CINXE.COM
Search results for: wind direction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wind direction</title> <meta name="description" content="Search results for: wind direction"> <meta name="keywords" content="wind direction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wind direction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wind direction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2852</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wind direction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2852</span> Experimental Investigation of Cup Anemometer under Static and Dynamic Wind Direction Changes: Evaluation of Directional Sensitivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Rana">Vaibhav Rana</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Balaresque"> Nicholas Balaresque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 3-cup anemometer is the most commonly used instrument for wind speed measurement and, consequently, for the wind resource assessment. Though the cup anemometer shows accurate measurement under quasi-static conditions, there is uncertainty in the measurement when subjected to field measurement. Sensitivity to the angle of attacks with respect to horizontal plane, dynamic response, and non-linear behavior in calibration due to friction. The presented work aimed to identify the sensitivity of anemometer to non-horizontal flow. The cup anemometer was investigated under low wind speed wind tunnel, first under the static flow direction changes and second under the dynamic direction changes, at a different angle of attacks, under the similar conditions of reference wind tunnel speeds. The cup anemometer response under both conditions was evaluated and compared. The results showed the anemometer under dynamic wind direction changes is highly sensitive compared to static conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title="wind energy">wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=cup%20anemometer" title=" cup anemometer"> cup anemometer</a>, <a href="https://publications.waset.org/abstracts/search?q=directional%20sensitivity" title=" directional sensitivity"> directional sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20behavior" title=" dynamic behavior"> dynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/130976/experimental-investigation-of-cup-anemometer-under-static-and-dynamic-wind-direction-changes-evaluation-of-directional-sensitivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2851</span> Potentiality of the Wind Energy in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Benoudjafer">C. Benoudjafer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Tandjaoui"> M. N. Tandjaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Benachaiba"> C. Benachaiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of kinetic energy of the wind is in full rise in the world and it starts to be known in our country but timidly. One or more aero generators can be installed to produce for example electricity on isolated places or not connected to the electrical supply network. To use the wind as energy source, it is necessary to know first the energy needs for the population and study the wind intensity, speed, frequency and direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algeria" title="Algeria">Algeria</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energies" title=" renewable energies"> renewable energies</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power" title=" wind power"> wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=aero-generators" title=" aero-generators"> aero-generators</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energetic%20potential" title=" wind energetic potential"> wind energetic potential</a> </p> <a href="https://publications.waset.org/abstracts/19479/potentiality-of-the-wind-energy-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2850</span> The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrien%20Marque">Adrien Marque</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Delahaye"> Daniel Delahaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Mar%C3%A9chal"> Pierre Maréchal</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabelle%20Berry"> Isabelle Berry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and a specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20direction" title="wind direction">wind direction</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20level" title=" uncertainty level"> uncertainty level</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title=" unmanned aerial vehicle"> unmanned aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=convolution%20neural%20network" title=" convolution neural network"> convolution neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=SPD%20matrices" title=" SPD matrices"> SPD matrices</a> </p> <a href="https://publications.waset.org/abstracts/188367/the-uav-feasibility-trajectory-prediction-using-convolution-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2849</span> Outdoor Performances of Micro Scale Wind Turbine Stand Alone System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed.%20A.%20Hossam%20Eldin">Ahmed. A. Hossam Eldin</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20H.%20Youssef"> Karim H. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Kareem%20M.%20AboRas"> Kareem M. AboRas </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent current rapid industrial development and energy shortage are essential problems, which face most of the developing countries. Moreover, increased prices of fossil fuel and advanced energy conversion technology lead to the need for renewable energy resources. A study, modelling and simulation of an outdoor micro scale stand alone wind turbine was carried out. For model validation an experimental study was applied. In this research the aim was to clarify effects of real outdoor operating conditions and the instantaneous fluctuations of both wind direction and wind speed on the actual produced power. The results were compared with manufacturer’s data. The experiments were carried out in Borg Al-Arab, Alexandria. This location is on the north Western Coast of Alexandria. The results showed a real max output power for outdoor micro scale wind turbine, which is different from manufacturer’s value. This is due to the fact that the direction of wind speed is not the same as that of the manufacturer’s data. The measured wind speed and direction by the portable metrological weather station anemometer varied with time. The blade tail response could not change the blade direction at the same instant of the wind direction variation. Therefore, designers and users of micro scale wind turbine stand alone system cannot rely on the maker’s name plate data to reach the required power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-turbine" title="micro-turbine">micro-turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=inverters" title=" inverters"> inverters</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20system" title=" hybrid system"> hybrid system</a> </p> <a href="https://publications.waset.org/abstracts/32896/outdoor-performances-of-micro-scale-wind-turbine-stand-alone-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2848</span> Directional Dust Deposition Measurements: The Influence of Seasonal Changes and the Meteorological Conditions Influencing in Witbank Area and Carletonville Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maphuti%20Georgina%20Kwata">Maphuti Georgina Kwata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coal mining in Mpumalanga Province is known of contributing to the atmospheric pollution from various activities. Gold mining in North-West Province is known of also contributing to the atmospheric pollution especially with the production of radon gas. In this research directional dust deposition gauge was used to measure source of direction and meteorological data was used to determine the wind rose blowing and the influence of the seasonal changes. Fourteen months of dust collection was undertaken in Witbank Area and Carletonville Area. The results shows that the sources of direction for Ericson Dam its East in February 2010 and Tip Area shows that