CINXE.COM
Search results for: spacer grids
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: spacer grids</title> <meta name="description" content="Search results for: spacer grids"> <meta name="keywords" content="spacer grids"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="spacer grids" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="spacer grids"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 276</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: spacer grids</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">276</span> Feasibility Study to Enhance the Heat Transfer in a Typical Pressurized Water Reactor by Ribbed Spacer Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghadbane">A. Ghadbane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Bouaziz"> M. N. Bouaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hanini"> S. Hanini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Baggoura"> B. Baggoura</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abbaci"> M. Abbaci </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spacer grids are used to fix the rods bundle in a nuclear reactor core also act as turbulence-enhancing devices to improve the heat transfer from the hot surfaces of the rods to the surrounding coolant stream. Therefore, the investigation of thermal-hydraulic characteristics inside the rod bundles is important for optima design and safety operation of a nuclear reactor power plant. This contribution presents a feasibility study to use the ribbed spacer grids as mixing devices. The present study evaluates the effects of different ribbed spacer grids configurations on flow pattern and heat transfer in the downstream of the mixing devices in a 2 x 2 rod bundle array. This is done by obtaining velocity and pressure fields, turbulent intensity and the heat transfer coefficient using a three-dimensional CFD analysis. Numerical calculations are performed by employing K-ε turbulent model. The computational results obtained are promising and the comparison with standard spacer grids shows a clear difference which required the experimental approach to validate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PWR%20fuel%20assembly" title="PWR fuel assembly">PWR fuel assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=spacer%20grid" title=" spacer grid"> spacer grid</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20vane" title=" mixing vane"> mixing vane</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20flow" title=" swirl flow"> swirl flow</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20heat%20transfer" title=" turbulent heat transfer"> turbulent heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/16937/feasibility-study-to-enhance-the-heat-transfer-in-a-typical-pressurized-water-reactor-by-ribbed-spacer-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> Finite Element Analysis of the Blanking and Stamping Processes of Nuclear Fuel Spacer Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Oliveira%20Santos">Rafael Oliveira Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciano%20Pessanha%20Moreira"> Luciano Pessanha Moreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20Costa%20Cardoso"> Marcelo Costa Cardoso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spacer grid assembly supporting the nuclear fuel rods is an important concern in the design of structural components of a Pressurized Water Reactor (PWR). The spacer grid is composed by springs and dimples which are formed from a strip sheet by means of blanking and stamping processes. In this paper, the blanking process and tooling parameters are evaluated by means of a 2D plane-strain finite element model in order to evaluate the punch load and quality of the sheared edges of Inconel 718 strips used for nuclear spacer grids. A 3D finite element model is also proposed to predict the tooling loads resulting from the stamping process of a preformed Inconel 718 strip and to analyse the residual stress effects upon the spring and dimple design geometries of a nuclear spacer grid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blanking%20process" title="blanking process">blanking process</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20model" title=" damage model"> damage model</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modelling" title=" finite element modelling"> finite element modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=inconel%20718" title=" inconel 718"> inconel 718</a>, <a href="https://publications.waset.org/abstracts/search?q=spacer%20grids" title=" spacer grids"> spacer grids</a>, <a href="https://publications.waset.org/abstracts/search?q=stamping%20process" title=" stamping process"> stamping process</a> </p> <a href="https://publications.waset.org/abstracts/35882/finite-element-analysis-of-the-blanking-and-stamping-processes-of-nuclear-fuel-spacer-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> Ageing Deterioration of High-Density Polyethylene Cable Spacer under Salt Water Dip Wheel Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Kaewchanthuek">P. Kaewchanthuek</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rawonghad"> R. Rawonghad</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Marungsri"> B. Marungsri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental results of high-density polyethylene cable spacers for 22 kV distribution systems under salt water dip wheel test based on IEC 62217. The strength of anti-tracking and anti-erosion of cable spacer surface was studied in this study. During the test, dry band arc and corona discharge were observed on cable spacer surface. After 30,000 cycles of salt water dip wheel test, obviously surface erosion and tracking were observed especially on the ground end. Chemical analysis results by fourier transforms infrared spectroscopy showed chemical changed from oxidation and carbonization reaction on tested cable spacer. Increasing of C=O and C=C bonds confirmed occurrence of these reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cable%20spacer" title="cable spacer">cable spacer</a>, <a href="https://publications.waset.org/abstracts/search?q=HDPE" title=" HDPE"> HDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=ageing%20of%20cable%20spacer" title=" ageing of cable spacer"> ageing of cable spacer</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20water%20dip%20wheel%20test" title=" salt water dip wheel test"> salt water dip wheel test</a> </p> <a href="https://publications.waset.org/abstracts/9661/ageing-deterioration-of-high-density-polyethylene-cable-spacer-under-salt-water-dip-wheel-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> Performance Analysis of BPJLT with Different Gate and Spacer Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Porag%20Jyoti%20Ligira">Porag Jyoti Ligira</a>, <a href="https://publications.waset.org/abstracts/search?q=Gargi%20Khanna"> Gargi Khanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a simulation study of the electrical characteristic of Bulk Planar Junctionless Transistor (BPJLT) using spacer. The BPJLT is a transistor without any PN junctions in the vertical direction. It is a gate controlled variable resistor. The characteristics of BPJLT are analyzed by varying the oxide material under the gate. It can be shown from the simulation that an ideal subthreshold slope of ~60 mV/decade can be achieved by using highk dielectric. The effects of variation of spacer length and material on the electrical characteristic of BPJLT are also investigated in the paper. The ION / IOFF ratio improvement is of the order of 107 and the OFF current reduction of 10-4 is obtained by using gate dielectric of HfO2 instead of SiO2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spacer" title="spacer">spacer</a>, <a href="https://publications.waset.org/abstracts/search?q=BPJLT" title=" BPJLT"> BPJLT</a>, <a href="https://publications.waset.org/abstracts/search?q=high-k" title=" high-k"> high-k</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20gate" title=" double gate"> double gate</a> </p> <a href="https://publications.waset.org/abstracts/11775/performance-analysis-of-bpjlt-with-different-gate-and-spacer-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Effect of the Hardness of Spacer Agent