CINXE.COM
Search results for: magnetic anisotropy
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: magnetic anisotropy</title> <meta name="description" content="Search results for: magnetic anisotropy"> <meta name="keywords" content="magnetic anisotropy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="magnetic anisotropy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="magnetic anisotropy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1535</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: magnetic anisotropy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1535</span> Magnetic Properties of Nickel Oxide Nanoparticles in Superparamagnetic State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Kaur">Navneet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Tiwari"> S. D. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superparamagnetism is an interesting phenomenon and observed in small particles of magnetic materials. It arises due to a reduction in particle size. In the superparamagnetic state, as the thermal energy overcomes magnetic anisotropy energy, the magnetic moment vector of particles flip their magnetization direction between states of minimum energy. Superparamagnetic nanoparticles have been attracting the researchers due to many applications such as information storage, magnetic resonance imaging, biomedical applications, and sensors. For information storage, thermal fluctuations lead to loss of data. So that nanoparticles should have high blocking temperature. And to achieve this, nanoparticles should have a higher magnetic moment and magnetic anisotropy constant. In this work, the magnetic anisotropy constant of the antiferromagnetic nanoparticles system is determined. Magnetic studies on nanoparticles of NiO (nickel oxide) are reported well. This antiferromagnetic nanoparticle system has high blocking temperature and magnetic anisotropy constant of order 105 J/m3. The magnetic study of NiO nanoparticles in the superparamagnetic region is presented. NiO particles of two different sizes, i.e., 6 and 8 nm, are synthesized using the chemical route. These particles are characterized by an x-ray diffractometer, transmission electron microscope, and superconducting quantum interference device magnetometry. The magnetization vs. applied magnetic field and temperature data for both samples confirm their superparamagnetic nature. The blocking temperature for 6 and 8 nm particles is found to be 200 and 172 K, respectively. Magnetization vs. applied magnetic field data of NiO is fitted to an appropriate magnetic expression using a non-linear least square fit method. The role of particle size distribution and magnetic anisotropy is taken in to account in magnetization expression. The source code is written in Python programming language. This fitting provides us the magnetic anisotropy constant for NiO and other magnetic fit parameters. The particle size distribution estimated matches well with the transmission electron micrograph. The value of magnetic anisotropy constants for 6 and 8 nm particles is found to be 1.42 X 105 and 1.20 X 105 J/m3, respectively. The obtained magnetic fit parameters are verified using the Neel model. It is concluded that the effect of magnetic anisotropy should not be ignored while studying the magnetization process of nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title="anisotropy">anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=superparamagnetic" title=" superparamagnetic"> superparamagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a> </p> <a href="https://publications.waset.org/abstracts/123236/magnetic-properties-of-nickel-oxide-nanoparticles-in-superparamagnetic-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1534</span> Extension-Torsion-Inflation Coupling in Compressible Magnetoelastomeric Tubes with Helical Magnetic Anisotropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darius%20Diogo%20Barreto">Darius Diogo Barreto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajeet%20Kumar"> Ajeet Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushma%20Santapuri"> Sushma Santapuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present an axisymmetric variational formulation for coupled extension-torsion-inflation deformation in magnetoelastomeric thin tubes when both azimuthal and axial magnetic fields are applied. The tube's material is assumed to have a preferred magnetization direction which imparts helical magnetic anisotropy to the tube. We have also derived the expressions of the first derivative of free energy per unit tube's undeformed length with respect to various imposed strain parameters. On applying the thin tube limit, the two nonlinear ordinary differential equations to obtain the in-plane radial displacement and radial component of the Lagrangian magnetic field get converted into a set of three simple algebraic equations. This allows us to obtain simple analytical expressions in terms of the applied magnetic field, magnetization direction, and magnetoelastic constants, which tell us how these parameters can be tuned to generate positive/negative Poisson's effect in such tubes. We consider both torsionally constrained and torsionally relaxed stretching of the tube. The study can be useful in designing magnetoelastic tubular actuators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20magnetoelasticity" title="nonlinear magnetoelasticity">nonlinear magnetoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=extension-torsion%20coupling" title=" extension-torsion coupling"> extension-torsion coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20Poisson%27s%20effect" title=" negative Poisson's effect"> negative Poisson's effect</a>, <a href="https://publications.waset.org/abstracts/search?q=helical%20anisotropy" title=" helical anisotropy"> helical anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20tube" title=" thin tube"> thin tube</a> </p> <a href="https://publications.waset.org/abstracts/115693/extension-torsion-inflation-coupling-in-compressible-magnetoelastomeric-tubes-with-helical-magnetic-anisotropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1533</span> Effect of Coriolis Force on Magnetoconvection in an Anisotropic Porous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20F.%20M.%20Mokhtar">N. F. M. Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Z.%20A.%20Hamid"> N. Z. A. Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports an analytical investigation of the stability and thermal convection in a horizontal anisotropic porous medium in the presence of Coriolis force and magnetic field. The Darcy model is used in the momentum equation and Boussinesq approximation is considered for the density variation of the porous medium. The upper and lower boundaries of the porous medium are assumed to be conducting to temperature perturbation and we used first order Chebyshev polynomial Tau method to solve the resulting eigenvalue problem. Analytical solution is obtained for the case of stationary convection. It is found that the porous layer system becomes unstable when the mechanical anisotropy parameter elevated and increasing the Coriolis force and magnetic field help to stabilize the anisotropy porous medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic" title="anisotropic">anisotropic</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20tau%20method" title=" Chebyshev tau method"> Chebyshev tau method</a>, <a href="https://publications.waset.org/abstracts/search?q=Coriolis%20force" title=" Coriolis force"> Coriolis force</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnetic%20field" title=" Magnetic field"> Magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/96169/effect-of-coriolis-force-on-magnetoconvection-in-an-anisotropic-porous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1532</span> Enhanced Magnetoelastic Response near Morphotropic Phase Boundary in Ferromagnetic Materials: Experimental and Theoretical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murtaza%20Adil">Murtaza Adil</a>, <a href="https://publications.waset.org/abstracts/search?q=Sen%20Yang"> Sen Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhou%20Chao"> Zhou Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Xiaoping"> Song Xiaoping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The morphotropic phase boundary (MPB) recently has attracted constant interest in ferromagnetic systems for obtaining enhanced large magnetoelastic response. In the present study, structural and magnetoelastic properties of MPB involved ferromagnetic Tb<sub>1-x</sub>Gd<sub>x</sub>Fe<sub>2</sub> (0≤x≤1) system has been investigated. The change of easy magnetic direction from <111> to <100> with increasing x up MPB composition of x=0.9 is detected by step-scanned [440] synchrotron X-ray diffraction reflections. The Gd substitution for Tb changes the composition for the anisotropy compensation near MPB composition of x=0.9, which was confirmed by the analysis of detailed scanned XRD, magnetization curves and the calculation of the first anisotropy constant <em>K</em><sub>1</sub>. The spin configuration diagram accompanied with different crystal structures for Tb<sub>1-x</sub>Gd<sub>x</sub>Fe<sub>2</sub> was designed. The calculated first anisotropy constant <em>K</em><sub>1</sub> shows a minimum value at MPB composition of x=0.9. In addition, the large ratio between magnetostriction, and the absolute values of the first anisotropy constant │λ<sub>S</sub>∕K<sub>1</sub>│ appears at MPB composition, which makes it a potential