CINXE.COM

Esemény (matematika) – Wikipédia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="hu" dir="ltr"> <head> <meta charset="UTF-8"> <title>Esemény (matematika) – Wikipédia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )huwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"ymd","wgMonthNames":["","január","február","március","április","május","június","július","augusztus","szeptember","október","november","december"],"wgRequestId":"5201d0f1-d079-4095-8b8f-8330143259b2","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Esemény_(matematika)","wgTitle":"Esemény (matematika)","wgCurRevisionId":26922641,"wgRevisionId":26922641,"wgArticleId":1003533,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Valószínűségszámítás"],"wgPageViewLanguage":"hu","wgPageContentLanguage":"hu","wgPageContentModel":"wikitext","wgRelevantPageName":"Esemény_(matematika)","wgRelevantArticleId":1003533,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":2}} },"wgStableRevisionId":26922641,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"hu","pageLanguageDir":"ltr","pageVariantFallbacks":"hu"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q10290214","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgSiteNoticeId":"2.195"};RLSTATE={ "ext.gadget.infobox":"ready","ext.gadget.wikiMenuStyles":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.wdsearch","ext.gadget.irclogin","ext.gadget.ImageAnnotator.loader","ext.gadget.collapsible","ext.gadget.kepdia", "ext.gadget.kinai","ext.gadget.poziciosTerkep","ext.gadget.wikiMenu","ext.gadget.wiwosm","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=hu&amp;modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=hu&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=hu&amp;modules=ext.gadget.infobox%2CwikiMenuStyles&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=hu&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Esemény (matematika) – Wikipédia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//hu.m.wikipedia.org/wiki/Esem%C3%A9ny_(matematika)"> <link rel="alternate" type="application/x-wiki" title="Szerkesztés" href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipédia (hu)"> <link rel="EditURI" type="application/rsd+xml" href="//hu.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://hu.wikipedia.org/wiki/Esem%C3%A9ny_(matematika)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.hu"> <link rel="alternate" type="application/atom+xml" title="Wikipédia Atom-hírcsatorna" href="/w/index.php?title=Speci%C3%A1lis:Friss_v%C3%A1ltoztat%C3%A1sok&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Esemény_matematika rootpage-Esemény_matematika skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Ugrás a tartalomhoz</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Wiki"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Főmenü" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Főmenü</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Főmenü</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">áthelyezés az oldalsávba</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">elrejtés</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigáció </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Kezd%C5%91lap" title="A kezdőlap megtekintése [z]" accesskey="z"><span>Kezdőlap</span></a></li><li id="n-sidebar-contents" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Tartalom"><span>Tartalom</span></a></li><li id="n-sidebar-featured" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Kiemelt_sz%C3%B3cikkek_list%C3%A1ja"><span>Kiemelt szócikkek</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Friss_v%C3%A1ltoztat%C3%A1sok" title="A wikiben történt legutóbbi változtatások listája [r]" accesskey="r"><span>Friss változtatások</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Lap_tal%C3%A1lomra" title="Egy véletlenszerűen kiválasztott lap betöltése [x]" accesskey="x"><span>Lap találomra</span></a></li><li id="n-sidebar-enquiries" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Tudakoz%C3%B3"><span>Tudakozó</span></a></li> </ul> </div> </div> <div id="p-sidebar-participate" class="vector-menu mw-portlet mw-portlet-sidebar-participate" > <div class="vector-menu-heading"> Részvétel </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-sidebar-basics" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:%C3%9Aj_szerkeszt%C5%91knek"><span>Kezdőknek</span></a></li><li id="n-sidebar-help" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Seg%C3%ADts%C3%A9g"><span>Segítség</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Port%C3%A1l:K%C3%B6z%C3%B6ss%C3%A9g" title="A projektről, miben segíthetsz, mit hol találsz meg"><span>Közösségi portál</span></a></li><li id="n-sidebar-contact" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Kapcsolatfelv%C3%A9tel"><span>Kapcsolatfelvétel</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Kezd%C5%91lap" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipédia" src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" style="width: 7.4375em; height: 1.125em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-hu.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speci%C3%A1lis:Keres%C3%A9s" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Keresés a Wikipédián [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Keresés</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Keresés a Wikipédián" aria-label="Keresés a Wikipédián" autocapitalize="sentences" title="Keresés a Wikipédián [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciális:Keresés"> </div> <button class="cdx-button cdx-search-input__end-button">Keresés</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Személyes eszközök"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Megjelenés"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Megjelenés" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Megjelenés</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_hu.wikipedia.org&amp;uselang=hu" class=""><span>Adományok</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speci%C3%A1lis:Szerkeszt%C5%91i_fi%C3%B3k_l%C3%A9trehoz%C3%A1sa&amp;returnto=Esem%C3%A9ny+%28matematika%29" title="Arra bíztatunk, hogy hozz létre egy fiókot, és jelentkezz be, azonban ez nem kötelező" class=""><span>Fiók létrehozása</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speci%C3%A1lis:Bel%C3%A9p%C3%A9s&amp;returnto=Esem%C3%A9ny+%28matematika%29" title="Bejelentkezni javasolt, de nem kötelező [o]" accesskey="o" class=""><span>Bejelentkezés</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="További lehetőségek" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Személyes eszközök" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Személyes eszközök</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Felhasználói menü" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_hu.wikipedia.org&amp;uselang=hu"><span>Adományok</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:Szerkeszt%C5%91i_fi%C3%B3k_l%C3%A9trehoz%C3%A1sa&amp;returnto=Esem%C3%A9ny+%28matematika%29" title="Arra bíztatunk, hogy hozz létre egy fiókot, és jelentkezz be, azonban ez nem kötelező"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Fiók létrehozása</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:Bel%C3%A9p%C3%A9s&amp;returnto=Esem%C3%A9ny+%28matematika%29" title="Bejelentkezni javasolt, de nem kötelező [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Bejelentkezés</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Lapok kijelentkezett szerkesztőknek <a href="/wiki/Seg%C3%ADts%C3%A9g:Bevezet%C3%A9s" aria-label="Tudj meg többet a szerkesztésről"><span>további információk</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:K%C3%B6zrem%C5%B1k%C3%B6d%C3%A9seim" title="Erről az IP-címről végrehajtott szerkesztések listája [y]" accesskey="y"><span>Közreműködések</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Vit%C3%A1m" title="Az általad használt IP-címről végrehajtott szerkesztések megvitatása [n]" accesskey="n"><span>Vitalap</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003Eelrejt\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"anonnotice\" lang=\"hu\" dir=\"ltr\"\u003E\u003Cdiv style=\"padding:3px 10px; margin:10px; border:1px solid #b3b7ff; font-size:95%; text-align:center;\"\u003E\n\u003Cp\u003ENovember 30-án \u003Cb\u003E\u003Ca href=\"/wiki/Wikip%C3%A9dia:Wikital%C3%A1lkoz%C3%B3k/Budapest,_2024._november_30.\" title=\"Wikipédia:Wikitalálkozók/Budapest, 2024. november 30.\"\u003Etalálkozót tartunk\u003C/a\u003E\u003C/b\u003E Budapesten, ahol téged is szeretettel várunk!