CINXE.COM
Photocatalytic low-temperature defluorination of PFASs | Nature
<!DOCTYPE html> <html lang="en" class="grade-c"> <head> <title>Photocatalytic low-temperature defluorination of PFASs | Nature</title> <link rel="canonical" href="/articles/s41586-024-08179-1"> <noscript> <meta http-equiv="Refresh" content="0; https://www.nature.com/articles/s41586-024-08179-1.pdf"> </noscript> <meta name="journal_id" content="41586"/> <meta name="dc.title" content="Photocatalytic low-temperature defluorination of PFASs"/> <meta name="dc.source" content="Nature 2024 635:8039"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Nature Publishing Group"/> <meta name="dc.date" content="2024-11-20"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2024 The Author(s), under exclusive licence to Springer Nature Limited"/> <meta name="dc.rights" content="2024 The Author(s), under exclusive licence to Springer Nature Limited"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are found in many everyday consumer products, often because of their high thermal and chemical stabilities, as well as their&nbsp;hydrophobic and oleophobic properties1. However, the inert carbon–fluorine (C–F) bonds that give PFASs their properties also provide resistance to decomposition through defluorination, leading to long-term persistence in the environment, as well as in the human body, raising substantial safety and health concerns1–5. Despite recent advances in non-incineration approaches for the destruction of functionalized PFASs, processes for the recycling of perfluorocarbons (PFCs) as well as polymeric PFASs such as polytetrafluoroethylene (PTFE) are limited to methods that use either elevated temperatures or strong reducing reagents. Here we report the defluorination of PFASs with a highly twisted carbazole-cored super-photoreductant KQGZ. A series of PFASs could be defluorinated photocatalytically at 40–60 °C. PTFE gave amorphous carbon and fluoride salts as the major products. Oligomeric PFASs such as PFCs, perfluorooctane sulfonic acid (PFOS), polyfluorooctanoic acid (PFOA) and derivatives give carbonate, formate, oxalate and trifluoroacetate as the defluorinated products. This allows for the recycling of fluorine in PFASs as inorganic fluoride salt. The mechanistic investigation reveals the difference in reaction behaviour and product components for PTFE and oligomeric PFASs. This work opens a window for the low-temperature photoreductive defluorination of the ‘forever chemicals’ PFASs, especially for PTFE, as well as the discovery of new super-photoreductants. Photocatalysis at 40–60 °C is shown to be able to defluorinate perfluoroalkyl substances, known as ‘forever chemicals’, allowing the recycling of fluorine in polyfluoroalkyl and perfluoroalkyl substances as inorganic fluoride salt."/> <meta name="prism.issn" content="1476-4687"/> <meta name="prism.publicationName" content="Nature"/> <meta name="prism.publicationDate" content="2024-11-20"/> <meta name="prism.volume" content="635"/> <meta name="prism.number" content="8039"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="610"/> <meta name="prism.endingPage" content="617"/> <meta name="prism.copyright" content="2024 The Author(s), under exclusive licence to Springer Nature Limited"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://www.nature.com/articles/s41586-024-08179-1"/> <meta name="prism.doi" content="doi:10.1038/s41586-024-08179-1"/> <meta name="citation_pdf_url" content="https://www.nature.com/articles/s41586-024-08179-1.pdf"/> <meta name="citation_fulltext_html_url" content="https://www.nature.com/articles/s41586-024-08179-1"/> <meta name="citation_journal_title" content="Nature"/> <meta name="citation_journal_abbrev" content="Nature"/> <meta name="citation_publisher" content="Nature Publishing Group"/> <meta name="citation_issn" content="1476-4687"/> <meta name="citation_title" content="Photocatalytic low-temperature defluorination of PFASs"/> <meta name="citation_volume" content="635"/> <meta name="citation_issue" content="8039"/> <meta name="citation_publication_date" content="2024/11"/> <meta name="citation_online_date" content="2024/11/20"/> <meta name="citation_firstpage" content="610"/> <meta name="citation_lastpage" content="617"/> <meta