material for magnetostrictive application. Based on experimental results, a theoretically approach was also proposed to signify that the facilitated magnetization rotation and enhanced magnetoelastic effect near MPB composition are a consequence of the anisotropic flattening of free energy of ferromagnetic crystal. Our work specifies the universal existence of MPB in ferromagnetic materials which is important for substantial improvement of magnetic and magnetostrictive properties and may provide a new route to develop advanced functional materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20energy" title="free energy">free energy</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy" title=" magnetic anisotropy"> magnetic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetostriction" title=" magnetostriction"> magnetostriction</a>, <a href="https://publications.waset.org/abstracts/search?q=morphotropic%20phase%20boundary%20%28MPB%29" title=" morphotropic phase boundary (MPB)"> morphotropic phase boundary (MPB)</a> </p> <a href="https://publications.waset.org/abstracts/53935/enhanced-magnetoelastic-response-near-morphotropic-phase-boundary-in-ferromagnetic-materials-experimental-and-theoretical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1531</span> Self-Assembly of Monodisperse Oleic Acid-Capped Superparamagnetic Iron Oxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Kavas">Huseyin Kavas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oleic acid (OA) capped superparamagnetic iron oxide nanoparticles (SPION) were synthesized by a thermal decomposition method. The composition of nanoparticles was confirmed by X-ray powder diffraction, and the morphology of particles was investigated by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Transmission electron microscopy (TEM). The crystalline and particle size distribution of SPIONS capped with OA were investigated with a mean size of 6.99 nm and 8.9 nm, respectively. It was found that SPIONS have superparamagnetic characteristics with a saturation magnetization value of 64 emu/g. The thin film form of self-assembled SPIONS was fabricated by coating techniques of spin coating and dip coating. SQUID-VSM magnetometer and FMR techniques were performed in order to evaluate the magnetic properties of thin films, especially the existence of magnetic anisotropy. The thin films with magnetic anisotropy were obtained by self-assembled monolayers of SPION. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20materials" title="magnetic materials">magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=FMR" title=" FMR"> FMR</a> </p> <a href="https://publications.waset.org/abstracts/158967/self-assembly-of-monodisperse-oleic-acid-capped-superparamagnetic-iron-oxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1530</span> Structure Domains Tuning Magnetic Anisotropy and Motivating Novel Electric Behaviors in LaCoO₃ Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dechao%20Meng">Dechao Meng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongqi%20Dong"> Yongqi Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiyuan%20Feng"> Qiyuan Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhangzhang%20Cui"> Zhangzhang Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Hu"> Xiang Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haoliang%20Huang"> Haoliang Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Genhao%20Liang"> Genhao Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huanhua%20Wang"> Huanhua Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Zhou"> Hua Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hawoong%20Hong"> Hawoong Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinghua%20Guo"> Jinghua Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingyou%20Lu"> Qingyou Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofang%20Zhai"> Xiaofang Zhai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yalin%20Lu"> Yalin Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Great efforts have been taken to reveal the intrinsic origins of emerging ferromagnetism (FM) in strained LaCoO₃ (LCO) films. However, some macro magnetic performances of LCO are still not well understood and even controversial, such as magnetic anisotropy. Determining and understanding magnetic anisotropy might help to find the true causes of FM in turn. Perpendicular magnetic anisotropy (PMA) was the first time to be directly observed in high-quality LCO films with different thickness. The in-plane (IP) and out of plane (OOP) remnant magnetic moment ratio of 30 unit cell (u.c.) films is as large as 20. The easy axis lays in the OOP direction with an IP/OOP coercive field ratio of 10. What's more, the PMA could be simply tuned by changing the thickness. With the thickness increases, the IP/OOP magnetic moment ratio remarkably decrease with magnetic easy axis changing from OOP to IP. Such a huge and tunable PMA performance exhibit strong potentials in fundamental researches or applications. What causes PMA is the first concern. More OOP orbitals occupation may be one of the micro reasons of PMA. A cluster-like magnetic domain pattern was found in 30 u.c. with no obvious color contrasts, similar to that of LaAlO₃/SrTiO₃ films. And the nanosize domains could not be totally switched even at a large OOP magnetic field of 23 T. It indicates strong IP characters or none OOP magnetism of some clusters. The IP magnetic domains might influence the magnetic performance and help to form PMA. Meanwhile some possible nonmagnetic clusters might be the reason why the measured moments of LCO films are smaller than the calculated values 2 μB/Co, one of the biggest confusions in LCO films.What tunes PMA seems much more interesting. Totally different magnetic domain patterns were found in 180 u.c. films with cluster magnetic domains surrounded by < 110 > cross-hatch lines. These lines were regarded as structure domain walls (DWs) determined by 3D reciprocal space mapping (RSM). Two groups of in-plane features with fourfold symmetry were observed near the film diffraction peaks in (002) 3D-RSM. One is along < 110 > directions with a larger intensity, which is well match the lines on the surfaces. The other is much weaker and along < 100 > directions, which is from the normal lattice titling of films deposited on cubic substrates. The < 110 > domain features obtained from (103) and (113) 3D-RSMs exhibit similar evolution of the DWs percentages and magnetic behavior. Structure domains and domain walls are believed to tune PMA performances by transform more IP magnetic moments to OOP. Last but not the least, thick films with lots of structure domains exhibit different electrical transport behaviors. A metal-to-insulator transition (MIT) and an angular dependent negative magnetic resistivity were observed near 150 K, higher than FM transition temperature but similar to that of spin-orbital coupling related 1/4 order diffraction peaks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structure%20domain" title="structure domain">structure domain</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy" title=" magnetic anisotropy"> magnetic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20domain" title=" magnetic domain"> magnetic domain</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20wall" title=" domain wall"> domain wall</a>, <a href="https://publications.waset.org/abstracts/search?q=3D-RSM" title=" 3D-RSM"> 3D-RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a> </p> <a href="https://publications.waset.org/abstracts/84468/structure-domains-tuning-magnetic-anisotropy-and-motivating-novel-electric-behaviors-in-lacoo3-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1529</span> In situ Grazing Incidence Small Angle X-Ray Scattering Study of Permalloy Thin Film Growth on Nanorippled Si</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarathlal%20Koyiloth%20Vayalil">Sarathlal Koyiloth Vayalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20V.%20Roth"> Stephan V. Roth</a>, <a href="https://publications.waset.org/abstracts/search?q=Gonzalo%20Santoro"> Gonzalo Santoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Zhang"> Peng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Schwartzkopf"> Matthias Schwartzkopf</a>, <a href="https://publications.waset.org/abstracts/search?q=Bjoern%20Beyersdorff"> Bjoern Beyersdorff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanostructured magnetic thin films have gained significant relevance due to its applications in magnetic storage and recording media. Self-organized arrays of nanoparticles and nanowires can be produced by depositing metal thin films on nano-rippled substrates. The substrate topography strongly affects the film growth giving rise to anisotropic properties (optical, magnetic, electronic transport). Ion-beam erosion (IBE) method can provide large-area patterned substrates with the valuable possibility to widely modify pattern length scale by simply acting on ion beam parameters (i.e. energy, ions, geometry, etc.). In this work, investigation of the growth mechanism of Permalloy thin films on such nano-rippled Si (100) substrates using in situ grazing incidence small angle x-ray scattering measurements (GISAXS) have been done. In situ GISAXS measurements during the deposition of thin films have been carried out at the P03/MiNaXS beam line of PETRA III storage ring of DESY, Hamburg. Nanorippled Si substrates prepared by low energy ion beam sputtering with an average wavelength of 33 nm and 1 nm have been used as templates. It has been