CINXE.COM

Conditional independence - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Conditional independence - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"e4c09b09-3cd3-48d5-9515-ba1900b4aa1f","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Conditional_independence","wgTitle":"Conditional independence","wgCurRevisionId":1258164971,"wgRevisionId":1258164971,"wgArticleId":801135,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Commons category link from Wikidata","Independence (probability theory)"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Conditional_independence","wgRelevantArticleId":801135,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom": "Conditionally_independent","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgInternalRedirectTargetUrl":"/wiki/Conditional_independence","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q5159264","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin", "mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/1200px-Standard_deviation_diagram_micro.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/800px-Standard_deviation_diagram_micro.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="400"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/640px-Standard_deviation_diagram_micro.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="320"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Conditional independence - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Conditional_independence"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Conditional_independence&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Conditional_independence"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Conditional_independence rootpage-Conditional_independence skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Conditional+independence" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Conditional+independence" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Conditional+independence" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Conditional+independence" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Conditional_independence_of_events" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Conditional_independence_of_events"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Conditional independence of events</span> </div> </a> <button aria-controls="toc-Conditional_independence_of_events-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Conditional independence of events subsection</span> </button> <ul id="toc-Conditional_independence_of_events-sublist" class="vector-toc-list"> <li id="toc-Proof_of_the_equivalent_definition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Proof_of_the_equivalent_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Proof of the equivalent definition</span> </div> </a> <ul id="toc-Proof_of_the_equivalent_definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Coloured_boxes" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Coloured_boxes"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2.1</span> <span>Coloured boxes</span> </div> </a> <ul id="toc-Coloured_boxes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proximity_and_delays" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Proximity_and_delays"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2.2</span> <span>Proximity and delays</span> </div> </a> <ul id="toc-Proximity_and_delays-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dice_rolling" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Dice_rolling"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2.3</span> <span>Dice rolling</span> </div> </a> <ul id="toc-Dice_rolling-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Height_and_vocabulary" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Height_and_vocabulary"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2.4</span> <span>Height and vocabulary</span> </div> </a> <ul id="toc-Height_and_vocabulary-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Conditional_independence_of_random_variables" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Conditional_independence_of_random_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Conditional independence of random variables</span> </div> </a> <ul id="toc-Conditional_independence_of_random_variables-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conditional_independence_of_random_vectors" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Conditional_independence_of_random_vectors"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Conditional independence of random vectors</span> </div> </a> <ul id="toc-Conditional_independence_of_random_vectors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Uses_in_Bayesian_inference" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Uses_in_Bayesian_inference"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Uses in Bayesian inference</span> </div> </a> <ul id="toc-Uses_in_Bayesian_inference-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rules_of_conditional_independence" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Rules_of_conditional_independence"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Rules of conditional independence</span> </div> </a> <button aria-controls="toc-Rules_of_conditional_independence-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Rules of conditional independence subsection</span> </button> <ul id="toc-Rules_of_conditional_independence-sublist" class="vector-toc-list"> <li id="toc-Symmetry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Symmetry"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Symmetry</span> </div> </a> <ul id="toc-Symmetry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Decomposition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Decomposition"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Decomposition</span> </div> </a> <ul id="toc-Decomposition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Weak_union" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Weak_union"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Weak union</span> </div> </a> <ul id="toc-Weak_union-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Contraction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Contraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Contraction</span> </div> </a> <ul id="toc-Contraction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Intersection" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Intersection"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Intersection</span> </div> </a> <ul id="toc-Intersection-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Conditional independence</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 14 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-14" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">14 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Independ%C3%A8ncia_condicional" title="Independència condicional – Catalan" lang="ca" hreflang="ca" data-title="Independència condicional" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BB%D1%81%C4%83%D0%BB%D1%82%D0%B0%D0%B2%D0%BB%C4%83_%D0%BF%C4%83%D1%85%C4%83%D0%BD%D0%BC%D0%B0%D0%BD%D0%BB%C4%83%D1%85" title="Малсăлтавлă пăхăнманлăх – Chuvash" lang="cv" hreflang="cv" data-title="Малсăлтавлă пăхăнманлăх" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Bedingte_Unabh%C3%A4ngigkeit" title="Bedingte Unabhängigkeit – German" lang="de" hreflang="de" data-title="Bedingte Unabhängigkeit" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Independencia_condicional" title="Independencia condicional – Spanish" lang="es" hreflang="es" data-title="Independencia condicional" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%B3%D8%AA%D9%82%D9%84_%D8%B4%D8%B1%D8%B7%DB%8C" title="مستقل شرطی – Persian" lang="fa" hreflang="fa" data-title="مستقل شرطی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%A1%B0%EA%B1%B4%EB%B6%80_%EB%8F%85%EB%A6%BD" title="조건부 독립 – Korean" lang="ko" hreflang="ko" data-title="조건부 독립" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Indipendenza_condizionata" title="Indipendenza condizionata – Italian" lang="it" hreflang="it" data-title="Indipendenza condizionata" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Felt%C3%A9teles_f%C3%BCggetlens%C3%A9g" title="Feltételes függetlenség – Hungarian" lang="hu" hreflang="hu" data-title="Feltételes függetlenség" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%9D%A1%E4%BB%B6%E4%BB%98%E3%81%8D%E7%8B%AC%E7%AB%8B" title="条件付き独立 – Japanese" lang="ja" hreflang="ja" data-title="条件付き独立" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Independ%C3%AAncia_condicional" title="Independência condicional – Portuguese" lang="pt" hreflang="pt" data-title="Independência condicional" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A3%D1%81%D0%BB%D0%BE%D0%B2%D0%BD%D0%B0%D1%8F_%D0%BD%D0%B5%D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D1%8C" title="Условная независимость – Russian" lang="ru" hreflang="ru" data-title="Условная независимость" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Uslovna_nezavisnost" title="Uslovna nezavisnost – Serbian" lang="sr" hreflang="sr" data-title="Uslovna nezavisnost" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%A2%9D%E4%BB%B6%E7%8D%A8%E7%AB%8B" title="條件獨立 – Cantonese" lang="yue" hreflang="yue" data-title="條件獨立" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%9D%A1%E4%BB%B6%E7%8B%AC%E7%AB%8B" title="条件独立 – Chinese" lang="zh" hreflang="zh" data-title="条件独立" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5159264#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Conditional_independence" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Conditional_independence" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Conditional_independence"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Conditional_independence&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Conditional_independence&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Conditional_independence"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Conditional_independence&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Conditional_independence&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Conditional_independence" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Conditional_independence" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Conditional_independence&amp;oldid=1258164971" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Conditional_independence&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Conditional_independence&amp;id=1258164971&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FConditional_independence"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FConditional_independence"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Conditional_independence&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Conditional_independence&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Conditional_independence" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5159264" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Conditionally_independent&amp;redirect=no" class="mw-redirect" title="Conditionally independent">Conditionally independent</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Probability theory concept</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Conditional_dependence" title="Conditional dependence">Conditional dependence</a></div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar nomobile nowraplinks hlist"><tbody><tr><td class="sidebar-pretitle">Part of a series on <a href="/wiki/Statistics" title="Statistics">statistics</a></td></tr><tr><th class="sidebar-title-with-pretitle"><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></th></tr><tr><td class="sidebar-image"><span typeof="mw:File"><a href="/wiki/File:Standard_deviation_diagram_micro.