CINXE.COM
The Astronomical Journal - IOPscience
<!DOCTYPE html> <html xml:lang="en" lang="en"> <head> <!-- Start cookieyes banner --> <!-- End cookieyes banner --> <title>The Astronomical Journal - IOPscience</title> <meta charset="utf-8" /> <meta http-equiv="x-ua-compatible" content="IE=edge" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, minimum-scale=1.0" /> <script> function DeferJS(src) { function downloadJSAtOnload() { var element = document.createElement("script"); element.src = src; document.body.appendChild(element); } if (window.addEventListener) window.addEventListener("load", downloadJSAtOnload, false); else if (window.attachEvent) window.attachEvent("onload", downloadJSAtOnload); else window.onload = downloadJSAtOnload; } </script> <!-- start metadata--><!-- end metadata--> <script type="text/javascript"> //start common.config (function () { let config = {"SHOW_REFERENCE_ENTITLEMENT":"false","SECURED_ENVIRONMENT":"true","ENABLE_MATHJAX_BY_DEFAULT":"true"} || {}; window.config = {...config, ...window.config}; })(); //end common.config </script> <script> var _urconfig = { sid: "defc3a7d-4b34-4b6f-ad1c-0716e0a05a65", aip: 0, usePageProtocol: false }; (function (d, s) { var js = d.createElement(s), sc = d.getElementsByTagName(s)[0]; js.src = "https://hit.uptrendsdata.com/rum.min.js"; js.async = "async"; sc.parentNode.insertBefore(js, sc); } (document, "script")); </script> <!-- uptrends--> <meta name="robots" content="noarchive" /> <!--start home.baiduWebmasterTools.verification--> <!--end home.baiduWebmasterTools.verification--> <!--start home.google.verification--> <!--end home.google.verification--> <!--start common.baidu.statistics.script> --> <!--end common.baidu.statistics.script--> <!--start common.styles--> <link rel="stylesheet" href="https://static.iopscience.com/3.72.0/css/critical-styles.min.css" type="text/css"/> <link rel="stylesheet" href="https://static.iopscience.com/3.72.0/css/main-styles.min.css" media="print" onload="this.media='all'"/> <!--[if lte IE 10]> <link rel="stylesheet" href="https://static.iopscience.com/3.72.0/css/gridset-ie-lte8.css" type="text/css"/> <![endif]--> <!--end common.styles--> <!--start common.gs.head--> <!-- Google Scholar Universal Casa --> <!-- End Google Scholar Universal Casa --> <!--end common.gs.head--> <!--start common.ga.head--> <script> window.iabConfig = { allowedVendors: ['755','804', '1020'], allowedGoogleVendors: [] } </script> <!-- Google Tag Manager --> <script type="text/javascript"> (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push( {'gtm.start': new Date().getTime(), event: 'gtm.js'} ); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-M73Z4W'); </script> <!-- End Google Tag Manager --> <!--end common.ga.head--> <script> const mathjaxVersion = 3; </script> <script>var __uzdbm_1 = "0ab1a82d-b8f3-4e0e-b5fc-151caf5ffebd";var __uzdbm_2 = "MjkxZGJjYTEtY252ai00YjM2LWFjYTAtOTE5MzA0NjI1ZDk1JDguMjIyLjIwOC4xNDY=";var __uzdbm_3 = "7f6000ba3df519-364b-415c-babc-963e388e090717323157040160-fba7477e75960fee10";var __uzdbm_4 = "false";var __uzdbm_5 = "uzmx";var __uzdbm_6 = "7f90005157f109-5048-4837-998f-7d92249e6d0e1-17323157040160-cb1e85f99accc8b410";var __uzdbm_7 = "iop.org";</script> <script> (function (w, d, e, u, c, g, a, b) { w["SSJSConnectorObj"] = w["SSJSConnectorObj"] || { ss_cid: c, domain_info: "auto", }; w[g] = function (i, j) { w["SSJSConnectorObj"][i] = j; }; a = d.createElement(e); a.async = true; if ( navigator.userAgent.indexOf('MSIE') !