found that the film replicates the morphology up to larger thickness regimes and also the growth is highly anisotropic along and normal to the ripple wave vectors. Various growth regimes have been observed. Further, magnetic measurements have been done using magneto-optical Kerr effect by rotating the sample in the azimuthal direction. Strong uniaxial magnetic anisotropy with its easy axis in a direction normal to the ripple wave vector has been observed. The strength of the magnetic anisotropy is found to be decreasing with increasing thin film thickness values. The mechanism of the observed strong uniaxial magnetic anisotropy and its depends on the thickness of the film has been explained by correlating it with the GISAXS results. In conclusion, we have done a detailed growth analysis of Permalloy thin films deposited on nanorippled Si templates and tried to explain the correlation between structure, morphology to the observed magnetic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grazing%20incidence%20small%20angle%20x-ray%20scattering" title="grazing incidence small angle x-ray scattering">grazing incidence small angle x-ray scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20thin%20films" title=" magnetic thin films"> magnetic thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy" title=" magnetic anisotropy"> magnetic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoripples" title=" nanoripples"> nanoripples</a> </p> <a href="https://publications.waset.org/abstracts/67639/in-situ-grazing-incidence-small-angle-x-ray-scattering-study-of-permalloy-thin-film-growth-on-nanorippled-si" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1528</span> 2D Ferromagnetism in Van der Waals Bonded Fe₃GeTe₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Tiwari">Ankita Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Saini"> Jyoti Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhasis%20Ghosh"> Subhasis Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For many years, researchers have been fascinated by the subject of how properties evolve as dimensionality is lowered. Early on, it was shown that the presence of a significant magnetic anisotropy might compensate for the lack of long-range (LR) magnetic order in a low-dimensional system (d < 3) with continuous symmetry, as proposed by Hohenberg-Mermin and Wagner (HMW). Strong magnetic anisotropy allows an LR magnetic order to stabilize in two dimensions (2D) even in the presence of stronger thermal fluctuations which is responsible for the absence of Heisenberg ferromagnetism in 2D. Van der Waals (vdW) ferromagnets, including CrI₃, CrTe₂, Cr₂X₂Te₆ (X = Si and Ge) and Fe₃GeTe₂, offer a nearly ideal platform for studying ferromagnetism in 2D. Fe₃GeTe₂ is the subject of extensive investigation due to its tunable magnetic properties, high Curie temperature (Tc ~ 220K), and perpendicular magnetic anisotropy. Many applications in the field of spintronics device development have been quite active due to these appealing features of Fe₃GeTe₂. Although it is known that LR-driven ferromagnetism is necessary to get around the HMW theorem in 2D experimental realization, Heisenberg 2D ferromagnetism remains elusive in condensed matter systems. Here, we show that Fe₃GeTe₂ hosts both localized and delocalized spins, resulting in itinerant and local-moment ferromagnetism. The presence of LR itinerant interaction facilitates to stabilize Heisenberg ferromagnet in 2D. With the help of Rhodes-Wohlfarth (RW) and generalized RW-based analysis, Fe₃GeTe₂ has been shown to be a 2D ferromagnet with itinerant magnetism that can be modulated by an external magnetic field. Hence, the presence of both local moment and itinerant magnetism has made this system interesting in terms of research in low dimensions. We have also rigorously performed critical analysis using an improvised method. We show that the variable critical exponents are typical signatures of 2D ferromagnetism in Fe₃GeTe₂. The spontaneous magnetization exponent β changes the universality class from mean-field to 2D Heisenberg with field. We have also confirmed the range of interaction via the renormalization group (RG) theory. According to RG theory, Fe₃GeTe₂ is a 2D ferromagnet with LR interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van%20der%20Waal%20ferromagnet" title="Van der Waal ferromagnet">Van der Waal ferromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20ferromagnetism" title=" 2D ferromagnetism"> 2D ferromagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=itinerant%20ferromagnetism" title=" itinerant ferromagnetism"> itinerant ferromagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20range%20order" title=" long range order"> long range order</a> </p> <a href="https://publications.waset.org/abstracts/175619/2d-ferromagnetism-in-van-der-waals-bonded-fe3gete2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1527</span> Composition Dependence of Exchange Anisotropy in PtₓMn₁₋ₓ/Co₇₀Fe₃₀ Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Ranjbar">Sina Ranjbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Masakiyo%20Tsunoda"> Masakiyo Tsunoda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikihiko%20Oogane"> Mikihiko Oogane</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuo%20Ando"> Yasuo Ando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We systematically investigated the exchange anisotropy for ferromagnetic Co70Fe30 and antiferromagnetic PtMn bilayer films. We focused on the relevance between the exchange bias and the composition of the Ptₓ Mn₁₋ₓ (14 < x < 22 and 45 < x < 56 at %) films, and we successfully optimized the composition. The crystal structure of the Ptₓ Mn₁₋ₓ films was FCC for 14 < x < 22 at % and FCT for 45 < x < 56 at % after annealing at 370 ◦C for 6 hours. The unidirectional anisotropy constant (Jₖ) for fcc-Pt₁₅Mn₈₅ (20 nm) and fct-Pt₄₈Mn₅₂ (20 nm) prepared under optimum conditions in composition were 0.16 and 0.20 erg/cm², respectively. Both Pt₁₅Mn₈₅ and Pt₄₈Mn₅₂ films showed a larger unidirectional anisotropy constant (Jₖ) than in other reports. They also showed a flatter surface than that of other antiferromagnetic materials. The obtained PtMn films with a large exchange anisotropy and slight roughness are useful as an antiferromagnetic layer in spintronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiferromagnetic%20material" title="antiferromagnetic material">antiferromagnetic material</a>, <a href="https://publications.waset.org/abstracts/search?q=PtMn%20thin%20film" title=" PtMn thin film"> PtMn thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=exchange%20anisotropy" title=" exchange anisotropy"> exchange anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=composition%20dependence" title=" composition dependence"> composition dependence</a> </p> <a href="https://publications.waset.org/abstracts/101129/composition-dependence-of-exchange-anisotropy-in-ptmn1co70fe30-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1526</span> Core-Shell Structured Magnetic Nanoparticles for Efficient Hyperthermia Cancer Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Phadatare">M. R. Phadatare</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20V.%20Meshram"> J. V. Meshram</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Pawar"> S. H. Pawar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conversion of electromagnetic energy into heat by nanoparticles (NPs) has the potential to be a powerful, non-invasive technique for biomedical applications such as magnetic fluid hyperthermia, drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this paper, an attempt has been made to increase the efficiency of magnetic, thermal induction by NPs. To increase the efficiency of magnetic, thermal induction by NPs, one can take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the NP and maximize the specific absorption rate, which is the gauge of conversion efficiency. In order to examine the tunability of magnetocrystalline anisotropy and its magnetic heating power, a representative magnetically hard material (CoFe₂O₄) has been coupled to a soft material (Ni₀.₅Zn₀.