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/250px-Standard_deviation_diagram_micro.svg.png" decoding="async" width="250" height="125" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/375px-Standard_deviation_diagram_micro.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/500px-Standard_deviation_diagram_micro.svg.png 2x" data-file-width="400" data-file-height="200" /></a></span></td></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Probability" title="Probability">Probability</a> <ul><li><a href="/wiki/Probability_axioms" title="Probability axioms">Axioms</a></li></ul></li> <li><a href="/wiki/Determinism" title="Determinism">Determinism</a> <ul><li><a href="/wiki/Deterministic_system" title="Deterministic system">System</a></li></ul></li> <li><a href="/wiki/Indeterminism" title="Indeterminism">Indeterminism</a></li> <li><a href="/wiki/Randomness" title="Randomness">Randomness</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Probability_space" title="Probability space">Probability space</a></li> <li><a href="/wiki/Sample_space" title="Sample space">Sample space</a></li> <li><a href="/wiki/Event_(probability_theory)" title="Event (probability theory)">Event</a> <ul><li><a href="/wiki/Collectively_exhaustive_events" title="Collectively exhaustive events">Collectively exhaustive events</a></li> <li><a href="/wiki/Elementary_event" title="Elementary event">Elementary event</a></li> <li><a href="/wiki/Mutual_exclusivity" title="Mutual exclusivity">Mutual exclusivity</a></li> <li><a href="/wiki/Outcome_(probability)" title="Outcome (probability)">Outcome</a></li> <li><a href="/wiki/Singleton_(mathematics)" title="Singleton (mathematics)">Singleton</a></li></ul></li> <li><a href="/wiki/Experiment_(probability_theory)" title="Experiment (probability theory)">Experiment</a> <ul><li><a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trial</a></li></ul></li> <li><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distribution</a> <ul><li><a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a></li> <li><a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial distribution</a></li> <li><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential distribution</a></li> <li><a href="/wiki/Normal_distribution" title="Normal distribution">Normal distribution</a></li> <li><a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto distribution</a></li> <li><a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson distribution</a></li></ul></li> <li><a href="/wiki/Probability_measure" title="Probability measure">Probability measure</a></li> <li><a href="/wiki/Random_variable" title="Random variable">Random variable</a> <ul><li><a href="/wiki/Bernoulli_process" title="Bernoulli process">Bernoulli process</a></li> <li><a href="/wiki/Continuous_or_discrete_variable" title="Continuous or discrete variable">Continuous or discrete</a></li> <li><a href="/wiki/Expected_value" title="Expected value">Expected value</a></li> <li><a href="/wiki/Variance" title="Variance">Variance</a></li> <li><a href="/wiki/Markov_chain" title="Markov chain">Markov chain</a></li> <li><a href="/wiki/Realization_(probability)" title="Realization (probability)">Observed value</a></li> <li><a href="/wiki/Random_walk" title="Random walk">Random walk</a></li> <li><a href="/wiki/Stochastic_process" title="Stochastic process">Stochastic process</a></li></ul></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Complementary_event" title="Complementary event">Complementary event</a></li> <li><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Joint probability</a></li> <li><a href="/wiki/Marginal_distribution" title="Marginal distribution">Marginal probability</a></li> <li><a href="/wiki/Conditional_probability" title="Conditional probability">Conditional probability</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">Independence</a></li> <li><a class="mw-selflink selflink">Conditional independence</a></li> <li><a href="/wiki/Law_of_total_probability" title="Law of total probability">Law of total probability</a></li> <li><a href="/wiki/Law_of_large_numbers" title="Law of large numbers">Law of large numbers</a></li> <li><a href="/wiki/Bayes%27_theorem" title="Bayes&#39; theorem">Bayes' theorem</a></li> <li><a href="/wiki/Boole%27s_inequality" title="Boole&#39;s inequality">Boole's inequality</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a></li> <li><a href="/wiki/Tree_diagram_(probability_theory)" title="Tree diagram (probability theory)">Tree diagram</a></li></ul></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Probability_fundamentals" title="Template:Probability fundamentals"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Probability_fundamentals" title="Template talk:Probability fundamentals"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Probability_fundamentals" title="Special:EditPage/Template:Probability fundamentals"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>, <b>conditional independence</b> describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. Conditional independence is usually formulated in terms of <a href="/wiki/Conditional_probability" title="Conditional probability">conditional probability</a>, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability without. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is the hypothesis, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> are observations, conditional independence can be stated as an equality: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B,C)=P(A\mid C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B,C)=P(A\mid C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f04e728c804338287435cf8199b1a52484d2b77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.899ex; height:2.843ex;" alt="{\displaystyle P(A\mid B,C)=P(A\mid C)}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B,C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B,C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/919d32b7fe0b4df9eb03ab7b81f7bc684645299e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.799ex; height:2.843ex;" alt="{\displaystyle P(A\mid B,C)}"></span> is the probability of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> given both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>. Since the probability of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is the same as the probability of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> given both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>, this equality expresses that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> contributes nothing to the certainty of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. In this case, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> are said to be <b>conditionally independent</b> given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>, written symbolically as: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\perp \!\!\!\perp B\mid C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\perp \!\!\!\perp B\mid C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/373aef3430a4c918a94daf9164281c2fda8f9b49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.765ex; height:2.843ex;" alt="{\displaystyle (A\perp \!\!\!\perp B\mid C)}"></span>. In the language of <a href="/w/index.php?title=Causal_equality_notation&amp;action=edit&amp;redlink=1" class="new" title="Causal equality notation (page does not exist)">causal equality notation</a>, two functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaa9215c6afa4892692ba05ae4c44f23600ea79d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.243ex; height:2.843ex;" alt="{\displaystyle f(y)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e05f288372d2eb8e3ac42c0a76cf1f7c4093e2f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.081ex; height:2.843ex;" alt="{\displaystyle g(y)}"></span> which both depend on a common variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> are described as conditionally independent using the notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\left(y\right)~{\overset {\curvearrowleft \curvearrowright }{=}}~g\left(y\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>=</mo> <mrow> <mo>&#x21B6;<!-- ↶ -->&#x21B7;<!-- ↷ --></mo> </mrow> </mover> </mrow> <mtext>&#xA0;</mtext> <mi>g</mi> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\left(y\right)~{\overset {\curvearrowleft \curvearrowright }{=}}~g\left(y\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57f5d2d69b050a8b0cbf0c6303431df9e63038fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.294ex; height:3.343ex;" alt="{\displaystyle f\left(y\right)~{\overset {\curvearrowleft \curvearrowright }{=}}~g\left(y\right)}"></span>, which is equivalent to the notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(f\mid g,y)=P(f\mid y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>g</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(f\mid g,y)=P(f\mid y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41c96df4b26fe2e11e7388bde57e45d38e6a9a86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.1ex; height:2.843ex;" alt="{\displaystyle P(f\mid g,y)=P(f\mid y)}"></span>. </p><p>The concept of conditional independence is essential to graph-based theories of statistical inference, as it establishes a mathematical relation between a collection of conditional statements and a <a href="/wiki/Graphoid" title="Graphoid">graphoid</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Conditional_independence_of_events">Conditional independence of events</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=1" title="Edit section: Conditional independence of events"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> be <a href="/wiki/Event_(probability_theory)" title="Event (probability theory)">events</a>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> are said to be <b>conditionally independent</b> given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(C)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(C)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d193d9f61474e68bd4433bce6a2d5f0aa45b4a77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.582ex; height:2.843ex;" alt="{\displaystyle P(C)&gt;0}"></span> and: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B,C)=P(A\mid C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B,C)=P(A\mid C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f04e728c804338287435cf8199b1a52484d2b77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.899ex; height:2.843ex;" alt="{\displaystyle P(A\mid B,C)=P(A\mid C)}"></span></dd></dl> <p>This property is often written: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\perp \!\!\!\perp B\mid C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\perp \!\!\!\perp B\mid C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/373aef3430a4c918a94daf9164281c2fda8f9b49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.765ex; height:2.843ex;" alt="{\displaystyle (A\perp \!\!\!\perp B\mid C)}"></span>, which should be read <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ((A\perp \!