CINXE.COM

Search results for: organics

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: organics</title> <meta name="description" content="Search results for: organics"> <meta name="keywords" content="organics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="organics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="organics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 42</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: organics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Emulsified Oil Removal in Produced Water by Graphite-Based Adsorbents Using Adsorption Coupled with Electrochemical Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zohreh%20Fallah">Zohreh Fallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20P.%20L.%20Roberts"> Edward P. L. Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the big challenges for produced water treatment is removing oil from water in the form of emulsified droplets which are not easily separated. An attractive approach is adsorption, as it is a simple and effective process. However, adsorbents must be regenerated in order to make the process cost effective. Several sorbents have been tested for treating oily wastewater. However, some issues such as high energy consumption for activated carbon thermal regeneration have been reported. Due to their significant electrical conductivity, Graphite Intercalation Compounds (GIC) were found to be suitable to be regenerated electrochemically. They are non-porous materials with low surface area and fast adsorptive capacity which are useful for removal of low concentration of organics. An innovative adsorption/regeneration process has been developed at the University of Manchester in which adsorption of organics are done by using a patented GIC adsorbent coupled with subsequent electrochemical regeneration. The oxidation of adsorbed organics enables 100% regeneration so that the adsorbent can be reused over multiple adsorption cycles. GIC adsorbents are capable of removing a wide range of organics and pollutants; however, no comparable report is available for removal of emulsified oil in produced water using abovementioned process. In this study the performance of this technology for the removal of emulsified oil in wastewater was evaluated. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for both real produced water and model emulsions. The amount of oil in wastewater was measured by using the toluene extraction/fluorescence analysis before and after adsorption and electrochemical regeneration cycles. It was found that oil in water emulsion could be successfully treated by the treatment process and More than 70% of oil was removed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20regeneration" title=" electrochemical regeneration"> electrochemical regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsified%20oil" title=" emulsified oil"> emulsified oil</a>, <a href="https://publications.waset.org/abstracts/search?q=produced%20water" title=" produced water"> produced water</a> </p> <a href="https://publications.waset.org/abstracts/29358/emulsified-oil-removal-in-produced-water-by-graphite-based-adsorbents-using-adsorption-coupled-with-electrochemical-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Carbon Nanomaterials from Agricultural Wastes for Adsorption of Organic Pollutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Blachnio">Magdalena Blachnio</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Bogatyrov"> Viktor Bogatyrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariia%20Galaburda"> Mariia Galaburda</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Derylo-Marczewska"> Anna Derylo-Marczewska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural waste materials from traditional oil mill and after extraction of natural raw materials in supercritical conditions were used for the preparation of carbon nanomaterials (activated carbons) by two various methods. Chemical activation using acetic acid and physical activation with a gaseous agent (carbon dioxide) were chosen as mild and environmentally friendly ones. The effect of influential factors: type of raw material, temperature and activation agent on the porous structure characteristics of the materials was discussed by using N₂ adsorption/desorption isotherms at 77 K. Furthermore scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to examine the physicochemical properties of the obtained sorbents. Selection of a raw material and an optimization of the conditions of the synthesis process, allowed to obtain the cheap sorbents with a targeted distribution of pores enabling effective adsorption of the model organic pollutants carried out in the multicomponent systems. Adsorption behavior (capacity and rate) of the chosen activated carbons was estimated by utilizing Crystal violet (CV), 4-chlorophenoxyacetic acid (4-CPA), 2.4-dichlorophenoxyacetic acid (2.4-D) as the adsorbates. Both rate and adsorption capacity of the organics on the sorbents evidenced that the activated carbons could be effectively used in sewage treatment plants. The mechanisms of organics adsorption were studied and correlated with activated carbons properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20equilibrium" title=" adsorption equilibrium"> adsorption equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20kinetics" title=" adsorption kinetics"> adsorption kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=organics%20adsorption" title=" organics adsorption"> organics adsorption</a> </p> <a href="https://publications.waset.org/abstracts/90720/carbon-nanomaterials-from-agricultural-wastes-for-adsorption-of-organic-pollutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Ecological Effects of Oil Spill on Water and Sediment from Two Riverine Communities in Warri</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doris%20Fovwe%20Ogeleka">Doris Fovwe Ogeleka</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20E.%20Tudararo-Aherobo"> L. E. Tudararo-Aherobo</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20E.%20Okieimen"> F. E. Okieimen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ecological effects of oil spill in the environment were studied in Warri riverine areas of Ubeji and Jeddo, Delta State. In the two communities, water and sediment samples were analysed for organics (polyaromatic hydrocarbon; total petroleum hydrocarbon (TPH)) and heavy metals (lead, copper, zinc, iron and chromium). The American Public Health Association (APHA) and the American Society for Testing and Materials (ASTM) methods were employed for the laboratory test. The results indicated that after a long period of oil spill (above one year), there were still significant concentrations (p<0.05) of organics indicating hydrocarbon pollution. Mean concentrations recorded for TPH in Ubeji and Jeddo waters were 23.60 ± 1.18 mg/L and 29.96 ± 0.14 mg/L respectively while total PAHs was 0.009 ± 0.002 mg/L and 0.008 ± 0.001 mg/L. Mean concentrations of TPH in the sediment was 48.83 ± 1.49 ppm and 1093 ± 74 ppm in the above order while total PAHs was 0.012 ± 0.002 ppm and 0.026 ± 0.004 ppm. Low concentrations were recorded for most of the heavy metals in the water and sediment. The observed concentrations of hydrocarbons in the study areas should provide the impetus for regulatory surveillance of oil discharged intentionally/unintentionally into the Warri riverine waters and sediment since hydrocarbon released into the environment sorb to the sediment particles where they cause harm to organisms in the sediment and overlying waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=TPH" title=" TPH"> TPH</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spillage" title=" oil spillage"> oil spillage</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/15552/ecological-effects-of-oil-spill-on-water-and-sediment-from-two-riverine-communities-in-warri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Effect of Organics on Radionuclide Partitioning in Nuclear Fuel Storage Ponds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hollie%20Ashworth">Hollie Ashworth</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Heath"> Sarah Heath</a>, <a href="https://publications.waset.org/abstracts/search?q=Nick%20Bryan"> Nick Bryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Liam%20Abrahamsen"> Liam Abrahamsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Kellet"> Simon Kellet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sellafield has a number of fuel storage ponds, some of which have been open to the air for a number of decades. This has caused corrosion of the fuel resulting in a release of some activity into solution, reduced water clarity, and accumulation of sludge at the bottom of the pond consisting of brucite (Mg(OH)2) and other uranium corrosion products. Both of these phases are also present as colloidal material. 