the source of direction its West in October 2010. In the East direction there were mining operations, power stations which contributed to the East to be the sources of direction. In the West direction there were smelters, power stations and agricultural activities which contributed for the source of direction to be the West direction for Driefontein Mine: East Recreational Village Club. The East of Leslie Williams hospital is the source of direction which also indicated that there dust generating activities such as mining operation, agricultural activities. The meteorological results for Emalahleni Area in summer and winter the wind rose blow with wind speed of 5-10 ms-1 from the East sector. Annual average for the wind rose blow its East South eastern sector with 20 ms-1 and day time the wind rose from northwestern sector with excess of 20 ms-1. The night time wind direction East-eastern direction with a maximum wind speed of 20 ms-1. The meteorogical results for Driefontein Mine show that North-western sector and north-eastern sector wind rose is blowing with 5-10 ms-1 win speed. Day time wind blows from the West sector and night time wind blows from the north sector. In summer the wind blows North-east sector with 5-10 ms-1 and winter wind blows from North-west and it’s also predominant. In spring wind blows from north-east. The conclusion is that not only mining operation where the directional dust deposit gauge were installed contributed to the source of direction also the power stations, smelters, and other activities nearby the mining operation contributed. The recommendations are the dust suppressant for unpaved roads should be used on a regular basis and there should be monitoring of the weather conditions (the wind speed and direction prior to blasting to ensure minimal emissions). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=directional%20dust%20deposition%20gauge" title="directional dust deposition gauge">directional dust deposition gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=BS%20part%205%201747%20dust%20deposit%20gauge" title=" BS part 5 1747 dust deposit gauge"> BS part 5 1747 dust deposit gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20rose" title=" wind rose"> wind rose</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20blowing" title=" wind blowing"> wind blowing</a> </p> <a href="https://publications.waset.org/abstracts/23436/directional-dust-deposition-measurements-the-influence-of-seasonal-changes-and-the-meteorological-conditions-influencing-in-witbank-area-and-carletonville-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2847</span> Visualized Flow Patterns around and inside a Two-Sided Wind-Catcher in the Presence of Upstream Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Afshin">M. Afshin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sohankar"> A. Sohankar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Dehghan%20Manshadi"> M. Dehghan Manshadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Daneshgar"> M. R. Daneshgar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20R.%20Dehghan%20Kamaragi"> G. R. Dehghan Kamaragi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the influence of an upstream structure on the flow pattern within and around the wind-catcher is experimentally investigated by smoke flow visualization techniques. Wind-catchers are an important part of natural ventilation in residential buildings or public places such as shopping centers, libraries, etc. Wind-catchers might be also used in places of high urban densities; hence their potential to provide natural ventilation in this case is dependent on the presence of upstream objects. In this study, the two-sided wind-catcher model was based on a real wind-catcher observed in the city of Yazd, Iran. The present study focuses on the flow patterns inside and outside the isolated two-sided wind-catcher, and on a two-sided wind-catcher in the presence of an upstream structure. The results show that the presence of an upstream structure influences the airflow pattern force and direction. Placing a high upstream object reverses the airflow direction inside the wind-catcher. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation" title="natural ventilation">natural ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20flow%20visualization" title=" smoke flow visualization"> smoke flow visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=two-sided%20wind-catcher" title=" two-sided wind-catcher"> two-sided wind-catcher</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20patterns" title=" flow patterns"> flow patterns</a> </p> <a href="https://publications.waset.org/abstracts/16978/visualized-flow-patterns-around-and-inside-a-two-sided-wind-catcher-in-the-presence-of-upstream-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2846</span> Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hee-Chang%20Lim">Hee-Chang Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40<sup>d</sup>×80<sup>w</sup>×80<sup>h</sup>, 80<sup>d</sup>×80<sup>w</sup>×80<sup>h</sup>, 160<sup>d</sup>×80<sup>w</sup>×80<sup>h</sup>, 80<sup>d</sup>×40<sup>w</sup>×80<sup>h</sup> and 80<sup>d</sup>×160<sup>w</sup>×80<sup>h</sup> in mm<sup>3</sup>) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80<sup>d</sup>×80<sup>w</sup>×80<sup>h</sup> in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rectangular%20bodies" title="rectangular bodies">rectangular bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20direction" title=" wind direction"> wind direction</a>, <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title=" aspect ratio"> aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20pressure%20distribution" title=" surface pressure distribution"> surface pressure distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=wind-tunnel%20measurement" title=" wind-tunnel measurement"> wind-tunnel measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=k-%CE%B5%20model" title=" k-ε model"> k-ε model</a>, <a href="https://publications.waset.org/abstracts/search?q=DES%20model" title=" DES model"> DES model</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/86151/flow-characteristics-around-rectangular-obstacles-with-the-varying-direction-of-obstacles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2845</span> Prediction of Wind Speed by Artificial Neural Networks for Energy Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Adjiri-Bailiche">S. Adjiri-Bailiche</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Boudia"> S. M. Boudia</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Daaou"> H. Daaou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hadouche"> S. Hadouche</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benzaoui"> A. Benzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title="MATLAB">MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20low" title=" power low"> power low</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20extrapolation" title=" vertical extrapolation"> vertical extrapolation</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20speed" title=" wind speed "> wind speed </a> </p> <a href="https://publications.waset.org/abstracts/17635/prediction-of-wind-speed-by-artificial-neural-networks-for-energy-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">692</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2844</span> An Assessment of Wind Energy in Sanar Village in North of Iran Using Weibull Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsanolah%20Assareh">Ehsanolah Assareh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Biglari"> Mojtaba Biglari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Nedaei"> Mojtaba Nedaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sanar village in north of Iran is a remote region with difficult access to electricity, grid and water supply. Thus the aim of this research is to evaluate the potential of wind as a power source either for electricity generation or for water pumping. In this study the statistical analysis has been performed by Weibull distribution function. The results show that the Weibull distribution has fitted the wind data very well. Also it has been demonstrated that wind speed at 40 m height is ranged from 1.75 m/s in Dec to 3.28 m/s in Aug with average