name="citation_article_type" content="Article"/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1038/s41586-024-08179-1"/> <meta name="DOI" content="10.1038/s41586-024-08179-1"/> <meta name="size" content="134701"/> <meta name="citation_doi" content="10.1038/s41586-024-08179-1"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1038/s41586-024-08179-1&api_key="/> <meta name="description" content="Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are found in many everyday consumer products, often because of their high thermal and chemical stabilities, as well as their&nbsp;hydrophobic and oleophobic properties1. However, the inert carbon–fluorine (C–F) bonds that give PFASs their properties also provide resistance to decomposition through defluorination, leading to long-term persistence in the environment, as well as in the human body, raising substantial safety and health concerns1–5. Despite recent advances in non-incineration approaches for the destruction of functionalized PFASs, processes for the recycling of perfluorocarbons (PFCs) as well as polymeric PFASs such as polytetrafluoroethylene (PTFE) are limited to methods that use either elevated temperatures or strong reducing reagents. Here we report the defluorination of PFASs with a highly twisted carbazole-cored super-photoreductant KQGZ. A series of PFASs could be defluorinated photocatalytically at 40–60 °C. PTFE gave amorphous carbon and fluoride salts as the major products. Oligomeric PFASs such as PFCs, perfluorooctane sulfonic acid (PFOS), polyfluorooctanoic acid (PFOA) and derivatives give carbonate, formate, oxalate and trifluoroacetate as the defluorinated products. This allows for the recycling of fluorine in PFASs as inorganic fluoride salt. The mechanistic investigation reveals the difference in reaction behaviour and product components for PTFE and oligomeric PFASs. This work opens a window for the low-temperature photoreductive defluorination of the ‘forever chemicals’ PFASs, especially for PTFE, as well as the discovery of new super-photoreductants. Photocatalysis at 40–60 °C is shown to be able to defluorinate perfluoroalkyl substances, known as ‘forever chemicals’, allowing the recycling of fluorine in polyfluoroalkyl and perfluoroalkyl substances as inorganic fluoride salt."/> <meta name="dc.creator" content="Zhang, Hao"/> <meta name="dc.creator" content="Chen, Jin-Xiang"/> <meta name="dc.creator" content="Qu, Jian-Ping"/> <meta name="dc.creator" content="Kang, Yan-Biao"/> <meta name="dc.subject" content="Synthetic chemistry methodology"/> <meta name="dc.subject" content="Photocatalysis"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Per- and polyfluoroalkyl substances in the environment; citation_author=MG Evich; citation_volume=375; citation_publication_date=2022; citation_pages=eabg9065; citation_doi=10.1126/science.abg9065; citation_id=CR1"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils; citation_author=JW Washington; citation_volume=368; citation_publication_date=2020; citation_pages=1103-1107; citation_doi=10.1126/science.aba7127; citation_id=CR2"/> <meta name="citation_reference" content="citation_journal_title=Chem. Eng. J.; citation_title=Per- and polyfluoroalkyl substances (PFAS) as a health hazard: current state of knowledge and strategies in environmental settings across Asia and future perspectives; citation_author=K Singh, N Kumar, AK Yadav, R Singh, K Kumar; citation_volume=475; citation_publication_date=2023; citation_pages=145065; citation_doi=10.1016/j.cej.2023.145064; citation_id=CR3"/> <meta name="citation_reference" content="citation_journal_title=J. Expo. Sci. Environ. Epidemiol.; citation_title=A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects; citation_author=EM Sunderland; citation_volume=29; citation_publication_date=2019; citation_pages=131-147; citation_doi=10.1038/s41370-018-0094-1; citation_id=CR4"/> <meta name="citation_reference" content="citation_journal_title=Environ. Health Perspect.; citation_title=Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS; citation_author=S Gaballah; citation_volume=128; citation_publication_date=2020; citation_pages=047005; citation_doi=10.1289/EHP5843; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=Environ. Sci. Technol.; citation_title=Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: structural dependence and implications to PFAS remediation and management; citation_author=MJ Bentel; citation_volume=53; citation_publication_date=2019; citation_pages=3718-3728; citation_doi=10.1021/acs.est.8b06648; citation_id=CR6"/> <meta name="citation_reference" content="citation_journal_title=Environ. Sci. Technol.; citation_title=Degradation of perfluoroalkyl ether carboxylic acids with hydrated electrons: structure–reactivity relationships and environmental implications; citation_author=MJ Bentel; citation_volume=54; citation_publication_date=2020; citation_pages=2489-2499; citation_doi=10.1021/acs.est.9b05869; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=Environ. Sci. Technol.; citation_title=Accelerated degradation of perfluorosulfonates and perfluorocarboxylates by UV/sulfite + iodide: reaction mechanisms and system efficiencies; citation_author=Z Liu; citation_volume=56; citation_publication_date=2022; citation_pages=3699-3709; citation_doi=10.1021/acs.est.1c07608; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=Nat. Water; citation_title=Photochemical degradation pathways and near-complete defluorination of chlorinated polyfluoroalkyl substances; citation_author=J Gao; citation_volume=1; citation_publication_date=2023; citation_pages=381-390; citation_doi=10.1038/s44221-023-00046-z; citation_id=CR9"/> <meta name="citation_reference" content="citation_journal_title=Environ. Sci. Technol.; citation_title=Hydrothermal alkaline treatment for destruction of per- and polyfluoroalkyl substances in aqueous film-forming foam; citation_author=S Hao; citation_volume=55; citation_publication_date=2021; citation_pages=3283-3295; citation_doi=10.1021/acs.est.0c06906; citation_id=CR10"/> <meta name="citation_reference" content="citation_journal_title=Environ. Sci. Technol. Lett.; citation_title=Solvent-free nonthermal destruction of PFAS chemicals and PFAS in sediment by piezoelectric ball milling; citation_author=N Yang; citation_volume=10; citation_publication_date=2023; citation_pages=198-203; citation_doi=10.1021/acs.estlett.2c00902; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=Environ. Sci. Technol.; citation_title=Electrochemical transformations of perfluoroalkyl acid (PFAA) precursors and PFAAs in groundwater impacted with aqueous film forming foams; citation_author=CE Schaefer; citation_volume=52; citation_publication_date=2018; citation_pages=10689-10697; citation_doi=10.1021/acs.est.8b02726; citation_id=CR12"/> <meta name="citation_reference" content="citation_journal_title=Environ. Sci. Technol.; citation_title=Rapid removal of poly- and perfluorinated compounds from investigation-derived waste (IDW) in a pilot-scale plasma reactor; citation_author=RK Singh; citation_volume=53; citation_publication_date=2019; citation_pages=11375-11382; citation_doi=10.1021/acs.est.9b02964; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=Environ. Sci. Technol.; citation_title=Complete hydrodehalogenation of polyfluorinated and other polyhalogenated benzenes under mild catalytic conditions; citation_author=R Baumgartner, GK Stieger, K McNeill; citation_volume=47; citation_publication_date=2013; citation_pages=6545-6553; citation_doi=10.1021/es401183v; citation_id=CR14"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Hydrodefluorination of perfluoroalkyl groups using silylium-carborane catalysts; citation_author=C Douvris, OV Ozerov; citation_volume=321; citation_publication_date=2008; citation_pages=1188-1190; citation_doi=10.1126/science.1159979; citation_id=CR15"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Low-temperature mineralization of perfluorocarboxylic acids; citation_author=B Trang; citation_volume=377; citation_publication_date=2022; citation_pages=839-845; citation_doi=10.1126/science.abm8868; citation_id=CR16"/> <meta name="citation_reference" content="citation_journal_title=Chem. Rev.; citation_title=Polytetrafluoroethylene: synthesis and characterization of the original extreme polymer; citation_author=GJ Puts, P Crouse, BM Ameduri; citation_volume=119; citation_publication_date=2019; citation_pages=1763-1805; citation_doi=10.1021/acs.chemrev.8b00458; citation_id=CR17"/> <meta name="citation_reference" content="citation_journal_title=Chem. Soc. Rev.; citation_title=Recycling and the end of life assessment of fluoropolymers: recent developments, challenges and future trends; citation_author=B Améduri, H Hori; citation_volume=52; citation_publication_date=2023; citation_pages=4208-4247; citation_doi=10.1039/D2CS00763K; citation_id=CR18"/> <meta name="citation_reference" content="Yang, X. et al. A chemical route from PTFE to amorphous carbon nanospheres in supercritical water. Chem. Commun. 