90Sr and 137Cs are known to constitute a small volume of the radionuclides present in the pond, but a large fraction of the activity, thus they are most at risk of challenging effluent discharge limits. Organic molecules are known to be present also, due to the ponds being open to the air, with occasional algal blooms restricting visibility further. The contents of the pond need to be retrieved and safely stored, but dealing with such a complex, undefined inventory poses a unique challenge. This work aims to determine and understand the sorption-desorption interactions of 90Sr and 137Cs to brucite and uranium phases, with and without the presence of organic molecules from chemical degradation and bio-organisms. The influence of organics on these interactions has not been widely studied. Partitioning of these radionuclides and organic molecules has been determined through LSC, ICP-AES/MS, and UV-vis spectrophotometry coupled with ultrafiltration in both binary and ternary systems. Further detailed analysis into the surface and bonding environment of these components is being investigated through XAS techniques and PHREEQC modelling. Experiments were conducted in CO2-free or N2 atmosphere across a high pH range in order to best simulate conditions in the pond. Humic acid used in brucite systems demonstrated strong competition against 90Sr for the brucite surface regardless of the order of addition of components. Variance of pH did have a small effect, however this range (10.5-11.5) is close to the pHpzc of brucite, causing the surface to buffer the solution pH towards that value over the course of the experiment. Sorption of 90Sr to UO2 obeyed Ho’s rate equation and demonstrated a slow second-order reaction with respect to the sharing of valence electrons from the strontium atom, with the initial rate clearly dependent on pH, with the equilibrium concentration calculated at close to 100% sorption. There was no influence of humic acid seen when introduced to these systems. Sorption of 137Cs to UO3 was significant, with more than 95% sorbed in just over 24 hours. Again, humic acid showed no influence when introduced into this system. Both brucite and uranium based systems will be studied with the incorporation of cyanobacterial cultures harvested at different stages of growth. Investigation of these systems provides insight into, and understanding of, the effect of organics on radionuclide partitioning to brucite and uranium phases at high pH. The majority of sorption-desorption work for radionuclides has been conducted at neutral to acidic pH values, and mostly without organics. These studies are particularly important for the characterisation of legacy wastes at Sellafield, with a view to their safe retrieval and storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caesium" title="caesium">caesium</a>, <a href="https://publications.waset.org/abstracts/search?q=legacy%20wastes" title=" legacy wastes"> legacy wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=organics" title=" organics"> organics</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption-desorption" title=" sorption-desorption"> sorption-desorption</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium" title=" strontium"> strontium</a>, <a href="https://publications.waset.org/abstracts/search?q=uranium" title=" uranium"> uranium</a> </p> <a href="https://publications.waset.org/abstracts/59864/effect-of-organics-on-radionuclide-partitioning-in-nuclear-fuel-storage-ponds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Contribution of Electrochemical Treatment in Treating Textile Dye Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usha%20N.%20Murthy">Usha N. Murthy</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Rekha"> H. B. Rekha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahaveer%20Devoor"> Mahaveer Devoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The introduction of more stringent pollution regulations, in relation to financial and social pressures for sustainable development, has pressed toward limiting the volumes of industrial and domestic effluents discharged into the environment-as well as to increase the efforts within research and development of new or more efficient wastewater treatment technologies. Considering both discharge volume and effluent composition, wastewater generated by the textile industry is rated as the most polluting among all industrial sectors. The pollution load is mainly due to spent dye baths, which are composed of unreacted dyes, dispersing agents, surfactants, salts and organics. In the present investigation, the textile dye wastewater was characterized by high colour, chemical oxygen demand (COD), total dissolved solids (TDS) and pH. Electrochemical oxidation process for four plate electrodes was carried out at five different current intensities, out of which 0.14A has achieved maximum percentage removal of COD with 75% and 83% of colour. The COD removal rate in kg COD/h/m2 decreases with increase in the current intensity. The energy consumption increases with increase in the current intensity. Hence, textile dye wastewater can be effectively pre-treated by electrochemical oxidation method where the process limits objectionable colour while leaving the COD associated with organics left for natural degradation thus causing a sustainable reduction in pollution load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20treatment" title="electrochemical treatment">electrochemical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a>, <a href="https://publications.waset.org/abstracts/search?q=colour" title=" colour"> colour</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20engineering" title=" environmental engineering"> environmental engineering</a> </p> <a href="https://publications.waset.org/abstracts/6293/contribution-of-electrochemical-treatment-in-treating-textile-dye-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Multi-Template Molecularly Imprinted Polymer: Synthesis, Characterization and Removal of Selected Acidic Pharmaceuticals from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lawrence%20Mzukisi%20Madikizela">Lawrence Mzukisi Madikizela</a>, <a href="https://publications.waset.org/abstracts/search?q=Luke%20Chimuka"> Luke Chimuka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of organics from wastewater offers a better water quality, therefore, the purpose of this work was to investigate the use of molecularly imprinted polymer (MIP) for the elimination of selected organics from water. A multi-template MIP for the adsorption of naproxen, ibuprofen and diclofenac was synthesized using a bulk polymerization method. A MIP was synthesized at 70°C by employing 2-vinylpyridine, ethylene glycol dimethacrylate, toluene and 1,1’-azobis-(cyclohexanecarbonitrile) as functional monomer, cross-linker, porogen and initiator, respectively. Thermogravimetric characterization indicated that the polymer backbone collapses at 250°C and scanning electron microscopy revealed the porous and roughness nature of the MIP after elution of templates. The performance of the MIP in aqueous solutions was evaluated by optimizing several adsorption parameters. The optimized adsorption conditions were 50 mg of MIP, extraction time of 10 min, a sample pH of 4.6 and the initial concentration of 30 mg/L. The imprinting factors obtained for naproxen, ibuprofen and diclofenac were 1.25, 1.42, and 2.01, respectively. The order of selectivity for the MIP was; diclofenac > ibuprofen > naproxen. MIP showed great swelling in water with an initial swelling rate of 2.62 g/(g min). The synthesized MIP proved to be able to adsorb naproxen, ibuprofen and diclofenac from contaminated deionized water, wastewater influent and effluent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymer" title=" molecularly imprinted polymer"> molecularly imprinted polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20template" title=" multi template"> multi template</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals" title=" pharmaceuticals"> pharmaceuticals</a> </p> <a href="https://publications.waset.org/abstracts/43263/multi-template-molecularly-imprinted-polymer-synthesis-characterization-and-removal-of-selected-acidic-pharmaceuticals-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Removal of Problematic Organic Compounds from Water and Wastewater Using the Arvia™ Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akmez%20Nabeerasool">Akmez Nabeerasool</a>, <a href="https://publications.waset.org/abstracts/search?q=Michaelis%20Massaros"> Michaelis Massaros</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigel%20Brown"> Nigel Brown</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Sanderson"> David Sanderson</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Parocki"> David Parocki</a>, <a href="https://publications.waset.org/abstracts/search?q=Charlotte%20Thompson"> Charlotte Thompson</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Lodge"> Mike Lodge</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikael%20Khan"> Mikael Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The provision of clean and safe drinking water is of paramount importance and is a basic human need. Water scarcity coupled with tightening of regulations and the inability of current treatment technologies to deal with emerging contaminants and Pharmaceuticals and personal care products means that alternative treatment technologies that are viable and cost effective are required in order to meet demand and regulations for clean water supplies. Logistically, the application of water treatment in rural areas presents unique challenges due to the decentralisation of abstraction points arising from low population density and the resultant lack of infrastructure as well as the need to treat water at the site of use. This makes it costly to centralise treatment facilities and hence provide potable water direct to the consumer. Furthermore, across the UK there are segments of the population that rely on a private water supply which means that the owner or user(s) of these supplies, which can serve one household to hundreds, are responsible for the maintenance. The treatment of these private water supply falls on the private owners, and it is imperative that a chemical free technological solution that can operate unattended and does not produce any waste is employed. Arvia’s patented advanced oxidation technology combines the advantages of adsorption and electrochemical regeneration within a single unit; the Organics Destruction Cell (ODC). The ODC uniquely uses a combination of adsorption and electrochemical regeneration to destroy organics. Key to this innovative process is an alternative approach to adsorption. The conventional approach is to use high capacity adsorbents (e.g. activated carbons with high porosities and surface areas) that are excellent adsorbents, but require complex and costly regeneration. Arvia’s technology uses a patent protected adsorbent, Nyex™, which is a non-porous, highly conductive, graphite based adsorbent material that enables it to act as both the adsorbent and as a 3D electrode. Adsorbed organics are oxidised and the surface of the Nyex™ is regenerated in-situ for further adsorption without interruption or replacement. Treated water flows from the bottom of the cell where it can either be re-used or safely discharged. Arvia™ Technology Ltd. has trialled the application of its tertiary