₅Fe₂O₄). The synthesized NPs show specific absorption rates that are of an order of magnitude larger than the conventional one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20functionalization%20of%20magnetic%20nanoparticles" title=" surface functionalization of magnetic nanoparticles"> surface functionalization of magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20fluid%20hyperthermia" title=" magnetic fluid hyperthermia"> magnetic fluid hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20absorption%20rate" title=" specific absorption rate"> specific absorption rate</a> </p> <a href="https://publications.waset.org/abstracts/67521/core-shell-structured-magnetic-nanoparticles-for-efficient-hyperthermia-cancer-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1525</span> Hysteresis Behavior and Microstructure in Nanostructured Alloys Cu-Fe and Cu-Fe-Co</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laslouni%20Warda">Laslouni Warda</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Azzaz"> M. Azzaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intermetallic-based on transition metal compounds present interesting magnetic properties for the technological applications (permanent magnets, magnetic recording…). Cu70 Fe18Co12 and Cu70 Fe30 nanostructured with crystallite size vary from 10 a 12 nanometers have been developed by a mechanical milling method. For Cu-Fe samples, the iron and copper distribution was clear. The distribution showed a homogeneous distribution of iron and copper in a Cu-Fe obtained after 36 h milling. The structural properties have been performed with X-ray diffraction. With increasing milling times, Fe and Co diffuse into the Cu matrix, which accelerates the formation of the magnetic nanostructure Cu- Fe-Co and Cu-Fe alloys. The magnetic behavior is investigated using Vibrating Sample Magnetometer (VSM). The two alloys nanocrystals possess ferromagnetic character at room temperature <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Fe-Co" title="Cu-Fe-Co">Cu-Fe-Co</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu-Fe" title=" Cu-Fe"> Cu-Fe</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystals" title=" nanocrystals"> nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20loops" title=" hysteresis loops"> hysteresis loops</a>, <a href="https://publications.waset.org/abstracts/search?q=VSM" title=" VSM"> VSM</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropy%20theory" title=" anisotropy theory"> anisotropy theory</a> </p> <a href="https://publications.waset.org/abstracts/41508/hysteresis-behavior-and-microstructure-in-nanostructured-alloys-cu-fe-and-cu-fe-co" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1524</span> Deposition of Cr-doped ZnO Thin Films and Their Ferromagnetic Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Namhyun%20An">Namhyun An</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungho%20Lee"> Byungho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwauk%20Lee"> Hwauk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngmin%20Lee"> Youngmin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Deuk%20Young%20Kim"> Deuk Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sejoon%20Lee"> Sejoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the Cr-doped ZnO thin films have been deposited by reactive magnetron sputtering method with different Cr-contents (1.0at.%, 2.5at.% and 12.5at.%) and their ferromagnetic properties have been characterized. All films revealed clear ferromagnetism above room temperature. However, the spontaneous magnetization of the films was observed to depend on the Cr contents in the films. Namely, the magnitude of effective magnetic moment (per each Cr ion) was exponentially decreased with increasing the Cr contents. We attributed the decreased spontaneous magnetization to the degraded crystal magnetic anisotropy. In other words, we found out that the high concentration of magnetic ions causes the lattice distortion in the magnetic ion-doped thin film, and it consequently degrades ferromagnetic channeling in the solid-state material system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cr-doped%20ZnO" title="Cr-doped ZnO">Cr-doped ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic%20properties" title=" ferromagnetic properties"> ferromagnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=sputtering" title=" sputtering"> sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film "> thin film </a> </p> <a href="https://publications.waset.org/abstracts/45499/deposition-of-cr-doped-zno-thin-films-and-their-ferromagnetic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1523</span> Study of Superconducting Patch Printed on Electric-Magnetic Substrates Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fortaki%20Tarek">Fortaki Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bedra"> S. Bedra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effects of both uniaxial anisotropy in the substrate and high Tc superconducting patch on the resonant frequency, half-power bandwidth, and radiation patterns are investigated using an electric field integral equation and the spectral domain Green’s function. The analysis has been based on a full electromagnetic wave model with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant and radiation characteristics of high Tc superconducting rectangular microstrip patch in the case where the patch is printed on electric-magnetic uniaxially anisotropic substrate materials. The stationary phase technique has been used for computing the radiation electric field. The obtained results demonstrate a considerable improvement in the half-power bandwidth, of the rectangular microstrip patch, by using a superconductor patch instead of a perfect conductor one. Further results show that high Tc superconducting rectangular microstrip patch on the uniaxial substrate with properly selected electric and magnetic anisotropy ratios is more advantageous than the one on the isotropic substrate by exhibiting wider bandwidth and radiation characteristic. This behavior agrees with that discovered experimentally for superconducting patches on isotropic substrates. The calculated results have been compared with measured one available in the literature and excellent agreement has been found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20Tc%20superconducting%20microstrip%20patch" title="high Tc superconducting microstrip patch">high Tc superconducting microstrip patch</a>, <a href="https://publications.waset.org/abstracts/search?q=electric-magnetic%20anisotropic%20substrate" title=" electric-magnetic anisotropic substrate"> electric-magnetic anisotropic substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20method" title=" Galerkin method"> Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20complex%20impedance%20with%20boundary%20conditions" title=" surface complex impedance with boundary conditions"> surface complex impedance with boundary conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20patterns" title=" radiation patterns"> radiation patterns</a> </p> <a href="https://publications.waset.org/abstracts/50630/study-of-superconducting-patch-printed-on-electric-magnetic-substrates-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1522</span> Heating of the Ions by Electromagnetic Ion Cyclotron (EMIC) Waves Using Magnetospheric Multiscale (MMS) Satellite Observation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Abid">A. A. Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetospheric multiscale (MMS) satellite observations in the inner magnetosphere were used to detect the proton band of the electromagnetic ion cyclotron (EMIC) waves on December 14, 2015, which have been significantly contributing to the dynamics of the magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. The waves are triggered by hot proton thermal anisotropy. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these previously invisible protons are now visible. As a result, the EMC waves also excite the helium ions. The EMIC waves, whose frequency in the magnetosphere of the Earth ranges from 0.001 Hz to 5 Hz, have drawn a lot of attention for their ability to carry energy. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. This work examines how the excitation of EMIC waves is affected by the energy of hot proton temperature anisotropy, and It has a minimum resonance energy of 6.9 keV and a range of 7 to 26 keV. On the hot protons, however, the reverse effect can be seen for energies below the minimum resonance energy. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. Key Points: 1. The analysis of EMIC waves produced by hot proton temperature anisotropy using MMS data. 2. The number density and temperature anisotropy of the cold protons increases owing to high-intensity EMIC waves. 3. The cold protons with an energy range of 1-100eV are energized by EMIC waves using the Magnetospheric Multiscale (MMS) satellite not been discussed before <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMIC%20waves" title="EMIC waves">EMIC waves</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20anisotropy%20of%20hot%20protons" title=" temperature anisotropy of hot protons"> temperature anisotropy of hot protons</a>, <a href="https://publications.waset.org/abstracts/search?q=energization%20of%20the%20cold%20proton" title=" energization of the cold proton"> energization of the cold proton</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetospheric%20multiscale%20%28MMS%29%20satellite%20observations" title=" magnetospheric multiscale (MMS) satellite observations"> magnetospheric multiscale (MMS) satellite observations</a> </p> <a href="https://publications.waset.org/abstracts/161623/heating-of-the-ions-by-electromagnetic-ion-cyclotron-emic-waves-using-magnetospheric-multiscale-mms-satellite-observation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1521</span> Synthesis and Magnetic Properties of Six-Lines Ferrihydrite Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandni%20Rani">Chandni Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Tiwari"> S. D. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ferrihydrite is one of the distinct minerals in the family of oxides, hydroxides and oxyhydroxides of iron. It is a nanocrystalline material. It occurs naturally in different sediments, soil systems and also found in the core of ferritin, an iron storage protien. This material can also be synthesized by suitable chemical methods in laboratories. This is known as less crystalline Iron (III) Oxyhydroxide. Due to its poor crystallinity, there are very broad peaks in x-ray diffraction. Depending on the number of peaks in x-ray diffraction pattern, it is classified as two lines and six lines ferrihydrite. The average crystallite size for these two forms is found to be about 2nm to 5nm. The exact crystal structure of this system is still under debate. Out of these two forms, the six lines ferrihydrite is more ordered in comparison to two lines ferrihydrite. The magnetic behavior of two lines ferrihydrite nanoparticles is somewhat well studied. But the magnetic behavior of six lines ferrihydrite nanoparticles could not attract the attention of researchers much. This motivated us to work on the magnetic properties of six lines ferrihydrite nanoparticles. In this work, we present synthesis, structural characterization and magnetic behavior of 5 nm six lines ferrihydrite nanoparticles. X-ray diffraction and transmission electron microscope are used for structural characterization of this system. Magnetization measurements are performed to fit the data at different temperatures. Then the effect of magnetic moment distribution is also found. All these observations are discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetism" title=" magnetism"> magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=superparamagnetism" title=" superparamagnetism"> superparamagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy" title=" magnetic anisotropy"> magnetic anisotropy</a> </p> <a href="https://publications.waset.org/abstracts/59175/synthesis-and-magnetic-properties-of-six-lines-ferrihydrite-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1520</span> Estimation of Particle Size Distribution Using Magnetization Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Kaur">Navneet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Tiwari"> S. D. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic nanoparticles possess fascinating properties which make their behavior unique in comparison to corresponding bulk materials. Superparamagnetism is one such interesting phenomenon exhibited only by small particles of magnetic materials. In this state, the thermal energy of particles become more than their magnetic anisotropy energy, and so particle magnetic moment vectors fluctuate between states of minimum energy. This situation is similar to paramagnetism of non-interacting ions and termed as superparamagnetism. The magnetization of such systems has been described by Langevin function. But, the estimated fit parameters, in this case, are found to be unphysical. It is due to non-consideration of particle size distribution. In this work, analysis of magnetization data on NiO nanoparticles is presented considering the effect of particle size distribution. Nanoparticles of NiO of two different sizes are prepared by heating freshly synthesized Ni(OH)₂ at different temperatures. Room temperature X-ray diffraction patterns confirm the formation of single phase of NiO. The diffraction lines are seen to be quite broad indicating the nanocrystalline nature of the samples. The average crystallite size are estimated to be about 6 and 8 nm. The samples are also characterized by transmission electron microscope. Magnetization of both sample is measured as function of temperature and applied magnetic field. Zero field cooled and field cooled magnetization are measured as a function of temperature to determine the bifurcation temperature. The magnetization is also measured at several temperatures in superparamagnetic region. The data are fitted to an appropriate expression considering a distribution in particle size following a least square fit procedure. The computer codes are written in PYTHON. The presented analysis is found to be very useful for estimating the particle size distribution present in the samples. The estimated distributions are compared with those determined from transmission electron micrographs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title="anisotropy">anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=superparamagnetism" title=" superparamagnetism"> superparamagnetism</a> </p> <a href="https://publications.waset.org/abstracts/100769/estimation-of-particle-size-distribution-using-magnetization-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1519</span> Strain-Driven Bidirectional Spin Orientation Control in Epitaxial High Entropy Oxide Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhibo%20Zhao">Zhibo Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Horst%20Hahn"> Horst Hahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Kruk"> Robert Kruk</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhisheck%20Sarkar"> Abhisheck Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High entropy oxides (HEOs), based on the incorporation of multiple-principal cations into the crystal lattice, offer the possibility to explore previously inaccessible oxide compositions and unconventional properties. Here it is demonstrated that despite the chemical complexity of HEOs external stimuli, such as epitaxial strain, can selectively stabilize certain magneto-electronic states. Epitaxial (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)₃O₄-HEO thin films are grown in three different strain states: tensile, compressive, and relaxed. A unique coexistence of rocksalt and spinel-HEO phases, which are fully coherent with no detectable chemical segregation, is revealed by transmission electron microscopy. This dual-phase coexistence appears as a universal phenomenon in (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)₃O₄ epitaxial films. Prominent changes in the magnetic anisotropy and domain structure highlight the strain-induced bidirectional control of magnetic properties in HEOs. When the films are relaxed, their magnetization behavior is isotropic, similar to that of bulk materials. However, under tensile strain, the hardness of the out-of-plane (OOP) axis increases significantly. On the other hand, compressive straining results in an easy OOP magnetization and a maze-like magnetic domain structure, indicating perpendicular magnetic anisotropy. Generally, this study emphasizes the adaptability of the high entropy design strategy, which, when combined with coherent strain engineering, opens additional prospects for fine-tuning properties in oxides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20entropy%20oxides" title="high entropy oxides">high entropy oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20tuning" title=" strain tuning"> strain tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=perpendicular%20magnetic%20anistropy" title=" perpendicular magnetic anistropy"> perpendicular magnetic anistropy</a> </p> <a href="https://publications.waset.org/abstracts/181120/strain-driven-bidirectional-spin-orientation-control-in-epitaxial-high-entropy-oxide-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1518</span> Low Field Microwave Absorption and Magnetic Anisotropy in TM Co-Doped ZnO System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Das">J. Das</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Mahule"> T. S. Mahule</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Srinivasu"> V. V. Srinivasu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electron spin resonance (ESR) study at 9.45 GHz and a field modulation frequency of 100Hz was performed on bulk polycrystalline samples of Mn:TM (Fe/Ni) and Mn:RE (Gd/Sm) co doped ZnO samples with composition Zn1-xMn:TM/RE)xO synthesised by solid state reaction route and sintered at 500 0C temperature. The room temperature microwave absorption data collected by sweeping the DC magnetic field from -500 to 9500 G for the Mn:Fe and Mn:Ni co doped ZnO samples exhibit a rarely reported non resonant low field absorption (NRLFA) in addition to a strong absorption at around 3350G, usually associated with ferromagnetic resonance (FMR) satisfying Larmor’s relation due to absorption in the full saturation state. Observed low field absorption is distinct to ferromagnetic resonance even at low temperature and shows hysteresis. Interestingly, it shows a phase opposite with respect to the main ESR signal of the samples, which indicates that the low field absorption has a minimum value at zero magnetic field whereas the ESR signal has a maximum value. The major resonance peak as well as the peak corresponding to low field absorption exhibit asymmetric nature indicating magnetic anisotropy in the sample normally associated with intrinsic ferromagnetism. Anisotropy parameter for Mn:Ni codoped ZnO sample is noticed to be quite higher. The g values also support the presence of oxygen vacancies and clusters in the samples. These samples have shown room temperature ferromagnetism in the SQUID measurement. However, in rare earth (RE) co doped samples (Zn1-x (Mn: Gd/Sm)xO), which show paramagnetic behavior at room temperature, the low field microwave signals are not observed. As microwave currents due to itinerary electrons can lead to ohmic losses inside the sample, we speculate that more delocalized 3d electrons contributed from the TM dopants facilitate such microwave currents leading to the loss and hence absorption at the low field which is also supported by the increase in current with increased micro wave power. Besides, since Fe and Ni has intrinsic spin polarization with polarisability of around 45%, doping of Fe and Ni is expected to enhance the spin polarization related effect in ZnO. We emphasize that in this case Fe and Ni doping contribute to polarized current which interacts with the magnetization (spin) vector and get scattered giving rise to the absorption loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-doping" title="co-doping">co-doping</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20spin%20resonance" title=" electron spin resonance"> electron spin resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis" title=" hysteresis"> hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=non-resonant%20microwave%20absorption" title=" non-resonant microwave absorption"> non-resonant microwave absorption</a> </p> <a href="https://publications.waset.org/abstracts/42596/low-field-microwave-absorption-and-magnetic-anisotropy-in-tm-co-doped-zno-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1517</span> Effect of Anisotropy and Heterogeneity on Bearing Capacity of Shallow Foundations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Naeini">S. A. Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mahigir"> A. Mahigir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Naturally occurring cohesive soil deposits are inherently anisotropic with respect to different properties amongst which is the shear strength. The anisotropy is primary due to the process of sedimentation followed by predominantly one-dimensional consolidation. However, most soils in their natural states exhibit some anisotropy with respect to shear strength and some non-homogeneity with respect to depth. In this paper the standard Mohr-Coulomb yield criterion was modified to consider the anisotropic shear strength properties. The term non-homogeneity used in this paper refers to only the cohesion intercept which is assumed to vary linearly with depth. The effect of both anisotropy and deterministic non-homogeneity on bearing capacity of shallow foundation was investigated using finite difference method. Result of numerical analysis indicates that the cohesion anisotropy has a significant effect on bearing capacity of shallow foundation. Furthermore, the linear and bilinear heterogeneity affects the bearing capacity in a similar way although the anisotropy issue emerges to be more important as far as shallow foundations are considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20ratio" title="anisotropic ratio">anisotropic ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20analysis" title=" finite difference analysis"> finite difference analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a> </p> <a href="https://publications.waset.org/abstracts/73977/effect-of-anisotropy-and-heterogeneity-on-bearing-capacity-of-shallow-foundations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1516</span> Experimental Analysis of the Origins of the Anisotropy Behavior in the 2017 AA Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=May%20Abdelghani">May Abdelghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is devoted to the study of the microstructural anisotropy in mechanical cyclic behavior of the 2017AA aluminum alloy which is widely used in the aerospace industry. The main purpose of the study is to investigate the microstructural origins of this anisotropy already confirmed in our previous work in 2017AA aluminum alloy. To do this, we have used the microstructural analysis resources such as Scanning Electron Microscope (SEM) to see the differences between breaks from different directions of cyclic loading. Another resource of investigation was used in this study is that the EBSD method, which allows us to obtain a mapping of the crystallographic texture of our material. According to the obtained results in the microscopic analysis, we are able to identify the origins of the anisotropic behavior at the macroscopic scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20damage" title="fatigue damage">fatigue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20behavior" title=" cyclic behavior"> cyclic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title=" anisotropy"> anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructural%20analysis" title=" microstructural analysis"> microstructural analysis</a> </p> <a href="https://publications.waset.org/abstracts/20127/experimental-analysis-of-the-origins-of-the-anisotropy-behavior-in-the-2017-aa-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1515</span> Magnetic Nanoparticles for Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachinkumar%20Patil">Sachinkumar Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonali%20Patil"> Sonali Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Shitalkumar%20Patil"> Shitalkumar Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoparticles played important role in the biomedicine. New advanced methods having great potential apllication in the diagnosis and therapy of cancer. Now a day’s magnetic nanoparticles used in cancer therapy. Cancer is the major disease causes death. Magnetic nanoparticles show response to the magnetic field on the basis of this property they are used in cancer therapy. Cancer treated with hyperthermia by using magnetic nanoparticles it is unconventional but more safe and effective method. Magnetic nanoparticles prepared by using different innovative techniques that makes particles in uniform size and desired effect. Magnetic nanoparticles already used as contrast media in magnetic resonance imaging. A magnetic nanoparticle has been great potential application in cancer diagnosis and treatment as well as in gene therapy. In this review we will discuss the progress in cancer therapy based on magnetic nanoparticles, mainly including magnetic hyperthermia, synthesis and characterization of magnetic nanoparticles, mechanism of magnetic nanoparticles and application of magnetic nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20therapy" title=" cancer therapy"> cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a> </p> <a href="https://publications.waset.org/abstracts/31421/magnetic-nanoparticles-for-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">640</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1514</span> Inverted Umbrella-type Chiral Non-coplanar Ferrimagnetic Structure in Co(NO₃)₂ </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Maximova">O. Maximova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20L.%20Danilovich"> I. L. Danilovich</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20B.%20Deeva"> E. B. Deeva</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Y.%20Bukhteev"> K. Y. Bukhteev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Vorobyova"> A. A. Vorobyova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20V.%20Morozov"> I. V. Morozov</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Volkova"> O. S. Volkova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Zvereva"> E. A. Zvereva</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20V.%20Solovyev"> I. V. Solovyev</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Nikolaev"> S. A. Nikolaev</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Phuyal"> D. Phuyal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdel-Hafiez"> M. Abdel-Hafiez</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20C.%20Wang"> Y. C. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Lin"> J. Y. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Chen"> J. M. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20I.%20Gorbunov"> D. I. Gorbunov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Puzniak"> K. Puzniak</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lake"> B. Lake</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Vasiliev"> A. N. Vasiliev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The low-dimensional magnetic systems tend to reveal exotic spin liquid ground states or form peculiar types of long-range order. Among systems of vivid interest are those characterized by the triangular motif in two dimensions. The realization of either ordered or disordered ground state in a triangular, honeycomb, or kagome lattices is are dictated by the competition of exchange interactions, also being sensitive to anisotropy and the spin value of magnetic ions. While the low-spin Heisenberg systems may arrive at a spin liquid long-range entangled quantum state with emergent gauge structures, the high-spin Ising systems may establish the rigid non-collinear structures. This study presents the case of chiral non-coplanar inverted umbrella-type ferrimagnet formed in cobalt nitrate Co(NO₃)₂ below T <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chiral%20magnetic%20structures" title="chiral magnetic structures">chiral magnetic structures</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20dimensional%20magnetic%20systems" title=" low dimensional magnetic systems"> low dimensional magnetic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=umbrella-type%20ferrimagnets" title=" umbrella-type ferrimagnets"> umbrella-type ferrimagnets</a>, <a href="https://publications.waset.org/abstracts/search?q=chiral%20non-coplanar%20magnetic%20structures" title=" chiral non-coplanar magnetic structures"> chiral non-coplanar magnetic structures</a> </p> <a href="https://publications.waset.org/abstracts/130784/inverted-umbrella-type-chiral-non-coplanar-ferrimagnetic-structure-in-cono32" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1513</span> Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nipa%20Debnath">Nipa Debnath</a>, <a href="https://publications.waset.org/abstracts/search?q=Harinarayan%20Das"> Harinarayan Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiko%20Kawaguchi"> Takahiko Kawaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Naonori%20Sakamoto"> Naonori Sakamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuo%20Shinozaki"> Kazuo Shinozaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Hisao%20Suzuki"> Hisao Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoki%20Wakiya"> Naoki Wakiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dynamic%20Aurora%20PLD" title="Dynamic Aurora PLD">Dynamic Aurora PLD</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy" title=" magnetic anisotropy"> magnetic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=spinodal%20decomposition" title=" spinodal decomposition"> spinodal decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=spinel%20ferrite%20thin%20film" title=" spinel ferrite thin film"> spinel ferrite thin film</a> </p> <a href="https://publications.waset.org/abstracts/86528/evolution-of-microstructure-through-phase-separation-via-spinodal-decomposition-in-spinel-ferrite-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1512</span> Monte Carlo Simulation of Magnetic Properties in Bit Patterned Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20D.