on Structural Properties of Metallic Scaffolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20%20Khodaei">Mohammad Khodaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20%20Meratien"> Mahmood Meratien</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Valanezhad"> Alireza Valanezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Serdar%20Pazarlioglu"> Serdar Pazarlioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Serdar%20Salman"> Serdar Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikuya%20Watanabe"> Ikuya Watanabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pore size and morphology plays a crucial role on mechanical properties of porous scaffolds. In this research, titanium scaffold was prepared using space holder technique. Sodium chloride and ammonium bicarbonate were utilized as spacer agent separately. The effect of the hardness of spacer on the cell morphology was investigated using scanning electron microscopy (SEM) and optical stereo microscopy. Image analyzing software was used to interpret the microscopic images quantitatively. It was shown that sodium chloride, due to its higher hardness, maintain its morphology during cold compaction, and cause better replication in porous scaffolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spacer" title="Spacer">Spacer</a>, <a href="https://publications.waset.org/abstracts/search?q=Titanium%20Scaffold" title=" Titanium Scaffold"> Titanium Scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=Pore%20Morphology" title=" Pore Morphology"> Pore Morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=Space%20Holder%20Technique" title=" Space Holder Technique"> Space Holder Technique</a> </p> <a href="https://publications.waset.org/abstracts/66028/effect-of-the-hardness-of-spacer-agent-on-structural-properties-of-metallic-scaffolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Effect of 3-Dimensional Knitted Spacer Fabrics Characteristics on Its Thermal and Compression Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veerakumar%20Arumugam">Veerakumar Arumugam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Mishra"> Rajesh Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Militky"> Jiri Militky</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Salacova"> Jana Salacova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermo-physiological comfort and compression properties of knitted spacer fabrics have been evaluated by varying the different spacer fabric parameters. Air permeability and water vapor transmission of the fabrics were measured using the Textest FX-3300 air permeability tester and PERMETEST. Then thermal behavior of fabrics was obtained by Thermal conductivity analyzer and overall moisture management capacity was evaluated by moisture management tester. Spacer Fabrics compression properties were also tested using Kawabata Evaluation System (KES-FB3). In the KES testing, the compression resilience, work of compression, linearity of compression and other parameters were calculated from the pressure-thickness curves. Analysis of Variance (ANOVA) was performed using new statistical software named QC expert trilobite and Darwin in order to compare the influence of different fabric parameters on thermo-physiological and compression behavior of samples. This study established that the raw materials, type of spacer yarn, density, thickness and tightness of surface layer have significant influence on both thermal conductivity and work of compression in spacer fabrics. The parameter which mainly influence on the water vapor permeability of these fabrics is the properties of raw material i.e. the wetting and wicking properties of fibers. The Pearson correlation between moisture capacity of the fabrics and water vapour permeability was found using statistical software named QC expert trilobite and Darwin. These findings are important requirements for the further designing of clothing for extreme environmental conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20spacer%20fabrics" title="3D spacer fabrics">3D spacer fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20management" title=" moisture management"> moisture management</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20of%20compression%20%28WC%29" title=" work of compression (WC)"> work of compression (WC)</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20of%20compression%20%28RC%29" title=" resilience of compression (RC)"> resilience of compression (RC)</a> </p> <a href="https://publications.waset.org/abstracts/37460/effect-of-3-dimensional-knitted-spacer-fabrics-characteristics-on-its-thermal-and-compression-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Hierarchical Checkpoint Protocol in Data Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahma%20Souli-Jbali">Rahma Souli-Jbali</a>, <a href="https://publications.waset.org/abstracts/search?q=Minyar%20Sassi%20Hidri"> Minyar Sassi Hidri</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahma%20Ben%20Ayed"> Rahma Ben Ayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20grids" title="data grids">data grids</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerance" title=" fault tolerance"> fault tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=chandy-lamport" title=" chandy-lamport"> chandy-lamport</a> </p> <a href="https://publications.waset.org/abstracts/59699/hierarchical-checkpoint-protocol-in-data-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Development of Lead-Bismuth Eutectic Sub-Channel Code Available for Wire Spacer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qi%20Lu">Qi Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Deng"> Jian Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=Daishun%20Huang"> Daishun Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Guo"> Chao Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lead cooled fast reactor is considered as one of the most potential Generation IV nuclear systems due to the low working pressure, the appreciable neutron economy, and the considerable passive characteristics. Meanwhile, the lead bismuth eutectic (LBE) has the related advantages of lead with the weaker corrosiveness, which has been paid much attention by recent decades. Moreover, the sub-channel code is a necessary analysis tool for the reactor thermal-hydraulic design and safety analysis, which has been developed combined with the accumulation of LBE experimental data and the understanding of physical phenomena. In this study, a sub-channel code available for LBE was developed, and the corresponding geometric characterization method of typical sub-channels was described in detail, especially for for the fuel assembly with wire spacer. As for this sub-channel code, the transversal thermal conduction through gap was taken into account. In addition, the physical properties, the heat transfer model, the flow resistance model and the turbulent mixing model were analyzed. Finally, the thermal-hydraulic experiments of LBE conducted on THEADES (THErmal-hydraulics and Ads DESign) were selected as the evaluation data of this sub-channel code, including 19 rods with wire spacer, and the calculated results were in good agreement with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lead%20bismuth%20eutectic" title="lead bismuth eutectic">lead bismuth eutectic</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-channel%20code" title=" sub-channel code"> sub-channel code</a>, <a href="https://publications.waset.org/abstracts/search?q=wire%20spacer" title=" wire spacer"> wire spacer</a>, <a href="https://publications.waset.org/abstracts/search?q=transversal%20thermal%20conduction" title=" transversal thermal conduction"> transversal thermal conduction</a> </p> <a href="https://publications.waset.org/abstracts/123137/development-of-lead-bismuth-eutectic-sub-channel-code-available-for-wire-spacer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Challenges with Synchrophasor Technology Deployments in Electric Power Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20U.%20Oleka">Emmanuel U. Oleka</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Khanal"> Anil Khanal</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20L.%20Lebby"> Gary L. Lebby</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20R.