342–343 (2004)."/> <meta name="citation_reference" content="citation_journal_title=Polym. Degrad. Stab.; citation_title=Chemical recycling of polytetrafluoroethylene by pyrolysis; citation_author=CM Simon, W Kaminsky; citation_volume=62; citation_publication_date=1998; citation_pages=1-7; citation_doi=10.1016/S0141-3910(97)00097-9; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment; citation_author=DA Ellis, SA Mabury, JW Martin, DCG Muir; citation_volume=412; citation_publication_date=2001; citation_pages=321-324; citation_doi=10.1038/35085548; citation_id=CR21"/> <meta name="citation_reference" content="Koch, E.-C. Metal‐Fluorocarbon Based Energetic Materials (Wiley, 2011)."/> <meta name="citation_reference" content="citation_journal_title=Ind. Eng. Chem.; citation_title=Bonding of Teflon; citation_author=E Nelson, TJ Kilduff, AA Benderly; citation_volume=50; citation_publication_date=1958; citation_pages=329-330; citation_doi=10.1021/ie50579a030; citation_id=CR23"/> <meta name="citation_reference" content="citation_journal_title=Jpn. J. Appl. Phys.; citation_title=Conducting polymer prepared from teflon; citation_author=K Yoshino; citation_volume=21; citation_publication_date=1982; citation_pages=L301-L302; citation_doi=10.1143/JJAP.21.L301; citation_id=CR24"/> <meta name="citation_reference" content="citation_journal_title=Macromolecules; citation_title=The chemical reduction of poly(tetrafluoroethylene); citation_author=N Chakrabarti, J Jacobus; citation_volume=21; citation_publication_date=1988; citation_pages=3011-3014; citation_doi=10.1021/ma00188a020; citation_id=CR25"/> <meta name="citation_reference" content="citation_journal_title=Macromolecules; citation_title=Surface modification of poly(tetrafluoroethylene) with benzoin dianion; citation_author=CA Costello, TJ McCarthy; citation_volume=17; citation_publication_date=1984; citation_pages=2940-2942; citation_doi=10.1021/ma00142a094; citation_id=CR26"/> <meta name="citation_reference" content="citation_journal_title=Macromolecules; citation_title=Surface-selective introduction of specific functionalities onto poly(tetrafluoroethylene); citation_author=CA Costello, TJ McCarthy; citation_volume=20; citation_publication_date=1987; citation_pages=2819-2828; citation_doi=10.1021/ma00177a030; citation_id=CR27"/> <meta name="citation_reference" content="citation_journal_title=Chem. Mater.; citation_title=Carbonization of highly oriented poly(tetrafluoroethylene); citation_author=L Kavan, FP Dousek, P Janda, J Weber; citation_volume=11; citation_publication_date=1999; citation_pages=329-335; citation_doi=10.1021/cm9807438; citation_id=CR28"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Chem. Soc.; citation_title=Room temperature defluorination of poly(tetrafluoroethylene) by a magnesium reagent; citation_author=DJ Sheldon, JM Parr, MR Crimmin; citation_volume=145; citation_publication_date=2023; citation_pages=10486-10490; citation_doi=10.1021/jacs.3c02526; citation_id=CR29"/> <meta name="citation_reference" content="citation_journal_title=Synlett; citation_title=Photophysical properties and redox potentials of photosensitizers for organic photoredox transformations; citation_author=Y Wu, D Kim, TS Teets; citation_volume=33; citation_publication_date=2022; citation_pages=1154-1179; citation_doi=10.1055/a-1390-9065; citation_id=CR30"/> <meta name="citation_reference" content="citation_journal_title=Chem. Sci.; citation_title=Intermolecular oxyarylation of olefins with aryl halides and TEMPOH catalyzed by the phenolate anion under visible light; citation_author=K