== -1 || navigator.appVersion.indexOf('Trident/') > -1 ) { u = u.replace("/advanced/", "/advanced/ie/"); } a.src = u; b = d.getElementsByTagName(e)[0]; b.parentNode.insertBefore(a, b); })( window, document, "script", "https://new.iopscience.iop.org/18f5227b-e27b-445a-a53f-f845fbe69b40/stormcaster.js", "cnvl", "ssConf" ); ssConf("c1", "https://new.iopscience.iop.org"); ssConf("c3", "c99a4269-161c-4242-a3f0-28d44fa6ce24"); ssConf("au", "new.iopscience.iop.org"); ssConf("cu", "validate.perfdrive.com, ssc"); </script></head> <body itemscope itemtype="http://schema.org/Organization" class="issn-1538-3881"> <a id="back-to-top-target" tabindex="-1"></a> <!-- Google Tag Manager (noscript) --> <noscript><iframe title="GA" src="https://www.googletagmanager.com/ns.html?id=GTM-M73Z4W" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="content-grid"> <!-- Start Production toolbar --> <!-- End Production toolbar --> <!-- Start Downtime Banner --> <!-- End Downtime Banner --> <!-- Header starts --> <header class="content-grid__full-width" role="banner" data-nav-group> <a class="sr-skip sr-skip--overlay header__skip" href="#skip-to-content-link-target">Skip to content</a> <div class="accessibility" style="display: none;"> <p><strong>Accessibility Links</strong></p> <ul> <li><a href="#page-content">Skip to content</a></li> <li><a href="/search#contentCol">Skip to search IOPscience</a></li> <li><a href="/journals#contentCol">Skip to Journals list</a></li> <li><a href="/page/accessibility#contentCol">Accessibility help</a></li> </ul> </div> <div class="dgh-showgrid tgh-showgrid cf" name="contentCol"> <nav role="navigation" class="wd-main-nav" aria-label="Site"> <a href="#sidr-main" id="simple-menu" class="nav-top-link" aria-label="Menu"><svg aria-hidden="true" class="fa-icon fa-icon--xlrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--bars--><!--!Font Awesome Free 6.5.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M0 96C0 78.3 14.3 64 32 64H416c17.7 0 32 14.3 32 32s-14.3 32-32 32H32C14.3 128 0 113.7 0 96zM0 256c0-17.7 14.3-32 32-32H416c17.7 0 32 14.3 32 32s-14.3 32-32 32H32c-17.7 0-32-14.3-32-32zM448 416c0 17.7-14.3 32-32 32H32c-17.7 0-32-14.3-32-32s14.3-32 32-32H416c17.7 0 32 14.3 32 32z"/></svg></a> <a href="/" itemprop="url" class="header-logo wd-header-graphic"> <meta itemprop="name" content="IOPscience"> <img height="15" width="100" src="" alt=""> <span class="offscreen-hidden">IOP Science home</span> </a> <a class="btn btn-default" id="accessibility-help" href="/page/accessibility">Accessibility Help</a> <ul id="sidr" class="nav__list"> <li class="nav-search nav-item"> <button class="nav-top-link-drop-down nav-top-link-drop-down--icon" data-nav-trigger="articlelookup"> <svg class="fa-icon fa-icon--lrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--!Font Awesome Free 6.6.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><title>Search</title><path d="M416 208c0 45.9-14.9 88.3-40 122.7L502.6 457.4c12.5 12.5 12.5 32.8 0 45.3s-32.8 12.5-45.3 0L330.7 376c-34.4 25.2-76.8 40-122.7 40C93.1 416 0 322.9 0 208S93.1 0 208 0S416 93.1 416 208zM208 352a144 144 0 1 0 0-288 144 144 0 1 0 0 288z"/></svg> </button> <div class="nav-drop-down nav-drop-down--full-width" data-nav-item="articlelookup"> <div class="wrapper--search cf"> <div id="search" class="wd-header-search art-lookup__search"> <form accept-charset="utf-8,iso-8859-1" class="primary-search" method="get" action="/nsearch" role="search"> <div