%20Osareh"> Ali R. Osareh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synchrophasor technology is fast being deployed in electric power grids all over the world and is fast changing the way the grids are managed. This trend is to continue until the entire power grids are fully connected so they can be monitored and controlled in real-time. Much achievement has been made in the synchrophasor technology development and deployment, and much more are yet to be achieved. Real-time power grid control and protection potentials of synchrophasor are yet to be explored. It is of necessity that researchers keep in view the various challenges that still need to be overcome in expanding the frontiers of synchrophasor technology. This paper outlines the major challenges that should be dealt with in order to achieve the goal of total power grid visualization, monitoring and control using synchrophasor technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20power%20grid" title="electric power grid">electric power grid</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20visualization" title=" grid visualization"> grid visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit" title=" phasor measurement unit"> phasor measurement unit</a>, <a href="https://publications.waset.org/abstracts/search?q=synchrophasor" title=" synchrophasor"> synchrophasor</a> </p> <a href="https://publications.waset.org/abstracts/34833/challenges-with-synchrophasor-technology-deployments-in-electric-power-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Energy Trading for Cooperative Microgrids with Renewable Energy Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziaullah">Ziaullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Wahab%20Ali"> Shah Wahab Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-grid equipped with heterogeneous energy resources present the idea of small scale distributed energy management (DEM). DEM helps in minimizing the transmission and operation costs, power management and peak load demands. Micro-grids are collections of small, independent controllable power-generating units and renewable energy resources. Micro-grids also motivate to enable active customer participation by giving accessibility of real-time information and control to the customer. The capability of fast restoration against faulty situation, integration of renewable energy resources and Information and Communication Technologies (ICT) make micro-grid as an ideal system for distributed power systems. Micro-grids can have a bank of energy storage devices. The energy management system of micro-grid can perform real-time energy forecasting of renewable resources, energy storage elements and controllable loads in making proper short-term scheduling to minimize total operating costs. We present a review of existing micro-grids optimization objectives/goals, constraints, solution approaches and tools used in micro-grids for energy management. Cost-benefit analysis of micro-grid reveals that cooperation among different micro-grids can play a vital role in the reduction of import energy cost and system stability. Cooperative micro-grids energy trading is an approach to electrical distribution energy resources that allows local energy demands more control over the optimization of power resources and uses. Cooperation among different micro-grids brings the interconnectivity and power trading issues. According to the literature, it shows that open area of research is available for cooperative micro-grids energy trading. In this paper, we proposed and formulated the efficient energy management/trading module for interconnected micro-grids. It is believed that this research will open new directions in future for energy trading in cooperative micro-grids/interconnected micro-grids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20energy%20management" title="distributed energy management">distributed energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20and%20communication%20technologies" title=" information and communication technologies"> information and communication technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrid" title=" microgrid"> microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title=" energy management"> energy management</a> </p> <a href="https://publications.waset.org/abstracts/81024/energy-trading-for-cooperative-microgrids-with-renewable-energy-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> Subfamilial Relationships within Solanaceae as Inferred from atpB-rbcL Intergenic Spacer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Qamarunnisa">Syeda Qamarunnisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishrat%20Jamil"> Ishrat Jamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Abid%20Azhar"> Abid Azhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zabta%20K.%20Shinwari"> Zabta K. Shinwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Irtifaq%20Ali"> Syed Irtifaq Ali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A phylogenetic analysis of family Solanaceae was conducted using sequence data from the chloroplast intergenic atpB-rbcL spacer. Sequence data was generated from 17 species representing 09 out of 14 genera of Solanaceae from Pakistan. Cladogram was constructed using maximum parsimony method and results indicate that Solanaceae is mainly divided into two subfamilies; Solanoideae and Cestroideae. Four major clades within Solanoideae represent tribes; Physaleae, Capsiceae, Datureae and Solaneae are supported by high bootstrap value and the relationships among them are not corroborating with the previous studies. The findings established that subfamily Cestroideae comprised of three genera; Cestrum, Lycium, and Nicotiana with high bootstrap support. Position of Nicotiana inferred with atpB-rbcL sequence is congruent with traditional classification, which placed the taxa in Cestroideae. In the current study Lycium unexpectedly nested with Nicotiana with 100% bootstrap support and identified as a member of tribe Nicotianeae. Expanded sampling of other genera from Pakistan could be valuable towards improving our understanding of intrafamilial relationships within Solanaceae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=systematics" title="systematics">systematics</a>, <a href="https://publications.waset.org/abstracts/search?q=solanaceae" title=" solanaceae"> solanaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetics" title=" phylogenetics"> phylogenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=intergenic%20spacer" title=" intergenic spacer"> intergenic spacer</a>, <a href="https://publications.waset.org/abstracts/search?q=tribes" title=" tribes"> tribes</a> </p> <a href="https://publications.waset.org/abstracts/1732/subfamilial-relationships-within-solanaceae-as-inferred-from-atpb-rbcl-intergenic-spacer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> Solid-State Luminescence of Fluorenone Grafted onto Cellulose Aldehyde Backbone Using Different Organic Amine Spacers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isam%20M.%20Arafa">Isam M. Arafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazin%20Y.%20Shatnawi"> Mazin Y. Shatnawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20A.