\n\u003C/p\u003E\n\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Wiki"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Tartalomjegyzék" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Tartalomjegyzék</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">áthelyezés az oldalsávba</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">elrejtés</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Bevezető</div> </a> </li> <li id="toc-Relációk_eseményeken" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relációk_eseményeken"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Relációk eseményeken</span> </div> </a> <ul id="toc-Relációk_eseményeken-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Műveletek_eseményekkel" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Műveletek_eseményekkel"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Műveletek eseményekkel</span> </div> </a> <button aria-controls="toc-Műveletek_eseményekkel-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>A(z) Műveletek eseményekkel alszakasz kinyitása/becsukása</span> </button> <ul id="toc-Műveletek_eseményekkel-sublist" class="vector-toc-list"> <li id="toc-Metszet,_diszjunktság" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Metszet,_diszjunktság"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Metszet, diszjunktság</span> </div> </a> <ul id="toc-Metszet,_diszjunktság-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unió" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Unió"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Unió</span> </div> </a> <ul id="toc-Unió-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Komplementer_esemény" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Komplementer_esemény"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Komplementer esemény</span> </div> </a> <ul id="toc-Komplementer_esemény-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Különbség" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Különbség"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Különbség</span> </div> </a> <ul id="toc-Különbség-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Szimmetrikus_differencia" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Szimmetrikus_differencia"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Szimmetrikus differencia</span> </div> </a> <ul id="toc-Szimmetrikus_differencia-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Teljes_eseményrendszer" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Teljes_eseményrendszer"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Teljes eseményrendszer</span> </div> </a> <ul id="toc-Teljes_eseményrendszer-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Összetett_események,_elemi_események" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Összetett_események,_elemi_események"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Összetett események, elemi események</span> </div> </a> <ul id="toc-Összetett_események,_elemi_események-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Függetlenség" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Függetlenség"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Függetlenség</span> </div> </a> <ul id="toc-Függetlenség-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Példák" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Példák"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Példák</span> </div> </a> <button aria-controls="toc-Példák-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>A(z) Példák alszakasz kinyitása/becsukása</span> </button> <ul id="toc-Példák-sublist" class="vector-toc-list"> <li id="toc-Kockadobás" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kockadobás"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Kockadobás</span> </div> </a> <ul id="toc-Kockadobás-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Érmedobás" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Érmedobás"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Érmedobás</span> </div> </a> <ul id="toc-Érmedobás-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Diszkrét_események" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Diszkrét_események"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Diszkrét események</span> </div> </a> <ul id="toc-Diszkrét_események-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Folytonos_események" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Folytonos_események"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Folytonos események</span> </div> </a> <ul id="toc-Folytonos_események-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Források" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Források"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Források</span> </div> </a> <ul id="toc-Források-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Jegyzetek" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Jegyzetek"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Jegyzetek</span> </div> </a> <ul id="toc-Jegyzetek-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fordítás" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Fordítás"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Fordítás</span> </div> </a> <ul id="toc-Fordítás-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Tartalomjegyzék" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Tartalomjegyzék kinyitása/becsukása" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Tartalomjegyzék kinyitása/becsukása</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Esemény (matematika)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Ugrás egy más nyelvű szócikkre. Elérhető 42 nyelven" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-42" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">42 nyelv</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Event_(probability_theory)" title="Event (probability theory) – angol" lang="en" hreflang="en" data-title="Event (probability theory)" data-language-autonym="English" data-language-local-name="angol" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AD%D8%AF%D8%AB_(%D9%86%D8%B8%D8%B1%D9%8A%D8%A9_%D8%A7%D9%84%D8%A7%D8%AD%D8%AA%D9%85%D8%A7%D9%84%D8%A7%D8%AA)" title="حدث (نظرية الاحتمالات) – arab" lang="ar" hreflang="ar" data-title="حدث (نظرية الاحتمالات)" data-language-autonym="العربية" data-language-local-name="arab" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/T%C9%99sad%C3%BCfi_hadis%C9%99" title="Təsadüfi hadisə – azerbajdzsáni" lang="az" hreflang="az" data-title="Təsadüfi hadisə" data-language-autonym="Azərbaycanca" data-language-local-name="azerbajdzsáni" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%92%D1%8B%D0%BF%D0%B0%D0%B4%D0%BA%D0%BE%D0%B2%D0%B0%D1%8F_%D0%BF%D0%B0%D0%B4%D0%B7%D0%B5%D1%8F" title="Выпадковая падзея – belarusz" lang="be" hreflang="be" data-title="Выпадковая падзея" data-language-autonym="Беларуская" data-language-local-name="belarusz" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%98%E0%A6%9F%E0%A6%A8%E0%A6%BE_(%E0%A6%B8%E0%A6%AE%E0%A7%8D%E0%A6%AD%E0%A6%BE%E0%A6%AC%E0%A6%A8%E0%A6%BE_%E0%A6%A4%E0%A6%A4%E0%A7%8D%E0%A6%A4%E0%A7%8D%E0%A6%AC)" title="ঘটনা (সম্ভাবনা তত্ত্ব) – bangla" lang="bn" hreflang="bn" data-title="ঘটনা (সম্ভাবনা তত্ত্ব)" data-language-autonym="বাংলা" data-language-local-name="bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Succ%C3%A9s" title="Succés – katalán" lang="ca" hreflang="ca" data-title="Succés" data-language-autonym="Català" data-language-local-name="katalán" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%95%D9%88%D9%88%D8%AF%D8%A7%D9%88_(%D8%AA%DB%8C%DB%86%D8%B1%DB%8C%DB%8C_%D8%A6%DB%95%DA%AF%DB%95%D8%B1)" title="ڕووداو (تیۆریی ئەگەر) – közép-ázsiai kurd" lang="ckb" hreflang="ckb" data-title="ڕووداو (تیۆریی ئەگەر)" data-language-autonym="کوردی" data-language-local-name="közép-ázsiai kurd" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/N%C3%A1hodn%C3%BD_jev" title="Náhodný jev – cseh" lang="cs" hreflang="cs" data-title="Náhodný jev" data-language-autonym="Čeština" data-language-local-name="cseh" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%C4%82%D0%BD%D1%81%C4%83%D1%80%D1%82_%D0%BF%D1%83%D0%BB%C4%83%D0%BC" title="Ăнсăрт пулăм – csuvas" lang="cv" hreflang="cv" data-title="Ăнсăрт пулăм" data-language-autonym="Чӑвашла" data-language-local-name="csuvas" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Digwyddiad_(theori_tebygolrwydd)" title="Digwyddiad (theori tebygolrwydd) – walesi" lang="cy" hreflang="cy" data-title="Digwyddiad (theori tebygolrwydd)" data-language-autonym="Cymraeg" data-language-local-name="walesi" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Ereignis_(Wahrscheinlichkeitstheorie)" title="Ereignis (Wahrscheinlichkeitstheorie) – német" lang="de" hreflang="de" data-title="Ereignis (Wahrscheinlichkeitstheorie)" data-language-autonym="Deutsch" data-language-local-name="német" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%93%CE%B5%CE%B3%CE%BF%CE%BD%CF%8C%CF%82_(%CE%B8%CE%B5%CF%89%CF%81%CE%AF%CE%B1_%CF%80%CE%B9%CE%B8%CE%B1%CE%BD%CE%BF%CF%84%CE%AE%CF%84%CF%89%CE%BD)" title="Γεγονός (θεωρία πιθανοτήτων) – görög" lang="el" hreflang="el" data-title="Γεγονός (θεωρία πιθανοτήτων)" data-language-autonym="Ελληνικά" data-language-local-name="görög" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Evento_(probablo-teorio)" title="Evento (probablo-teorio) – eszperantó" lang="eo" hreflang="eo" data-title="Evento (probablo-teorio)" data-language-autonym="Esperanto" data-language-local-name="eszperantó" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Evento_aleatorio" title="Evento aleatorio – spanyol" lang="es" hreflang="es" data-title="Evento aleatorio" data-language-autonym="Español" data-language-local-name="spanyol" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/S%C3%BCndmus_(matemaatika)" title="Sündmus (matemaatika) – észt" lang="et" hreflang="et" data-title="Sündmus (matemaatika)" data-language-autonym="Eesti" data-language-local-name="észt" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Gertakizun_(probabilitatea)" title="Gertakizun (probabilitatea) – baszk" lang="eu" hreflang="eu" data-title="Gertakizun (probabilitatea)" data-language-autonym="Euskara" data-language-local-name="baszk" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%BE%DB%8C%D8%B4%D8%A7%D9%85%D8%AF" title="پیشامد – perzsa" lang="fa" hreflang="fa" data-title="پیشامد" data-language-autonym="فارسی" data-language-local-name="perzsa" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Tapahtuma_(todenn%C3%A4k%C3%B6isyys)" title="Tapahtuma (todennäköisyys) – finn" lang="fi" hreflang="fi" data-title="Tapahtuma (todennäköisyys)" data-language-autonym="Suomi" data-language-local-name="finn" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/%C3%89v%C3%A9nement_(probabilit%C3%A9s)" title="Événement (probabilités) – francia" lang="fr" hreflang="fr" data-title="Événement (probabilités)" data-language-autonym="Français" data-language-local-name="francia" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%90%D7%95%D7%A8%D7%A2" title="מאורע – héber" lang="he" hreflang="he" data-title="מאורע" data-language-autonym="עברית" data-language-local-name="héber" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Atbur%C3%B0ur_(l%C3%ADkindafr%C3%A6%C3%B0i)" title="Atburður (líkindafræði) – izlandi" lang="is" hreflang="is" data-title="Atburður (líkindafræði)" data-language-autonym="Íslenska" data-language-local-name="izlandi" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Evento_(teoria_della_probabilit%C3%A0)" title="Evento (teoria della probabilità) – olasz" lang="it" hreflang="it" data-title="Evento (teoria della probabilità)" data-language-autonym="Italiano" data-language-local-name="olasz" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E4%BA%8B%E8%B1%A1_(%E7%A2%BA%E7%8E%87%E8%AB%96)" title="事象 (確率論) – japán" lang="ja" hreflang="ja" data-title="事象 (確率論)" data-language-autonym="日本語" data-language-local-name="japán" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%AE%E1%83%93%E1%83%9D%E1%83%9B%E1%83%98%E1%83%9A%E1%83%9D%E1%83%91%E1%83%90" title="ხდომილობა – grúz" lang="ka" hreflang="ka" data-title="ხდომილობა" data-language-autonym="ქართული" data-language-local-name="grúz" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%82%AC%EA%B1%B4_(%ED%99%95%EB%A5%A0%EB%A1%A0)" title="사건 (확률론) – koreai" lang="ko" hreflang="ko" data-title="사건 (확률론)" data-language-autonym="한국어" data-language-local-name="koreai" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Gebeurtenis_(kansrekening)" title="Gebeurtenis (kansrekening) – holland" lang="nl" hreflang="nl" data-title="Gebeurtenis (kansrekening)" data-language-autonym="Nederlands" data-language-local-name="holland" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Hendelse" title="Hendelse – norvég (bokmål)" lang="nb" hreflang="nb" data-title="Hendelse" data-language-autonym="Norsk bokmål" data-language-local-name="norvég (bokmål)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Zdarzenie_losowe_(teoria_prawdopodobie%C5%84stwa)" title="Zdarzenie losowe (teoria prawdopodobieństwa) – lengyel" lang="pl" hreflang="pl" data-title="Zdarzenie losowe (teoria prawdopodobieństwa)" data-language-autonym="Polski" data-language-local-name="lengyel" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Evento_(teoria_das_probabilidades)" title="Evento (teoria das probabilidades) – portugál" lang="pt" hreflang="pt" data-title="Evento (teoria das probabilidades)" data-language-autonym="Português" data-language-local-name="portugál" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%BE%D0%B5_%D1%81%D0%BE%D0%B1%D1%8B%D1%82%D0%B8%D0%B5" title="Случайное событие – orosz" lang="ru" hreflang="ru" data-title="Случайное событие" data-language-autonym="Русский" data-language-local-name="orosz" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Dogodek_(verjetnostni_ra%C4%8Dun)" title="Dogodek (verjetnostni račun) – szlovén" lang="sl" hreflang="sl" data-title="Dogodek (verjetnostni račun)" data-language-autonym="Slovenščina" data-language-local-name="szlovén" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%94%D0%BE%D0%B3%D0%B0%D1%92%D0%B0%D1%98_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%98%D0%B0_%D0%B2%D0%B5%D1%80%D0%BE%D0%B2%D0%B0%D1%82%D0%BD%D0%BE%D1%9B%D0%B5)" title="Догађај (теорија вероватноће) – szerb" lang="sr" hreflang="sr" data-title="Догађај (теорија вероватноће)" data-language-autonym="Српски / srpski" data-language-local-name="szerb" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/H%C3%A4ndelse_(utfall)" title="Händelse (utfall) – svéd" lang="sv" hreflang="sv" data-title="Händelse (utfall)" data-language-autonym="Svenska" data-language-local-name="svéd" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A8%E0%AE%BF%E0%AE%95%E0%AE%B4%E0%AF%8D%E0%AE%9A%E0%AF%8D%E0%AE%9A%E0%AE%BF_(%E0%AE%A8%E0%AE%BF%E0%AE%95%E0%AE%B4%E0%AF%8D%E0%AE%A4%E0%AE%95%E0%AE%B5%E0%AF%81)" title="நிகழ்ச்சி (நிகழ்தகவு) – tamil" lang="ta" hreflang="ta" data-title="நிகழ்ச்சி (நிகழ்தகவு)" data-language-autonym="தமிழ்" data-language-local-name="tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%AB%E0%B8%95%E0%B8%B8%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%93%E0%B9%8C_(%E0%B8%84%E0%B8%A7%E0%B8%B2%E0%B8%A1%E0%B8%99%E0%B9%88%E0%B8%B2%E0%B8%88%E0%B8%B0%E0%B9%80%E0%B8%9B%E0%B9%87%E0%B8%99)" title="เหตุการณ์ (ความน่าจะเป็น) – thai" lang="th" hreflang="th" data-title="เหตุการณ์ (ความน่าจะเป็น)" data-language-autonym="ไทย" data-language-local-name="thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Olay" title="Olay – török" lang="tr" hreflang="tr" data-title="Olay" data-language-autonym="Türkçe" data-language-local-name="török" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%92%D0%B8%D0%BF%D0%B0%D0%B4%D0%BA%D0%BE%D0%B2%D0%B0_%D0%BF%D0%BE%D0%B4%D1%96%D1%8F" title="Випадкова подія – ukrán" lang="uk" hreflang="uk" data-title="Випадкова подія" data-language-autonym="Українська" data-language-local-name="ukrán" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%88%D8%A7%D9%82%D8%B9%DB%81_(%D8%A7%D8%AD%D8%AA%D9%85%D8%A7%D9%84_%D9%86%D8%B8%D8%B1%DB%8C%DB%81)" title="واقعہ (احتمال نظریہ) – urdu" lang="ur" hreflang="ur" data-title="واقعہ (احتمال نظریہ)" data-language-autonym="اردو" data-language-local-name="urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Bi%E1%BA%BFn_c%E1%BB%91_(l%C3%BD_thuy%E1%BA%BFt_x%C3%A1c_su%E1%BA%A5t)" title="Biến cố (lý thuyết xác suất) – vietnámi" lang="vi" hreflang="vi" data-title="Biến cố (lý thuyết xác suất)" data-language-autonym="Tiếng Việt" data-language-local-name="vietnámi" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E4%BA%8B%E4%BB%B6%EF%BC%88%E6%A6%82%E7%8E%87%E8%AE%BA%EF%BC%89" title="事件(概率论) – wu kínai" lang="wuu" hreflang="wuu" data-title="事件(概率论)" data-language-autonym="吴语" data-language-local-name="wu kínai" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E4%BA%8B%E4%BB%B6_(%E6%A6%82%E7%8E%87%E8%AE%BA)" title="事件 (概率论) – kínai" lang="zh" hreflang="zh" data-title="事件 (概率论)" data-language-autonym="中文" data-language-local-name="kínai" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E4%BA%8B%E4%BB%B6_(%E6%A6%82%E7%8E%87%E8%AB%96)" title="事件 (概率論) – kantoni" lang="yue" hreflang="yue" data-title="事件 (概率論)" data-language-autonym="粵語" data-language-local-name="kantoni" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q10290214#sitelinks-wikipedia" title="Nyelvközi hivatkozások szerkesztése" class="wbc-editpage">Hivatkozások szerkesztése</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Névterek"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Esem%C3%A9ny_(matematika)" title="A lap megtekintése [c]" accesskey="c"><span>Szócikk</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Vita:Esem%C3%A9ny_(matematika)" rel="discussion" title="Az oldal tartalmának megvitatása [t]" accesskey="t"><span>Vitalap</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Nyelvvariáns váltása" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">magyar</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Nézetek"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Esem%C3%A9ny_(matematika)"><span>Olvasás</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit" title="Az oldal forráskódjának szerkesztése [e]" accesskey="e"><span>Szerkesztés</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=history" title="A lap korábbi változatai [h]" accesskey="h"><span>Laptörténet</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Oldal eszközök"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Eszközök" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Eszközök</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Eszközök</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">áthelyezés az oldalsávba</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">elrejtés</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="További lehetőségek" > <div class="vector-menu-heading"> Műveletek </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Esem%C3%A9ny_(matematika)"><span>Olvasás</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit" title="Az oldal forráskódjának szerkesztése [e]" accesskey="e"><span>Szerkesztés</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=history"><span>Laptörténet</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Általános </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Mi_hivatkozik_erre/Esem%C3%A9ny_(matematika)" title="Az erre a lapra hivatkozó más lapok listája [j]" accesskey="j"><span>Mi hivatkozik erre?</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Kapcsol%C3%B3d%C3%B3_v%C3%A1ltoztat%C3%A1sok/Esem%C3%A9ny_(matematika)" rel="nofollow" title="Az erről a lapról hivatkozott lapok utolsó változtatásai [k]" accesskey="k"><span>Kapcsolódó változtatások</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Speci%C3%A1lis_lapok" title="Az összes speciális lap listája [q]" accesskey="q"><span>Speciális lapok</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;oldid=26922641" title="Állandó hivatkozás ezen lap ezen változatához"><span>Hivatkozás erre a változatra</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=info" title="További információk erről a lapról"><span>Lapinformációk</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:Hivatkoz%C3%A1s&amp;page=Esem%C3%A9ny_%28matematika%29&amp;id=26922641&amp;wpFormIdentifier=titleform" title="Információk a lap idézésével kapcsolatban"><span>Hogyan hivatkozz erre a lapra?