\!\!\perp B)\vert C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">|</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ((A\perp \!\!\!\perp B)\vert C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1788643a80269a3754b3a6be590908d3867ea13b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.284ex; height:2.843ex;" alt="{\displaystyle ((A\perp \!\!\!\perp B)\vert C)}"></span>. </p><p>Equivalently, conditional independence may be stated as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A,B|C)=P(A|C)P(B|C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A,B|C)=P(A|C)P(B|C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33a9a55e993e8bd6ab0c926c02c1455da43a273b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.05ex; height:2.843ex;" alt="{\displaystyle P(A,B|C)=P(A|C)P(B|C)}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A,B|C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A,B|C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/521a3f8f53d2572f134a573343260a2b00deb392" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.509ex; height:2.843ex;" alt="{\displaystyle P(A,B|C)}"></span> is the <a href="/wiki/Joint_probability" class="mw-redirect" title="Joint probability">joint probability</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>. This alternate formulation states that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> are <a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">independent events</a>, <b>given</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>. </p><p>It demonstrates that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\perp \!\!\!\perp B\mid C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\perp \!\!\!\perp B\mid C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/373aef3430a4c918a94daf9164281c2fda8f9b49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.765ex; height:2.843ex;" alt="{\displaystyle (A\perp \!\!\!\perp B\mid C)}"></span> is equivalent to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B\perp \!\!\!\perp A\mid C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B\perp \!\!\!\perp A\mid C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc3e25259b9b38fce768d74f95518e89945b053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.765ex; height:2.843ex;" alt="{\displaystyle (B\perp \!\!\!\perp A\mid C)}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Proof_of_the_equivalent_definition">Proof of the equivalent definition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=2" title="Edit section: Proof of the equivalent definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A,B\mid C)=P(A\mid C)P(B\mid C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A,B\mid C)=P(A\mid C)P(B\mid C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a5c86da33d1c10a1fe81dc0fe26bdb8936075ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.921ex; height:2.843ex;" alt="{\displaystyle P(A,B\mid C)=P(A\mid C)P(B\mid C)}"></span></dd></dl> <dl><dd>iff <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {P(A,B,C)}{P(C)}}=\left({\frac {P(A,C)}{P(C)}}\right)\left({\frac {P(B,C)}{P(C)}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {P(A,B,C)}{P(C)}}=\left({\frac {P(A,C)}{P(C)}}\right)\left({\frac {P(B,C)}{P(C)}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d78d29e0205a1cbf5f3f78d060cda799860790b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:39.949ex; height:6.509ex;" alt="{\displaystyle {\frac {P(A,B,C)}{P(C)}}=\left({\frac {P(A,C)}{P(C)}}\right)\left({\frac {P(B,C)}{P(C)}}\right)}"></span> &#160;&#160;&#160;&#160;&#160;(definition of <a href="/wiki/Conditional_probability" title="Conditional probability">conditional probability</a>)</dd></dl> <dl><dd>iff <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A,B,C)={\frac {P(A,C)P(B,C)}{P(C)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A,B,C)={\frac {P(A,C)P(B,C)}{P(C)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11fa225dac6324a40fc746563efce0a48c3a4bcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:31.048ex; height:6.509ex;" alt="{\displaystyle P(A,B,C)={\frac {P(A,C)P(B,C)}{P(C)}}}"></span> &#160;&#160;&#160;&#160;&#160; (multiply both sides by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/396fd7e1d55eeb9ad100d6235caa8465f053bb75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.321ex; height:2.843ex;" alt="{\displaystyle P(C)}"></span>)</dd></dl> <dl><dd>iff <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {P(A,B,C)}{P(B,C)}}={\frac {P(A,C)}{P(C)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {P(A,B,C)}{P(B,C)}}={\frac {P(A,C)}{P(C)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/486663de2feccf654d6b6a7cf026f615e9d49ca6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:23.765ex; height:6.509ex;" alt="{\displaystyle {\frac {P(A,B,C)}{P(B,C)}}={\frac {P(A,C)}{P(C)}}}"></span> &#160;&#160;&#160;&#160;&#160; (divide both sides by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(B,C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(B,C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81219a6dbc7fd3aaddd97e192b6b26b5eb9d101e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.119ex; height:2.843ex;" alt="{\displaystyle P(B,C)}"></span>)</dd></dl> <dl><dd>iff <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B,C)=P(A\mid C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B,C)=P(A\mid C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f04e728c804338287435cf8199b1a52484d2b77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.899ex; height:2.843ex;" alt="{\displaystyle P(A\mid B,C)=P(A\mid C)}"></span> &#160;&#160;&#160;&#160;&#160; (definition of conditional probability) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \therefore }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2234;<!-- ∴ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \therefore }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbb8b7f072bd54b28a08d8f7ad207f9df1bf9f22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.55ex; height:1.843ex;" alt="{\displaystyle \therefore }"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Examples">Examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=3" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Coloured_boxes">Coloured boxes</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=4" title="Edit section: Coloured boxes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Each cell represents a possible outcome. The events <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \color {red}R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle mathcolor="red"> <mi>R</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \color {red}R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f01e253717901b8b00c959c34140b7305fa89ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle \color {red}R}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \color {blue}B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle mathcolor="blue"> <mi>B</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \color {blue}B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cca068ce7654c7fecd8085bdbe7f3b72de5daa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle \color {blue}B}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \color {gold}Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle mathcolor="gold"> <mi>Y</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \color {gold}Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a255a2578c3d9ba10e9b09bfe646669acf989be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle \color {gold}Y}"></span> are represented by the areas shaded <span style="color:red;">red</span>, <span style="color:blue;">blue</span> and <span style="color:gold;">yellow</span> respectively. The overlap between the events <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \color {red}R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle mathcolor="red"> <mi>R</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \color {red}R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f01e253717901b8b00c959c34140b7305fa89ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle \color {red}R}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \color {blue}B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle mathcolor="blue"> <mi>B</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \color {blue}B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cca068ce7654c7fecd8085bdbe7f3b72de5daa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle \color {blue}B}"></span> is shaded <span style="color:purple;">purple</span>. </p><p><span typeof="mw:File"><a href="/wiki/File:Conditional_independence.svg" class="mw-file-description" title="These are two examples illustrating conditional independence."><img alt="These are two examples illustrating conditional independence." src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Conditional_independence.svg/450px-Conditional_independence.svg.png" decoding="async" width="450" height="242" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Conditional_independence.svg/675px-Conditional_independence.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Conditional_independence.svg/900px-Conditional_independence.svg.png 2x" data-file-width="283" data-file-height="152" /></a></span> </p><p>The probabilities of these events are shaded areas with respect to the total area. In both examples <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \color {red}R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle mathcolor="red"> <mi>R</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \color {red}R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f01e253717901b8b00c959c34140b7305fa89ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle \color {red}R}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \color {blue}B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle mathcolor="blue"> <mi>B</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \color {blue}B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cca068ce7654c7fecd8085bdbe7f3b72de5daa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle \color {blue}B}"></span> are conditionally independent given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \color {gold}Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle mathcolor="gold"> <mi>Y</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \color {gold}Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a255a2578c3d9ba10e9b09bfe646669acf989be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle \color {gold}Y}"></span> because: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr({\color {red}R},{\color {blue}B}\mid {\color {gold}Y})=\Pr({\color {red}R}\mid {\color {gold}Y})\Pr({\color {blue}B}\mid {\color {gold}Y})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mi>R</mi> </mstyle> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mi>B</mi> </mstyle> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="gold"> <mi>Y</mi> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mi>R</mi> </mstyle> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="gold"> <mi>Y</mi> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mi>B</mi> </mstyle> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="gold"> <mi>Y</mi> </mstyle> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr({\color {red}R},{\color {blue}B}\mid {\color {gold}Y})=\Pr({\color {red}R}\mid {\color {gold}Y})\Pr({\color {blue}B}\mid {\color {gold}Y})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be75f9a4c142a78b2511b726115200c7191e3a56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.618ex; height:2.843ex;" alt="{\displaystyle \Pr({\color {red}R},{\color {blue}B}\mid {\color {gold}Y})=\Pr({\color {red}R}\mid {\color {gold}Y})\Pr({\color {blue}B}\mid {\color {gold}Y})}"></span><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>but not conditionally independent given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\text{not }}{\color {gold}Y}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>not&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="gold"> <mi>Y</mi> </mstyle> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[{\text{not }}{\color {gold}Y}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0eb1bae763ed41724514977c2f1f04cc4f94b47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.007ex; height:2.843ex;" alt="{\displaystyle \left[{\text{not }}{\color {gold}Y}\right]}"></span> because: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr({\color {red}R},{\color {blue}B}\mid {\text{not }}{\color {gold}Y})\not =\Pr({\color {red}R}\mid {\text{not }}{\color {gold}Y})\Pr({\color {blue}B}\mid {\text{not }}{\color {gold}Y})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mi>R</mi> </mstyle> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#0000ff"> <mi>B</mi> </mstyle> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>not&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="gold"> <mi>Y</mi> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>&#x2260;</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mi>R</mi> </mstyle> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>not&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="gold"> <mi>Y</mi> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#0000ff"> <mi>B</mi> </mstyle> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>not&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="gold"> <mi>Y</mi> </mstyle> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr({\color {red}R},{\color {blue}B}\mid {\text{not }}{\color {gold}Y})\not =\Pr({\color {red}R}\mid {\text{not }}{\color {gold}Y})\Pr({\color {blue}B}\mid {\text{not }}{\color {gold}Y})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b33242ca8243e90b4bd6a9d408b1bfd00d1e22b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.439ex; height:2.843ex;" alt="{\displaystyle \Pr({\color {red}R},{\color {blue}B}\mid {\text{not }}{\color {gold}Y})\not =\Pr({\color {red}R}\mid {\text{not }}{\color {gold}Y})\Pr({\color {blue}B}\mid {\text{not }}{\color {gold}Y})}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Proximity_and_delays">Proximity and delays</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=5" title="Edit section: Proximity and delays"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let events A and B be defined as the probability that person A and person B will be home in time for dinner where both people are randomly sampled from the entire world. Events A and B can be assumed to be independent i.e. knowledge that A is late has minimal to no change on the probability that B will be late. However, if a third event is introduced, person A and person B live in the same neighborhood, the two events are now considered not conditionally independent. Traffic conditions and weather-related events that might delay person A, might delay person B as well. Given the third event and knowledge that person A was late, the probability that person B will be late does meaningfully change.<sup id="cite_ref-:0_2-0" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Dice_rolling">Dice rolling</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=6" title="Edit section: Dice rolling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Conditional independence depends on the nature of the third event. If you roll two dice, one may assume that the two dice behave independently of each other. Looking at the results of one die will not tell you about the result of the second die. (That is, the two dice are independent.) If, however, the 1st die's result is a 3, and someone tells you about a third event - that the sum of the two results is even - then this extra unit of information restricts the options for the 2nd result to an odd number. In other words, two events can be independent, but NOT conditionally independent.<sup id="cite_ref-:0_2-1" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Height_and_vocabulary">Height and vocabulary</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=7" title="Edit section: Height and vocabulary"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Height and vocabulary are dependent since very small people tend to be children, known for their more basic vocabularies. But knowing that two people are 19 years old (i.e., conditional on age) there is no reason to think that one person's vocabulary is larger if we are told that they are taller. </p> <div class="mw-heading mw-heading2"><h2 id="Conditional_independence_of_random_variables">Conditional independence of random variables</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=8" title="Edit section: Conditional independence of random variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Two discrete <a href="/wiki/Random_variable" title="Random variable">random variables</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> are conditionally independent given a third discrete random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> if and only if they are <a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">independent</a> in their <a href="/wiki/Conditional_probability_distribution" title="Conditional probability distribution">conditional probability distribution</a> given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span>. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> are conditionally independent given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> if and only if, given any value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span>, the probability distribution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is the same for all values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> and the probability distribution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> is the same for all values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>. Formally: </p> <div class="equation-box" style="margin: ;padding: 6px; border-width:2px; border-style: solid; border-color: #0073CF; color: inherit;text-align: center; display: table"> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X\perp \!\!\!\perp Y)\mid Z\quad \iff \quad F_{X,Y\,\mid \,Z\,=\,z}(x,y)=F_{X\,\mid \,Z\,=\,z}(x)\cdot F_{Y\,\mid \,Z\,=\,z}(y)\quad {\text{for all }}x,y,z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>Z</mi> <mspace width="1em" /> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mspace width="1em" /> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mspace width="thinmathspace" /> <mo>&#x2223;<!-- ∣ --></mo> <mspace width="thinmathspace" /> <mi>Z</mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mi>z</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mspace width="thinmathspace" /> <mo>&#x2223;<!-- ∣ --></mo> <mspace width="thinmathspace" /> <mi>Z</mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mi>z</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> <mspace width="thinmathspace" /> <mo>&#x2223;<!-- ∣ --></mo> <mspace width="thinmathspace" /> <mi>Z</mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mi>z</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for all&#xA0;</mtext> </mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X\perp \!\!\!\perp Y)\mid Z\quad \iff \quad F_{X,Y\,\mid \,Z\,=\,z}(x,y)=F_{X\,\mid \,Z\,=\,z}(x)\cdot F_{Y\,\mid \,Z\,=\,z}(y)\quad {\text{for all }}x,y,z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e22f02ebf0aeceda1fd7d2bd7b6a099a043a1e29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:81.717ex; height:3.176ex;" alt="{\displaystyle (X\perp \!\!\!\perp Y)\mid Z\quad \iff \quad F_{X,Y\,\mid \,Z\,=\,z}(x,y)=F_{X\,\mid \,Z\,=\,z}(x)\cdot F_{Y\,\mid \,Z\,=\,z}(y)\quad {\text{for all }}x,y,z}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_Eq.2" class="reference nourlexpansion" style="font-weight:bold;">Eq.2</span>)</b></td></tr></tbody></table> </div> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X,Y\,\mid \,Z\,=\,z}(x,y)=\Pr(X\leq x,Y\leq y\mid Z=z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mspace width="thinmathspace" /> <mo>&#x2223;<!-- ∣ --></mo> <mspace width="thinmathspace" /> <mi>Z</mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mi>z</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>x</mi> <mo>,</mo> <mi>Y</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>y</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>Z</mi> <mo>=</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X,Y\,\mid \,Z\,=\,z}(x,y)=\Pr(X\leq x,Y\leq y\mid Z=z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db8311871d773e23bea96d44c9d5dfd84ababa8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:44.084ex; height:3.176ex;" alt="{\displaystyle F_{X,Y\,\mid \,Z\,=\,z}(x,y)=\Pr(X\leq x,Y\leq y\mid Z=z)}"></span> is the conditional <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span>. </p><p>Two events <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> are conditionally independent given a <a href="/wiki/Sigma-algebra" class="mw-redirect" title="Sigma-algebra">&#963;-algebra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(R,B\mid \Sigma )=\Pr(R\mid \Sigma )\Pr(B\mid \Sigma ){\text{ a.s.}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo>,</mo> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo stretchy="false">)</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;a.s.</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(R,B\mid \Sigma )=\Pr(R\mid \Sigma )\Pr(B\mid \Sigma ){\text{ a.s.}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f737a68140e584ea9e0760707b0a9926b7b80f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.286ex; height:2.843ex;" alt="{\displaystyle \Pr(R,B\mid \Sigma )=\Pr(R\mid \Sigma )\Pr(B\mid \Sigma ){\text{ a.s.}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(A\mid \Sigma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(A\mid \Sigma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3276eb4e4636a67fcc811adef12befeec7ff3f18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.662ex; height:2.843ex;" alt="{\displaystyle \Pr(A\mid \Sigma )}"></span> denotes the <a href="/wiki/Conditional_expectation" title="Conditional expectation">conditional expectation</a> of the <a href="/wiki/Indicator_function" title="Indicator function">indicator function</a> of the event <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi _{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi _{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49baf1caaa804f2d77bfc7570d102ee4a3cafa26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.92ex; height:2.009ex;" alt="{\displaystyle \chi _{A}}"></span>, given the sigma algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span>. That is, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(A\mid \Sigma ):=\operatorname {E} [\chi _{A}\mid \Sigma ].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(A\mid \Sigma ):=\operatorname {E} [\chi _{A}\mid \Sigma ].