%20Yousef"> Yaser A. Yousef</a>, <a href="https://publications.waset.org/abstracts/search?q=Batool%20Zaid%20Al-Momani"> Batool Zaid Al-Momani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work describes the preparation, characterization, and luminescence of a series of fluorenone (FL) based luminophores grafted onto modified cellulose microfibers. The FL is condensed onto cellulose aldehyde using three diamine spacers (H₂N-NH₂, H₂N(CH₂)₂NH₂ and H₂N(CH₂)₃NH₂) to afford Cell=Spacer=FL. The obtained products were characterized by spectroscopic (FT-IR, UV–Vis), thermal gravimetric analysis (TGA), and microscopic (Optical, SEM) techniques. The UV-Vis spectra of the FL=N(CH₂)ₓNH₂ (x = 0, 2, 3) moieties show that they are transparent in the 375- 800 nm region while they exhibit intense absorption band below 350 nm attributed to n-π* and π-π* transitions. The solid-state photoluminescence (PLs-s) of the cold-pressed pellets of the FL=N(CH₂)ₓNH₂ and Cell=Spacer=FL placed in a quartz cuvette show strong emission in the 500-550 nm region upon irradiation with Xe lamp light (λex = 320 nm). The PLs-s green emission of the grafted Cell=Spacer=FL was evaluated relative to that of the FL-based precursor. These grafted conjugated products have the potential to be used as analyte sensors for typical nitroaromatics/aromatic amines and be further extended to immunoassay studies for aromatic amino acids such as phenylalanine and histidine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=luminescence" title="luminescence">luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorenone" title=" fluorenone"> fluorenone</a>, <a href="https://publications.waset.org/abstracts/search?q=grafting" title=" grafting"> grafting</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state" title=" solid state"> solid state</a> </p> <a href="https://publications.waset.org/abstracts/176946/solid-state-luminescence-of-fluorenone-grafted-onto-cellulose-aldehyde-backbone-using-different-organic-amine-spacers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Tuning of Indirect Exchange Coupling in FePt/Al₂O₃/Fe₃Pt System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajan%20Goyal">Rajan Goyal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lamba"> S. Lamba</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Annapoorni"> S. Annapoorni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The indirect exchange coupled system consists of two ferromagnetic layers separated by non-magnetic spacer layer. The type of exchange coupling may be either ferro or anti-ferro depending on the thickness of the spacer layer. In the present work, the strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt has been investigated by varying the thickness of the spacer layer Al₂O₃. The FePt/Al₂O₃/Fe₃Pt trilayer structure is fabricated on Si <100> single crystal substrate using sputtering technique. The thickness of FePt and Fe₃Pt is fixed at 60 nm and 2 nm respectively. The thickness of spacer layer Al₂O₃ was varied from 0 to 16 nm. The normalized hysteresis loops recorded at room temperature both in the in-plane and out of plane configuration reveals that the orientation of easy axis lies along the plane of the film. It is observed that the hysteresis loop for ts=0 nm does not exhibit any knee around H=0 indicating that the hard FePt layer and soft Fe₃Pt layer are strongly exchange coupled. However, the insertion of Al₂O₃ spacer layer of thickness ts = 0.7 nm results in appearance of a minor knee around H=0 suggesting the weakening of exchange coupling between FePt and Fe₃Pt. The disappearance of knee in hysteresis loop with further increase in thickness of the spacer layer up to 8 nm predicts the co-existence of ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction between FePt and Fe₃Pt. In addition to this, the out of plane hysteresis loop also shows an asymmetry around H=0. The exchange field Hex = (Hc↑-HC↓)/2, where Hc↑ and Hc↓ are the coercivity estimated from lower and upper branch of hysteresis loop, increases from ~ 150 Oe to ~ 700 Oe respectively. This behavior may be attributed to the uncompensated moments in the hard FePt layer and soft Fe₃Pt layer at the interface. A better insight into the variation in indirect exchange coupling has been investigated using recoil curves. It is observed that the almost closed recoil curves are obtained for ts= 0 nm up to a reverse field of ~ 5 kOe. On the other hand, the appearance of appreciable open recoil curves at lower reverse field ~ 4 kOe for ts = 0.7 nm indicates that uncoupled soft phase undergoes irreversible magnetization reversal at lower reverse field suggesting the weakening of exchange coupling. The openness of recoil curves decreases with increase in thickness of the spacer layer up to 8 nm. This behavior may be attributed to the competition between FM and AFM exchange interactions. The FM exchange coupling between FePt and Fe₃Pt due to porous nature of Al₂O₃ decreases much slower than the weak AFM coupling due to interaction between Fe ions of FePt and Fe₃Pt via O ions of Al₂O₃. The hysteresis loop has been simulated using Monte Carlo based on Metropolis algorithm to investigate the variation in strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt trilayer system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indirect%20exchange%20coupling" title="indirect exchange coupling">indirect exchange coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=MH%20loop" title=" MH loop"> MH loop</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=recoil%20curve" title=" recoil curve"> recoil curve</a> </p> <a href="https://publications.waset.org/abstracts/75877/tuning-of-indirect-exchange-coupling-in-feptal2o3fe3pt-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> Smart Grids in Morocco: An Outline of the Recent Developments, Key Drivers, and Recommendations for Better Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Laamim">Mohamed Laamim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelilah%20Rochd"> Abdelilah Rochd</a>, <a href="https://publications.waset.org/abstracts/search?q=Aboubakr%20Benazzouz"> Aboubakr Benazzouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahim%20El%20Fadili"> Abderrahim El Fadili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smart grids have recently sparked a lot of interest in the energy sector as they allow for the modernization and digitization of the existing power infrastructure. Smart grids have several advantages in terms of reducing the environmental impact of generating power from fossil fuels due to their capacity to integrate large amounts of distributed energy resources. On the other hand, smart grid technologies necessitate many field investigations and requirements. This paper focuses on the major difficulties that governments face around the world and compares them to the situation in Morocco. Also presented in this study are the current works and projects being developed to improve the penetration of smart grid technologies into the electrical system. Furthermore, the findings of this study will be useful to promote the smart grid revolution in Morocco, as well as to construct a strong foundation and develop future needs for better penetration of technologies that aid in the integration of smart grid features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20grids" title="smart grids">smart grids</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrids" title=" microgrids"> microgrids</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20power%20plants" title=" virtual power plants"> virtual power plants</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title=" digital twin"> digital twin</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20energy%20resources" title=" distributed energy resources"> distributed energy resources</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle-to-grid" title=" vehicle-to-grid"> vehicle-to-grid</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20metering%20infrastructure." title=" advanced metering infrastructure."> advanced metering infrastructure.</a> </p> <a href="https://publications.waset.org/abstracts/161465/smart-grids-in-morocco-an-outline-of-the-recent-developments-key-drivers-and-recommendations-for-better-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> System Security Impact on the Dynamic Characteristics of Measurement Sensors in Smart Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiyang%20Su">Yiyang Su</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Neumann"> Jörg Neumann</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Wetzlich"> Jan Wetzlich</a>, <a href="https://publications.waset.org/abstracts/search?q=Florian%20Thiel"> Florian Thiel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smart grid is a term used to describe the next generation power grid. New challenges such as integration of renewable and decentralized energy sources, the requirement for continuous grid estimation and optimization, as well as the use of two-way flows of energy have been brought to the power gird. In order to achieve efficient, reliable, sustainable, as well as secure delivery of electric power more and more information and communication technologies are used for the monitoring and the control of power grids. Consequently, the need for cybersecurity is dramatically increased and has