</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:UrlShortener&amp;url=https%3A%2F%2Fhu.wikipedia.org%2Fwiki%2FEsem%25C3%25A9ny_%28matematika%29"><span>Rövidített URL készítése</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:QrCode&amp;url=https%3A%2F%2Fhu.wikipedia.org%2Fwiki%2FEsem%25C3%25A9ny_%28matematika%29"><span>QR-kód letöltése</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Nyomtatás/​exportálás </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:K%C3%B6nyv&amp;bookcmd=book_creator&amp;referer=Esem%C3%A9ny+%28matematika%29"><span>Könyv készítése</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:DownloadAsPdf&amp;page=Esem%C3%A9ny_%28matematika%29&amp;action=show-download-screen"><span>Letöltés PDF-ként</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;printable=yes" title="A lap nyomtatható változata [p]" accesskey="p"><span>Nyomtatható változat</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Társprojektek </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Event_(probability_theory)" hreflang="en"><span>Wikimédia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q10290214" title="Kapcsolt adattárelem [g]" accesskey="g"><span>Wikidata-adatlap</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Oldal eszközök"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Megjelenés"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Megjelenés</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">áthelyezés az oldalsávba</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">elrejtés</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-indicator-fr-review-status" class="mw-indicator"><indicator name="fr-review-status" class="mw-fr-review-status-indicator" id="mw-fr-revision-toggle"><span class="cdx-fr-css-icon-review--status--stable"></span><b>Ellenőrzött</b></indicator></div> </div> <div id="siteSub" class="noprint">A Wikipédiából, a szabad enciklopédiából</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><div id="mw-fr-revision-messages"><div id="mw-fr-revision-details" class="mw-fr-revision-details-dialog" style="display:none;"><div tabindex="0"></div><div class="cdx-dialog cdx-dialog--horizontal-actions"><header class="cdx-dialog__header cdx-dialog__header--default"><div class="cdx-dialog__header__title-group"><h2 class="cdx-dialog__header__title">Változat állapota</h2><p class="cdx-dialog__header__subtitle">Ez a lap egy ellenőrzött változata</p></div><button class="cdx-button cdx-button--action-default cdx-button--weight-quiet&#10;&#9;&#9;&#9;&#9;&#9;&#9;&#9;cdx-button--size-medium cdx-button--icon-only cdx-dialog__header__close-button" aria-label="Close" onclick="document.getElementById(&quot;mw-fr-revision-details&quot;).style.display = &quot;none&quot;;" type="submit"><span class="cdx-icon cdx-icon--medium&#10;&#9;&#9;&#9;&#9;&#9;&#9;&#9;cdx-fr-css-icon--close"></span></button></header><div class="cdx-dialog__body">Ez a <a href="/wiki/Wikip%C3%A9dia:Jel%C3%B6lt_lapv%C3%A1ltozatok" title="Wikipédia:Jelölt lapváltozatok">közzétett változat</a>, <a class="external text" href="https://hu.wikipedia.org/w/index.php?title=Speci%C3%A1lis:Rendszernapl%C3%B3k&amp;type=review&amp;page=Esem%C3%A9ny_(matematika)">ellenőrizve</a>: <i>2024. február 26.</i><p><table id="mw-fr-revisionratings-box" class="flaggedrevs-color-1" style="margin: auto;" cellpadding="0"><tr><td class="fr-text" style="vertical-align: middle;">Pontosság</td><td class="fr-value40" style="vertical-align: middle;">ellenőrzött</td></tr></table></p></div></div><div tabindex="0"></div></div></div></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="hu" dir="ltr"><p>A <a href="/wiki/Val%C3%B3sz%C3%ADn%C5%B1s%C3%A9gsz%C3%A1m%C3%ADt%C3%A1s" title="Valószínűségszámítás">valószínűségszámításban</a> az <b>esemény</b> egy absztrakt fogalom, amelyhez egy <a href="/wiki/K%C3%ADs%C3%A9rlet_(matematika)" title="Kísérlet (matematika)">kísérlet</a> kimenetelétől függően hozzárendelhető az az ítélet, hogy az adott esemény bekövetkezett-e vagy sem.<sup id="cite_ref-Rényi_15._old_1-0" class="reference"><a href="#cite_note-Rényi_15._old-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Az ugyanazon kísérlet eredményével kapcsolatos események összessége az <a href="/wiki/Esem%C3%A9nyalgebra" title="Eseményalgebra">eseményalgebra</a>. Például a "dobókockával páros számot dobni" esemény a kockadobás eseményeiből álló eseményalgebra azon eseménye, amelyben <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{1,2,3,4,5,6\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{1,2,3,4,5,6\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc427c339db79f243cb79154253ff8151a31c23e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.469ex; height:2.843ex;" alt="{\displaystyle \{1,2,3,4,5,6\}}"></span> számok közül a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{2,4,6\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>6</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{2,4,6\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc24923d36d36829caf41d4e801eeb5409bb0766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.88ex; height:2.843ex;" alt="{\displaystyle \{2,4,6\}}"></span> számok valamelyike lett a dobás eredménye. Biztos eseménynek nevezzük azt az eseményt, amely a kísérlet bármilyen kimenetele esetén bekövetkezik, lehetetlen eseménynek hívjuk azt az eseményt, amely a kísérlet kimenetelétől függetlenül soha nem következik be. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Relációk_eseményeken"><span id="Rel.C3.A1ci.C3.B3k_esem.C3.A9nyeken"></span>Relációk eseményeken</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=1" title="Szakasz szerkesztése: Relációk eseményeken"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Egy eseményalgebra két, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> és <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> eseménye egyenlő, ha az eseményalgebrához tartozó kísérlet bármely kimenetele esetén vagy mindkettő bekövetkezik, vagy egyik sem.<sup id="cite_ref-Rényi_15._old_1-1" class="reference"><a href="#cite_note-Rényi_15._old-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>Azt mondjuk, hogy egy eseményalgebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> maga után vonja a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> eseményt, ha az eseményalgebrához tartozó kísérlet bármely kimenetele esetén bekövetkezik a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> esemény is, amennyiben az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> esemény bekövetkezett.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Jelölése: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subseteq B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subseteq B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b09068bd2f7ba899aeb883ebe670b2ad07b0c851" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.606ex; height:2.343ex;" alt="{\displaystyle A\subseteq B}"></span> </p><p>Az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/045cafe35b1e9c9ac889481fd7178d6f59a77fdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.606ex; height:2.176ex;" alt="{\displaystyle A=B}"></span> egyenlőség <a href="/wiki/Bikondicion%C3%A1lis" title="Bikondicionális">akkor és csak akkor</a> teljesül, ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subseteq B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subseteq B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b09068bd2f7ba899aeb883ebe670b2ad07b0c851" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.606ex; height:2.343ex;" alt="{\displaystyle A\subseteq B}"></span> és <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\subseteq A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\subseteq A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb8124cb68686ede7083aa2a5a821f262eb62954" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.606ex; height:2.343ex;" alt="{\displaystyle B\subseteq A}"></span>. Azaz az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> maga után vonja a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> eseményt, és a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> maga után vonja az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> eseményt.