value of 2.69 m/s. In this research, different wind speed characteristics such as turbulence intensity, wind direction, monthly air temperature, humidity wind power density and other related parameters have been investigated. Finally it was concluded that the wind energy in the Sanar village may be explored by employing modern wind turbines that require very lower start-up speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title="wind energy">wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=weibull" title=" weibull"> weibull</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanar%20village" title=" Sanar village"> Sanar village</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/16648/an-assessment-of-wind-energy-in-sanar-village-in-north-of-iran-using-weibull-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2843</span> Expanding the Evaluation Criteria for a Wind Turbine Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Balachin">Ivan Balachin</a>, <a href="https://publications.waset.org/abstracts/search?q=Geanette%20Polanco"> Geanette Polanco</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20%20Xingliang"> Jiang Xingliang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Qin"> Hu Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=field%20data%20processing" title="field data processing">field data processing</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20determination" title=" regression determination"> regression determination</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20performance" title=" wind turbine performance"> wind turbine performance</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20placing" title=" wind turbine placing"> wind turbine placing</a>, <a href="https://publications.waset.org/abstracts/search?q=yaw%20system%20losses" title=" yaw system losses"> yaw system losses</a> </p> <a href="https://publications.waset.org/abstracts/81619/expanding-the-evaluation-criteria-for-a-wind-turbine-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2842</span> Effect of Elevation and Wind Direction on Silicon Solar Panel Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20M.%20Homadi">Abdulrahman M. Homadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a great source of renewable energy, solar energy is considered to be one of the most important in the world, since it will be one of solutions cover the energy shortage in the future. Photovoltaic (PV) is the most popular and widely used among solar energy technologies. However, PV efficiency is fairly low and remains somewhat expensive. High temperature has a negative effect on PV efficiency and cooling system for these panels is vital, especially in warm weather conditions. This paper presents the results of a simulation study carried out on silicon solar cells to assess the effects of elevation on enhancing the efficiency of solar panels. The study included four different terrains. The study also took into account the direction of the wind hitting the solar panels. To ensure the simulation mimics reality, six silicon solar panels are designed in two columns and three rows, facing to the south at an angle of 30 <sup>o</sup>. The elevations are assumed to change from 10 meters to 200 meters. The results show that maximum increase in efficiency occurs when the wind comes from the north, hitting the back of the panels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20panels" title="solar panels">solar panels</a>, <a href="https://publications.waset.org/abstracts/search?q=elevation" title=" elevation"> elevation</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20direction" title=" wind direction"> wind direction</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/51440/effect-of-elevation-and-wind-direction-on-silicon-solar-panel-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2841</span> An Overview of Onshore and Offshore Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Borhani">Mohammad Borhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Danehkar"> Afshin Danehkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increase in population and the upward trend of energy demand, mankind has thought of using suppliers that guarantee a stable supply of energy, unlike fossil fuels, which, in addition to the widespread emission of greenhouse gases that one of the main factors in the destruction of the ozone layer and it will be finished in a short time in the not-so-distant future. In this regard, one of the sustainable ways of energy supply is the use of wind converters. That convert wind energy into electricity. For this reason, this research focused on wind turbines and their installation conditions. The main classification of wind turbines is based on the axis of rotation, which is divided into two groups: horizontal axis and vertical axis; each of these two types, with the advancement of technology in man-made environments such as cities, villages, airports, and other human environments can be installed and operated. The main difference between offshore and onshore wind turbines is their installation and foundation. Which are usually divided into five types; including of Monopile Wind Turbines, Jacket Wind Turbines, Tripile Wind Turbines, Gravity-Based Wind Turbines, and Floating Offshore Wind Turbines. For installation in a wind power plant requires an arrangement that produces electric power, the distance between the turbines is usually between 5 or 7 times the diameter of the rotor and if perpendicular to the wind direction be If they are 3 to 5 times the diameter of the rotor, they will be more efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20farms" title="wind farms">wind farms</a>, <a href="https://publications.waset.org/abstracts/search?q=Savonius" title=" Savonius"> Savonius</a>, <a href="https://publications.waset.org/abstracts/search?q=Darrieus" title=" Darrieus"> Darrieus</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20turbine" title=" offshore wind turbine"> offshore wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/178959/an-overview-of-onshore-and-offshore-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2840</span> Analytical and Numerical Study of Formation of Sporadic E Layer with Taking into Account Horizontal and Vertical In-Homogeneity of the Horizontal Wind </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20Dalakishvili">Giorgi Dalakishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Goderdzi%20G.%20Didebulidze"> Goderdzi G. Didebulidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20Todua"> Maya Todua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possibility of sporadic E (Es) layer formation in the mid-latitude nighttime lower thermosphere by horizontal homogeneous and inhomogeneous (vertically and horizontally changing) winds is investigated in 3D by analytical and numerical solutions of continuity equation for dominant heavy metallic ions Fe+. The theory of influence of wind velocity direction, value, and its shear on formation of sporadic E is developed in case of presence the effect of horizontally changing wind (the effect of horizontal convergence). In this case, the horizontal wind with horizontal shear, characterized by compressibility and/or vortices, can provide an additional influence on heavy metallic ions Fe+ horizontal convergence and Es layers density, which can be formed by their vertical convergence caused as by wind direction and values and by its horizontal shear as well. The horizontal wind value and direction have significant influence on ion vertical drift velocity and its minimal negative values of divergence necessary for development of ion vertical convergence into sporadic E type layer. The horizontal wind horizontal shear, in addition to its vertical shear, also influences the ion drift velocity value and its vertical changes and correspondingly on formation of sporadic E layer and its density. The atmospheric gravity waves (AGWs), with relatively smaller horizontal wave length than planetary waves and tidal motion, can significantly influence location of ion vertical drift velocity nodes (where Es layers formation expectable) and its vertical and horizontal shear providing ion vertical convergence into thin layer. Horizontal shear can cause additional influence in the Es layers density than in the case of only wind value and vertical shear only. In this case, depending on wind direction and value in the height region of the lower thermosphere about 90-150 km occurs heavy metallic ions (Fe+) vertical convergence into thin sporadic E type layer. The horizontal wind horizontal shear also can influence on ions horizontal convergence and density and location Es layers. The AGWs modulate the horizontal wind direction and values and causes ion additional horizontal convergence, while the vertical changes (shear) causes additional vertical convergence than in the case without vertical shear. Influence of horizontal shear on sporadic E density and the importance of vertical compressibility of the lower thermosphere, which also can be influenced by AGWs, is demonstrated numerically. For the given wavelength and background wind, the predictability of formation Es layers and its possible location regions are shown. Acknowledgements: This study was funded by Georgian Shota Rustaveli National Science Foundation Grant no. FR17-357. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in-homogeneous" title="in-homogeneous">in-homogeneous</a>, <a href="https://publications.waset.org/abstracts/search?q=sporadic%20E" title=" sporadic E"> sporadic E</a>, <a href="https://publications.waset.org/abstracts/search?q=thermosphere" title=" thermosphere"> thermosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/128943/analytical-and-numerical-study-of-formation-of-sporadic-e-layer-with-taking-into-account-horizontal-and-vertical-in-homogeneity-of-the-horizontal-wind" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2839</span> Wind Interference Effects on Various Plan Shape Buildings Under Wind Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Raj">Ritu Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=Hrishikesh%20Dubey"> Hrishikesh Dubey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of the experimental investigations carried out on two intricate plan shaped buildings to evaluate aerodynamic performance of the building. The purpose is to study the associated environment arising due to wind forces in isolated and interference conditions on a model of scale 1:300 with a prototype having 180m height. Experimental tests were carried out at the boundary layer wind tunnel considering isolated conditions with 0° to 180° isolated wind directions and four interference conditions of twin building (separately for both the models). The research has been undertaken in Terrain Category-II, which is the most widely available terrain in India. A comparative assessment of the two models is performed out in an attempt to comprehend the various consequences of diverse conditions that may emerge in real-life situations, as well as the discrepancies amongst them. Experimental results of wind pressure coefficients of Model-1 and Model-2 shows good agreement with various wind incidence conditions with minute difference in the magnitudes of mean Cp. On the basis of wind tunnel studies, it is distinguished that the performance of Model-2 is better than Model-1in both isolated as well as interference conditions for all wind incidences and orientations respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interference%20factor" title="interference factor">interference factor</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title=" tall buildings"> tall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20direction" title=" wind direction"> wind direction</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20pressure-coefficients" title=" mean pressure-coefficients"> mean pressure-coefficients</a> </p> <a href="https://publications.waset.org/abstracts/148107/wind-interference-effects-on-various-plan-shape-buildings-under-wind-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2838</span> Yacht DB Construction Based on Five Essentials of Sailing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Neung%20Lee">Jae-Neung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Won%20Lee"> Myung-Won Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Su%20Han"> Jung-Su Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Keun-Chang%20Kwak"> Keun-Chang Kwak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper established DB on the basis of five sailing essentials in the real yachting environment. It obtained the yacht condition (tilt, speed and course), surrounding circumstances (wind direction and speed) and user motion. Gopro camera for image processing was used to recognize the user motion and tilt sensor was employed to see the yacht balance. In addition, GPS for course, wind speed and direction sensor and marked suit were employed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DB%20consturuction" title="DB consturuction">DB consturuction</a>, <a href="https://publications.waset.org/abstracts/search?q=yacht" title=" yacht"> yacht</a>, <a href="https://publications.waset.org/abstracts/search?q=five%20essentials%20of%20sailing" title=" five essentials of sailing"> five essentials of sailing</a>, <a href="https://publications.waset.org/abstracts/search?q=marker" title=" marker"> marker</a>, <a href="https://publications.waset.org/abstracts/search?q=Gps" title=" Gps"> Gps</a> </p> <a href="https://publications.waset.org/abstracts/24841/yacht-db-construction-based-on-five-essentials-of-sailing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2837</span> Offshore Wind Assessment and Analysis for South Western Mediterranean Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20Touaibia">Abdallah Touaibia</a>, <a href="https://publications.waset.org/abstracts/search?q=Nachida%20Kasbadji%20Merzouk"> Nachida Kasbadji Merzouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Merzouk"> Mustapha Merzouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryma%20Belarbi"> Ryma Belarbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> accuracy assessment and a better understand of the wind resource distribution are the most important tasks for decision making before installing wind energy operating systems in a given region, there where our interest come to the Algerian coastline and its Mediterranean sea area. Despite its large coastline overlooking the border of Mediterranean Sea, there is still no strategy encouraging the development of offshore wind farms in Algerian waters. The present work aims to estimate the offshore wind fields for the Algerian Mediterranean Sea based on wind data measurements ranging from 1995 to 2018 provided of 24 years of measurement by seven observation stations focusing on three coastline cities in Algeria under a different measurement time step recorded from 30 min, 60 min, and 180 min variate from one to each other, two stations in Spain, two other ones in Italy and three in the coast of Algeria from the east Annaba, at the center Algiers, and to Oran taken place at the west of it. The idea behind consists to have multiple measurement points that helping to characterize this area in terms of wind potential by the use of interpolation method of their average wind speed values between these available data to achieve the approximate values of others locations where aren’t any available measurement because of the difficulties against the implementation of masts within the deep depth water. This study is organized as follow: first, a brief description of the studied area and its climatic characteristics were done. After that, the statistical properties of the recorded data were checked by evaluating wind histograms, direction roses, and average speeds using MatLab programs. Finally, ArcGIS and MapInfo soft-wares were used to establish offshore wind maps for better understanding the wind resource distribution, as well as to identify windy sites for wind farm installation and power management. The study pointed out that Cap Carbonara is the windiest site with an average wind speed of 7.26 m/s at 10 m, inducing a power density of 902 W/m², then the site of Cap Caccia with 4.88 m/s inducing a power density of 282 W/m². The average wind speed of 4.83 m/s is occurred for the site of Oran, inducing a power density of 230 W/m². The results indicated also that the dominant wind direction where the frequencies are highest for the site of Cap Carbonara is the West with 34%, an average wind