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db4e749c3a141448b439396447227211c11aa216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.466ex; height:2.843ex;" alt="{\displaystyle \Pr(A\mid \Sigma ):=\operatorname {E} [\chi _{A}\mid \Sigma ].}"></span></dd></dl> <p>Two random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> are conditionally independent given a σ-algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> if the above equation holds for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma (X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma (X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39ec6a71b2261193c64118dfde3d9721e7028a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.119ex; height:2.843ex;" alt="{\displaystyle \sigma (X)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma (Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma (Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6416b0df965f1da68c692ce212dba3153be83bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.912ex; height:2.843ex;" alt="{\displaystyle \sigma (Y)}"></span>. </p><p>Two random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> are conditionally independent given a random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> if they are independent given <i>σ</i>(<i>W</i>): the σ-algebra generated by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span>. This is commonly written: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp Y\mid W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp Y\mid W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9e80c40753342bd5ead08ec7c239a6c26c31a46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.871ex; height:2.843ex;" alt="{\displaystyle X\perp \!\!\!\perp Y\mid W}"></span> or</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp Y\mid W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp Y\mid W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/607be9eb774528a0097f8d6d4ebd7f6b0c0001bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.224ex; height:2.843ex;" alt="{\displaystyle X\perp Y\mid W}"></span></dd></dl> <p>This it read "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is independent of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>, <b>given</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span>"; the conditioning applies to the whole statement: "(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is independent of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>) given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span>". </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X\perp \!\!\!\perp Y)\mid W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X\perp \!\!\!\perp Y)\mid W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f274cf926109ffcc895be564457a6435f413451" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.68ex; height:2.843ex;" alt="{\displaystyle (X\perp \!\!\!\perp Y)\mid W}"></span></dd></dl> <p>This notation extends <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/952932989c58b2287a97b193bb5d62449fddbb24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.499ex; height:2.176ex;" alt="{\displaystyle X\perp \!\!\!\perp Y}"></span> for "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is <a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">independent</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>." </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> assumes a countable set of values, this is equivalent to the conditional independence of <i>X</i> and <i>Y</i> for the events of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [W=w]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>W</mi> <mo>=</mo> <mi>w</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [W=w]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e55acd7d0b952abbf759bed1372bd3b9956f3021" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.492ex; height:2.843ex;" alt="{\displaystyle [W=w]}"></span>. Conditional independence of more than two events, or of more than two random variables, is defined analogously. </p><p>The following two examples show that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/952932989c58b2287a97b193bb5d62449fddbb24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.499ex; height:2.176ex;" alt="{\displaystyle X\perp \!\!\!\perp Y}"></span> <i>neither implies nor is implied by</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X\perp \!\!\!\perp Y)\mid W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X\perp \!\!\!\perp Y)\mid W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f274cf926109ffcc895be564457a6435f413451" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.68ex; height:2.843ex;" alt="{\displaystyle (X\perp \!\!\!\perp Y)\mid W}"></span>. </p><p>First, suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> is 0 with probability 0.5 and 1 otherwise. When <i>W</i>&#160;=&#160;0 take <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> to be independent, each having the value 0 with probability 0.99 and the value 1 otherwise. When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afc347a1c1682ec642190f936d6b859e43746c30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.696ex; height:2.176ex;" alt="{\displaystyle W=1}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> are again independent, but this time they take the value 1 with probability 0.99. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X\perp \!\!\!\perp Y)\mid W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X\perp \!\!\!\perp Y)\mid W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f274cf926109ffcc895be564457a6435f413451" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.68ex; height:2.843ex;" alt="{\displaystyle (X\perp \!\!\!\perp Y)\mid W}"></span>. But <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> are dependent, because Pr(<i>X</i>&#160;=&#160;0) &lt; Pr(<i>X</i>&#160;=&#160;0|<i>Y</i>&#160;=&#160;0). This is because Pr(<i>X</i>&#160;=&#160;0) =&#160;0.5, but if <i>Y</i>&#160;=&#160;0 then it's very likely that <i>W</i>&#160;=&#160;0 and thus that <i>X</i>&#160;=&#160;0 as well, so Pr(<i>X</i>&#160;=&#160;0|<i>Y</i>&#160;=&#160;0)&#160;&gt;&#160;0.5. </p><p>For the second example, suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/952932989c58b2287a97b193bb5d62449fddbb24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.499ex; height:2.176ex;" alt="{\displaystyle X\perp \!\!\!\perp Y}"></span>, each taking the values 0 and 1 with probability&#160;0.5. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> be the product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\cdot Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\cdot Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b89ba4b53f72173e0e9e43d6975a66101058656" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.432ex; height:2.176ex;" alt="{\displaystyle X\cdot Y}"></span>. Then when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87ec3e6bbd4113161b63114707f5b9048bcda0c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.696ex; height:2.176ex;" alt="{\displaystyle W=0}"></span>, Pr(<i>X</i>&#160;=&#160;0)&#160;=&#160;2/3, but Pr(<i>X</i>&#160;=&#160;0|<i>Y</i>&#160;=&#160;0)&#160;=&#160;1/2, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X\perp \!\!\!\perp Y)\mid W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X\perp \!\!\!\perp Y)\mid W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f274cf926109ffcc895be564457a6435f413451" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.68ex; height:2.843ex;" alt="{\displaystyle (X\perp \!\!\!\perp Y)\mid W}"></span> is false. This is also an example of Explaining Away. See Kevin Murphy's tutorial <sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> take the values "brainy" and "sporty". </p> <div class="mw-heading mw-heading2"><h2 id="Conditional_independence_of_random_vectors">Conditional independence of random vectors</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=9" title="Edit section: Conditional independence of random vectors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Two <a href="/wiki/Random_vector" class="mw-redirect" title="Random vector">random vectors</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{l})^{\mathrm {T} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{l})^{\mathrm {T} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/313be4408a8afce313802090e43dab8d83470dad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.15ex; height:3.176ex;" alt="{\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{l})^{\mathrm {T} }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Y} =(Y_{1},\ldots ,Y_{m})^{\mathrm {T} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Y} =(Y_{1},\ldots ,Y_{m})^{\mathrm {T} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0f5cc0ff6c9633a12835b195c69177bfe1fa973" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.955ex; height:3.176ex;" alt="{\displaystyle \mathbf {Y} =(Y_{1},\ldots ,Y_{m})^{\mathrm {T} }}"></span> are conditionally independent given a third random vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Z} =(Z_{1},\ldots ,Z_{n})^{\mathrm {T} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Z} =(Z_{1},\ldots ,Z_{n})^{\mathrm {T} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd7bb37ebf29e1f8e01c8800398423fc883f35e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.586ex; height:3.176ex;" alt="{\displaystyle \mathbf {Z} =(Z_{1},\ldots ,Z_{n})^{\mathrm {T} }}"></span> if and only if they are independent in their conditional cumulative distribution given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b776aaf12c2da4b78ca777cb8295c2000bfd51f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.634ex; height:2.176ex;" alt="{\displaystyle \mathbf {Z} }"></span>. Formally: </p> <div class="equation-box" style="margin: ;padding: 6px; border-width:2px; border-style: solid; border-color: #0073CF; color: inherit;text-align: center; display: table"> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {X} \perp \!\!\!\perp \mathbf {Y} )\mid \mathbf {Z} \quad \iff \quad F_{\mathbf {X} ,\mathbf {Y} |\mathbf {Z} =\mathbf {z} }(\mathbf {x} ,\mathbf {y} )=F_{\mathbf {X} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {x} )\cdot F_{\mathbf {Y} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {y} )\quad {\text{for all }}\mathbf {x} ,\mathbf {y} ,\mathbf {z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mspace width="1em" /> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mspace width="1em" /> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mspace width="thinmathspace" /> <mo>&#x2223;<!-- ∣ --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mspace width="thinmathspace" /> <mo>&#x2223;<!-- ∣ --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for all&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {X} \perp \!\!\!\perp \mathbf {Y} )\mid \mathbf {Z} \quad \iff \quad F_{\mathbf {X} ,\mathbf {Y} |\mathbf {Z} =\mathbf {z} }(\mathbf {x} ,\mathbf {y} )=F_{\mathbf {X} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {x} )\cdot F_{\mathbf {Y} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {y} )\quad {\text{for all }}\mathbf {x} ,\mathbf {y} ,\mathbf {z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/521454bdc8163115145e1a14b95c9afef1aa3797" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:82.035ex; height:3.176ex;" alt="{\displaystyle (\mathbf {X} \perp \!\!\!