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subseteq B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subseteq B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b09068bd2f7ba899aeb883ebe670b2ad07b0c851" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.606ex; height:2.343ex;" alt="{\displaystyle A\subseteq B}"></span> esetén a valószínűségekre teljesül, hogy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A)\leq P(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A)\leq P(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2f3576ca8aa41671d8d6ebc4145113e2e5ccc17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.715ex; height:2.843ex;" alt="{\displaystyle P(A)\leq P(B)}"></span>, azaz ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> maga után vonja a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> eseményt, akkor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> valószínűsége legalább akkora, mint <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> valószínűsége. </p> <div class="mw-heading mw-heading2"><h2 id="Műveletek_eseményekkel"><span id="M.C5.B1veletek_esem.C3.A9nyekkel"></span>Műveletek eseményekkel</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=2" title="Szakasz szerkesztése: Műveletek eseményekkel"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \in \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \in \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e23a8931e1b954519d9fb9ba2e7f02eaa11ac91a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.965ex; height:2.176ex;" alt="{\displaystyle \omega \in \Omega }"></span> egy véletlen kísérlet eredménye, akkor minden olyan esemény bekövetkezett, amire <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \in A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \in A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42c12942fe5218b6931fc65b8246bf7eabe174ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.03ex; height:2.176ex;" alt="{\displaystyle \omega \in A}"></span>, ahol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18496f0ae7c4589763102f30f1dd3bb02c0008c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.262ex; height:2.176ex;" alt="{\displaystyle A\in \Sigma }"></span> esemény. </p> <div class="mw-heading mw-heading3"><h3 id="Metszet,_diszjunktság"><span id="Metszet.2C_diszjunkts.C3.A1g"></span>Metszet, diszjunktság</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=3" title="Szakasz szerkesztése: Metszet, diszjunktság"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> és <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> események, akkor metszetük is esemény, mivel a <a href="/wiki/%CE%A3-algebra" title="Σ-algebra">σ-algebra</a> zárt a metszetre. Az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cap B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb27b38cf9eac6060e67b61f66cd9beec5067f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cap B}"></span> esemény pontosan akkor következik be, ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> és <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> is bekövetkezik. </p><p>Ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cap B=\varnothing }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo>=</mo> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cap B=\varnothing }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1325e582d7bc7ad1e30dfef4ee67747895af068e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.996ex; height:2.176ex;" alt="{\displaystyle A\cap B=\varnothing }"></span>, akkor a két esemény sosem következhet be egyszerre. Kizáró események, diszjunkt események, amelyek kizárják egymás bekövetkeztét. </p><p>Általában, ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{1},A_{2},\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{1},A_{2},\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d55e1d38764038b4b6f5fba599b3b05b55f81c47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.386ex; height:2.509ex;" alt="{\displaystyle A_{1},A_{2},\ldots }"></span> események, akkor az </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bigcap _{n=1}^{\infty }A_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bigcap _{n=1}^{\infty }A_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ecad523db3641c1e0a5164f6d1e9014490ab926" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:6.435ex; height:6.843ex;" alt="{\displaystyle \bigcap _{n=1}^{\infty }A_{n}}"></span></dd></dl> <p>metszet is esemény, ami akkor következik be, ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/730f6906700685b6d52f3958b1c2ae659d2d97d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.962ex; height:2.509ex;" alt="{\displaystyle A_{n}}"></span> mindegyike bekövetkezik. Az események páronként diszjunktak, ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{m}\cap A_{n}=\varnothing }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{m}\cap A_{n}=\varnothing }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c8197fb95149b5aa9c7a133aa40409560b9b9f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.869ex; height:2.509ex;" alt="{\displaystyle A_{m}\cap A_{n}=\varnothing }"></span> minden <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m,n\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m,n\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d31606db090fa1b69bd0a6a0c82344cd6af3fc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.988ex; height:2.509ex;" alt="{\displaystyle m,n\in \mathbb {N} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\neq n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\neq n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a50a2eaa8dcad2a8e19c9fd861a0fdd641bdfa46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.534ex; height:2.676ex;" alt="{\displaystyle m\neq n}"></span> esetben. </p> <div class="mw-heading mw-heading3"><h3 id="Unió"><span id="Uni.C3.B3"></span>Unió</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=4" title="Szakasz szerkesztése: Unió"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> és <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> események <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cup B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cup B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdb575990bcfbcdf616aa6fd76e8b30bf7fd2169" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cup B}"></span> egyesítése is esemény, mivel a σ-algebra zárt az egyesítésre. Ez pontosan akkor következik be, ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> vagy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> bekövetkezik, akár mind a kettő egyszerre. Másként, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cup B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cup B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdb575990bcfbcdf616aa6fd76e8b30bf7fd2169" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cup B}"></span> bekövetkezik, ha az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> és <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> események közül legalább egy bekövetkezik. A valószínűségekre adódik, hogy </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\cap B)+P(A\cup B)=P(A)+P(B)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\cap B)+P(A\cup B)=P(A)+P(B)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44e1cabd184166356061fe394eb3fa479f5bd0b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.719ex; height:2.843ex;" alt="{\displaystyle P(A\cap B)+P(A\cup B)=P(A)+P(B)\,.}"></span></dd></dl> <p>Speciálisan a diszjunkt unió <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\cup B)=P(A)+P(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\cup B)=P(A)+P(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03b5945043e1ac5caa5484b0a10a2d5f19d3ca40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.2ex; height:2.843ex;" alt="{\displaystyle P(A\cup B)=P(A)+P(B)}"></span>. </p><p>Általában, ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{1},A_{2},\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{1},A_{2},\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d55e1d38764038b4b6f5fba599b3b05b55f81c47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.386ex; height:2.509ex;" alt="{\displaystyle A_{1},A_{2},\ldots }"></span> események, akkor az </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bigcup _{n=1}^{\infty }A_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bigcup _{n=1}^{\infty }A_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cfe0a030ae2823d0381b2f1719614a9bb8cbb90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:6.435ex; height:6.843ex;" alt="{\displaystyle \bigcup _{n=1}^{\infty }A_{n}}"></span></dd></dl> <p>egyesítés az az esemény, ami bekövetkezik, ha legalább egy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/730f6906700685b6d52f3958b1c2ae659d2d97d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.962ex; height:2.509ex;" alt="{\displaystyle A_{n}}"></span> esemény bekövetkezik. </p><p>Teljesül a <a href="/w/index.php?title=%CE%A3-szubadditivit%C3%A1s&amp;action=edit&amp;redlink=1" class="new" title="Σ-szubadditivitás (a lap nem létezik)">σ-szubadditivitás</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\left(\bigcup _{n=1}^{\infty }A_{n}\right)\leq \sum _{n=1}^{\infty }P(A_{n})\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\left(\bigcup _{n=1}^{\infty }A_{n}\right)\leq \sum _{n=1}^{\infty }P(A_{n})\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e8096944db6133964fea41667a2642c5dde2fe5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:26.64ex; height:7.509ex;" alt="{\displaystyle P\left(\bigcup _{n=1}^{\infty }A_{n}\right)\leq \sum _{n=1}^{\infty }P(A_{n})\,.}"></span></dd></dl> <p>Páronként diszjunkt esetben egyenlőséggel. </p><p>Tetszőleges véges sok esemény uniójának valószínűsége a <a href="/wiki/Szitaformula" title="Szitaformula">szitaformulával</a> számítható. </p> <div class="mw-heading mw-heading3"><h3 id="Komplementer_esemény"><span id="Komplementer_esem.C3.A9ny"></span>Komplementer esemény</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=5" title="Szakasz szerkesztése: Komplementer esemény"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega \setminus A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega \setminus A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d7c608304f79a1c2259b22557fa42e8f4ad2989" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.616ex; height:2.843ex;" alt="{\displaystyle \Omega \setminus A}"></span> komplementer esemény pontosan akkor következik be, ha az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> esemény nem következik be. Jelölése <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92efef0e89bdc77f6a848764195ef5b9d9bfcc6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.858ex; height:3.009ex;" alt="{\displaystyle {\overline {A}}}"></span> vagy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\mathsf {c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">c</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\mathsf {c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38385c223db5d7f5dd07d028a3bd244257305f7d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.705ex; height:2.343ex;" alt="{\displaystyle A^{\mathsf {c}}}"></span>. Valószínűsége </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P({\overline {A}})=1-P(A)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P({\overline {A}})=1-P(A)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae17388173717efd4ffe8c3c18207f1a6daacd3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.846ex; height:3.509ex;" alt="{\displaystyle P({\overline {A}})=1-P(A)\,.