water treatment technology in treating reservoir water abstracted near Glasgow, Scotland, with promising results. Several other pilot plants have also been successfully deployed at various locations in the UK showing the suitability and effectiveness of the technology in removing recalcitrant organics (including pharmaceuticals, steroids and hormones), COD and colour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvia%E2%84%A2%20process" title="Arvia™ process">Arvia™ process</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20oxidation" title=" electrochemical oxidation"> electrochemical oxidation</a> </p> <a href="https://publications.waset.org/abstracts/72258/removal-of-problematic-organic-compounds-from-water-and-wastewater-using-the-arvia-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Durham Region: How to Achieve Zero Waste in a Municipal Setting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirka%20Januszkiewicz">Mirka Januszkiewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Regional Municipality of Durham is the upper level of a two-tier municipal and regional structure comprised of eight lower-tier municipalities. With a population of 655,000 in both urban and rural settings, the Region is approximately 2,537 square kilometers neighboring the City of Toronto, Ontario Canada to the east. The Region has been focused on diverting waste from disposal since the development of its Long Term Waste Management Strategy Plan for 2000-2020. With a 54 percent solid waste diversion rate, the focus now is on achieving 70 percent diversion on the path to zero waste using local waste management options whenever feasible. The Region has an Integrated Waste Management System that consists of a weekly curbside collection of recyclable printed paper and packaging and source separated organics; a seasonal collection of leaf and yard waste; a bi-weekly collection of residual garbage; and twice annual collection of intact, sealed household batteries. The Region also maintains three Waste Management Facilities for residential drop-off of household hazardous waste, polystyrene, construction and demolition debris and electronics. Special collection events are scheduled in the spring, summer and fall months for reusable items, household hazardous waste, and electronics. The Region is in the final commissioning stages of an energy from the waste facility for residual waste disposal that will recover energy from non-recyclable wastes. This facility is state of the art and is equipped for installation of carbon capture technology in the future. Despite all of these diversion programs and efforts, there is still room for improvement. Recent residential waste studies revealed that over 50% of the residual waste placed at the curb that is destined for incineration could be recycled. To move towards a zero waste community, the Region is looking to more advanced technologies for extracting the maximum recycling value from residential waste. Plans are underway to develop a pre-sort facility to remove organics and recyclables from the residual waste stream, including the growing multi-residential sector. Organics would then be treated anaerobically to generate biogas and fertilizer products for beneficial use within the Region. This project could increase the Region’s diversion rate beyond 70 percent and enhance the Region’s climate change mitigation goals. Zero waste is an ambitious goal in a changing regulatory and economic environment. Decision makers must be willing to consider new and emerging technologies and embrace change to succeed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=municipal%20waste" title="municipal waste">municipal waste</a>, <a href="https://publications.waset.org/abstracts/search?q=residential" title=" residential"> residential</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20diversion" title=" waste diversion"> waste diversion</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20waste" title=" zero waste"> zero waste</a> </p> <a href="https://publications.waset.org/abstracts/43268/durham-region-how-to-achieve-zero-waste-in-a-municipal-setting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Retail of Organic Food in Poland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Smoluk-Sikorska">Joanna Smoluk-Sikorska</a>, <a href="https://publications.waset.org/abstracts/search?q=W%C5%82adys%C5%82awa%20%C5%81uczka"> Władysława Łuczka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic farming is an important element of sustainable agriculture. It has been developing very dynamically in Poland, especially since Poland’s accession to the EU. Nevertheless, properly functioning organic market is a necessary condition justifying development of organic agriculture. Despite significant improvement, this market in Poland is still in the initial stage of growth. An important element of the market is distribution, especially retail, which offers specified product range to consumers. Therefore, there is a need to investigate retail outlets offering organic food in order to improve functioning of this part of the market. The inquiry research conducted in three types of outlets offering organic food, between 2011 and 2012 in the 8 largest Polish cities, shows that the majority of outlets offer cereals, processed fruit and vegetables as well as spices and the least shops – meat and sausages. The distributors mostly indicate unsatisfactory product range of suppliers as the reason for this situation. The main providers of the outlets are wholesalers, particularly in case of processed products, and in fresh products – organic farms. A very important distribution obstacle is dispersion of producers, which generates high transportation costs and what follows that, high price of organics. In the investigated shops, the most often used price calculation method is a cost method. The majority of the groceries and specialist shops apply margins between 21 and 40%. The margin in specialist outlets is the highest, in regard to the qualified service and advice. In turn, most retail networks declare the margin between 0 and 20%, which is consistent with low-price strategy applied in these shops. Some lacks in the product range of organics and in particular high prices cause that the demand volume is rather low. Therefore there is a need to support certain market actions, e.g. on-farm processing or promotion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20food" title="organic food">organic food</a>, <a href="https://publications.waset.org/abstracts/search?q=retail" title=" retail"> retail</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20range" title=" product range"> product range</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20sources" title=" supply sources"> supply sources</a> </p> <a href="https://publications.waset.org/abstracts/26739/retail-of-organic-food-in-poland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Catalytic Wet Air Oxidation as a Pretreatment Option for Biodegradability Enhancement of Industrial Effluent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushma%20Yadav">Sushma Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20K.%20Saroha"> Anil K. Saroha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complex industrial effluent generated from chemical industry is contaminated with toxic and hazardous organic compounds and not amenable to direct biological treatment. To effectively remove many toxic organic pollutants has made it evident that new, compact and more efficient systems are needed. Catalytic Wet Air Oxidation (CWAO) is a promising treatment technology for the abatement of organic pollutants in wastewater. A lot of information is available on using CWAO for the treatment of synthetic solution containing single organic pollutant. But the real industrial effluents containing multi-component mixture of organic compounds were less studied. The main objective of this study is to use the CWAO process for converting the organics into compounds more amenable to biological treatment; complete oxidation may be too expensive. Therefore efforts were made in the present study to explore the potential of alumina based Platinum (Pt) catalyst for the treatment of industrial organic raffinate containing toxic constituents like ammoniacal nitrogen, pyridine etc. The catalysts were prepared by incipient wetness impregnation method and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and BET (Brunauer, Emmett, and Teller) surface area. CWAO experiments were performed at atmospheric pressure and (30 °C - 70 °C) temperature conditions and the results were evaluated in terms of COD removal efficiency. The biodegradability test was performed by BOD/COD ratio for checking the toxicity of the industrial wastewater as well as for the treated water. The BOD/COD ratio of treated water was significantly increased and signified that the toxicity of the organics was decreased while the biodegradability was increased, indicating the more amenability towards biological treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20based%20pt%20catalyst" title="alumina based pt catalyst">alumina based pt catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=BOD%2FCOD%20ratio" title=" BOD/COD ratio"> BOD/COD ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=catalytic%20wet%20air%20oxidation" title=" catalytic wet air oxidation"> catalytic wet air oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20removal%20efficiency" title=" COD removal efficiency"> COD removal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20organic%20raffinate" title=" industrial organic raffinate"> industrial organic raffinate</a> </p> <a href="https://publications.waset.org/abstracts/35192/catalytic-wet-air-oxidation-as-a-pretreatment-option-for-biodegradability-enhancement-of-industrial-effluent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Lignin Valorization: Techno-Economic Analysis of Three Lignin Conversion Routes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iris%20Vural%20Gursel">Iris Vural Gursel</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Ramirez"> Andrea Ramirez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective utilization of lignin is an important mean for developing economically profitable biorefineries. Current literature suggests that large amounts of lignin will become available in second generation biorefineries. New conversion technologies will, therefore, be needed to carry lignin transformation well beyond combustion to produce energy, but towards high-value products such as chemicals and transportation fuels. In recent years, significant progress on catalysis has been made to improve transformation of lignin, and new catalytic processes are emerging. In this work, a techno-economic assessment of two of these novel conversion routes and comparison with more established lignin pyrolysis route were made. The aim is to provide insights into the potential performance and potential hotspots in order to guide the experimental research and ease the commercialization by early identifying cost drivers, strengths, and challenges. The lignin conversion routes selected for detailed assessment were: (non-catalytic) lignin pyrolysis as the benchmark, direct hydrodeoxygenation (HDO) of lignin and hydrothermal lignin depolymerisation. Products generated were mixed oxygenated aromatic monomers (MOAMON), light organics, heavy organics, and char. For the technical assessment, a basis design followed by process modelling in Aspen was done using experimental yields. A design capacity of 200 kt/year lignin feed was chosen that is equivalent to a 1 Mt/y scale lignocellulosic biorefinery. The downstream equipment was modelled to achieve the separation of the product streams defined. For determining external utility requirement, heat integration was considered and when possible gasses were combusted to cover heating demand. The models made were used in generating necessary data on material and energy flows. Next, an economic assessment was carried out by estimating operating and capital costs. Return on investment (ROI) and payback period (PBP) were used as indicators. The results of the process modelling indicate that series of separation steps are required. The downstream processing was found especially demanding in the hydrothermal upgrading process due to the presence of significant amount of unconverted lignin (34%) and water. Also, external utility requirements were found to be high. Due to the complex separations, hydrothermal upgrading process showed the highest capital cost (50 M€ more than benchmark). Whereas operating costs were found the highest for the direct HDO process (20 M€/year more than benchmark) due to the use of hydrogen. Because of high yields to valuable heavy organics (32%) and MOAMON (24%), direct HDO process showed the highest ROI (12%) and the shortest PBP (5 years). This process is found feasible with a positive net present value. However, it is very sensitive to the prices used in the calculation. The assessments at this stage are associated with large uncertainties. Nevertheless, they are useful for comparing alternatives and identifying whether a certain process should be given further consideration. Among the three processes investigated here, the direct HDO process was seen to be the most promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biorefinery" title="biorefinery">biorefinery</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20assessment" title=" economic assessment"> economic assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin%20conversion" title=" lignin conversion"> lignin conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20design" title=" process design"> process design</a> </p> <a href="https://publications.waset.org/abstracts/66893/lignin-valorization-techno-economic-analysis-of-three-lignin-conversion-routes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Safe Disposal of Processed Industrial Biomass as Alternative Organic Manure in Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Ramani">V. P. Ramani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Patel"> K. P. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Patel"> S. B. Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is necessary to dispose of generated industrial wastes in the proper way to overcome the further pollution for a safe environment. Waste can be used in agriculture for good quality higher food production. In order to evaluate the effect and rate of processed industrial biomass on yield, contents, uptake and soil status in maize, a field experiment was conducted during 2009 - 2011 at Anand on loamy sand soil for two years. The treatments of different levels of NPK i.e. 100% RD, 75% RD and 50% RD were kept to study the possibility of reduction in fertilizer application with the use of processed biomass (BM) in different proportion with FYM. (Where, RD= Recommended dose, FYM= Farm Yard Manure, BM= Processed Biomass.) The significantly highest grain yield of maize was recorded under the treatment of 75% NPK + BM application @ 10t ha-1. The higher (10t ha-1) and lower (5t ha-1) application rate of BM with full dose of NPK was found beneficial being at par with the treatment 75% NPK along with BM application @ 10t ha-1. There is saving of 25% recommended dose of NPK when combined with BM application @ 10.0t ha-1 or 50% saving of organics when applied with full dose (100%) of NPK. The highest straw yield (7734 kg ha-1) of maize on pooled basis was observed under the treatment of recommended dose of NPK along with FYM application at 7.5t ha-1 coupled with BM application at 2.5t ha-1. It was also observed that highest straw yield was at par under all the treatments except control and application of 100% recommended dose of NPK coupled with BM application at 7.5t ha-1. The Fe content of maize straw were found altered significantly due to different treatments on pooled basis and it was noticed that biomass application at 7.5t ha-1 along with recommended dose of NPK showed significant enhancement in Fe content of straw over other treatments. Among heavy metals, Co, Pb and Cr contents of grain were found significantly altered due to application of different treatments variably during the pooled. While, Ni content of maize grain was not altered significantly due to application of different organics. However, at higher rate of BM application i.e. of 10t ha-1, there was slight increase in heavy metal content of grain/ straw as well as DTPA heavy metals in soil; although the increase was not alarming Thus, the overall results indicated that the application of BM at 5t ha-1 along with full dose of NPK is beneficial to get higher yield of maize without affecting soil / plant health adversely. It also indicated that the 5t BM ha-1 could be utilized in place of 10t FYM ha-1 where FYM availability is scarce. The 10t BM ha-1 helps to reduce a load of chemical fertilizer up to 25 percent in agriculture. The lower use of agro-chemicals always favors safe environment. However, the continuous use of biomass needs periodical monitoring to check any buildup of heavy metals in soil/ plant over the years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternate%20use%20of%20industrial%20waste" title="alternate use of industrial waste">alternate use of industrial waste</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=processed%20industrial%20biomass" title=" processed industrial biomass"> processed industrial biomass</a> </p> <a href="https://publications.waset.org/abstracts/44192/safe-disposal-of-processed-industrial-biomass-as-alternative-organic-manure-in-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Preparation of hydrophobic silica membranes supported on alumina hollow fibers for pervaporation applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ami%20Okabe">Ami Okabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Daisuke%20Gondo"> Daisuke Gondo</a>, <a href="https://publications.waset.org/abstracts/search?q=Akira%20Ogawa"> Akira Ogawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhisa%20Hasegawa"> Yasuhisa Hasegawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Koichi%20Sato"> Koichi Sato</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadao%20Araki"> Sadao Araki</a>, <a href="https://publications.waset.org/abstracts/search?q=Hideki%20Yamamoto"> Hideki Yamamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane separation draws attention as the energy-saving technology. Pervaporation (PV) uses hydrophobic ceramic membranes to separate organic compounds from industrial wastewaters. PV makes it possible to separate organic compounds from azeotropic mixtures and from aqueous solutions. For the PV separation of low concentrations of organics from aqueous solutions, hydrophobic ceramic membranes are expected to have high separation performance compared with that of conventional hydrophilic membranes. Membrane separation performance is evaluated based on the pervaporation separation index (PSI), which depends on both the separation factor and the permeate flux. Ingenuity is required to increase the PSI such that the permeate flux increases without reducing the separation factor or to increase the separation factor without reducing the flux. A thin separation layer without defects and pinholes is required. In addition, it is known that the flux can be increased without reducing the separation factor by reducing the diffusion resistance of the membrane support. In a previous study, we prepared hydrophobic silica membranes by a molecular templating sol−gel method using cetyltrimethylammonium bromide (CTAB) to form pores suitable for permitting the passage of organic compounds through the membrane. We separated low-concentration organics from aqueous solutions by PV using these membranes. In the present study, hydrophobic silica membranes were prepared on a porous alumina hollow fiber support that is thinner than the previously used alumina support. Ethyl acetate (EA) is used in large industrial quantities, so it was selected as the organic substance to be separated. Hydrophobic silica membranes were prepared by dip-coating porous alumina supports with a -alumina interlayer into a silica sol containing CTAB and vinyltrimethoxysilane (VTMS) as the silica precursor. Membrane thickness increases with the lifting speed of the sol in the dip-coating process. Different thicknesses of the γ-alumina layer were prepared by dip-coating the support into a boehmite sol at different lifting speeds (0.5, 1, 3, and 5 mm s-1). Silica layers were subsequently formed by dip-coating using an immersion time of 60 s and lifting speed of 1 mm s-1. PV measurements of the EA (5 wt.