speed of 9.49 m/s, and a power density of 1722 W/m². Then comes the site of Cap Caccia, where the prevailing wind direction is the North-west, about 20% and 5.82 m/s occurring a power density of 452 W/m². The site of Oran comes in third place with the North dominant direction with 32% inducing an average wind speed of 4.59 m/s and power density of 189 W/m². It also shown that the proposed method is either crucial in understanding wind resource distribution for revealing windy sites over a large area and more effective for wind turbines micro-siting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20ressources" title="wind ressources">wind ressources</a>, <a href="https://publications.waset.org/abstracts/search?q=mediterranean%20sea" title=" mediterranean sea"> mediterranean sea</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore" title=" offshore"> offshore</a>, <a href="https://publications.waset.org/abstracts/search?q=arcGIS" title=" arcGIS"> arcGIS</a>, <a href="https://publications.waset.org/abstracts/search?q=mapInfo" title=" mapInfo"> mapInfo</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20maps" title=" wind maps"> wind maps</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20farms" title=" wind farms"> wind farms</a> </p> <a href="https://publications.waset.org/abstracts/143652/offshore-wind-assessment-and-analysis-for-south-western-mediterranean-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2836</span> Assessment of Pedestrian Comfort in a Portuguese City Using Computational Fluid Dynamics Modelling and Wind Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Vicente">Bruno Vicente</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Rafael"> Sandra Rafael</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Rodrigues"> Vera Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Sorte"> Sandra Sorte</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Silva"> Sara Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Isabel%20Miranda"> Ana Isabel Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Borrego"> Carlos Borrego</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind comfort for pedestrians is an important condition in urban areas. In Portugal, a country with 900 km of coastline, the wind direction are predominantly from Nor-Northwest with an average speed of 2.3 m·s -1 (at 2 m height). As a result, a set of city authorities have been requesting studies of pedestrian wind comfort for new urban areas/buildings, as well as to mitigate wind discomfort issues related to existing structures. This work covers the efficiency evaluation of a set of measures to reduce the wind speed in an outdoor auditorium (open space) located in a coastal Portuguese urban area. These measures include the construction of barriers, placed at upstream and downstream of the auditorium, and the planting of trees, placed upstream of the auditorium. The auditorium is constructed in the form of a porch, aligned with North direction, driving the wind flow within the auditorium, promoting channelling effects and increasing its speed, causing discomfort in the users of this structure. To perform the wind comfort assessment, two approaches were used: i) a set of experiments using the wind tunnel (physical approach), with a representative mock-up of the study area; ii) application of the CFD (Computational Fluid Dynamics) model VADIS (numerical approach). Both approaches were used to simulate the baseline scenario and the scenarios considering a set of measures. The physical approach was conducted through a quantitative method, using hot-wire anemometer, and through a qualitative analysis (visualizations), using the laser technology and a fog machine. Both numerical and physical approaches were performed for three different velocities (2, 4 and 6 m·s-1 ) and two different directions (NorNorthwest and South), corresponding to the prevailing wind speed and direction of the study area. The numerical results show an effective reduction (with a maximum value of 80%) of the wind speed inside the auditorium, through the application of the proposed measures. A wind speed reduction in a range of 20% to 40% was obtained around the audience area, for a wind direction from Nor-Northwest. For southern winds, in the audience zone, the wind speed was reduced from 60% to 80%. Despite of that, for southern winds, the design of the barriers generated additional hot spots (high wind speed), namely, in the entrance to the auditorium. Thus, a changing in the location of the entrance would minimize these effects. The results obtained in the wind tunnel compared well with the numerical data, also revealing the high efficiency of the purposed measures (for both wind directions). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20microclimate" title="urban microclimate">urban microclimate</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort" title=" pedestrian comfort"> pedestrian comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20experiments" title=" wind tunnel experiments"> wind tunnel experiments</a> </p> <a href="https://publications.waset.org/abstracts/80322/assessment-of-pedestrian-comfort-in-a-portuguese-city-using-computational-fluid-dynamics-modelling-and-wind-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2835</span> Simulation of Forest Fire Using Wireless Sensor Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20F.%20Fauzi">Mohammad F. Fauzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20H.%20Shahba%20M.%20Shahrun"> Nurul H. Shahba M. Shahrun</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20W.%20Hamzah"> Nurul W. Hamzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Noah%20A.%20Rahman"> Mohd Noah A. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Afzaal%20H.%20Seyal"> Afzaal H. Seyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed a simulation system using Wireless Sensor Network (WSN) that will be distributed around the forest for early forest fire detection and to locate the areas affected. In Brunei Darussalam, approximately 78% of the nation is covered by forest. Since the forest is Brunei’s most precious natural assets, it is very important to protect and conserve our forest. The hot climate in Brunei Darussalam can lead to forest fires which can be a fatal threat to the preservation of our forest. The process consists of getting data from the sensors, analyzing the data and producing an alert. The key factors that we are going to analyze are the surrounding temperature, wind speed and wind direction, humidity of the air and soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20fire%20monitor" title="forest fire monitor">forest fire monitor</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20direction" title=" wind direction"> wind direction</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network"> wireless sensor network</a> </p> <a href="https://publications.waset.org/abstracts/50659/simulation-of-forest-fire-using-wireless-sensor-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2834</span> Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Hejazi">Amir Hossein Hejazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nima%20Amjady"> Nima Amjady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20power%20forecasting" title="wind power forecasting">wind power forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=echo%20state%20network" title=" echo state network"> echo state network</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20bang-big%20crunch" title=" big bang-big crunch"> big bang-big crunch</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20optimization%20algorithm" title=" evolutionary optimization algorithm"> evolutionary optimization algorithm</a> </p> <a href="https://publications.waset.org/abstracts/16586/wind-power-forecasting-using-echo-state-networks-optimized-by-big-bang-big-crunch-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2833</span> Site Selection and Construction Mechanism of the Island Settlements in China Based on CFD-GIS Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weng%20Jiantao">Weng Jiantao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu%20Yiqun"> Wu Yiqun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of natural ventilation, wind pressure distribution on building surface, wind comfort for pedestrians and buildings’ wind tolerance in traditional settlements are closely related to the pattern of terrain. On the basis of field research on the typical island terrain in China, the physical and mathematical models are established by using CFD software, and then the simulation results of the wind field are exported. We discuss the relationship between wind direction and wind field results. Furthermore simulation results are imported into ArcGIS platform. The evaluation model of island site selection is established with considering slope factor. We realize the visual model of site selection on complex island terrain. The multi-plans of certain residential are discussed based on wind simulation; at last the optimal project is selected. Results can provide the theory guidance for settlement planning and construction in China's traditional island. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=island%20terrain" title=" island terrain"> island terrain</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20selection" title=" site selection"> site selection</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20mechanism" title=" construction mechanism"> construction mechanism</a> </p> <a href="https://publications.waset.org/abstracts/33532/site-selection-and-construction-mechanism-of-the-island-settlements-in-china-based-on-cfd-gis-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2832</span> Wind Interference Effect on Tall Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atul%20K.%20Desai">Atul K. Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jigar%20K.%20Sevalia"> Jigar K. Sevalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20A.%20Vasanwala"> Sandip A. Vasanwala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a building is located in an urban area, it is exposed to a wind of different characteristics then wind over an open terrain. This is development of turbulent wake region behind an upstream building. The interaction with upstream building can produce significant changes in the response of the tall building. Here, in this paper, an attempt has been made to study wind induced interference effects on tall building. In order to study wind induced interference effect (IF) on Tall Building, initially a tall building (which is termed as Principal Building now on wards) with square plan shape has been considered with different Height to Width Ratio and total drag force is obtained considering different terrain conditions as well as different incident wind direction. Then total drag force on Principal Building is obtained by considering adjacent building which is termed as Interfering Building now on wards with different terrain conditions and incident wind angle. To execute study, Computational Fluid Dynamics (CFD) Code namely Fluent and Gambit have been used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent" title=" turbulent"> turbulent</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20region" title=" wake region"> wake region</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/6233/wind-interference-effect-on-tall-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2831</span> A Numerical Studies for Improving the Performance of Vertical Axis Wind Turbine by a Wind Power Tower</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soo-Yong%20Cho">Soo-Yong Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Chong-Hyun%20Cho"> Chong-Hyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Chae-Whan%20Rim"> Chae-Whan Rim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Kyu%20Choi"> Sang-Kyu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Gyun%20Kim"> Jin-Gyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju-Seok%20Nam"> Ju-Seok Nam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, vertical axis wind turbines (VAWT) have been widely used to produce electricity even in urban. They have several merits such as low sound noise, easy installation of the generator and simple structure without yaw-control mechanism and so on. However, their blades are operated under the influence of the trailing vortices generated by the preceding blades. This phenomenon deteriorates its output power and makes difficulty predicting correctly its performance. In order to improve the performance of VAWT, wind power towers can be applied. Usually, the wind power tower can be constructed as a multi-story building to increase the frontal area of the wind stream. Hence, multiple sets of the VAWT can be installed within the wind power tower, and they can be operated at high elevation. Many different types of wind power tower can be used in the field. In this study, a wind power tower with circular column shape was applied, and the VAWT was installed at the center of the wind power tower. Seven guide walls were used as a strut between the floors of the wind power tower. These guide walls were utilized not only to increase the wind velocity within the wind power tower but also to adjust the wind direction for making a better working condition on the VAWT. Hence, some important design variables, such as the distance between the wind turbine and the guide wall, the outer diameter of the wind power tower, the direction of the guide wall against the wind direction, should be considered to enhance the output power on the VAWT. A numerical analysis was conducted to find the optimum dimension on design variables by using the computational fluid dynamics (CFD) among many prediction methods. The CFD could be an accurate prediction method compared with the stream-tube methods. In order to obtain the accurate results in the CFD, it needs the transient analysis and the full three-dimensional (3-D) computation. However, this full 3-D CFD could be hard to be a practical tool because it requires huge computation time. Therefore, the reduced computational domain is applied as a practical method. In this study, the computations were conducted in the reduced computational domain and they were compared with the experimental results in the literature. It was examined the mechanism of the difference between the experimental results and the computational results. The computed results showed this computational method could be an effective method in the design methodology using the optimization algorithm. After validation of the numerical method, the CFD on the wind power tower was conducted with the important design variables affecting the performance of VAWT. The results showed that the output power of the VAWT obtained using the wind power tower was increased compared to them obtained without the wind power tower. In addition, they showed that the increased output power on the wind turbine depended greatly on the dimension of the guide wall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=VAWT" title=" VAWT"> VAWT</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power%20tower" title=" wind power tower "> wind power tower </a> </p> <a href="https://publications.waset.org/abstracts/39928/a-numerical-studies-for-improving-the-performance-of-vertical-axis-wind-turbine-by-a-wind-power-tower" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2830</span> Numerical Simulation of Natural Gas Dispersion from Low Pressure Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Adibi">Omid Adibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nategheh%20Najafpour"> Nategheh Najafpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijan%20Farhanieh"> Bijan Farhanieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Afshin"> Hossein Afshin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas release from the pipelines is one of the main factors in the gas industry accidents. Released gas ejects from the pipeline as a free jet and in the growth process, the fuel gets mixed with the ambient air. Accordingly, an accidental spark will release the chemical energy of the mixture with an explosion. Gas explosion damages the equipment and endangers the life of staffs. So due to importance of safety in gas industries, prevision of accident can reduce the number of the casualties. In this paper, natural gas leakages from the low pressure pipelines are studied in two steps: 1) the simulation of mixing process and identification of flammable zones and 2) the simulation of wind effects on the mixing