converged into several standards which will be presented here. These standards for the smart grid must be designed to satisfy both performance and reliability requirements. An in depth investigation of the effect of retrospectively embedded security in existing grids on it’s dynamic behavior is required. Therefore, a retrofitting plan for existing meters is offered, and it’s performance in a test low voltage microgrid is investigated. As a result of this, integration of security measures into measurement architectures of smart grids at the design phase is strongly recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyber%20security" title="cyber security">cyber security</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=protocols" title=" protocols"> protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20standards" title=" security standards"> security standards</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/80565/system-security-impact-on-the-dynamic-characteristics-of-measurement-sensors-in-smart-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> Smart Grids Cyber Security Issues and Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Aouini">Imen Aouini</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamia%20Ben%20Azzouz"> Lamia Ben Azzouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy need is growing rapidly due to the population growth and the large new usage of power. Several works put considerable efforts to make the electricity grid more intelligent to reduce essentially energy consumption and provide efficiency and reliability of power systems. The Smart Grid is a complex architecture that covers critical devices and systems vulnerable to significant attacks. Hence, security is a crucial factor for the success and the wide deployment of Smart Grids. In this paper, we present security issues of the Smart Grid architecture and we highlight open issues that will make the Smart Grid security a challenging research area in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20grids" title="smart grids">smart grids</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20meters" title=" smart meters"> smart meters</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20area%20network" title=" home area network"> home area network</a>, <a href="https://publications.waset.org/abstracts/search?q=neighbor%20area%20network" title=" neighbor area network"> neighbor area network</a> </p> <a href="https://publications.waset.org/abstracts/35303/smart-grids-cyber-security-issues-and-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> Smart Grids in Morocco: An Outline of the Recent Development, Key Drivers and Recommendations for Future Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Laamim">Mohamed Laamim</a>, <a href="https://publications.waset.org/abstracts/search?q=Aboubakr%20Benazzouz"> Aboubakr Benazzouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelilah%20Rochd"> Abdelilah Rochd</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20Ghennioui"> Abdellatif Ghennioui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahim%20El%20Fadili"> Abderrahim El Fadili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smart grids have recently sparked a lot of interest in the energy sector as they allow for the modernization and digitization of the existing power infrastructure. Smart grids have several advantages in terms of reducing the environmental impact of generating power from fossil fuels due to their capacity to integrate large amounts of distributed energy resources. On the other hand, smart grid technologies necessitate many field investigations and requirements. This paper focuses on the major difficulties that governments face around the world and compares them to the situation in Morocco. Also presented in this study are the current works and projects being developed to improve the penetration of smart grid technologies into the electrical system. Furthermore, the findings of this study will be useful to promote the smart grid revolution in Morocco, as well as to construct a strong foundation and develop future needs for better penetration of technologies that aid in the integration of smart grid features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20grids" title="smart grids">smart grids</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrids" title=" microgrids"> microgrids</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20power%20plants" title=" virtual power plants"> virtual power plants</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title=" digital twin"> digital twin</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20energy%20resources" title=" distributed energy resources"> distributed energy resources</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle-to-grid" title=" vehicle-to-grid"> vehicle-to-grid</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20metering%20infrastructure" title=" advanced metering infrastructure"> advanced metering infrastructure</a> </p> <a href="https://publications.waset.org/abstracts/151602/smart-grids-in-morocco-an-outline-of-the-recent-development-key-drivers-and-recommendations-for-future-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> A Comparative Study of Global Power Grids and Global Fossil Energy Pipelines Using GIS Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenhao%20Wang">Wenhao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinzhi%20Xu"> Xinzhi Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Limin%20Feng"> Limin Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Cong"> Wei Cong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper comprehensively investigates current development status of global power grids and fossil energy pipelines (oil and natural gas), proposes a standard visual platform of global power and fossil energy based on Geographic Information System (GIS) technology. In this visual platform, a series of systematic visual models is proposed with global spatial data, systematic energy and power parameters. Under this visual platform, the current Global Power Grids Map and Global Fossil Energy Pipelines Map are plotted within more than 140 countries and regions across the world. Using the multi-scale fusion data processing and modeling methods, the world’s global fossil energy pipelines and power grids information system basic database is established, which provides important data supporting global fossil energy and electricity research. Finally, through the systematic and comparative study of global fossil energy pipelines and global power grids, the general status of global fossil energy and electricity development are reviewed, and energy transition in key areas are evaluated and analyzed. Through the comparison analysis of fossil energy and clean energy, the direction of relevant research is pointed out for clean development and energy transition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20transition" title="energy transition">energy transition</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system"> geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=fossil%20energy" title=" fossil energy"> fossil energy</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20systems" title=" power systems"> power systems</a> </p> <a href="https://publications.waset.org/abstracts/120933/a-comparative-study-of-global-power-grids-and-global-fossil-energy-pipelines-using-gis-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niklas%20Panten">Niklas Panten</a>, <a href="https://publications.waset.org/abstracts/search?q=Eberhard%20Abele"> Eberhard Abele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20smart%20grids" title="industrial smart grids">industrial smart grids</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title=" deep reinforcement learning"> deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a> </p> <a href="https://publications.waset.org/abstracts/95730/deep-reinforcement-learning-approach-for-optimal-control-of-industrial-smart-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> A Simple Light-Outcoupling Enhancement Method for Organic Light-Emitting Diodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho-Nyeon%20Lee">Ho-Nyeon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose to use a