%)/water system were carried out using VTMS hydrophobic silica membranes prepared on -alumina layers of different thicknesses. Water and EA flux showed substantially constant value despite of the change of the lifting speed to form the γ-alumina interlayer. All prepared hydrophobic silica membranes showed the higher PSI compared with the hydrophobic membranes using the previous alumina support of hollow fiber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20separation" title="membrane separation">membrane separation</a>, <a href="https://publications.waset.org/abstracts/search?q=pervaporation" title=" pervaporation"> pervaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic" title=" hydrophobic"> hydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a> </p> <a href="https://publications.waset.org/abstracts/35530/preparation-of-hydrophobic-silica-membranes-supported-on-alumina-hollow-fibers-for-pervaporation-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Removal of Organics Pollutants from Wastewater by Activated Carbon Prepared from Dates Stones of Southern Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abasse%20Kamarchou">Abasse Kamarchou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdelhafid%20Bebba"> Ahmed Abdelhafid Bebba</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Douadi"> Ali Douadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is the preparation of an activated carbon from waste date palm from El Oued region, namely the date stones and its use in the treatment of wastewater in this region. The study of the characteristics of this coal has the following results: specific surface 125.86 m2 / g, pore volume 0.039 cm3 / g, pore diameter of 16.25 microns, surface micropores 92.28 m2 / g, the outer surface 33,57 m2 /g, methylene blue number of 13.6 mg / g, iodine number 735.2 mg /g, the functional groups are the number of 4.10-2 mol / g. The optimum conditions for pH, stirring speed, initial concentration, contact time were determined. For organic pollutants, the best conditions are: pH > 8 and pH < 5, a contact time of 5 minutes and an agitation rate of 200 - 300 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=date%20palm" title="date palm">date palm</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Oued" title=" El-Oued"> El-Oued</a> </p> <a href="https://publications.waset.org/abstracts/47671/removal-of-organics-pollutants-from-wastewater-by-activated-carbon-prepared-from-dates-stones-of-southern-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Evaluation of Different Cropping Systems under Organic, Inorganic and Integrated Production Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sidramappa%20Gaddnakeri">Sidramappa Gaddnakeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Lokanath%20Malligawad"> Lokanath Malligawad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Any kind of research on production technology of individual crop / commodity /breed has not brought sustainability or stability in crop production. The sustainability of the system over years depends on the maintenance of the soil health. Organic production system includes use of organic manures, biofertilizers, green manuring for nutrient supply and biopesticides for plant protection helps to sustain the productivity even under adverse climatic condition. The study was initiated to evaluate the performance of different cropping systems under organic, inorganic and integrated production systems at The Institute of Organic Farming, University of Agricultural Sciences, Dharwad (Karnataka-India) under ICAR Network Project on Organic Farming. The trial was conducted for four years (2013-14 to 2016-17) on fixed site. Five cropping systems viz., sequence cropping of cowpea – safflower, greengram– rabi sorghum, maize-bengalgram, sole cropping of pigeonpea and intercropping of groundnut + cotton were evaluated under six nutrient management practices. The nutrient management practices are NM1 (100% Organic farming (Organic manures equivalent to 100% N (Cereals/cotton) or 100% P2O5 (Legumes), NM2 (75% Organic farming (Organic manures equivalent to 75% N (Cereals/cotton) or 100% P2O5 (Legumes) + Cow urine and Vermi-wash application), NM3 (Integrated farming (50% Organic + 50% Inorganic nutrients, NM4 (Integrated farming (75% Organic + 25% Inorganic nutrients, NM5 (100% Inorganic farming (Recommended dose of inorganic fertilizers)) and NM6 (Recommended dose of inorganic fertilizers + Recommended rate of farm yard manure (FYM). Among the cropping systems evaluated for different production systems indicated that the Groundnut + Hybrid cotton (2:1) intercropping system found more remunerative as compared to Sole pigeonpea cropping system, Greengram-Sorghum sequence cropping system, Maize-Chickpea sequence cropping system and Cowpea-Safflower sequence cropping system irrespective of the production systems. Production practices involving application of recommended rates of fertilizers + recommended rates of organic manures (Farmyard manure) produced higher net monetary returns and higher B:C ratio as compared to integrated production system involving application of 50 % organics + 50 % inorganic and application of 75 % organics + 25 % inorganic and organic production system only Both the two organic production systems viz., 100 % Organic production system (Organic manures equivalent to 100 % N (Cereals/cotton) or 100 % P2O5 (Legumes) and 75 % Organic production system (Organic manures equivalent to 75 % N (Cereals) or 100 % P2O5 (Legumes) + Cow urine and Vermi-wash application) are found to be on par. Further, integrated production system involving application of organic manures and inorganic fertilizers found more beneficial over organic production systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cropping%20systems" title="cropping systems">cropping systems</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20systems" title=" production systems"> production systems</a>, <a href="https://publications.waset.org/abstracts/search?q=cowpea" title=" cowpea"> cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=safflower" title=" safflower"> safflower</a>, <a href="https://publications.waset.org/abstracts/search?q=greengram" title=" greengram"> greengram</a>, <a href="https://publications.waset.org/abstracts/search?q=pigeonpea" title=" pigeonpea"> pigeonpea</a>, <a href="https://publications.waset.org/abstracts/search?q=groundnut" title=" groundnut"> groundnut</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a> </p> <a href="https://publications.waset.org/abstracts/81225/evaluation-of-different-cropping-systems-under-organic-inorganic-and-integrated-production-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Processes for Valorization of Valuable Products from Kerf Slurry Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadjib%20Drouiche">Nadjib Drouiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdenour%20Lami"> Abdenour Lami</a>, <a href="https://publications.waset.org/abstracts/search?q=Salaheddine%20Aoudj"> Salaheddine Aoudj</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarik%20Ouslimane"> Tarik Ouslimane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although solar cells manufacturing is a conservative industry, economics drivers continue to encourage innovation, feedstock savings and cost reduction. Kerf slurry waste is a complex product containing both valuable substances as well as contaminants. The valuable substances are: i) high purity silicon, ii) polyethylene glycol, and iii) silicon carbide. The contaminants mainly include metal fragments and organics. Therefore, recycling of the kerf slurry waste is an important subject not only from the treatment of waste but also from the recovery of valuable products. The present paper relates to processes for the recovery of valuable products from the kerf slurry waste in which they are contained, such products comprising nanoparticles, polyethylene glycol, high purity silicon, and silicon carbide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20cell" title="photovoltaic cell">photovoltaic cell</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerf%20slurry%20waste" title=" Kerf slurry waste"> Kerf slurry waste</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a> </p> <a href="https://publications.waset.org/abstracts/43809/processes-for-valorization-of-valuable-products-from-kerf-slurry-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Computational Analysis on Thermal Performance of Chip Package in Electro-Optical Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Long%20Kim%20Vu">Long Kim Vu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The central processing unit in Electro-Optical devices is a Field-programmable gate array (FPGA) chip package allowing flexible, reconfigurable computing but energy consumption. Because chip package is placed in isolated devices based on IP67 waterproof standard, there is no air circulation and the heat dissipation is a challenge. In this paper, the author successfully modeled a chip package which various interposer materials such as silicon, glass and organics. Computational fluid dynamics (CFD) was utilized to analyze the thermal performance of chip package in the case of considering comprehensive heat transfer modes: conduction, convection and radiation, which proposes equivalent heat dissipation. The logic chip temperature varying with time is compared between the simulation and experiment results showing the excellent correlation, proving the reasonable chip modeling and simulation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a> </p> <a href="https://publications.waset.org/abstracts/137585/computational-analysis-on-thermal-performance-of-chip-package-in-electro-optical-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Study on the Treatment of Waste Water Containing Nitrogen