\perp \mathbf {Y} )\mid \mathbf {Z} \quad \iff \quad F_{\mathbf {X} ,\mathbf {Y} |\mathbf {Z} =\mathbf {z} }(\mathbf {x} ,\mathbf {y} )=F_{\mathbf {X} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {x} )\cdot F_{\mathbf {Y} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {y} )\quad {\text{for all }}\mathbf {x} ,\mathbf {y} ,\mathbf {z} }"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_Eq.3" class="reference nourlexpansion" style="font-weight:bold;">Eq.3</span>)</b></td></tr></tbody></table> </div> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} =(x_{1},\ldots ,x_{l})^{\mathrm {T} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} =(x_{1},\ldots ,x_{l})^{\mathrm {T} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0b51a3b3b14c4da6f7e12bda77e85a007bde8a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.352ex; height:3.176ex;" alt="{\displaystyle \mathbf {x} =(x_{1},\ldots ,x_{l})^{\mathrm {T} }}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} =(y_{1},\ldots ,y_{m})^{\mathrm {T} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} =(y_{1},\ldots ,y_{m})^{\mathrm {T} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bbb8f8bf93f266f321ba7f9d0a018cf556c4cb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.924ex; height:3.176ex;" alt="{\displaystyle \mathbf {y} =(y_{1},\ldots ,y_{m})^{\mathrm {T} }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {z} =(z_{1},\ldots ,z_{n})^{\mathrm {T} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {z} =(z_{1},\ldots ,z_{n})^{\mathrm {T} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42027958d0cb98dbd2eaa74a790eafaa8d1c2321" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.128ex; height:3.176ex;" alt="{\displaystyle \mathbf {z} =(z_{1},\ldots ,z_{n})^{\mathrm {T} }}"></span> and the conditional cumulative distributions are defined as follows. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}F_{\mathbf {X} ,\mathbf {Y} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {x} ,\mathbf {y} )&amp;=\Pr(X_{1}\leq x_{1},\ldots ,X_{l}\leq x_{l},Y_{1}\leq y_{1},\ldots ,Y_{m}\leq y_{m}\mid Z_{1}=z_{1},\ldots ,Z_{n}=z_{n})\\[6pt]F_{\mathbf {X} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {x} )&amp;=\Pr(X_{1}\leq x_{1},\ldots ,X_{l}\leq x_{l}\mid Z_{1}=z_{1},\ldots ,Z_{n}=z_{n})\\[6pt]F_{\mathbf {Y} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {y} )&amp;=\Pr(Y_{1}\leq y_{1},\ldots ,Y_{m}\leq y_{m}\mid Z_{1}=z_{1},\ldots ,Z_{n}=z_{n})\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mspace width="thinmathspace" /> <mo>&#x2223;<!-- ∣ --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mspace width="thinmathspace" /> <mo>&#x2223;<!-- ∣ --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mspace width="thinmathspace" /> <mo>&#x2223;<!-- ∣ --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}F_{\mathbf {X} ,\mathbf {Y} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {x} ,\mathbf {y} )&amp;=\Pr(X_{1}\leq x_{1},\ldots ,X_{l}\leq x_{l},Y_{1}\leq y_{1},\ldots ,Y_{m}\leq y_{m}\mid Z_{1}=z_{1},\ldots ,Z_{n}=z_{n})\\[6pt]F_{\mathbf {X} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {x} )&amp;=\Pr(X_{1}\leq x_{1},\ldots ,X_{l}\leq x_{l}\mid Z_{1}=z_{1},\ldots ,Z_{n}=z_{n})\\[6pt]F_{\mathbf {Y} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {y} )&amp;=\Pr(Y_{1}\leq y_{1},\ldots ,Y_{m}\leq y_{m}\mid Z_{1}=z_{1},\ldots ,Z_{n}=z_{n})\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e15a5820cfde986cae5d47cd4c1670c962f6072" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:91.618ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}F_{\mathbf {X} ,\mathbf {Y} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {x} ,\mathbf {y} )&amp;=\Pr(X_{1}\leq x_{1},\ldots ,X_{l}\leq x_{l},Y_{1}\leq y_{1},\ldots ,Y_{m}\leq y_{m}\mid Z_{1}=z_{1},\ldots ,Z_{n}=z_{n})\\[6pt]F_{\mathbf {X} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {x} )&amp;=\Pr(X_{1}\leq x_{1},\ldots ,X_{l}\leq x_{l}\mid Z_{1}=z_{1},\ldots ,Z_{n}=z_{n})\\[6pt]F_{\mathbf {Y} \,\mid \,\mathbf {Z} \,=\,\mathbf {z} }(\mathbf {y} )&amp;=\Pr(Y_{1}\leq y_{1},\ldots ,Y_{m}\leq y_{m}\mid Z_{1}=z_{1},\ldots ,Z_{n}=z_{n})\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Uses_in_Bayesian_inference">Uses in Bayesian inference</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=10" title="Edit section: Uses in Bayesian inference"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <i>p</i> be the proportion of voters who will vote "yes" in an upcoming <a href="/wiki/Referendum" title="Referendum">referendum</a>. In taking an <a href="/wiki/Opinion_poll" title="Opinion poll">opinion poll</a>, one chooses <i>n</i> voters randomly from the population. For <i>i</i>&#160;=&#160;1,&#160;...,&#160;<i>n</i>, let <i>X</i><sub><i>i</i></sub>&#160;=&#160;1 or 0 corresponding, respectively, to whether or not the <i>i</i>th chosen voter will or will not vote "yes". </p><p>In a <a href="/wiki/Frequency_probability" class="mw-redirect" title="Frequency probability">frequentist</a> approach to <a href="/wiki/Statistical_inference" title="Statistical inference">statistical inference</a> one would not attribute any probability distribution to <i>p</i> (unless the probabilities could be somehow interpreted as relative frequencies of occurrence of some event or as proportions of some population) and one would say that <i>X</i><sub>1</sub>, ..., <i>X</i><sub><i>n</i></sub> are <a href="/wiki/Statistical_independence" class="mw-redirect" title="Statistical independence">independent</a> random variables. </p><p>By contrast, in a <a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian</a> approach to statistical inference, one would assign a <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> to <i>p</i> regardless of the non-existence of any such "frequency" interpretation, and one would construe the probabilities as degrees of belief that <i>p</i> is in any interval to which a probability is assigned. In that model, the random variables <i>X</i><sub>1</sub>,&#160;...,&#160;<i>X</i><sub><i>n</i></sub> are <i>not</i> independent, but they are <b>conditionally independent</b> given the value of <i>p</i>. In particular, if a large number of the <i>X</i>s are observed to be equal to 1, that would imply a high <a href="/wiki/Conditional_probability" title="Conditional probability">conditional probability</a>, given that observation, that <i>p</i> is near 1, and thus a high <a href="/wiki/Conditional_probability" title="Conditional probability">conditional probability</a>, given that observation, that the <i>next</i> <i>X</i> to be observed will be equal to 1. </p> <div class="mw-heading mw-heading2"><h2 id="Rules_of_conditional_independence">Rules of conditional independence</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=11" title="Edit section: Rules of conditional independence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A set of rules governing statements of conditional independence have been derived from the basic definition.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-pearl:2000_5-0" class="reference"><a href="#cite_note-pearl:2000-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>These rules were termed "<a href="/wiki/Graphoid" title="Graphoid">Graphoid</a> Axioms" by Pearl and Paz,<sup id="cite_ref-pearl:paz85_6-0" class="reference"><a href="#cite_note-pearl:paz85-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> because they hold in graphs, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp A\mid B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp A\mid B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b0bbe790b1d2da388da6fa918f29df1d273cea3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.17ex; height:2.843ex;" alt="{\displaystyle X\perp \!\!\!\perp A\mid B}"></span> is interpreted to mean: "All paths from <i>X</i> to <i>A</i> are intercepted by the set <i>B</i>".<sup id="cite_ref-pearl:88_7-0" class="reference"><a href="#cite_note-pearl:88-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Symmetry">Symmetry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=12" title="Edit section: Symmetry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp Y\quad \Rightarrow \quad Y\perp \!\!\!\perp X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> <mspace width="1em" /> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mspace width="1em" /> <mi>Y</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp Y\quad \Rightarrow \quad Y\perp \!\!\!\perp X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16770503db6869dd13bc0dda55f656eb7e2a0230" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:23.256ex; height:2.176ex;" alt="{\displaystyle X\perp \!\!\!\perp Y\quad \Rightarrow \quad Y\perp \!\!\!\perp X}"></span></dd></dl> <p><b>Proof:</b> </p><p>Note that we are required to prove if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X|Y)=P(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X|Y)=P(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41509238a6decd8ebc6bd0d97f6c9b38a857432c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.588ex; height:2.843ex;" alt="{\displaystyle P(X|Y)=P(X)}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(Y|X)=P(Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(Y|X)=P(Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7480ce33226beb888c7950dfb1f77ea3be46201" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.381ex; height:2.843ex;" alt="{\displaystyle P(Y|X)=P(Y)}"></span>. Note that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X|Y)=P(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X|Y)=P(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41509238a6decd8ebc6bd0d97f6c9b38a857432c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.588ex; height:2.843ex;" alt="{\displaystyle P(X|Y)=P(X)}"></span> then it can be shown <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X,Y)=P(X)P(Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X,Y)=P(X)P(Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e9b648cf0e1b1f44e8d102185e0f689eca43016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.303ex; height:2.843ex;" alt="{\displaystyle P(X,Y)=P(X)P(Y)}"></span>. Therefore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(Y|X)=P(X,Y)/P(X)=P(X)P(Y)/P(X)=P(Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(Y|X)=P(X,Y)/P(X)=P(X)P(Y)/P(X)=P(Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a44602fa9e9bb4137c9bccdc61f9527e7aecdb56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.177ex; height:2.843ex;" alt="{\displaystyle P(Y|X)=P(X,Y)/P(X)=P(X)P(Y)/P(X)=P(Y)}"></span> as required. </p> <div class="mw-heading mw-heading3"><h3 id="Decomposition">Decomposition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=13" title="Edit section: Decomposition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp A,B\quad \Rightarrow \quad {\text{ and }}{\begin{cases}X\perp \!\!\!\perp A\\X\perp \!\!\!\perp B\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mspace width="1em" /> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>A</mi> </mtd> </mtr> <mtr> <mtd> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>B</mi> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp A,B\quad \Rightarrow \quad {\text{ and }}{\begin{cases}X\perp \!\!\!\perp A\\X\perp \!\!\!\perp B\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6515da8c549809097480614423f22aac2f34ca80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:33.418ex; height:6.176ex;" alt="{\displaystyle X\perp \!\!\!\perp A,B\quad \Rightarrow \quad {\text{ and }}{\begin{cases}X\perp \!\!\!\perp A\\X\perp \!\!\!