gradual-refractive-index dielectric (GRID) as a simple and efficient light-outcoupling method for organic light-emitting diodes (OLEDs). Using the simple GRIDs, we could improve the light outcoupling efficiency of OLEDs rather than relying on difficult nano-patterning processes. Through numerical simulations using a finite-difference time-domain (FDTD) method, the feasibility of the GRID structure was examined and the design parameters were extracted. The outcoupling enhancement effects due to the GRIDs were proved through severe experimental works. The GRIDs were adapted to bottom-emission OLEDs and top-emission OLEDs. For bottom-emission OLEDs, the efficiency was improved more than 20%, and for top-emission OLEDs, more than 40%. The detailed numerical and experimental results will be presented at the conference site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=GRID" title=" GRID"> GRID</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20outcoupling" title=" light outcoupling"> light outcoupling</a>, <a href="https://publications.waset.org/abstracts/search?q=OLED" title=" OLED"> OLED</a> </p> <a href="https://publications.waset.org/abstracts/37501/a-simple-light-outcoupling-enhancement-method-for-organic-light-emitting-diodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Assessment of Forage Utilization for Pasture-Based Livestock Production in Udubo Grazing Reserve, Bauchi State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Saidu">Mustapha Saidu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilyaminu%20Mohammed"> Bilyaminu Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted in Udubo Grazing Reserve between July 2019 and October 2019 to assess forage utilization for pasture-based livestock production in reserve. The grazing land was cross-divided into grids, where 15 coordinates were selected as the sample points. Grids of one-kilometer interval were made. The grids were systematically selected 1 grid after 7 grids. 1 × 1-meter quadrat was made at the coordinate of the selected grids for measurement, estimation, and sample collection. The results of the study indicated that Zornia glochidiatah has the highest percent of species composition (42%), while Mitracarpus hirtus has the lowest percent (0.1%). Urochloa mosambicensis has 48 percent of height removed and 27 percent used by weight, Zornia glochidiata 60 percent of height removed and 57 percent used by weight, Alysicapus veginalis has 55 percent of height removed, and 40 percent used by weight, and Cenchrus biflorus has 40 percent of height removed and 28 percent used by weight. The target is 50 percent utilization of forage by weight during a grazing period as well as at the end of the grazing season. The study found that Orochloa mosambicensis, Alysicarpus veginalis, and Cenchrus biflorus had lower percent by weight which is normal, while Zornia glochidiata had a higher percent by weight which is an indication of danger. The study recommends that the identification of key plant species in pasture and rangeland is critical to implementing a successful grazing management plan. There should be collective action and promotion of historically generated grazing knowledge through public and private advocacies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forage" title="forage">forage</a>, <a href="https://publications.waset.org/abstracts/search?q=grazing%20reserve" title=" grazing reserve"> grazing reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=live%20stock" title=" live stock"> live stock</a>, <a href="https://publications.waset.org/abstracts/search?q=pasture" title=" pasture"> pasture</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20species" title=" plant species"> plant species</a> </p> <a href="https://publications.waset.org/abstracts/157502/assessment-of-forage-utilization-for-pasture-based-livestock-production-in-udubo-grazing-reserve-bauchi-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> Energy Self-Sufficiency Through Smart Micro-Grids and Decentralised Sector-Coupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Trapp">C. Trapp</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vijay"> A. Vijay</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khorasani"> M. Khorasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Decentralised micro-grids with sector coupling can combat the spatial and temporal intermittence of renewable energy by combining power, transportation and infrastructure sectors. Intelligent energy conversion concepts such as electrolysers, hydrogen engines and fuel cells combined with energy storage using intelligent batteries and hydrogen storage form the back-bone of such a system. This paper describes a micro-grid based on Photo-Voltaic cells, battery storage, innovative modular and scalable Anion Exchange Membrane (AEM) electrolyzer with an efficiency of up to 73%, high-pressure hydrogen storage as well as cutting-edge combustion-engine based Combined Heat and Power (CHP) plant with more than 85% efficiency at the university campus to address the challenges of decarbonization whilst eliminating the necessity for expensive high-voltage infrastructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sector%20coupling" title="sector coupling">sector coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-grids" title=" micro-grids"> micro-grids</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20self-sufficiency" title=" energy self-sufficiency"> energy self-sufficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonization" title=" decarbonization"> decarbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=AEM%20electrolysis" title=" AEM electrolysis"> AEM electrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20CHP" title=" hydrogen CHP"> hydrogen CHP</a> </p> <a href="https://publications.waset.org/abstracts/144154/energy-self-sufficiency-through-smart-micro-grids-and-decentralised-sector-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Machine Learning-Based Techniques for Detecting and Mitigating Cyber-attacks on Automatic Generation Control in Smart Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20M.%20Alshareef">Sami M. Alshareef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid growth of smart grid technology has brought significant advancements to the power industry. However, with the increasing interconnectivity and reliance on information and communication technologies, smart grids have become vulnerable to cyber-attacks, posing significant threats to the reliable operation of power systems. Among the critical components of smart grids, the Automatic Generation Control (AGC) system plays a vital role in maintaining the balance between generation and load demand. Therefore, protecting the AGC system from cyber threats is of paramount importance to maintain grid stability and prevent disruptions. Traditional security measures often fall short in addressing sophisticated and evolving cyber threats, necessitating the exploration of innovative approaches. Machine learning, with its ability to analyze vast amounts of data and learn patterns, has emerged as a promising solution to enhance AGC system security. Therefore, this research proposal aims to address the challenges associated with detecting and mitigating cyber-attacks on AGC in smart grids by leveraging machine learning techniques on automatic generation control of two-area power systems. By utilizing historical data, the proposed system will learn the normal behavior patterns of AGC and identify deviations caused by cyber-attacks. Once an attack is detected, appropriate mitigation strategies will be employed to safeguard the AGC system. The outcomes of this research will provide power system operators and administrators with valuable insights into the vulnerabilities of AGC systems in smart grids and offer practical solutions to enhance their cyber resilience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber-attacks" title=" cyber-attacks"> cyber-attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20generation%20control" title=" automatic generation control"> automatic generation control</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/169725/machine-learning-based-techniques-for-detecting-and-mitigating-cyber-attacks-on-automatic-generation-control-in-smart-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> Direct