}"></span></dd></dl> <p>A metszet- és az unióesemények komplementerére is teljesülnek a halmazelméleti <a href="/wiki/De_Morgan-szab%C3%A1lyok" class="mw-redirect" title="De Morgan-szabályok">De Morgan-szabályok</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\bigcap _{n=1}^{\infty }A_{n}}}=\bigcup _{n=1}^{\infty }{\overline {A_{n}}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <munderover> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <munderover> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\bigcap _{n=1}^{\infty }A_{n}}}=\bigcup _{n=1}^{\infty }{\overline {A_{n}}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4be272df00b00ce360fa67879bdf500c3afaa20d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.233ex; height:7.676ex;" alt="{\displaystyle {\overline {\bigcap _{n=1}^{\infty }A_{n}}}=\bigcup _{n=1}^{\infty }{\overline {A_{n}}}\,,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\bigcup _{n=1}^{\infty }A_{n}}}=\bigcap _{n=1}^{\infty }{\overline {A_{n}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <munderover> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <munderover> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\bigcup _{n=1}^{\infty }A_{n}}}=\bigcap _{n=1}^{\infty }{\overline {A_{n}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8766e109eaa37b87b20b10a83c84d497768c3621" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.233ex; height:7.676ex;" alt="{\displaystyle {\overline {\bigcup _{n=1}^{\infty }A_{n}}}=\bigcap _{n=1}^{\infty }{\overline {A_{n}}}\,.}"></span></dd></dl> <p>Speciálisan, két eseményre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {A\cap B}}={\overline {A}}\cup {\overline {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x222A;<!-- ∪ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {A\cap B}}={\overline {A}}\cup {\overline {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff6221733eae7cb566a727a5f49a3ee7955b760f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.623ex; height:3.009ex;" alt="{\displaystyle {\overline {A\cap B}}={\overline {A}}\cup {\overline {B}}}"></span> illetve <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {A\cup B}}={\overline {A}}\cap {\overline {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {A\cup B}}={\overline {A}}\cap {\overline {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b63669c8a93e8ab33faecff37c72eaf8e93cb32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.623ex; height:3.009ex;" alt="{\displaystyle {\overline {A\cup B}}={\overline {A}}\cap {\overline {B}}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Különbség"><span id="K.C3.BCl.C3.B6nbs.C3.A9g"></span>Különbség</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=6" title="Szakasz szerkesztése: Különbség"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\setminus B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\setminus B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aef797ed5deb971321592e34281d9fac27c3249d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.702ex; height:2.843ex;" alt="{\displaystyle A\setminus B}"></span> különbség vagy differencia akkor következik be, ha A bekövetkezik, de B nem. Teljesül, hogy </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\setminus B=A\cap {\overline {B}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>B</mi> <mo>=</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\setminus B=A\cap {\overline {B}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed77115dd8ae3b13411c06b68557546b27e34048" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.039ex; height:3.509ex;" alt="{\displaystyle A\setminus B=A\cap {\overline {B}}\,.}"></span></dd></dl> <p>A differencia valószínűségének becslése: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\setminus B)=P(A)-P(A\cap B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\setminus B)=P(A)-P(A\cap B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b11ad73bb6ce6ed2eafb8cc58e826ddc50c267d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.138ex; height:2.843ex;" alt="{\displaystyle P(A\setminus B)=P(A)-P(A\cap B)}"></span></dd></dl> <p>Speciálisan, ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\subseteq A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\subseteq A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb8124cb68686ede7083aa2a5a821f262eb62954" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.606ex; height:2.343ex;" alt="{\displaystyle B\subseteq A}"></span>, akkor </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\setminus B)=P(A)-P(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\setminus B)=P(A)-P(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b0fe437ad2353795f7c33185731dc3ae25fedfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.812ex; height:2.843ex;" alt="{\displaystyle P(A\setminus B)=P(A)-P(B)}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Szimmetrikus_differencia">Szimmetrikus differencia</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=7" title="Szakasz szerkesztése: Szimmetrikus differencia"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A{\mathrel {\triangle }}B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> </mrow> </mrow> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A{\mathrel {\triangle }}B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/415c643699c81e2fd9e1f018ed9232d94de34091" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.573ex; height:2.176ex;" alt="{\displaystyle A{\mathrel {\triangle }}B}"></span> esemény akkor következik be, ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> vagy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> egyike, és csakis egyike bekövetkezik. A szimmetrikus differencia írható úgy is, mint: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A{\mathrel {\triangle }}\,B=\left(A\setminus B\right)\cup \left(B\setminus A\right)=(A\cup B)\setminus (A\cap B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>B</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x222A;<!-- ∪ --></mo> <mrow> <mo>(</mo> <mrow> <mi>B</mi> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>A</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A{\mathrel {\triangle }}\,B=\left(A\setminus B\right)\cup \left(B\setminus A\right)=(A\cup B)\setminus (A\cap B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17c4caf44294e95e4a475cfd88f583727d9a24a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.755ex; height:2.843ex;" alt="{\displaystyle A{\mathrel {\triangle }}\,B=\left(A\setminus B\right)\cup \left(B\setminus A\right)=(A\cup B)\setminus (A\cap B)}"></span></dd></dl> <p>A valószínűség becslése </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A{\mathrel {\triangle }}B)=P(A)+P(B)-2P(A\cap B)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> </mrow> </mrow> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A{\mathrel {\triangle }}B)=P(A)+P(B)-2P(A\cap B)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bb7604a5a12254b6faf55faa647c3966622becd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.364ex; height:2.843ex;" alt="{\displaystyle P(A{\mathrel {\triangle }}B)=P(A)+P(B)-2P(A\cap B)\,.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Teljes_eseményrendszer"><span id="Teljes_esem.C3.A9nyrendszer"></span>Teljes eseményrendszer</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=8" title="Szakasz szerkesztése: Teljes eseményrendszer"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A teljes eseményrendszer páronként diszjunkt események egy családja, amelynek uniója a teljes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> alaphalmazt kiadja.Nevezik <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> diszjunkt felbontásának, partíciójának is. Ekkor a véletlen kísérlet eredménye szerint egy, és csak egy esemény következik be a teljes eseményrendszerből. </p> <div class="mw-heading mw-heading2"><h2 id="Összetett_események,_elemi_események"><span id=".C3.96sszetett_esem.C3.A9nyek.2C_elemi_esem.C3.A9nyek"></span>Összetett események, elemi események</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=9" title="Szakasz szerkesztése: Összetett események, elemi események"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="dablink noprint noviewer" style="padding-left: 2em; vertical-align: middle;" cellpadding="0" cellspacing="0"><tbody><tr><td style="padding-right:.25em;"><span typeof="mw:File"><a href="/wiki/F%C3%A1jl:Searchtool_right.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Searchtool_right.svg/14px-Searchtool_right.svg.png" decoding="async" width="14" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Searchtool_right.svg/21px-Searchtool_right.