%20Arbel%C3%A1ez-Echeverri">O. D. Arbeláez-Echeverri</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Restrepo-Parra"> E. Restrepo-Parra</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Riano-Rojas"> J. C. Riano-Rojas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A two dimensional geometric model of Bit Patterned Media is proposed, the model is based on the crystal structure of the materials commonly used to produce the nano islands in bit patterned materials and the possible defects that may arise from the interaction between the nano islands and the matrix material. The dynamic magnetic properties of the material are then computed using time aware integration methods for the multi spin Hamiltonian. The Hamiltonian takes into account both the spatial and topological disorder of the sample as well as the high perpendicular anisotropy that is pursued when building bit patterned media. The main finding of the research was the possibility of replicating the results of previous experiments on similar materials and the ability of computing the switching field distribution given the geometry of the material and the parameters required by the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title="nanostructures">nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title=" Monte Carlo"> Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20media" title=" pattern media"> pattern media</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/29242/monte-carlo-simulation-of-magnetic-properties-in-bit-patterned-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1511</span> Morphotropic Phase Boundary in Ferromagnets: Unusual Magnetoelastic Behavior In Tb₁₋ₓNdₓCo₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adil%20Murtaza">Adil Murtaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir%20Khan"> Muhammad Tahir Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Awais%20Ghani"> Awais Ghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Zhou"> Chao Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Sen%20Yang"> Sen Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoping%20Song"> Xiaoping Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The morphotropic phase boundary (MPB); a boundary between two different crystallographic symmetries in the composition–temperature phase diagram has been widely studied in ferroelectrics and recently has drawn interest in ferromagnets for obtaining enhanced large field-induced strain. At MPB, the system gets a compressed free energy state, which allows the polarization to freely rotate and hence results in a high magnetoelastic response (e.g., high magnetization, low coercivity, and large magnetostriction). Based on the same mechanism, we designed MPB in a ferromagnetic Tb₁₋ₓNdₓCo₂ system. The temperature-dependent magnetization curves showed spin reorientation (SR); which can be explained by a two-sublattice model. Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb₀.₃₅Nd₀.₆₅Co₂ exhibits a low saturation magnetization (MS), indicating a compensation of the Tb and Nd magnetic moments at MPB. The coercive field (HC) under a low magnetic field and first anisotropy constant (K₁) shows a minimum value at MPB composition of x=0.65. A detailed spin configuration diagram is provided for the Tb₁₋ₓNdₓCo₂ around the composition for the anisotropy compensation; this can guide the development of novel magnetostrictive materials. The anisotropic magnetostriction (λS) first decreased until x=0.8 and then continuously increased in the negative direction with further increase of Nd concentration. In addition, the large ratio between magnetostriction and the absolute values of the first anisotropy constant (λS/K₁) appears at MPB, indicating that Tb₀.₃₅Nd₀.₆₅Co₂ has good magnetostrictive properties. Present work shows an anomalous type of MPB in ferromagnetic materials, revealing that MPB can also lead to a weakening of magnetoelastic behavior as shown in the ferromagnetic Tb₁₋ₓNdₓCo₂ system. Our work shows the universal presence of MPB in ferromagnetic materials and suggests the differences between different ferromagnetic MPB systems that are important for substantial improvement of magnetic and magnetostrictive properties. Based on the results of this study, similar MPB effects might be achieved in other ferroic systems that can be used for technological applications. The finding of magnetic MPB in the ferromagnetic system leads to some important significances. First, it provides a better understanding of the fundamental concept of spin reorientation transitions (SRT) like ferro-ferro transitions are not only reorientation of magnetization but also crystal symmetry change upon magnetic ordering. Second, the flattened free energy corresponding to a low energy barrier for magnetization rotation and enhanced magnetoelastic response near MPB. Third, to attain large magnetostriction with MPB approach two terminal compounds have different easy magnetization directions below Curie temperature Tc in order to accomplish the weakening of magnetization anisotropy at MPB (as in ferroelectrics), thus easing the magnetic domain switching and the lattice distortion difference between two terminal compounds should be large enough, e.g., lattice distortion of R symmetry ˃˃ lattice distortion of T symmetry). So that the MPB composition agrees to a nearly isotropic state along with large ‘net’ lattice distortion, which is revealed in a higher value of magnetostriction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetization" title="magnetization">magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetostriction" title=" magnetostriction"> magnetostriction</a>, <a href="https://publications.waset.org/abstracts/search?q=morphotropic%20phase%20boundary%20%28MPB%29" title=" morphotropic phase boundary (MPB)"> morphotropic phase boundary (MPB)</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a> </p> <a href="https://publications.waset.org/abstracts/95289/morphotropic-phase-boundary-in-ferromagnets-unusual-magnetoelastic-behavior-in-tb1ndco2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1510</span> A Potential Spin-orbit Torque Device Using the Tri-layer Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Wei%20Cheng">Chih-Wei Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Jen%20Chan"> Wei-Jen Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Han%20Huang"> Yu-Han Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Tsung%20Lin"> Yi-Tsung Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yen-Wei%20Huang"> Yen-Wei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Cheng%20Chen"> Min-Cheng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shou-Zen%20Chang"> Shou-Zen Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Chern"> G. Chern</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Chieh%20Tseng"> Yuan-Chieh Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> How to develop spin-orbit-torque (SOT) devices with the virtues of field-free, perpendicular magnetic anisotropy (PMA), and low switching current is one of the many challenges in spintronics today. We propose a CoFeB/Ta/CoFeB tri-layer antiferromagnetic SOT device that could meet the above requirements. The device’s PMA was developed by adopting CoFeB–MgO interface. The key to the success of this structure is to ensure that (i)changes of the inter-layer coupling(IEC) and CoFeB anisotropy can occur simultaneously; (ii) one of the CoFeB needs to have a slightly tilted moment in the beginning. When sufficient current is given, the SHEreverses the already-tiltedCoFeB, and the other CoFeB can be reversed simultaneously by the IEC with the field-free nature. Adjusting the thickness of Ta can modify the coupling state to reduce the switching current while the field-free nature was preserved. Micromagnetic simulation suggests that the Néel orange peel effect (NOPE) is non-negligible due to interface roughness and coupling effect in the presence of perpendicular anisotropy. Fortunately, the Néel field induced by the NOPE appears to favor the field-free reversal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CoFeB" title="CoFeB">CoFeB</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-orbit%20torque" title=" spin-orbit torque"> spin-orbit torque</a>, <a href="https://publications.waset.org/abstracts/search?q=antiferromagnetic" title=" antiferromagnetic"> antiferromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=MRAM" title=" MRAM"> MRAM</a>, <a href="https://publications.waset.org/abstracts/search?q=trilayer" title=" trilayer"> trilayer</a> </p> <a href="https://publications.waset.org/abstracts/158357/a-potential-spin-orbit-torque-device-using-the-tri-layer-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1509</span> Rheological Properties of Polymer Systems in Magnetic Field </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Soliman">T. S. Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Galyas"> A. G. Galyas</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20V.%20Rusinova"> E. V. Rusinova</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Vshivkov"> S. A. Vshivkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquid crystals combining properties of a liquid and an anisotropic crystal substance play an important role in a science and engineering. Molecules of cellulose and its derivatives have rigid helical conformation, stabilized by intramolecular hydrogen bonds. Therefore the macromolecules of these polymers are capable to be ordered at dissolution and form liquid crystals of cholesteric type. Phase diagrams of solutions of some cellulose derivatives are known. However, little is known about the effect of a magnetic field on the viscosity of polymer solutions. The systems hydroxypropyl cellulose (HPC) – ethanol, HPC – ethylene glycol, HPC–DМАA, HPC–DMF, ethyl cellulose (EC)–ethanol, EC–DMF, were studied in the presence and absence of magnetic field. The solution viscosity was determined on a Rheotest RN 4.1 rheometer. The effect of a magnetic field on the solution properties was studied with the use of two magnets, which induces a magnetic-field-lines directed perpendicularly and parallel to the rotational axis of a rotor. Application of the magnetic field is shown to be accompanied by an increase in the additional assembly of macromolecules, as is evident from a gain in the radii of light scattering particles. In the presence of a magnetic field, the long chains of macromolecules are oriented in parallel with field lines. Such an orientation is associated with the molecular diamagnetic anisotropy of macromolecules. As a result, supramolecular particles are formed, especially in the vicinity of the region of liquid crystalline phase transition. The magnetic field leads to the increase in viscosity of solutions. The results were used to plot the concentration dependence of η/η0, where η and η0 are the viscosities of solutions in the presence and absence of a magnetic field, respectively. In this case, the values of viscosity corresponding to low shear rates were chosen because the concentration dependence of viscosity at low shear rates is typical for anisotropic systems. In the investigated composition range, the values of η/η0 are described by a curve with a maximum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheology" title="rheology">rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystals" title=" liquid crystals"> liquid crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20ethers" title=" cellulose ethers"> cellulose ethers</a> </p> <a href="https://publications.waset.org/abstracts/20638/rheological-properties-of-polymer-systems-in-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1508</span> Magnetoelastically Induced Perpendicular Magnetic Anisotropy and Perpendicular Exchange Bias of CoO/CoPt Multilayer Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guo%20Lei">Guo Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Yue"> Wang Yue</a>, <a href="https://publications.waset.org/abstracts/search?q=Nakamura%20Yoshio"> Nakamura Yoshio</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Ji"> Shi Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, perpendicular exchange bias (PEB) is introduced as an active topic attracting continuous efforts. Since its discovery, extrinsic control of PEB has been proposed, due to its scientific significance in spintronic devices and potential application in high density magnetic random access memory with perpendicular magnetic tunneling junction (p-MTJ). To our knowledge, the researches aiming to controlling PEB so far are focused mainly on enhancing the interfacial exchange coupling by adjusting the FM/AFM interface roughness, or optimizing the crystalline structures of FM or AFM layer by employing different seed layers. In present work, the effects of magnetoelastically induced PMA on PEB have been explored in [CoO5nm/CoPt5nm]5 multilayer films. We find the PMA strength of FM layer also plays an important role on PEB at the FM/AFM interface and it is effective to control PEB of [CoO5nm/CoPt5nm]5 multilayer films by changing the magnetoelastically induced PMA of CoPt layer. [CoO5nm/CoPt5nm]5 multilayer films were deposited by magnetron sputtering on fused quartz substrate at room temperature, then annealed at 100°C, 250°C, 300°C and 375°C for 3h, respectively. XRD results reveal that all the samples are well crystallized with preferred fcc CoPt (111) orientation. The continuous multilayer structure with sharp component transition at the CoO5nm/CoPt5nm interface are identified clearly by transmission electron microscopy (TEM), x-ray reflectivity (XRR) and atomic force microscope (AFM). CoPt layer in-plane tensile stress is calculated by sin2φ method, and we find it increases gradually upon annealing from 0.99 GPa (as-deposited) up to 3.02 GPa (300oC-annealed). As to the magnetic property, significant enhancement of PMA is achieved in [CoO5nm/CoPt5nm]5 multilayer films after annealing due to the increase of CoPt layer in-plane tensile stress. With the enhancement of magnetoelastically induced PMA, great improvement of PEB is also achieved in [CoO5nm/CoPt5nm]5 multilayer films, which increases from 130 Oe (as-deposited) up to 1060 Oe (300oC-annealed), showing the same change tendency as PMA and the strong correlation with CoPt layer in-plane tensile stress. We consider it is the increase of CoPt layer in-plane tensile stress that leads to the enhancement of PMA, and thus the enhancement of magnetoelastically induced PMA results in the improvement of PEB in [CoO5nm/CoPt5nm]5 multilayer films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perpendicular%20exchange%20bias" title="perpendicular exchange bias">perpendicular exchange bias</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetoelastically%20induced%20perpendicular%20magnetic%20anisotropy" title=" magnetoelastically induced perpendicular magnetic anisotropy"> magnetoelastically induced perpendicular magnetic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=CoO5nm%2FCoPt5nm%5D5%20multilayer%20film%20with%20in-plane%20stress" title=" CoO5nm/CoPt5nm]5 multilayer film with in-plane stress"> CoO5nm/CoPt5nm]5 multilayer film with in-plane stress</a>, <a href="https://publications.waset.org/abstracts/search?q=perpendicular%20magnetic%20tunneling%20junction" title=" perpendicular magnetic tunneling junction"> perpendicular magnetic tunneling junction</a> </p> <a href="https://publications.waset.org/abstracts/29146/magnetoelastically-induced-perpendicular-magnetic-anisotropy-and-perpendicular-exchange-bias-of-coocopt-multilayer-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1507</span> The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bahgat">M. Bahgat</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Awan"> F. M. Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Hanafy"> H. A. Hanafy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20magnetic%20materials" title="hard magnetic materials">hard magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20route" title=" ceramic route"> ceramic route</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium%20ferrite" title=" strontium ferrite"> strontium ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/21878/the-influence-of-reaction-parameters-on-magnetic-properties-of-synthesized-strontium-ferrite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">693</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1506</span> Magnetorheological Elastomer Composites Obtained by Extrusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mas%C5%82owski">M. Masłowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zaborski"> M. Zaborski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetorheological elastomer composites based on micro- and nano-sized magnetite, gamma iron oxide and carbonyl iron powder in ethylene-octene rubber are reported and studied. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy). The use of extrusion method instead of traditional preparation processes (two-roll mill, mixer) of composites is presented. Micro and nan-sized magnetites as well as gamma iron oxide and carbonyl iron powder were found to be an active fillers improving the mechanical properties of elastomers. They also changed magnetic properties of composites. Application of extrusion process also influenced the mechanical properties of composites and the dispersion of magnetic fillers. Dynamic-mechanical analysis (DMA) indicates the presence of strongly developed secondary structure in vulcanizates. Scanning electron microscopy images (SEM) show that the dispersion improvement had significant effect on the composites properties. Studies investigated by vibration sample magnetometer (VSM) proved that all composites exhibit good magnetic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrusion" title="extrusion">extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20fillers" title=" magnetic fillers"> magnetic fillers</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetorheological%20elastomers" title=" magnetorheological elastomers"> magnetorheological elastomers</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/31906/magnetorheological-elastomer-composites-obtained-by-extrusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy&page=51">51</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy&page=52">52</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>