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, Fusarium sp, Mucor sp Penicillium sp and Candida sp. The bacteria species isolated and characterized after nine months of seeding include: S. aureus, Micrococcus sp, S. pyogenes, P. aeruginosa and B. subtilis. The fungi species are: A. niger A. flavus, A. fumigatus, Mucor sp, Penicillium sp and Fusarium sp. The result of this study indicated that plastic materials can be degraded in the fadama soil irrespective of whether the soil is amended or not. The Period of composting also has a significant impact on the rate at which polythene and plastics are degraded. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fadama" title="Fadama">Fadama</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title=" fertilizer"> fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20and%20polythene" title=" plastic and polythene"> plastic and polythene</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a> </p> <a href="https://publications.waset.org/abstracts/28594/comparative-analysis-of-biodegradation-on-polythene-and-plastics-buried-in-fadama-soil-amended-with-organic-and-inorganic-fertilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Evidence of Total Mercury Biomagnification in Tropical Estuary Lagoon in East Coast of Peninsula, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quang%20Dung%20Le">Quang Dung Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Kentaro%20Tanaka"> Kentaro Tanaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Viet%20Dung%20Luu"> Viet Dung Luu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kotaro%20Shirai"> Kotaro Shirai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mercury pollutant is great concerns in globe due to its toxicity and biomagnification through the food web. Recently increasing approaches of stable isotope analyses which have applied in food-web structure are enabled to elucidate more insight trophic transfer of pollutants in ecosystems. In this study, the integration of total mercury (Hg) and stable isotopic analyses (δ13C and δ15N) were measured from basal food sources to invertebrates and fishes in order to determine Hg transfer in Setiu lagoon food webs. The average Hg concentrations showed the increasing trend from low to high trophic levels. The result also indicated that potential Hg exposure from inside mangrove could be higher than that from the tidal flat of mangrove creek. Fish Hg concentrations are highly variable, and many factors driving this variability need further examinations. A positive correlation found between Hg concentrations and δ15N values (the trophic magnification factor was 3.02), suggesting Hg biomagnification through the lagoon food web. Almost all Hg concentrations in fishes and mud crabs did not present a risk for human consumption, however, the Hg concentrations of Caranx ignobilis exceed the permitted level could raise a concern of the potential risk for the marine system. Further investigations should be done to elucidate whether trophic relay relates to high Hg concentrations of some fish species in coastal systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mercury" title="mercury">mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer" title=" transfer"> transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotopes" title=" stable isotopes"> stable isotopes</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk" title=" health risk"> health risk</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove" title=" mangrove"> mangrove</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20web" title=" food web"> food web</a> </p> <a href="https://publications.waset.org/abstracts/58874/evidence-of-total-mercury-biomagnification-in-tropical-estuary-lagoon-in-east-coast-of-peninsula-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Jigger Flea (Tunga penetrans) Infestations and Use of Soil-Cow Dung-Ash Mixture as a Flea Control Method in Eastern Uganda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gerald%20Amatre">Gerald Amatre</a>, <a href="https://publications.waset.org/abstracts/search?q=Julius%20Bunny%20Lejju"> Julius Bunny Lejju</a>, <a href="https://publications.waset.org/abstracts/search?q=Morgan%20Andama"> Morgan Andama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite several interventions, jigger flea infestations continue to be reported in the Busoga sub-region in Eastern Uganda. The purpose of this study was to identify factors that expose the indigenous people to jigger flea infestations and evaluate the effectiveness of any indigenous materials used in flea control by the affected communities. Flea compositions in residences were described, factors associated with flea infestation and indigenous materials used in flea control were evaluated. Field surveys were conducted in the affected communities after obtaining preliminary information on jigger infestation from the offices of the District Health Inspectors to identify the affected villages and households. Informed consent was then sought from the local authorities and household heads to conduct the study. Focus group discussions were conducted with key district informants, namely, the District Health Inspectors, District Entomologists and representatives from the District Health Office. A GPS coordinate was taken at central point at every household enrolled. Fleas were trapped inside residences using <em>Kilonzo traps. </em>A <em>Kilonzo Trap</em> comprised a shallow pan, about three centimetres deep, filled to the brim with water. The edges of the pan were smeared with Vaseline to prevent fleas from crawling out. Traps were placed in the evening and checked every morning the following day. The trapped fleas were collected in labelled vials filled with 70% aqueous ethanol and taken to the laboratory for identification. Socio-economic and environmental data were collected. The results indicate that the commonest flea trapped in the residences was the cat flea (<em>Ctenocephalides</em> <em>felis</em>) (50%), followed by Jigger flea (<em>Tunga penetrans</em>) (46%) and rat flea (<em>Xenopsylla Cheopis</em>) (4%), respectively. The average size of residences was seven squire metres with a mean of six occupants. The residences were generally untidy; with loose dusty floors and the brick walls were not plastered. The majority of the jigger affected households were headed by peasants (86.7%) and artisans (13.3%). The household heads mainly stopped at primary school level (80%) and few at secondary school level (20%). The jigger affected households were mainly headed by peasants of low socioeconomic status. The affected community members use soil-cow dung-ash mixture to smear floors of residences as the only measure to control fleas. This method was found to be ineffective in controlling the insects. The study recommends that home improvement campaigns be continued in the affected communities to improve sanitation and hygiene in residences as one of the interventions to combat flea infestations. Other cheap, available and effective means should be identified to curb jigger flea infestations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cow%20dung-soil-ash%20mixture" title="cow dung-soil-ash mixture">cow dung-soil-ash mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=infestations" title=" infestations"> infestations</a>, <a href="https://publications.waset.org/abstracts/search?q=jigger%20flea" title=" jigger flea"> jigger flea</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunga%20penetrans" title=" Tunga penetrans"> Tunga penetrans</a> </p> <a href="https://publications.waset.org/abstracts/84975/jigger-flea-tunga-penetrans-infestations-and-use-of-soil-cow-dung-ash-mixture-as-a-flea-control-method-in-eastern-uganda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=herbivorous%20dung&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=herbivorous%20dung&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=herbivorous%20dung&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>