Liang; citation_volume=11; citation_publication_date=2020; citation_pages=6996-7002; citation_doi=10.1039/D0SC02160A; citation_id=CR31"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Chem. Soc.; citation_title=Reductive electrophotocatalysis: merging electricity and light to achieve extreme reduction potential; citation_author=H Kim, H Kim, TH Lambert, S Lin; citation_volume=142; citation_publication_date=2020; citation_pages=2087-2092; citation_doi=10.1021/jacs.9b10678; citation_id=CR32"/> <meta name="citation_reference" content="citation_journal_title=Angew. Chem. Int. Ed.; citation_title=A general light-driven organocatalytic platform for the activation of inert substrates; citation_author=S Wu, F Schiel, P Melchiorre; citation_volume=62; citation_publication_date=2023; citation_pages=e202306364; citation_doi=10.1002/anie.202306364; citation_id=CR33"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Chem. Soc.; citation_title=Super-reducing behavior of benzo[b]phenothiazine anion under visible-light photoredox condition; citation_author=S Halder, S Mandal, A Kundu, B Mandal, D Adhikari; citation_volume=145; citation_publication_date=2023; citation_pages=22403-22412; citation_doi=10.1021/jacs.3c05787; citation_id=CR34"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Discovery and characterization of an acridine radical photoreductant; citation_author=IA MacKenzie; citation_volume=580; citation_publication_date=2020; citation_pages=76-81; citation_doi=10.1038/s41586-020-2131-1; citation_id=CR35"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Chem. Soc.; citation_title=Organocatalyzed birch reduction driven by visible light; citation_author=JP Cole; citation_volume=142; citation_publication_date=2020; citation_pages=13573-13581; citation_doi=10.1021/jacs.0c05899; citation_id=CR36"/> <meta name="citation_reference" content="citation_journal_title=Org. Lett.; citation_title=Iridium-catalyzed cyclization of isoxazolines and alkenes: divergent access to pyrrolidines, pyrroles, and carbazoles; citation_author=ZF Xiao; citation_volume=18; citation_publication_date=2016; citation_pages=5672-5675; citation_doi=10.1021/acs.orglett.6b02905; citation_id=CR37"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Chem. Soc.; citation_title=Discovery of oxygen α-nucleophilic addition to α,β-unsaturated amides catalyzed by redox-neutral organic photoreductant; citation_author=ZH Luan, JP Qu, YB Kang; citation_volume=142; citation_publication_date=2020; citation_pages=20942-20947; citation_doi=10.1021/jacs.0c10707; citation_id=CR38"/> <meta name="citation_reference" content="citation_journal_title=Org. Lett.; citation_title=Reductive cleavage of C–X or N–S bonds catalyzed by super organoreductant CBZ6; citation_author=SD Wang, B Yang, H Zhang, JP Qu, YB Kang; citation_volume=25; citation_publication_date=2023; citation_pages=816-820; citation_doi=10.1021/acs.orglett.2c04346; citation_id=CR39"/> <meta name="citation_reference" content="citation_journal_title=J. Org. Chem.; citation_title=Photocatalytic reductive C–O bond cleavage of alkyl aryl ethers by using carbazole catalysts with cesium carbonate; citation_author=T Yabuta, M Hayashi, R Matsubara; citation_volume=86; citation_publication_date=2021; citation_pages=2545-2555; citation_doi=10.1021/acs.joc.0c02663; citation_id=CR40"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Chem. Soc.; citation_title=Organophotoredox hydrodefluorination of trifluoromethylarenes with translational applicability to drug discovery; citation_author=JBI Sap; citation_volume=142; citation_publication_date=2020; citation_pages=9181-9187; citation_doi=10.1021/jacs.0c03881; citation_id=CR41"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Chem. Soc.; citation_title=Selective single C(sp3)–F bond cleavage in trifluoromethylarenes: merging visible-light catalysis with Lewis acid activation; citation_author=K Chen, N Berg, R Gschwind, B König; citation_volume=139; citation_publication_date=2017; citation_pages=18444-18447; citation_doi=10.1021/jacs.7b10755; citation_id=CR42"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Chem. Soc.; citation_title=Catalytic defluoroalkylation of trifluoromethylaromatics with unactivated alkenes; citation_author=H Wang, NT Jui; citation_volume=140; citation_publication_date=2018; citation_pages=163-166; citation_doi=10.1021/jacs.7b12590; citation_id=CR43"/> <meta