\perp B\end{cases}}}"></span></dd></dl> <p><b>Proof</b> </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{X,A,B}(x,a,b)=p_{X}(x)p_{A,B}(a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>,</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{X,A,B}(x,a,b)=p_{X}(x)p_{A,B}(a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da57b968eb77481d891bd6a114458b3929ea40f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:32.169ex; height:3.009ex;" alt="{\displaystyle p_{X,A,B}(x,a,b)=p_{X}(x)p_{A,B}(a,b)}"></span> &#160;&#160;&#160;&#160; (meaning of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp A,B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp A,B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec6949157c530e5f73c37dabc1d7e07e89997aed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.266ex; height:2.509ex;" alt="{\displaystyle X\perp \!\!\!\perp A,B}"></span>)</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{B}p_{X,A,B}(x,a,b)\,db=\int _{B}p_{X}(x)p_{A,B}(a,b)\,db}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>,</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>b</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{B}p_{X,A,B}(x,a,b)\,db=\int _{B}p_{X}(x)p_{A,B}(a,b)\,db}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67dace5a0a5b7ec0cf746e868250dd7ec9331c67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:43.599ex; height:5.676ex;" alt="{\displaystyle \int _{B}p_{X,A,B}(x,a,b)\,db=\int _{B}p_{X}(x)p_{A,B}(a,b)\,db}"></span> &#160;&#160;&#160;&#160; (ignore variable <i>B</i> by integrating it out)</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{X,A}(x,a)=p_{X}(x)p_{A}(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>,</mo> <mi>A</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{X,A}(x,a)=p_{X}(x)p_{A}(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e69c78fca9e9c93a41891e27ffb982b76f005cc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:24.696ex; height:3.009ex;" alt="{\displaystyle p_{X,A}(x,a)=p_{X}(x)p_{A}(a)}"></span> &#160;&#160;&#160;&#160;</li></ul> <p>A similar proof shows the independence of <i>X</i> and <i>B</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Weak_union">Weak union</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=14" title="Edit section: Weak union"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp A,B\quad \Rightarrow \quad {\text{ and }}{\begin{cases}X\perp \!\!\!\perp A\mid B\\X\perp \!\!\!\perp B\mid A\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mspace width="1em" /> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> </mtd> </mtr> <mtr> <mtd> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>A</mi> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp A,B\quad \Rightarrow \quad {\text{ and }}{\begin{cases}X\perp \!\!\!\perp A\mid B\\X\perp \!\!\!\perp B\mid A\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac663557fb0f69671e6a5d3a54f549fbb28c307b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.099ex; height:6.176ex;" alt="{\displaystyle X\perp \!\!\!\perp A,B\quad \Rightarrow \quad {\text{ and }}{\begin{cases}X\perp \!\!\!\perp A\mid B\\X\perp \!\!\!\perp B\mid A\end{cases}}}"></span></dd></dl> <p><b>Proof</b> </p> <ul><li>By assumption, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(X)=\Pr(X\mid A,B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(X)=\Pr(X\mid A,B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea6fce3dac9f77542b4aec787bd7438f8475afba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.144ex; height:2.843ex;" alt="{\displaystyle \Pr(X)=\Pr(X\mid A,B)}"></span>.</li> <li>Due to the property of decomposition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b10d3a8239f20fdfd7060628be359a32dd1e1e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.489ex; height:2.176ex;" alt="{\displaystyle X\perp \!\!\!\perp B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(X)=\Pr(X\mid B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(X)=\Pr(X\mid B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74ad82cdf65f7163c038859d19d758b2b0849349" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.367ex; height:2.843ex;" alt="{\displaystyle \Pr(X)=\Pr(X\mid B)}"></span>.</li> <li>Combining the above two equalities gives <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(X\mid B)=\Pr(X\mid A,B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(X\mid B)=\Pr(X\mid A,B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3740c6ede694e3dd7593cb9954f53862de72df0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.845ex; height:2.843ex;" alt="{\displaystyle \Pr(X\mid B)=\Pr(X\mid A,B)}"></span>, which establishes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp A\mid B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp A\mid B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b0bbe790b1d2da388da6fa918f29df1d273cea3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.17ex; height:2.843ex;" alt="{\displaystyle X\perp \!\!\!\perp A\mid B}"></span>.</li></ul> <p>The second condition can be proved similarly. </p> <div class="mw-heading mw-heading3"><h3 id="Contraction">Contraction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=15" title="Edit section: Contraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left.{\begin{aligned}X\perp \!\!\!\perp A\mid B\\X\perp \!\!\!\perp B\end{aligned}}\right\}{\text{ and }}\quad \Rightarrow \quad X\perp \!\!\!\perp A,B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> </mtd> </mtr> <mtr> <mtd> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>B</mi> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mspace width="1em" /> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left.{\begin{aligned}X\perp \!\!\!\perp A\mid B\\X\perp \!\!\!\perp B\end{aligned}}\right\}{\text{ and }}\quad \Rightarrow \quad X\perp \!\!\!\perp A,B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61f4fd9b6c380cb3caa588dba95d172292dd9347" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.486ex; height:6.176ex;" alt="{\displaystyle \left.{\begin{aligned}X\perp \!\!\!\perp A\mid B\\X\perp \!\!\!\perp B\end{aligned}}\right\}{\text{ and }}\quad \Rightarrow \quad X\perp \!\!\!\perp A,B}"></span></dd></dl> <p><b>Proof</b> </p><p>This property can be proved by noticing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(X\mid A,B)=\Pr(X\mid B)=\Pr(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(X\mid A,B)=\Pr(X\mid B)=\Pr(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6fbc2e25a58856dca5d99f58b2aea296a9664e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.228ex; height:2.843ex;" alt="{\displaystyle \Pr(X\mid A,B)=\Pr(X\mid B)=\Pr(X)}"></span>, each equality of which is asserted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp A\mid B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp A\mid B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b0bbe790b1d2da388da6fa918f29df1d273cea3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.17ex; height:2.843ex;" alt="{\displaystyle X\perp \!\!\!\perp A\mid B}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b10d3a8239f20fdfd7060628be359a32dd1e1e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.489ex; height:2.176ex;" alt="{\displaystyle X\perp \!\!\!\perp B}"></span>, respectively. </p> <div class="mw-heading mw-heading3"><h3 id="Intersection">Intersection</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=16" title="Edit section: Intersection"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For strictly positive probability distributions,<sup id="cite_ref-pearl:2000_5-1" class="reference"><a href="#cite_note-pearl:2000-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> the following also holds: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left.{\begin{aligned}X\perp \!\!\!\perp Y\mid Z,W\\X\perp \!\!\!\perp W\mid Z,Y\end{aligned}}\right\}{\text{ and }}\quad \Rightarrow \quad X\perp \!\!\!\perp W,Y\mid Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>Z</mi> <mo>,</mo> <mi>W</mi> </mtd> </mtr> <mtr> <mtd> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>W</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>Z</mi> <mo>,</mo> <mi>Y</mi> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mspace width="1em" /> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>W</mi> <mo>,</mo> <mi>Y</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left.{\begin{aligned}X\perp \!\!\!\perp Y\mid Z,W\\X\perp \!\!\!\perp W\mid Z,Y\end{aligned}}\right\}{\text{ and }}\quad \Rightarrow \quad X\perp \!\!\!\perp W,Y\mid Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/628997ef5b3de9b978c68ec7ae4853c9c8414050" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:45.22ex; height:6.176ex;" alt="{\displaystyle \left.{\begin{aligned}X\perp \!\!\!\perp Y\mid Z,W\\X\perp \!\!\!\perp W\mid Z,Y\end{aligned}}\right\}{\text{ and }}\quad \Rightarrow \quad X\perp \!\!\!\perp W,Y\mid Z}"></span></dd></dl> <p><b>Proof</b> </p><p>By assumption: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X|Z,W,Y)=P(X|Z,W)\land P(X|Z,W,Y)=P(X|Z,Y)\implies P(X|Z,Y)=P(X|Z,W)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo>,</mo> <mi>W</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo>,</mo> <mi>W</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X|Z,W,Y)=P(X|Z,W)\land P(X|Z,W,Y)=P(X|Z,Y)\implies P(X|Z,Y)=P(X|Z,W)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f34e7f78fcdf69652ded73f0252e5f3e8c343f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:90.542ex; height:2.843ex;" alt="{\displaystyle P(X|Z,W,Y)=P(X|Z,W)\land P(X|Z,W,Y)=P(X|Z,Y)\implies P(X|Z,Y)=P(X|Z,W)}"></span></dd></dl> <p>Using this equality, together with the <a href="/wiki/Law_of_total_probability" title="Law of total probability">Law of total probability</a> applied to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X|Z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X|Z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4fe1a1ff51e7ca6504f7800aedff36171ffa443" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.862ex; height:2.843ex;" alt="{\displaystyle P(X|Z)}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}P(X|Z)&amp;=\sum _{w\in W}P(X|Z,W=w)P(W=w|Z)\\[4pt]&amp;=\sum _{w\in W}P(X|Y,Z)P(W=w|Z)\\[4pt]&amp;=P(X|Z,Y)\sum _{w\in W}P(W=w|Z)\\[4pt]&amp;=P(X|Z,Y)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>W</mi> </mrow> </munder> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo>,</mo> <mi>W</mi> <mo>=</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>W</mi> <mo>=</mo> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>W</mi> </mrow> </munder> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Y</mi> <mo>,</mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>W</mi> <mo>=</mo> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>W</mi> </mrow> </munder> <mi>P</mi> <mo stretchy="false">(</mo> <mi>W</mi> <mo>=</mo> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}P(X|Z)&amp;=\sum _{w\in W}P(X|Z,W=w)P(W=w|Z)\\[4pt]&amp;=\sum _{w\in W}P(X|Y,Z)P(W=w|Z)\\[4pt]&amp;=P(X|Z,Y)\sum _{w\in W}P(W=w|Z)\\[4pt]&amp;=P(X|Z,Y)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdad58c7362d46ef35cfb708ff4bb237add0c8f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.681ex; margin-bottom: -0.324ex; width:45.267ex; height:23.176ex;" alt="{\displaystyle {\begin{aligned}P(X|Z)&amp;=\sum _{w\in W}P(X|Z,W=w)P(W=w|Z)\\[4pt]&amp;=\sum _{w\in W}P(X|Y,Z)P(W=w|Z)\\[4pt]&amp;=P(X|Z,Y)\sum _{w\in W}P(W=w|Z)\\[4pt]&amp;=P(X|Z,Y)\end{aligned}}}"></span></dd></dl> <p>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X|Z,W,Y)=P(X|Z,Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X|Z,W,Y)=P(X|Z,Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69343d39c58eba3d12e390163f947dfa27678a15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.906ex; height:2.843ex;" alt="{\displaystyle P(X|Z,W,Y)=P(X|Z,Y)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X|Z,Y)=P(X|Z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X|Z,Y)=P(X|Z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb3aa5622c690ab3316d34e20ac7d051ae71f91f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.63ex; height:2.843ex;" alt="{\displaystyle P(X|Z,Y)=P(X|Z)}"></span>, it follows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X|Z,W,Y)=P(X|Z)\iff X\perp \!