Heterocyclic Aromatic Hydrocarbons by Phenol-Induced Microbial Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhichao%20Li">Zhichao Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project has treated the waste-water that contains the nitrogen heterocyclic aromatic hydrocarbons, by using the phenol-induced microbial communities. The treatment of nitrogen heterocyclic aromatic hydrocarbons is a difficult problem for coking waste-water treatment. Pyridine, quinoline and indole are three kinds of most common nitrogen heterocyclic compounds in the f, and treating these refractory organics biologically has always been a research focus. The phenol-degrading bacteria can be used in the enhanced biological treatment effectively, and has a good treatment effect. Therefore, using the phenol-induced microbial communities to treat the coking waste-water can remove multiple pollutants concurrently, and improve the treating efficiency of coking waste-water. Experiments have proved that the phenol-induced microbial communities can degrade the nitrogen heterocyclic ring aromatic hydrocarbon efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol" title="phenol">phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20heterocyclic%20aromatic%20hydrocarbons" title=" nitrogen heterocyclic aromatic hydrocarbons"> nitrogen heterocyclic aromatic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol-degrading%20bacteria" title=" phenol-degrading bacteria"> phenol-degrading bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20communities" title=" microbial communities"> microbial communities</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment%20technology" title=" biological treatment technology"> biological treatment technology</a> </p> <a href="https://publications.waset.org/abstracts/78438/study-on-the-treatment-of-waste-water-containing-nitrogen-heterocyclic-aromatic-hydrocarbons-by-phenol-induced-microbial-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Evaluation of Combined System of Constructed Wetland/Expended Clay Aggregate in Greywater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eya%20Hentati">Eya Hentati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Lamine"> Mona Lamine</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalel%20Bouzid"> Jalel Bouzid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a laboratory-scale was designed and fabricated to treat single house greywater in the north of Tunisia with a combination of physical and natural treatments systems. The combined system includes a bio-filter composed of LECA® (lightweight expanded clay aggregate) followed by a vertical up-flow constructed wetland planted with Iris pseudacorus and Typha Latifolia. Applied two hydraulic retention times (HRTs) with two different plants types showed that a bio-filter planted with Typha Latifolia has an optimum removal efficiency for degradation of organic matter and transformation of nitrogen and phosphate at HRT of 30 h. The optimum removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), and suspended solids (SS) ranged between 48-65%, between while the nutrients removal was in the range of 70% to 90%. Fecal coliforms dropped by three to four orders of magnitude from their initial concentration, but this steel does not meet current regulations for unlimited irrigation. Hence further improvement procedures are suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constructed%20wetland" title="constructed wetland">constructed wetland</a>, <a href="https://publications.waset.org/abstracts/search?q=greywater%20treatment" title=" greywater treatment"> greywater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=nutriments" title=" nutriments"> nutriments</a>, <a href="https://publications.waset.org/abstracts/search?q=organics" title=" organics"> organics</a> </p> <a href="https://publications.waset.org/abstracts/93103/evaluation-of-combined-system-of-constructed-wetlandexpended-clay-aggregate-in-greywater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Optimization of Groundwater Utilization in Fish Aquaculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ahmed%20Eldesouky">M. Ahmed Eldesouky</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nasr"> S. Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Beltagy"> A. Beltagy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is generally considered as the best source for aquaculture as it is well protected from contamination. The most common problem limiting the use of groundwater in Egypt is its high iron, manganese and ammonia content. This problem is often overcome by applying the treatment before use. Aeration in many cases is not enough to oxidize iron and manganese in complex forms with organics. Most of the treatment we use potassium permanganate as an oxidizer followed by a pressurized closed green sand filter. The aim of present study is to investigate the optimum characteristics of groundwater to give lowest iron, manganese and ammonia, maximum production and quality of fish in aquaculture in El-Max Research Station. The major design goal of the system was determined the optimum time for harvesting the treated water, pH, and Glauconite weight to use it for aquaculture process in the research site and achieve the Egyptian law (48/1982) and EPA level required for aquaculture. The water characteristics are [Fe = 0.116 mg/L, Mn = 1.36 mg/L,TN = 0.44 mg/L , TP = 0.07 mg/L , Ammonia = 0.386 mg/L] by using the glauconite filter we obtained high efficiency for removal for [(Fe, Mn and Ammonia] ,but in the Lab we obtained result for (Fe, 43-97), ( Mn,92-99 ), and ( Ammonia, 66-88 )]. We summarized the results to show the optimum time, pH, Glauconite weight, and the best model for design in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquaculture" title="aquaculture">aquaculture</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia%20in%20groundwater" title=" ammonia in groundwater"> ammonia in groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20and%20manganese%20in%20water" title=" iron and manganese in water"> iron and manganese in water</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20treatment" title=" groundwater treatment"> groundwater treatment</a> </p> <a href="https://publications.waset.org/abstracts/46529/optimization-of-groundwater-utilization-in-fish-aquaculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Monitoring and Evaluation of the Reverse Osmosis Reject Wastewater from the Sulaibiya Wastewater Treatment Plant in Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mishari%20Khajah">Mishari Khajah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Elmuntasir%20Ahmed"> Mohd. Elmuntasir Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Al-Matouq"> Abdullah Al-Matouq</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Al-Ajeel"> Farah Al-Ajeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemah%20Dashti"> Fatemah Dashti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Shishter"> Ahmed Shishter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The overall aim of this study was to monitor and evaluate the effluent quality of a reverse osmosis (RO) reject wastewater from the biggest wastewater treatment plant in the world that is using RO and ultrafiltration membranes in their processes to reclaim water for indirect potable water reuse from municipal wastewaters. The RO reject wastewater or brine included various contaminants that could harm the human health and the environment such as trace organics, organic matters, heavy metals, nutrients and pathogens. Unfortunately, there are no legally binding regulatory guidelines for brine management in Kuwait as many countries around the world. This study monitors and evaluate the RO reject wastewater (brine) generated from the Sulaibiya Wastewater Treatment Plant. Samples were collected and analyzed about 37 parameters for one-year period, twice a month, and compare it to Kuwait Environment Public Authority, KEPA. Results showed that the heavy metals parameters were above KEPA standards, which needs to be treated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=domestic%20wastewater" title="domestic wastewater">domestic wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=potable%20water" title=" potable water"> potable water</a>, <a href="https://publications.waset.org/abstracts/search?q=RO%20reject%20wastewater" title=" RO reject wastewater"> RO reject wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaibiya%20wastewater%20treatment%20plant" title=" Sulaibiya wastewater treatment plant"> Sulaibiya wastewater treatment plant</a> </p> <a href="https://publications.waset.org/abstracts/162907/monitoring-and-evaluation-of-the-reverse-osmosis-reject-wastewater-from-the-sulaibiya-wastewater-treatment-plant-in-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> LCA/CFD Studies of Artisanal Brick Manufacture in Mexico</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Lopez-Aguilar">H. A. Lopez-Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Huerta-Reynoso"> E. A. Huerta-Reynoso</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Gomez"> J. A. Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Duarte-Moller"> J. A. Duarte-Moller</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Perez-Hernandez"> A. Perez-Hernandez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental performance of artisanal brick manufacture was studied by Lifecycle Assessment (LCA) methodology and Computational Fluid Dynamics (CFD) analysis in Mexico. The main objective of this paper is to evaluate the environmental impact during artisanal brick manufacture. LCA cradle-to-gate approach was complemented with CFD analysis to carry out an Environmental Impact Assessment (EIA). The lifecycle includes the stages of extraction, baking and transportation to the gate. The functional unit of this study was the production of a single brick in Chihuahua, Mexico and the impact categories studied were carcinogens, respiratory organics and inorganics, climate change radiation, ozone layer depletion, ecotoxicity, acidification/ eutrophication, land use, mineral use and fossil fuels. Laboratory techniques for fuel characterization, gas measurements in situ, and AP42 emission factors were employed in order to calculate gas emissions for inventory data. The results revealed that the categories with greater impacts are ecotoxicity and carcinogens. The CFD analysis is helpful in predicting the thermal diffusion and contaminants from a defined source. LCA-CFD synergy complemented the EIA and allowed us to identify the problem of thermal efficiency within the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LCA" title="LCA">LCA</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=brick" title=" brick"> brick</a>, <a href="https://publications.waset.org/abstracts/search?q=artisanal" title=" artisanal"> artisanal</a> </p> <a href="https://publications.waset.org/abstracts/46477/lcacfd-studies-of-artisanal-brick-manufacture-in-mexico" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Evaluating Acid Buffering Capacity of Sewage Sludge Barrier for Inhibiting Remobilization of Heavy Metals in Tailing Impoundment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huyuan%20Zhang">Huyuan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Chen"> Yi Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compacted sewage sludge has been proved to be feasible as a barrier material for tailing impoundment because of its low permeability and retardation of heavy metals. The long-term penetration of acid mine drainage, however, would acidify the barrier system and result in remobilization of previously immobilized heavy metal pollutants. In this study, the effect of decreasing pH on the mobility of three typical heavy metals (Zn, Pb, and Cu) is investigated by acid titration test on sewage sludge under various conditions. The remobilization of heavy metals is discussed based on the acid buffering capacity of sewage sludge-leachate system. Test results indicate that heavy metals are dramatically released out when pH is decreased below 6.2, and their amounts take the order of Zn > Cu > Pb. The acid buffering capacity of sewage sludge decreases with the solid-liquid ratio but increases with the anaerobic incubation time, and it is mainly governed by dissolution of contained carbonate and organics. These results reveal that the sewage sludge possesses enough acid buffering capacity to consume protons within the acid mine drainage. Thus, this study suggests that an explosive remobilization of heavy metals is not expected in a long-term perspective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20buffering%20capacity" title="acid buffering capacity">acid buffering capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=barrier" title=" barrier"> barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=remobilization" title=" remobilization"> remobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/64033/evaluating-acid-buffering-capacity-of-sewage-sludge-barrier-for-inhibiting-remobilization-of-heavy-metals-in-tailing-impoundment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Determination of Bisphenol A and Uric Acid by Modified Single-Walled Carbon Nanotube with Magnesium Layered Hydroxide 3-(4-Methoxyphenyl)Propionic Acid Nanocomposite </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Illyas%20Md%20Isa">Illyas Md Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Musfirah%20Che%20Sobry"> Maryam Musfirah Che Sobry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Syahrizal%20Ahmad"> Mohamad Syahrizal Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurashikin%20Abd%20Azis"> Nurashikin Abd Azis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A single-walled carbon nanotube (SWCNT) that has been modified with magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite was proposed for the determination of uric acid and bisphenol A by square wave voltammetry. The results obtained denote that MLH-MPP nanocomposites enhance the sensitivity of the voltammetry detection responses. The best performance is shown by the modified carbon nanotube paste electrode (CNTPE) with the composition of single-walled carbon nanotube: magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite at 100:15 (% w/w). The linear range where the sensor works well is within the concentration 1.0 10-7 – 1.0 10-4 and 3.0 10-7 – 1.0 10-4 for uric acid and bisphenol A respectively with the limit of detection of 1.0 10-7 M for both organics. The interferences of uric acid and bisphenol A with other organic were studied and most of them did not interfere. The results shown for each experimental parameter on the proposed CNTPE showed that it has high sensitivity, good selectivity, repeatability and reproducibility. Therefore, the modified CNTPE can be used for the determination of uric acid and bisphenol A in real samples such as blood, plastic bottles and foods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bisphenol%20A" title="bisphenol A">bisphenol A</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20layered%20hydroxide%203-%284-methoxyphenyl%29propionic%20acid%20nanocomposite" title=" magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite"> magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanocomposite" title=" Nanocomposite"> Nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=uric%20acid" title=" uric acid"> uric acid</a> </p> <a href="https://publications.waset.org/abstracts/84874/determination-of-bisphenol-a-and-uric-acid-by-modified-single-walled-carbon-nanotube-with-magnesium-layered-hydroxide-3-4-methoxyphenylpropionic-acid-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Synergetic Effect of Dietary Essential Amino Acids (Lysine and Methionine) on the Growth, Body Composition and Enzymes Activities of Genetically Male Tilapia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Khan">Noor Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hira%20Waris"> Hira Waris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted on genetically male tilapia (GMT) fry reared in glass aquarium for three months to examine the synergetic effect of essential amino acids (EAA) supplementation on growth, body composition, and enzyme activities. Fish having average body weight of 16.56 ± 0.42g were fed twice a day on artificial feed (20% crude protein) procured from Oryza Organics (commercial feed) supplemented with EAA; methionine (M) and lysine (L) designated as T1 (0.3%M and 2%L), T2 (0.6%M and 4%L), T3 (0.9%M and 6%L) and control without EAA. Significantly higher growth performance was observed in T1, followed by T2, T3, and control. The results revealed that whole-body dry matter and crude protein were significantly higher (p ≤ 0.05) in T3 (0.9% and 6%) feeding fish, while the crude fat was lower (p ≤ 0.05) in a similar group of fish. Additionally, protease, amylase, and lipase activities were also observed maximum (p ≤ 0.05) in response to T3 than other treatments and control. However, the EAA, especially lysine and methionine, were found significantly higher (p ≤ 0.05) in T1 compared to other treatments. Conclusively, the addition of EAA, methionine, and lysine in the feed not only enhanced the growth performance of GMT fry but also improved body proximate composition and essential amino acid profile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetically%20male%20tilapia" title="genetically male tilapia">genetically male tilapia</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=digestive%20enzyme%20activities" title=" digestive enzyme activities"> digestive enzyme activities</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile" title=" amino acid profile"> amino acid profile</a> </p> <a href="https://publications.waset.org/abstracts/114306/synergetic-effect-of-dietary-essential-amino-acids-lysine-and-methionine-on-the-growth-body-composition-and-enzymes-activities-of-genetically-male-tilapia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Use of Yeast-Chitosan Bio-Microcapsules with Ultrafiltration Membrane to Remove Ammonia Nitrogen and Organic Matter in Raw Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao%20Ding">Chao Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Shi"> Jun Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Huiping%20Deng"> Huiping Deng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reports the preparation of a new type yeast-chitosan bio-microcapsule coating sodium alginate and chitosan, with good biocompatibility and mechanical strength. Focusing on the optimum preparation conditions of bio-microcapsule, a dynamic test of yeast-chitosan bio-microcapsule combined with ultrafiltration membrane was established to evaluate both the removal efficiency of major pollutants from raw water and the applicability of this system. The results of orthogonal experiments showed that the optimum preparation procedure are as follows: mix sodium alginate solution (3%) with bacteria liquid in specific proportion, drop in calcium chloride solution (4%) and solidify for 30 min; put the plastic beads into chitosan liquid (1.8%) to overlay film for 10 min and then into glutaraldehyde solution (1%) to get cross-linked for 5 min. In dynamic test, the microcapsules were effective as soon as were added in the system, without any start-up time. The removal efficiency of turbidity, ammonia nitrogen and organic matter was 60%, 80%, and 40%. Besides, the bio-microcapsules were prospective adsorbent for heavy metal; they adsorb Pb and Cr⁶⁺ in water while maintaining high biological activity to degrade ammonia nitrogen and small molecular organics through assimilation. With the presence of bio-microcapsules, the internal yeast strains’ adaptability on the external environment and resistance ability on toxic pollutants will be increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonia%20nitrogen" title="ammonia nitrogen">ammonia nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-microcapsules" title=" bio-microcapsules"> bio-microcapsules</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration%20membrane" title=" ultrafiltration membrane"> ultrafiltration membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast-chitosan" title=" yeast-chitosan"> yeast-chitosan</a> </p> <a