process. The numerical simulations were performed by using the finite volume method and the pressure-based algorithm. Also, for the grid generation the structured method was used. The results show that, in just 6.4 s after accident, released natural gas could penetrate to 40 m in vertical and 20 m in horizontal direction. Moreover, the results show that the wind speed is a key factor in dispersion process. In fact, the wind transports the flammable zones into the downstream. Hence, to improve the safety of the people and human property, it is preferable to construct gas facilities and buildings in the opposite side of prevailing wind direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flammable%20zones" title="flammable zones">flammable zones</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20pipelines" title=" gas pipelines"> gas pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20effects" title=" wind effects"> wind effects</a> </p> <a href="https://publications.waset.org/abstracts/88347/numerical-simulation-of-natural-gas-dispersion-from-low-pressure-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2829</span> Wind Energy Resources Assessment and Micrositting on Different Areas of Libya: The Case Study in Darnah</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Ahwide">F. Ahwide</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Bouker"> Y. Bouker</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Hatem"> K. Hatem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents long term wind data analysis in terms of annual and diurnal variations at different areas of Libya. The data of the wind speed and direction are taken each ten minutes for a period, at least two years, are used in the analysis. ‘WindPRO’ software and Excel workbook were used for the wind statistics and energy calculations. As for Derna, average speeds are 10 m, 20 m, and 40 m, and respectively 6.57 m/s, 7.18 m/s, and 8.09 m/s. Highest wind speeds are observed at SSW, followed by S, WNW and NW sectors. Lowest wind speeds are observed between N and E sectors. Most frequent wind directions are NW and NNW. Hence, wind turbines can be installed against these directions. The most powerful sector is NW (29.4 % of total expected wind energy), followed by 19.9 % SSW, 11.9% NNW, 8.6% WNW and 8.2% S. Furthermore in Al-Maqrun: the most powerful sector is W (26.8 % of total expected wind energy), followed by 12.3 % WSW and 9.5% WNW. While in Goterria: the most powerful sector is S (14.8 % of total expected wind energy), followed by SSE, SE, and WSW. And Misalatha: the most powerful sector is S, by far represents 28.5% of the expected power, followed by SSE and SE. As for Tarhuna, it is by far SSE and SE, representing each one two times the expected energy of the third powerful sector (NW). In Al-Asaaba: it is SSE by far represents 50% of the expected power, followed by S. It can to be noted that the high frequency of the south direction winds, that come from the desert could cause a high frequency of dust episodes. This fact then, should be taken into account in order to take appropriate measures to prevent wind turbine deterioration. In Excel workbook, an estimation of annual energy yield at position of Derna, Al-Maqrun, Tarhuna, and Al-Asaaba meteorological mast has been done, considering a generic wind turbine of 1.65 MW. (mtORRES, TWT 82-1.65MW) in position of meteorological mast. Three other turbines have been tested. At 80 m, the estimation of energy yield for Derna, Al-Maqrun, Tarhuna, and Asaaba is 6.78 GWh or 3390 equivalent hours, 5.80 GWh or 2900 equivalent hours, 4.91 GWh or 2454 equivalent hours and 5.08 GWh or 2541 equivalent hours respectively. It seems a fair value in the context of a possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Furthermore, an estimation of annual energy yield at positions of Misalatha, Azizyah and Goterria meteorological mast has been done, considering a generic wind turbine of 2 MW. We found that, at 80 m, the estimation of energy yield is 3.12 GWh or 1557 equivalent hours, 4.47 GWh or 2235 equivalent hours and 4.07GWh or 2033 respectively . It seems a very poor value in the context of possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Anyway, more data and a detailed wind farm study would be necessary to draw conclusions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbines" title="wind turbines">wind turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20data" title=" wind data"> wind data</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20yield" title=" energy yield"> energy yield</a>, <a href="https://publications.waset.org/abstracts/search?q=micrositting" title=" micrositting"> micrositting</a> </p> <a href="https://publications.waset.org/abstracts/1862/wind-energy-resources-assessment-and-micrositting-on-different-areas-of-libya-the-case-study-in-darnah" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2828</span> Effect of Wind Braces to Earthquake Resistance of Steel Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Gokdemir">H. Gokdemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All structures are subject to vertical and lateral loads. Under these loads, structures make deformations and deformation values of structural elements mustn't exceed their capacity for structural stability. Especially, lateral loads cause critical deformations because of their random directions and magnitudes. Wind load is one of the lateral loads which can act in any direction and any magnitude. Although wind has nearly no effect on reinforced concrete structures, it must be considered for steel structures, roof systems and slender structures like minarets. Therefore, every structure must be able to resist wind loads acting parallel and perpendicular to any side. One of the effective methods for resisting lateral loads is assembling cross steel elements between columns which are called as wind bracing. These cross elements increases lateral rigidity of a structure and prevent exceeding of deformation capacity of the structural system. So, this means cross elements are also effective in resisting earthquake loads too. In this paper; Effects of wind bracing to earthquake resistance of structures are studied. Structure models (with and without wind bracing) are generated and these models are solved under both earthquake and wind loads with different seismic zone parameters. It is concluded by the calculations that; in low-seismic risk zones, wind bracing can easily resist earthquake loads and no additional reinforcement for earthquake loads is necessary. Similarly; in high-seismic risk zones, earthquake cross elements resist wind loads too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20bracings" title="wind bracings">wind bracings</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structures" title=" steel structures"> steel structures</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20and%20lateral%20loads" title=" vertical and lateral loads"> vertical and lateral loads</a> </p> <a href="https://publications.waset.org/abstracts/23581/effect-of-wind-braces-to-earthquake-resistance-of-steel-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2827</span> Experimental Investigation of Tip-Speed-Ratio Effects on Wake Dynamics of Horizontal-Axis Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Bayron">Paul Bayron</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Kelso"> Richard Kelso</a>, <a href="https://publications.waset.org/abstracts/search?q=Rey%20Chin"> Rey Chin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind tunnel experiments were performed in the KC closed-circuit wind tunnel in the University of Adelaide to study the influence of tip-speed-ratio ( <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hotwire%20anemometry" title="hotwire anemometry">hotwire anemometry</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20dynamics" title=" wake dynamics"> wake dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbines" title=" wind turbines"> wind turbines</a> </p> <a href="https://publications.waset.org/abstracts/137158/experimental-investigation-of-tip-speed-ratio-effects-on-wake-dynamics-of-horizontal-axis-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2826</span> A Study on Method for Identifying Capacity Factor Declination of Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dongheon%20Shin">Dongheon Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyungnam%20Ko"> Kyungnam Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongchul%20Huh"> Jongchul Huh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation on wind turbine degradation was carried out using the nacelle wind data. The three Vestas V80-2MW wind turbines of Sungsan wind farm in Jeju Island, South Korea were selected for this work. The SCADA data of the wind farm for five years were analyzed to draw power curve of the turbines. It is assumed that the wind distribution is the Rayleigh distribution to calculate the normalized capacity factor based on the drawn power curve of the three wind turbines for each year. The result showed that the reduction of power output from the three wind turbines occurred every year and the normalized capacity factor decreased to 0.12%/year on average. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title="wind energy">wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20curve" title=" power curve"> power curve</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20factor" title=" capacity factor"> capacity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=annual%20energy%20production" title=" annual energy production"> annual energy production</a> </p> <a href="https://publications.waset.org/abstracts/21424/a-study-on-method-for-identifying-capacity-factor-declination-of-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2825</span> Design and Development of Wind Turbine Emulator to Operate with 1.5 kW Induction Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himani%20Ratna%20Dahiya">Himani Ratna Dahiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper contributes to design a Wind Emulator coupled to 1.5 kW Induction generator for Wind Energy Conversion System. A wind turbine emulator (WTE) is important equipment for developing wind energy conversion systems. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators that is hard to achieve with an actual wind turbine since the wind speed varies randomly. In this paper a wind emulator is modeled and simulated using MATLAB. Verification of the simulation results is done by experimental setup using DC motor-Induction generator set, LABVIEW and data acquisition card. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wind%20Turbine%20Emulator" title="Wind Turbine Emulator">Wind Turbine Emulator</a>, <a href="https://publications.waset.org/abstracts/search?q=LABVIEW" title=" LABVIEW"> LABVIEW</a>, <a href="https://publications.waset.org/abstracts/search?q=matlab" title=" matlab"> matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20generator" title=" induction generator"> induction generator</a> </p> <a href="https://publications.waset.org/abstracts/16620/design-and-development-of-wind-turbine-emulator-to-operate-with-15-kw-induction-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2824</span> Software Development for Both Small Wind Performance Optimization and Structural Compliance Analysis with International Safety Regulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Yoo">K. M. Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Kang"> M. H. Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional commercial wind turbine design software is limited to large wind turbines due to not incorporating with low Reynold’s Number aerodynamic characteristics typically for small wind turbines. To extract maximum annual energy product from an intermediately designed small wind turbine associated with measured wind data, numerous simulation is highly recommended to have a best fitting planform design with proper airfoil configuration. Since depending upon wind distribution with average wind speed, an optimal wind turbine planform design changes accordingly. It is theoretically not difficult, though, it is very inconveniently time-consuming design procedure to finalize conceptual layout of a desired small wind turbine. Thus, to help simulations easier and faster, a GUI software is developed to conveniently iterate and change airfoil types, wind data, and geometric blade data as well. With magnetic generator torque curve, peak power tracking simulation is also available to better match with the magnetic generator. Small wind turbine often lacks starting torque due to blade optimization. Thus this simulation is also embedded along with yaw design. This software provides various blade cross section details at user’s design convenience such as skin thickness control with fiber direction option, spar shape, and their material properties. Since small wind turbine is under international safety regulations with fatigue damage during normal operations and safety load analyses with ultimate excessive loads, load analyses are provided with each category mandated in the safety regulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GUI%20software" title="GUI software">GUI software</a>, <a href="https://publications.waset.org/abstracts/search?q=Low%20Reynold%E2%80%99s%20number%20aerodynamics" title=" Low Reynold’s number aerodynamics"> Low Reynold’s number aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20power%20tracking" title=" peak power tracking"> peak power tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20regulations" title=" safety regulations"> safety regulations</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20performance%20optimization" title=" wind turbine performance optimization"> wind turbine performance optimization</a> </p> <a href="https://publications.waset.org/abstracts/64036/software-development-for-both-small-wind-performance-optimization-and-structural-compliance-analysis-with-international-safety-regulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2823</span> Assessment of the Effect of Wind Turbulence on the Aero-Hydrodynamic Behavior of Offshore Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Dezvareh">Reza Dezvareh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to investigate the amount of wind turbulence on the aero hydrodynamic behavior of offshore wind turbines with a monopile holder platform. Since in the sea, the wind turbine structures are under water and structures interactions, the dynamic analysis has been conducted under combined wind and wave loading. The offshore wind turbines have been investigated undertow models of normal and severe wind turbulence, and the results of this study show that the amplitude of fluctuation of dynamic response of structures including thrust force and base shear force of structures is increased with increasing the amount of wind turbulence, and this increase is not necessarily observed in the mean values of responses. Therefore, conducting the dynamic analysis is inevitable in order to observe the effect of wind turbulence on the structures' response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20turbine" title="offshore wind turbine">offshore wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbulence" title=" wind turbulence"> wind turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20vibration" title=" structural vibration"> structural vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=aero-hydro%20dynamic" title=" aero-hydro dynamic"> aero-hydro dynamic</a> </p> <a href="https://publications.waset.org/abstracts/82641/assessment-of-the-effect-of-wind-turbulence-on-the-aero-hydrodynamic-behavior-of-offshore-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20direction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20direction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20direction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20direction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20direction&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20direction&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20direction&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20direction&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20direction&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20direction&page=95">95</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20direction&page=96">96</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20direction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>