\!\!\perp Y,W|Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> <mo>,</mo> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X|Z,W,Y)=P(X|Z)\iff X\perp \!\!\!\perp Y,W|Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cd57108e01a705613219c7f563b7e42c087f00a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.291ex; height:2.843ex;" alt="{\displaystyle P(X|Z,W,Y)=P(X|Z)\iff X\perp \!\!\!\perp Y,W|Z}"></span>. </p><p>Technical note: since these implications hold for any probability space, they will still hold if one considers a sub-universe by conditioning everything on another variable, say&#160;<i>K</i>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp Y\Rightarrow Y\perp \!\!\!\perp X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>Y</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp Y\Rightarrow Y\perp \!\!\!\perp X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d8f56133872a1c2026a399b90f6513b907884db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:18.611ex; height:2.176ex;" alt="{\displaystyle X\perp \!\!\!\perp Y\Rightarrow Y\perp \!\!\!\perp X}"></span> would also mean that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\perp \!\!\!\perp Y\mid K\Rightarrow Y\perp \!\!\!\perp X\mid K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>Y</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>K</mi> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>Y</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\perp \!\!\!\perp Y\mid K\Rightarrow Y\perp \!\!\!\perp X\mid K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a39dd4e9dc1791e7223f801c3d4183121bff8c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.618ex; height:2.843ex;" alt="{\displaystyle X\perp \!\!\!\perp Y\mid K\Rightarrow Y\perp \!\!\!\perp X\mid K}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=17" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Graphoid" title="Graphoid">Graphoid</a></li> <li><a href="/wiki/Conditional_dependence" title="Conditional dependence">Conditional dependence</a></li> <li><a href="/wiki/De_Finetti%27s_theorem" title="De Finetti&#39;s theorem">de Finetti's theorem</a></li> <li><a href="/wiki/Conditional_expectation" title="Conditional expectation">Conditional expectation</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=18" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">To see that this is the case, one needs to realise that Pr(<i>R</i> ∩ <i>B</i> | <i>Y</i>) is the probability of an overlap of <i>R</i> and <i>B</i> (the purple shaded area) in the <i>Y</i> area. Since, in the picture on the left, there are two squares where <i>R</i> and <i>B</i> overlap within the <i>Y</i> area, and the <i>Y</i> area has twelve squares, Pr(<i>R</i> ∩ <i>B</i> | <i>Y</i>) = <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>&#8288;</span>. Similarly, Pr(<i>R</i> | <i>Y</i>) = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">4</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span>&#8288;</span> and Pr(<i>B</i> | <i>Y</i>) = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">6</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span>.</span> </li> <li id="cite_note-:0-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://math.stackexchange.com/q/23093">Could someone explain conditional independence?</a></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://people.cs.ubc.ca/~murphyk/Bayes/bnintro.html">"Graphical Models"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Graphical+Models&amp;rft_id=http%3A%2F%2Fpeople.cs.ubc.ca%2F~murphyk%2FBayes%2Fbnintro.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+independence" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDawid1979" class="citation journal cs1"><a href="/wiki/Philip_Dawid" title="Philip Dawid">Dawid, A. P.</a> (1979). "Conditional Independence in Statistical Theory". <i><a href="/wiki/Journal_of_the_Royal_Statistical_Society,_Series_B" class="mw-redirect" title="Journal of the Royal Statistical Society, Series B">Journal of the Royal Statistical Society, Series B</a></i>. <b>41</b> (1): 1–31. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2984718">2984718</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0535541">0535541</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Royal+Statistical+Society%2C+Series+B&amp;rft.atitle=Conditional+Independence+in+Statistical+Theory&amp;rft.volume=41&amp;rft.issue=1&amp;rft.pages=1-31&amp;rft.date=1979&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2984718%23id-name%3DJSTOR&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0535541%23id-name%3DMR&amp;rft.aulast=Dawid&amp;rft.aufirst=A.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+independence" class="Z3988"></span></span> </li> <li id="cite_note-pearl:2000-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-pearl:2000_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pearl:2000_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">J Pearl, Causality: Models, Reasoning, and Inference, 2000, Cambridge University Press</span> </li> <li id="cite_note-pearl:paz85-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-pearl:paz85_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPearlPaz1986" class="citation conference cs1"><a href="/wiki/Judea_Pearl" title="Judea Pearl">Pearl, Judea</a>; Paz, Azaria (1986). "Graphoids: Graph-Based Logic for Reasoning about Relevance Relations or When would x tell you more about y if you already know z?". In du Boulay, Benedict; Hogg, David C.; Steels, Luc (eds.). <a rel="nofollow" class="external text" href="https://ftp.cs.ucla.edu/pub/stat_ser/r53-L.pdf"><i>Advances in Artificial Intelligence II, Seventh European Conference on Artificial Intelligence, ECAI 1986, Brighton, UK, July 20–25, 1986, Proceedings</i></a> <span class="cs1-format">(PDF)</span>. North-Holland. pp.&#160;357–363.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Graphoids%3A+Graph-Based+Logic+for+Reasoning+about+Relevance+Relations+or+When+would+x+tell+you+more+about+y+if+you+already+know+z%3F&amp;rft.btitle=Advances+in+Artificial+Intelligence+II%2C+Seventh+European+Conference+on+Artificial+Intelligence%2C+ECAI+1986%2C+Brighton%2C+UK%2C+July+20%E2%80%9325%2C+1986%2C+Proceedings&amp;rft.pages=357-363&amp;rft.pub=North-Holland&amp;rft.date=1986&amp;rft.aulast=Pearl&amp;rft.aufirst=Judea&amp;rft.au=Paz%2C+Azaria&amp;rft_id=https%3A%2F%2Fftp.cs.ucla.edu%2Fpub%2Fstat_ser%2Fr53-L.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+independence" class="Z3988"></span></span> </li> <li id="cite_note-pearl:88-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-pearl:88_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPearl1988" class="citation book cs1">Pearl, Judea (1988). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/probabilisticrea00pear"><i>Probabilistic reasoning in intelligent systems: networks of plausible inference</i></a></span>. Morgan Kaufmann. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780934613736" title="Special:BookSources/9780934613736"><bdi>9780934613736</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probabilistic+reasoning+in+intelligent+systems%3A+networks+of+plausible+inference&amp;rft.pub=Morgan+Kaufmann&amp;rft.date=1988&amp;rft.isbn=9780934613736&amp;rft.aulast=Pearl&amp;rft.aufirst=Judea&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fprobabilisticrea00pear&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+independence" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_independence&amp;action=edit&amp;section=19" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Media related to <a href="https://commons.wikimedia.org/wiki/Category:Conditional_independence" class="extiw" title="commons:Category:Conditional independence">Conditional independence</a> at Wikimedia Commons</li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐6fgbm Cached time: 20241122142946 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.436 seconds Real time usage: 0.676 seconds Preprocessor visited node count: 1930/1000000 Post‐expand include size: 23478/2097152 bytes Template argument size: 2062/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 38272/5000000 bytes Lua time usage: 0.193/10.000 seconds Lua memory usage: 4594979/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 381.128 1 -total 36.53% 139.214 1 Template:Reflist 21.52% 82.005 1 Template:Probability_fundamentals 20.85% 79.458 1 Template:Sidebar 20.49% 78.079 1 Template:Short_description 19.59% 74.674 1 Template:Cite_web 13.95% 53.163 2 Template:Pagetype 10.30% 39.263 1 Template:Commons_category-inline 9.91% 37.770 1 Template:Sister-inline 5.59% 21.301 1 Template:Cite_book --> <!-- Saved in parser cache with key enwiki:pcache:idhash:801135-0!canonical and timestamp 20241122142946 and revision id 1258164971. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Conditional_independence&amp;oldid=1258164971">https://en.wikipedia.org/w/index.php?title=Conditional_independence&amp;oldid=1258164971</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Independence_(probability_theory)" title="Category:Independence (probability theory)">Independence (probability theory)</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 18 November 2024, at 13:40<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Conditional_independence&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-b49cm","wgBackendResponseTime":166,"wgPageParseReport":{"limitreport":{"cputime":"0.436","walltime":"0.676","ppvisitednodes":{"value":1930,"limit":1000000},"postexpandincludesize":{"value":23478,"limit":2097152},"templateargumentsize":{"value":2062,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":38272,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 381.128 1 -total"," 36.53% 139.214 1 Template:Reflist"," 21.52% 82.005 1 Template:Probability_fundamentals"," 20.85% 79.458 1 Template:Sidebar"," 20.49% 78.079 1 Template:Short_description"," 19.59% 74.674 1 Template:Cite_web"," 13.95% 53.163 2 Template:Pagetype"," 10.30% 39.263 1 Template:Commons_category-inline"," 9.91% 37.770 1 Template:Sister-inline"," 5.59% 21.301 1 Template:Cite_book"]},"scribunto":{"limitreport-timeusage":{"value":"0.193","limit":"10.000"},"limitreport-memusage":{"value":4594979,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-6fgbm","timestamp":"20241122142946","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Conditional independence","url":"https:\/\/en.wikipedia.org\/wiki\/Conditional_independence","sameAs":"http:\/\/www.wikidata.org\/entity\/Q5159264","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q5159264","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-07-09T19:58:13Z","dateModified":"2024-11-18T13:40:11Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/3\/3a\/Standard_deviation_diagram_micro.svg","headline":"situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10