href="https://publications.waset.org/abstracts/64034/use-of-yeast-chitosan-bio-microcapsules-with-ultrafiltration-membrane-to-remove-ammonia-nitrogen-and-organic-matter-in-raw-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Public Participation in Science: The Case of Genetic Modified Organisms in Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Luisa%20Nozawa%20Ribeiro">Maria Luisa Nozawa Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Teresa%20Miceli%20Kerbauy"> Maria Teresa Miceli Kerbauy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to present the theories of public participation in order to understand the context of the public GMO (Genetic Modified Organisms) policies in Brazil, highlighting the characteristics of its configuration and the dialog with the experts. As a controversy subject, the commercialization of GMO provoked manifestation of some popular and environmental representative groups questioning the decisions of policy makers and experts on the matter. Many aspects and consequences of the plantation and consumption of this crops emerged and the safety of this technology was questioned. Environmentalists, Civil Right's movement, representatives of rural workers, farmers and organics producers, etc. demonstrated their point of view, also sustained by some experts of medical, genetical, environmental, agronomical sciences, etc. fields. Despite this movement, the precautionary principle (risk management), implemented in 1987, suggested precaution facing new technologies and innovations in the sustainable development society. This principle influenced many legislation and regulation on GMO around the world, including Brazil, which became a reference among the world regulatory GMO systems. The Brazilian legislation ensures the citizens participation on GMO discussion, characteristic that was important to establish the connection between the subject and the participation theory. These deliberation spaces materialized in Brazil through the "Public Audiences", which are managed by the National Biosafety Technical Commission (CTNBio), the department responsible for controlling the research, production and commercialization of GMOs in Brazil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=public%20engagement" title="public engagement">public engagement</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20participation" title=" public participation"> public participation</a>, <a href="https://publications.waset.org/abstracts/search?q=science%20and%20technology%20studies" title=" science and technology studies"> science and technology studies</a>, <a href="https://publications.waset.org/abstracts/search?q=transgenic%20politics" title=" transgenic politics"> transgenic politics</a> </p> <a href="https://publications.waset.org/abstracts/54519/public-participation-in-science-the-case-of-genetic-modified-organisms-in-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Investigation of Irrigation Water Quality at Al-Wafra Agricultural Area, Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mosab%20Aljeri">Mosab Aljeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abdulraheem"> Ali Abdulraheem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The water quality of five water types at Al-Wuhaib farm, Al-Wafra area, was studies through onsite field measurements, including pH, temperature, electrical conductivity (EC), and dissolved oxygen (DO), for four different water types. Biweekly samples were collected and analyzed for two months to obtain data of chemicals, nutrients, organics, and heavy metals. The field and laboratory results were compared with irrigation standards of Kuwait Environmental Public Authority (KEPA). The pH values of the five samples sites were within the maximum and minimum limits of KEPA standards. Based on EC values, two groups of water types were observed. The first group represents freshwater quality originated from freshwater Ministry of Electricity & Water & Renewable Energy (MEWRE) line or from freshwater tanks or treated wastewater. The second group represents brackish water type originated from groundwater or treated water mixed with groundwater. The study indicated that all nitrogen forms (ammonia, Total Kjeldahl nitrogen (TKN), Total nitrogen (TN)), total phosphate concentrations and all tested heavy metals for the five water types were below KEPA standards. These macro and micro nutrients are essential for plant growth and can be used as fertilizers. The study suggest that the groundwater should be treated and disinfected in the farming area. Also, these type of studies shall be carried out routinely to all farm areas to ensure safe water use and safe agricultural produce. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate" title=" phosphate"> phosphate</a> </p> <a href="https://publications.waset.org/abstracts/172549/investigation-of-irrigation-water-quality-at-al-wafra-agricultural-area-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Effectiveness of Catalysis in Ozonation for the Removal of Herbizide 2,4 Dichlorophenoxyacetic Acid from Contaminated Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Shanthi">S. Shanthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catalyzed oxidation processes show extraordinary guarantee for application in numerous wastewater treatment ranges. Advanced oxidation processes are emerging innovation that might be utilized for particular objectives in wastewater treatment. This research work provides a solution for removal a refractory organic compound 2,4-dichlorophenoxyaceticacid a common water pollutant. All studies were done in batch mode in a constantly stirred reactor. Alternative ozonation processes catalysed by transition metals or granular activated carbon have been investigated for degradation of organics. Catalytic ozonation under study are homogeneous catalytic ozonation, which is based on ozone activation by transition metal ions present in aqueous solution, and secondly as heterogeneous catalytic ozonation in the presence of Granular Activated Carbon (GAC). The present studies reveal that heterogeneous catalytic ozonation using GAC favour the ozonation of 2,4-dichlorophenoxyaceticacid by increasing the rate of ozonation and a much higher degradation of substrates were obtained in a given time. Be that it may, Fe2+and Fe3+ ions decreased the rate of degradation of 2,4-dichlorophenoxyaceticacid indicating that it acts as a negative catalyst. In case of heterogeneous catalytic ozonation using GAC catalyst it was found that during the initial 5 minutes of contact solution concentration decreased significantly as the pollutants were adsorbed initially. Thereafter the substrate started getting oxidized and ozonation became a dominates the treatment process. The exhausted GAC was found to be regenerated in situ. The percentage reduction of the substrate was maximum achieved in minimum possible time when GAC catalyst is employed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ozonation" title="ozonation">ozonation</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20catalysis" title=" homogeneous catalysis"> homogeneous catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalysis" title=" heterogeneous catalysis"> heterogeneous catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20activated%20carbon" title=" granular activated carbon"> granular activated carbon</a> </p> <a href="https://publications.waset.org/abstracts/52722/effectiveness-of-catalysis-in-ozonation-for-the-removal-of-herbizide-24-dichlorophenoxyacetic-acid-from-contaminated-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Thermodynamics of Water Condensation on an Aqueous Organic-Coated Aerosol Aging via Chemical Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuri%20S.%20Djikaev">Yuri S. Djikaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large subset of aqueous aerosols can be initially (immediately upon formation) coated with various organic amphiphilic compounds whereof the hydrophilic moieties are attached to the aqueous aerosol core while the hydrophobic moieties are exposed to the air thus forming a hydrophobic coating thereupon. We study the thermodynamics of water condensation on such an aerosol whereof the hydrophobic organic coating is being concomitantly processed by chemical reactions with atmospheric reactive species. Such processing (chemical aging) enables the initially inert aerosol to serve as a nucleating center for water condensation. The most probable pathway of such aging involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic moieties of surface organics (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). Taking these two reactions into account, we derive an expression for the free energy of formation of an aqueous droplet on an organic-coated aerosol. The model is illustrated by numerical calculations. The results suggest that the formation of aqueous cloud droplets on such aerosols is most likely to occur via Kohler activation rather than via nucleation. The model allows one to determine the threshold parameters necessary for their Kohler activation. Numerical results also corroborate previous suggestions that one can neglect some details of aerosol chemical composition in investigating aerosol effects on climate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20aerosols" title="aqueous aerosols">aqueous aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20coating" title=" organic coating"> organic coating</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20aging" title=" chemical aging"> chemical aging</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20condensation%20nuclei" title=" cloud condensation nuclei"> cloud condensation nuclei</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohler%20activation" title=" Kohler activation"> Kohler activation</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20droplets" title=" cloud droplets"> cloud droplets</a> </p> <a href="https://publications.waset.org/abstracts/43796/thermodynamics-of-water-condensation-on-an-aqueous-organic-coated-aerosol-aging-via-chemical-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organics&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organics&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10