name="citation_reference" content="citation_journal_title=Chem. Eur. J.; citation_title=An introduction to the combustion of carbon materials; citation_author=E Picheau, S Amar, A Derré, A Pénicaud, F Hof; citation_volume=28; citation_publication_date=2022; citation_pages=e202200117; citation_doi=10.1002/chem.202200117; citation_id=CR44"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Soc. Mass. Spectrom.; citation_title=Gas-phase C-F bond cleavage in perfluorohexane using W-, Si-, P-, Br-, and I-containing ions: comparisons with reactions at fluorocarbon surfaces; citation_author=JS Patrick, T Pradeep, H Luo, S Ma, RG Cooks; citation_volume=9; citation_publication_date=1998; citation_pages=1158-1167; citation_doi=10.1016/S1044-0305(98)00086-5; citation_id=CR45"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Chem. Soc.; citation_title=Selective C–F functionalization of unactivated trifluoromethylarenes; citation_author=DB Vogt, CP Seath, H Wang, NT Jui; citation_volume=141; citation_publication_date=2019; citation_pages=13203-13211; citation_doi=10.1021/jacs.9b06004; citation_id=CR46"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Chem. Soc.; citation_title=Photochemical C–F activation enables defluorinative alkylation of trifluoroacetates and -acetamides; citation_author=MW Campbell; citation_volume=143; citation_publication_date=2021; citation_pages=19648-19654; citation_doi=10.1021/jacs.1c11059; citation_id=CR47"/> <meta name="citation_reference" content="citation_journal_title=Angew. Chem. Int. Ed.; citation_title=Photoredox-catalyzed defluorinative functionalizations of polyfluorinated aliphatic amides and esters; citation_author=JH Ye, P Bellotti, C Heusel, F Glorius; citation_volume=61; citation_publication_date=2022; citation_pages=e202115456; citation_doi=10.1002/anie.202115456; citation_id=CR48"/> <meta name="citation_reference" content="citation_journal_title=J. Appl. Polym. Sci.; citation_title=Direct observation of polyvinylchloride degradation in water at temperatures up to 500°C and at pressures up to 700 MPa; citation_author=Y Nagai, RL Smith, H Inomata, K Arai; citation_volume=106; citation_publication_date=2007; citation_pages=1075-1086; citation_doi=10.1002/app.26790; citation_id=CR49"/> <meta name="citation_reference" content="Campbell, S. F., Stephens, R. & Tatlow, J. C. Perfluorocycloalkenyl-lithium compounds. Chem. Commun. 151–152 (1967)."/> <meta name="citation_author" content="Zhang, Hao"/> <meta name="citation_author_institution" content="Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China"/> <meta name="citation_author" content="Chen, Jin-Xiang"/> <meta name="citation_author_institution" content="Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China"/> <meta name="citation_author" content="Qu, Jian-Ping"/> <meta name="citation_author_institution" content="Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China"/> <meta name="citation_author" content="Kang, Yan-Biao"/> <meta name="citation_author_institution" content="Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China"/> <meta name="access_endpoint" content="https://www.nature.com/platform/readcube-access"/> <meta name="twitter:site" content="@nature"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="Photocatalytic low-temperature defluorination of PFASs"/> <meta name="twitter:description" content="Nature - Photocatalysis at 40–60 °C is shown to be able to defluorinate perfluoroalkyl substances, known as ‘forever chemicals’, allowing the recycling of fluorine in..."/> <meta name="twitter:image" content="https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41586-024-08179-1/MediaObjects/41586_2024_8179_Fig1_HTML.png"/> <script src="//content.readcube.com/nature/epdf.js"></script> <!-- Google Tag Manager --> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <!-- End Google Tag Manager --> </head> <body> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <div class="break-box box-1 js-box-1" id="small-screen"></div> <div class="break-box box-2 js-box-2" id="single-column"></div> <div class="break-box box-3 js-box-3" id="smaller-screen"></div> <div class="break-box box-4 js-box-4" id="standard-screen"></div> </body> </html>