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/32/Searchtool_right.svg/28px-Searchtool_right.svg.png 2x" data-file-width="60" data-file-height="60" /></a></span></td><td><i>Bővebben: <a href="/wiki/Elemi_esem%C3%A9ny" title="Elemi esemény">Elemi esemény</a></i></td></tr></tbody></table> <p>Az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\omega \}\subseteq \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo fence="false" stretchy="false">}</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\omega \}\subseteq \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d86c8f8e94779e933f8111a816b9b10b613b2cdd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.547ex; height:2.843ex;" alt="{\displaystyle \{\omega \}\subseteq \Omega }"></span> egyelemű eseményhalmazokat <a href="/wiki/Elemi_esem%C3%A9ny" title="Elemi esemény">elemi eseményeknek</a> nevezik. Diszkrét esetben az események valószínűsége kiszámítható az elemi esemény részhalmazainak segítségével: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho (\omega )=P(\{\omega \})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho (\omega )=P(\{\omega \})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5b83101726ceff0b4e934fc952a77a58709fa22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.881ex; height:2.843ex;" alt="{\displaystyle \rho (\omega )=P(\{\omega \})}"></span></dd></dl> <p>Ekkor úgy kell választani a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho (\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho (\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ec4310990330c3bc93887ae6dc648d917f36b87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.457ex; height:2.843ex;" alt="{\displaystyle \rho (\omega )}"></span>-t, hogy teljesüljön </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq \rho (\omega )\leq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq \rho (\omega )\leq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97b7bc903ddf63321f8370004bcbd3ad6a92ad49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.979ex; height:2.843ex;" alt="{\displaystyle 0\leq \rho (\omega )\leq 1}"></span> és</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{\omega \in \Omega }\rho (\omega )=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </munder> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{\omega \in \Omega }\rho (\omega )=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/265f2db62f9fabe6fced377a4e821368622f82b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:12.46ex; height:5.676ex;" alt="{\displaystyle \sum _{\omega \in \Omega }\rho (\omega )=1}"></span></dd></dl> <p>Előfordulhat, hogy néha az egyes elemeket nevezik elemi eseményeknek. Ez pontatlan, mivel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> elemei elemei, és nem részhalmazai, így nem is események. Továbbá lehet olyan meghatározás, amiben egyes egyelemű részhalmazok nem események. Mindenesetre ezzel a szóhasználattal is az egyelemű halmazra gondolnak, csak nem mondják ki. </p> <div class="mw-heading mw-heading2"><h2 id="Függetlenség"><span id="F.C3.BCggetlens.C3.A9g"></span>Függetlenség</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=10" title="Szakasz szerkesztése: Függetlenség"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> és <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> események, akkor függetlenek, ha </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\cap B)=P(A)\cdot P(B).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\cap B)=P(A)\cdot P(B).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f880502f402d10789c0859eca4ed1cd03a9669" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.685ex; height:2.843ex;" alt="{\displaystyle P(A\cap B)=P(A)\cdot P(B).}"></span></dd></dl> <p>A feltételes valószínűséggel kifejezve </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A)=P(A\mid B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A)=P(A\mid B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76982b3ba4a19ddb852edd0224d2118001cceb57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.395ex; height:2.843ex;" alt="{\displaystyle P(A)=P(A\mid B)}"></span></dd></dl> <p>feltéve, hogy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(B)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(B)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62777d926a43181a66bf5d967bbe0ef3ef2e5bc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.58ex; height:2.843ex;" alt="{\displaystyle P(B)&gt;0}"></span>. Szimmetriára hivatkozva kiterjeszthető, de két lehetetlen esemény függetlenségét akkor is külön kell kimondani. </p><p>Általában, események egy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A_{i})_{i\in I}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A_{i})_{i\in I}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfcea4e7a3f02fab22acf9253d5cdb350e19de76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.077ex; height:2.843ex;" alt="{\displaystyle (A_{i})_{i\in I}}"></span> családja független, ha minden véges <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J\subseteq I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J\subseteq I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ac10d0192d1da551ee96115a645f1faa4465de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.742ex; height:2.343ex;" alt="{\displaystyle J\subseteq I}"></span> indexhalmazra fennáll: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\left(\bigcap _{j\in J}A_{j}\right)=\prod _{j\in J}P(A_{j})\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>J</mi> </mrow> </munder> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>J</mi> </mrow> </munder> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\left(\bigcap _{j\in J}A_{j}\right)=\prod _{j\in J}P(A_{j})\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26247ae3bd096862933286b850ba645dde423243" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:25.364ex; height:7.676ex;" alt="{\displaystyle P\left(\bigcap _{j\in J}A_{j}\right)=\prod _{j\in J}P(A_{j})\,.}"></span></dd></dl> <p>Páronként függetlenek, ha </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A_{i}\cap A_{j})=P(A_{i})\cdot P(A_{j})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A_{i}\cap A_{j})=P(A_{i})\cdot P(A_{j})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/085ef4008f6272f4a3fc2b52dfa7e8da99abb66e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.416ex; height:3.009ex;" alt="{\displaystyle P(A_{i}\cap A_{j})=P(A_{i})\cdot P(A_{j})}"></span></dd></dl> <p>minden <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i,j\in I,i\neq j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>,</mo> <mi>i</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i,j\in I,i\neq j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd8417bf3f3aaccd21a9e458ac69d6b9b7ea0e86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.7ex; height:2.676ex;" alt="{\displaystyle i,j\in I,i\neq j}"></span> indexre. A függetlenségből következik a páronkénti függetlenség, de ha kettőnél több esemény van, akkor fordítva már nem. </p> <div class="mw-heading mw-heading2"><h2 id="Példák"><span id="P.C3.A9ld.C3.A1k"></span>Példák</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=11" title="Szakasz szerkesztése: Példák"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Kockadobás"><span id="Kockadob.C3.A1s"></span>Kockadobás</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=12" title="Szakasz szerkesztése: Kockadobás"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kísérlet: Egy szabályos dobókockát feldobunk és megvizsgáljuk, hogy milyen értékeket kaphatunk eredményül. </p><p>A kockadobás eredménye lehet 1-es, 2-es, 3-as, 4-es, 5-ös és 6-os, így ebben a kísérletben <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =\{1,2,3,4,5,6\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =\{1,2,3,4,5,6\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e70d20610a1d056140fb7c143dcfae4bfda1465" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.246ex; height:2.843ex;" alt="{\displaystyle \Omega =\{1,2,3,4,5,6\}}"></span>. Ekkor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {A}}={\mathcal {P}}(\Omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">A</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {A}}={\mathcal {P}}(\Omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4755b6a20249877a26f43f57025b9b82a655df1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.193ex; height:2.843ex;" alt="{\displaystyle {\mathcal {A}}={\mathcal {P}}(\Omega )}"></span>, azaz az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> <a href="/wiki/Esem%C3%A9nyt%C3%A9r" title="Eseménytér">eseménytér</a> minden részhalmaza esemény. Például esemény az, ha kettest dobunk és az is ha páratlan számot, de esemény az is ha ötnél kisebb számot. </p> <div class="mw-heading mw-heading3"><h3 id="Érmedobás"><span id=".C3.89rmedob.C3.A1s"></span>Érmedobás</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=13" title="Szakasz szerkesztése: Érmedobás"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kísérlet: Egy szabályos pénzérmét feldobunk és megvizsgáljuk, hogy milyen értékeket kaphatunk eredményül. </p><p>Az érmedobás eredménye lehet fej vagy írás, így ebben a kísérletben <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =\{F,I\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>F</mi> <mo>,</mo> <mi>I</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =\{F,I\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09195f64084dd8fce0b9dcade37305c8f2d85b4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.048ex; height:2.843ex;" alt="{\displaystyle \Omega =\{F,I\}}"></span>. Ekkor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {A}}={\mathcal {P}}(\Omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">A</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {A}}={\mathcal {P}}(\Omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4755b6a20249877a26f43f57025b9b82a655df1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.193ex; height:2.843ex;" alt="{\displaystyle {\mathcal {A}}={\mathcal {P}}(\Omega )}"></span>, azaz az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> <a href="/wiki/Esem%C3%A9nyt%C3%A9r" title="Eseménytér">eseménytér</a> minden részhalmaza esemény. Például esemény az, ha fejet dobunk és az is ha írást. Az is esemény ha fejet vagy írást dobunk. </p> <div class="mw-heading mw-heading3"><h3 id="Diszkrét_események"><span id="Diszkr.C3.A9t_esem.C3.A9nyek"></span>Diszkrét események</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=14" title="Szakasz szerkesztése: Diszkrét események"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> diszkrét eseményhalmaz, azaz legfeljebb megszámlálható végtelen eleme van, akkor többnyire a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}(\Omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}(\Omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b95df45bc7d7faec1a5b88437d4b26b8a16ad108" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.191ex; height:2.843ex;" alt="{\displaystyle {\mathcal {P}}(\Omega )}"></span> hatványhalmazt használják eseményrendszernek. Ekkor a teljes minden részhalmaza esemény. </p> <div class="mw-heading mw-heading3"><h3 id="Folytonos_események"><span id="Folytonos_esem.C3.A9nyek"></span>Folytonos események</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=15" title="Szakasz szerkesztése: Folytonos események"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> folytonos eseményhalmaz, akkor nem választható a teljes hatványhalmaz eseményrendszernek. Ha ugyanis az elemek valószínűsége nulla lenne, akkor minden valószínűség nulla lenne, a teljes is, ami ellentmondás. Ezért többnyire a <a href="/w/index.php?title=Borel-%CF%83-algebra&amp;action=edit&amp;redlink=1" class="new" title="Borel-σ-algebra (a lap nem létezik)">Borel-σ-algebrát</a> választják. Ezt az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> alakú nyílt intervallumok, vagy ezek direkt szorzatai (téglák) generálják, ahol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91a7698e4c7401bb321f97888b872b583a9e4642" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a&lt;b}"></span>. Ezt azért kedvelik, mivel mindent tartalmaznak, amiket értelmesen definiálni tudunk, tehát minden nyílt, zárt halmaz, diszkrét ponthalmazok is benne vannak, és események. Ezzel nem választják ki az összes részhalmazt sem, erre a <a href="/w/index.php?title=Vitali-halmaz&amp;action=edit&amp;redlink=1" class="new" title="Vitali-halmaz (a lap nem létezik)">Vitali-halmazok</a> adnak ellenpéldát. </p> <div class="mw-heading mw-heading2"><h2 id="Források"><span id="Forr.C3.A1sok"></span>Források</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=16" title="Szakasz szerkesztése: Források"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/w/index.php?title=Norbert_Henze&amp;action=edit&amp;redlink=1" class="new" title="Norbert Henze (a lap nem létezik)">Norbert Henze</a>: <i>Stochastik für Einsteiger: Eine Einführung in die faszinierende Welt des Zufalls.</i> 10. Auflage, Springer Spektrum, Wiesbaden 2013, <a href="/wiki/Speci%C3%A1lis:K%C3%B6nyvforr%C3%A1sok/9783658030766" title="Speciális:Könyvforrások/9783658030766">ISBN&#160;978-3-658-03076-6</a>, <a href="/wiki/Digital_object_identifier" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2F978-3-658-03077-3">10.1007/978-3-658-03077-3</a>. S. 5–9, 283 (<a rel="nofollow" class="external text" href="https://books.google.hu/books?id=QetMX1b7QHQC&amp;pg=PA7#v=onepage">Kivonat (Google)</a>)</li> <li><a href="/w/index.php?title=Rainer_Schlittgen&amp;action=edit&amp;redlink=1" class="new" title="Rainer Schlittgen (a lap nem létezik)">Rainer Schlittgen</a>: <i>Einführung in die Statistik.</i> 9. Auflage. Oldenbourg Wissenschaftsverlag, Oldenbourg 2000, <a href="/wiki/Speci%C3%A1lis:K%C3%B6nyvforr%C3%A1sok/3486274465" title="Speciális:Könyvforrások/3486274465">ISBN&#160;3-486-27446-5</a></li> <li><a href="/wiki/R%C3%A9nyi_Alfr%C3%A9d" title="Rényi Alfréd">Rényi Alfréd</a>: <i>Valószínűségszámítás</i>, Tankönyvkiadó, Budapest, 1966</li></ul> <div class="mw-heading mw-heading2"><h2 id="Jegyzetek">Jegyzetek</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=17" title="Szakasz szerkesztése: Jegyzetek"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <ol class="references"> <li id="cite_note-Rényi_15._old-1"><span class="mw-cite-backlink">↑ <a href="#cite_ref-Rényi_15._old_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Rényi_15._old_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Rényi 15. old.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text">Rényi 20-21. old.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text">Rényi 21. old.</span> </li> </ol> <div class="mw-heading mw-heading2"><h2 id="Fordítás"><span id="Ford.C3.ADt.C3.A1s"></span>Fordítás</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;action=edit&amp;section=18" title="Szakasz szerkesztése: Fordítás"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ez a szócikk részben vagy egészben az <i><a href="https://de.wikipedia.org/wiki/Ereignis_(Wahrscheinlichkeitstheorie)" class="extiw" title="de:Ereignis (Wahrscheinlichkeitstheorie)">Ereignis (Wahrscheinlichkeitstheorie)</a></i> című német Wikipédia-szócikk fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként. </p> <div class="noprint noviewer" style="overflow: hidden; clear: both;"><div style="margin-left:0; margin-right:2px;"><ul style="display:block; list-style-image:none; list-style-type:none; width:100%; vertical-align:middle; margin:0; padding:0; min-height: 27px;"><li style="float:left; min-height: 27px; line-height:25px; width:100%; margin:0; margin-top:.5em; margin-left:0; margin-right:0; padding:0; border:1px solid #CCF; background-color:#F0EEFF"><span typeof="mw:File"><a href="/wiki/F%C3%A1jl:P_cartesian_graph.svg" class="mw-file-description" title="Matematika"><img alt="Matematika" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/P_cartesian_graph.svg/25px-P_cartesian_graph.svg.png" decoding="async" width="25" height="23" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/P_cartesian_graph.svg/38px-P_cartesian_graph.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/23/P_cartesian_graph.svg/50px-P_cartesian_graph.svg.png 2x" data-file-width="400" data-file-height="360" /></a></span> <b><a href="/wiki/Port%C3%A1l:Matematika" title="Portál:Matematika">Matematikaportál</a></b> • összefoglaló, színes tartalomajánló lap</li></ul></div></div></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">A lap eredeti címe: „<a dir="ltr" href="https://hu.wikipedia.org/w/index.php?title=Esemény_(matematika)&amp;oldid=26922641">https://hu.wikipedia.org/w/index.php?title=Esemény_(matematika)&amp;oldid=26922641</a>”</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Wikip%C3%A9dia:Kateg%C3%B3ri%C3%A1k" title="Wikipédia:Kategóriák">Kategória</a>: <ul><li><a href="/wiki/Kateg%C3%B3ria:Val%C3%B3sz%C3%ADn%C5%B1s%C3%A9gsz%C3%A1m%C3%ADt%C3%A1s" title="Kategória:Valószínűségszámítás">Valószínűségszámítás</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> A lap utolsó módosítása: 2024. február 26., 19:41</li> <li id="footer-info-copyright">A lap szövege <a rel="nofollow" class="external text" href="http://creativecommons.org/licenses/by-sa/4.0/deed.hu">Creative Commons Nevezd meg! – Így add tovább! 4.0</a> licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a <a href="/wiki/Wikip%C3%A9dia:Felhaszn%C3%A1l%C3%A1si_felt%C3%A9telek" title="Wikipédia:Felhasználási feltételek">felhasználási feltételeket</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Adatvédelmi irányelvek</a></li> <li id="footer-places-about"><a href="/wiki/Wikip%C3%A9dia:R%C3%B3lunk">A Wikipédiáról</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikip%C3%A9dia:Jogi_nyilatkozat">Jogi nyilatkozat</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Magatartási kódex</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Fejlesztők</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/hu.wikipedia.org">Statisztikák</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Sütinyilatkozat</a></li> <li id="footer-places-mobileview"><a href="//hu.m.wikipedia.org/w/index.php?title=Esem%C3%A9ny_(matematika)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobil nézet</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-847495b4dd-bh7rc","wgBackendResponseTime":143,"wgPageParseReport":{"limitreport":{"cputime":"0.149","walltime":"0.313","ppvisitednodes":{"value":1016,"limit":1000000},"postexpandincludesize":{"value":3762,"limit":2097152},"templateargumentsize":{"value":582,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":4834,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 84.213 1 -total"," 25.15% 21.179 2 Sablon:ISBN"," 22.09% 18.604 1 Sablon:Fordítás"," 16.77% 14.119 1 Sablon:Google_Buch"," 15.75% 13.262 1 Sablon:Portál"," 9.53% 8.025 1 Sablon:ISO_639"," 9.21% 7.757 1 Sablon:A(z)"," 8.92% 7.514 1 Sablon:Str_find"," 8.78% 7.391 1 Sablon:Fő"," 7.89% 6.646 1 Sablon:DOI"]},"scribunto":{"limitreport-timeusage":{"value":"0.006","limit":"10.000"},"limitreport-memusage":{"value":732838,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-75c465f4c6-jqzr7","timestamp":"20241125103851","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Esem\u00e9ny (matematika)","url":"https:\/\/hu.wikipedia.org\/wiki\/Esem%C3%A9ny_(matematika)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q10290214","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q10290214","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2013-02-24T02:01:14Z"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10