Current Grids in Urban Planning for More Sustainable Urban Energy and Mobility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Casper">B. Casper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy transition towards renewable energies and drastically reduced carbon dioxide emissions in Germany drives multiple sectors into a transformation process. Photovoltaic and on-shore wind power are predominantly feeding in the low and medium-voltage grids. The electricity grid is not laid out to allow an increasing feed-in of power in low and medium voltage grids. Electric mobility is currently in the run-up phase in Germany and still lacks a significant amount of charging stations. The additional power demand by e-mobility cannot be supplied by the existing electric grids in most cases. The future demands in heating and cooling of commercial and residential buildings are increasingly generated by heat-pumps. Yet the most important part in the energy transition is the storage of surplus energy generated by photovoltaic and wind power sources. Water electrolysis is one way to store surplus energy known as power-to-gas. With the vehicle-to-grid technology, the upcoming fleet of electric cars could be used as energy storage to stabilize the grid. All these processes use direct current (DC). The demand of bi-directional flow and higher efficiency in the future grids can be met by using DC. The Flexible Electrical Networks (FEN) research campus at RWTH Aachen investigates interdisciplinary about the advantages, opportunities, and limitations of DC grids. This paper investigates the impact of DC grids as a technological innovation on the urban form and urban life. Applying explorative scenario development, analyzation of mapped open data sources on grid networks and research-by-design as a conceptual design method, possible starting points for a transformation to DC medium voltage grids could be found. Several fields of action have emerged in which DC technology could become a catalyst for future urban development: energy transition in urban areas, e-mobility, and transformation of the network infrastructure. The investigation shows a significant potential to increase renewable energy production within cities with DC grids. The charging infrastructure for electric vehicles will predominantly be using DC in the future because fast and ultra fast charging can only be achieved with DC. Our research shows that e-mobility, combined with autonomous driving has the potential to change the urban space and urban logistics fundamentally. Furthermore, there are possible win-win-win solutions for the municipality, the grid operator and the inhabitants: replacing overhead transmission lines by underground DC cables to open up spaces in contested urban areas can lead to a positive example of how the energy transition can contribute to a more sustainable urban structure. The outlook makes clear that target grid planning and urban planning will increasingly need to be synchronized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20current" title="direct current">direct current</a>, <a href="https://publications.waset.org/abstracts/search?q=e-mobility" title=" e-mobility"> e-mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transition" title=" energy transition"> energy transition</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20planning" title=" grid planning"> grid planning</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a> </p> <a href="https://publications.waset.org/abstracts/103777/direct-current-grids-in-urban-planning-for-more-sustainable-urban-energy-and-mobility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> Synthesis and Preparation of Carbon Ferromagnetic Nanocontainers for Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Szymanski">L. Szymanski</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kolacinski"> Z. Kolacinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kami%C5%84ski"> Z. Kamiński</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Raniszewski"> G. Raniszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Fraczyk"> J. Fraczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Pietrzak"> L. Pietrzak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the article the development and demonstration of method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nano containers. Methodology of the production carbon - ferromagnetic nanocontainers includes: the synthesis of carbon nanotubes, chemical and physical characterization, increasing the content of ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. Biochemical functionalization of ferromagnetic nanocontainers is necessary in order to increase the binding selectively with receptors presented on the surface of tumour cells. Multi-step modification procedure was finally used to attach folic acid on the surface of ferromagnetic nanocontainers. Folic acid is ligand of folate receptors which is overexpresion in tumor cells. The presence of ligand should ensure the specificity of the interaction between ferromagnetic nanocontainers and tumor cells. The chemical functionalization contains several step: oxidation reaction, transformation of carboxyl groups into more reactive ester or amide groups, incorporation of spacer molecule (linker), attaching folic acid. Activation of carboxylic groups was prepared with triazine coupling reagent (preparation of superactive ester attached on the nanocontainers). The spacer molecules were designed and synthesized. In order to ensure biocompatibillity of linkers they were built from amino acids or peptides. Spacer molecules were synthesized using the SPPS method. Synthesis was performed on 2-Chlorotrityl resin. The linker important feature is its length. Due to that fact synthesis of peptide linkers containing from 2 to 4 -Ala- residues was carried out. Independent synthesis of the conjugate of foilic acid with 6-aminocaproic acid was made. Final step of synthesis was connecting conjugat with spacer molecules and attaching it on the ferromagnetic nanocontainer surface. This article contains also information about special CVD and microvave plasma system to produce nanotubes and ferromagnetic nanocontainers. The first tests in the device for hyperthermal RF generator will be presented. The frequency of RF generator was in the ranges from 10 to 14Mhz and from 265 to 621kHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthesis%20of%20carbon%20nanotubes" title="synthesis of carbon nanotubes">synthesis of carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=ligands" title=" ligands"> ligands</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a> </p> <a href="https://publications.waset.org/abstracts/39148/synthesis-and-preparation-of-carbon-ferromagnetic-nanocontainers-for-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Viability of Smart Grids for Green IT Sustainability: Contemplated within the Context of Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manuela%20Nayantara%20Jeyaraj">Manuela Nayantara Jeyaraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information Technology (IT) is considered to be the prime contributor towards most of the energy releases and hence recursively impacting on the environmental Carbon Footprint on a major scale. The hostile effects brought about due to this massive carbon release such as global warming and ecosystem wipe-outs are currently being realized in Sri Lanka due to the rapid development and merging of computer based technologies. Sri Lanka, being a nature-rich island, has the undying need to preserve its natural environment hence resolving to better ‘Green IT’ practices in all possible spheres. Green IT implies the IT related practices for environmental sustainability. But the industrial divisions in Sri Lanka are still hesitant to fully realize the benefits of applying better “Green IT” principles due to considerations related to costs and other issues. In order to bring about a positive awareness of Green IT, the use of Smart Grids, which is yet a conceptualized principle within the Sri Lankan context, can be considered as a feasible proof in hand. This paper tends to analyze the feasibility of utilizing Smart Grids to ensure minimized cost and effects in preserving the environment hence ensuring Sustainable Green IT practices in an economically and technologically viable manner in Sri Lanka. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20IT" title="green IT">green IT</a>, <a href="https://publications.waset.org/abstracts/search?q=industry" title=" industry"> industry</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Lanka" title=" Sri Lanka"> Sri Lanka</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/63821/viability-of-smart-grids-for-green-it-sustainability-contemplated-within-the-context-of-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Development of Thermo-Regulating Fabric Using Microcapsules of Phase Change Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Benmoussa">D. Benmoussa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hannache"> H. Hannache</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Cherkaoui"> O. Cherkaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In textiles, the major interest in microencapsulation is currently in the application of durable fragrances, skin softeners, phase-change materials, antimicrobial agents and drug delivery systems onto textile materials. In our research “Polyethylene Glycol” was applied as phase change material and it was encapsulated in polymethacrylic acid (PMA) by radical polymerization in suspension of methacrylic acid in presence of N,N'-methylenebisacrylamide (MBAM) as crosslinking agent. Thereafter the obtained microcapsule was modified by amidation with ethylenediamine as a spacer molecule. At the end of this spacer trichlorotriazine reactive group was fixed. Microcapsules were grafted onto cotton textile substrate. The surface morphologies of the microencapsulated phase change materials (micro PCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared micro PCMs were investigated by differential scanning calorimetry (DSC) and thermogravmetric analysis (TGA). The results obtained show the obtaining microcapsules with a mean diameter of 10 µm and the resistance of the microcapsules is demonstrated by thermal analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=microencapsulation" title=" microencapsulation"> microencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=phase-change%20materials" title=" phase-change materials"> phase-change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravmetric%20analysis%20%28TGA%29" title=" thermogravmetric analysis (TGA)"> thermogravmetric analysis (TGA)</a> </p> <a href="https://publications.waset.org/abstracts/25467/development-of-thermo-regulating-fabric-using-microcapsules-of-phase-change-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">682</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuchen%20Yang">Yuchen Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenming%20Wang"> Zhenming Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zhu"> Jun Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Zhao"> Ning Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20mesh%20refinement%20method" title="adaptive mesh refinement method">adaptive mesh refinement method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20multi-resolution%20WENO%20scheme" title=" finite volume multi-resolution WENO scheme"> finite volume multi-resolution WENO scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=immersed%20boundary%20method" title=" immersed boundary method"> immersed boundary method</a>, <a href="https://publications.waset.org/abstracts/search?q=wall-function%20technique." title=" wall-function technique."> wall-function technique.</a> </p> <a href="https://publications.waset.org/abstracts/111225/efficient-implementation-of-finite-volume-multi-resolution-weno-scheme-on-adaptive-cartesian-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Enhancing the Dynamic Performance of Grid-Tied Inverters Using Manta Ray Foraging Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20E.%20Keshta">H. E. Keshta</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Ali"> A. A. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three phase grid-tied inverters are widely employed in micro-grids (MGs) as interphase between DC and AC systems. These inverters are usually controlled through standard decoupled d–q vector control strategy based on proportional integral (PI) controllers. Recently, advanced meta-heuristic optimization techniques have been used instead of deterministic methods to obtain optimum PI controller parameters. This paper provides a comparative study between the performance of the global Porcellio Scaber algorithm (GPSA) based PI controller and Manta Ray foraging optimization (MRFO) based PI controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-grids" title="micro-grids">micro-grids</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20techniques" title=" optimization techniques"> optimization techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=grid-tied%20inverter%20control" title=" grid-tied inverter control"> grid-tied inverter control</a>, <a href="https://publications.waset.org/abstracts/search?q=PI%20controller" title=" PI controller"> PI controller</a> </p> <a href="https://publications.waset.org/abstracts/142353/enhancing-the-dynamic-performance-of-grid-tied-inverters-using-manta-ray-foraging-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Combined Safety and Cybersecurity Risk Assessment for Intelligent Distributed Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anders%20Thors%C3%A9n">Anders Thorsén</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Sangchoolie"> Behrooz Sangchoolie</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Folkesson"> Peter Folkesson</a>, <a href="https://publications.waset.org/abstracts/search?q=Ted%20Strandberg"> Ted Strandberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As more parts of the power grid become connected to the internet, the risk of cyberattacks increases. To identify the cybersecurity threats and subsequently reduce vulnerabilities, the common practice is to carry out a cybersecurity risk assessment. For safety classified systems and products, there is also a need for safety risk assessments in addition to the cybersecurity risk assessment in order to identify and reduce safety risks. These two risk assessments are usually done separately, but since cybersecurity and functional safety are often related, a more comprehensive method covering both aspects is needed. Some work addressing this has been done for specific domains like the automotive domain, but more general methods suitable for, e.g., intelligent distributed grids, are still missing. One such method from the automotive domain is the Security-Aware Hazard Analysis and Risk Assessment (SAHARA) method that combines safety and cybersecurity risk assessments. This paper presents an approach where the SAHARA method has been modified in order to be more suitable for larger distributed systems. The adapted SAHARA method has a more general risk assessment approach than the original SAHARA. The proposed method has been successfully applied on two use cases of an intelligent distributed grid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent%20distribution%20grids" title="intelligent distribution grids">intelligent distribution grids</a>, <a href="https://publications.waset.org/abstracts/search?q=threat%20analysis" title=" threat analysis"> threat analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title=" cybersecurity"> cybersecurity</a> </p> <a href="https://publications.waset.org/abstracts/143611/combined-safety-and-cybersecurity-risk-assessment-for-intelligent-distributed-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacer%20grids&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacer%20grids&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacer%20grids&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacer%20grids&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacer%20grids&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacer%20grids&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacer%20grids&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacer%20grids&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacer%20grids&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacer%20grids&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>