class="art-lookup__fields-wrapper"> <label for="quickSearch">Search all IOPscience content</label> <input type="search" x-webkit-speech="" name="terms" id="quickSearch" class="art-lookup__field--grow" placeholder="Search all IOPscience content" value="" escapeXml="true"/> <button type="submit" x-webkit-speech="" class="btn btn-default hdr-search-btn bd-0 art-lookup__submit">Search</button> </div> </form> </div> <div id="wd-content-finder" class="art-lookup__content-finder"> <form accept-charset="utf-8,iso-8859-1" method="get" action="/findcontent" name="contentFinderForm" id="wd-find-art-form" class="find-article-issue-display" autocomplete="OFF" aria-labelledby="article-lookup"> <fieldset> <legend id="article-lookup" class="eyebrow eyebrow--blue">Article Lookup</legend> <div class="art-lookup__fields-wrapper"> <label for="CF_JOURNAL" class="offscreen-hidden">Select journal (required)</label> <select name="CF_JOURNAL" class="find-article-select art-lookup__content-finder-field art-lookup__field--grow art-lookup__content-finder-field--first" id="CF_JOURNAL"> <option value="none">Select journal (required)</option><option value="2053-1583">2D Mater. (2014 - present)</option><option value="1004-423X">Acta Phys. Sin. (Overseas Edn) (1992 - 1999)</option><option value="2043-6262">Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)</option><option value="1882-0786">Appl. Phys. Express (2008 - present)</option><option value="1758-5090">Biofabrication (2009 - present)</option><option value="1748-3190">Bioinspir. Biomim. (2006 - present)</option><option value="1748-605X">Biomed. Mater. (2006 - present)</option><option value="2057-1976">Biomed. Phys. Eng. Express (2015 - present)</option><option value="0508-3443">Br. J. Appl. Phys. (1950 - 1967)</option><option value="1009-9271">Chin. J. Astron. Astrophys. (2001 - 2008)</option><option value="1003-7713">Chin. J. Chem. Phys. (1987 - 2007)</option><option value="1674-0068">Chin. J. Chem. Phys. (2008 - 2012)</option><option value="1009-1963">Chinese Phys. (2000 - 2007)</option><option value="1674-1056">Chinese Phys. B (2008 - present)</option><option value="1674-1137">Chinese Phys. C (2008 - present)</option><option value="0256-307X">Chinese Phys. Lett. (1984 - present)</option><option value="0264-9381">Class. Quantum Grav. (1984 - present)</option><option value="0143-0815">Clin. Phys. Physiol. Meas. (1980 - 1992)</option><option value="1364-7830">Combustion Theory and Modelling (1997 - 2004)</option><option value="0253-6102">Commun. Theor. Phys. (1982 - present)</option><option value="1749-4699">Comput. Sci. Discov. (2008 - 2015)</option><option value="2057-1739">Converg. Sci. Phys. Oncol. (2015 - 2018)</option><option value="0967-1846">Distrib. Syst. Engng. (1993 - 1999)</option><option value="2754-2734">ECS Adv. (2022 - present)</option><option value="2162-8734">ECS Electrochem. Lett. (2012 - 2015)</option><option value="2162-8777">ECS J. Solid State Sci. Technol. (2012 - present)</option><option value="2754-2726">ECS Sens. Plus (2022 - present)</option><option value="2162-8750">ECS Solid State Lett. (2012 - 2015)</option><option value="1938-5862">ECS Trans. (2005 - present)</option><option value="0295-5075">EPL (1986 - present)</option><option value="1944-8783">Electrochem. Soc. Interface (1992 - present)</option><option value="1944-8775">Electrochem. Solid-State Lett. (1998 - 2012)</option><option value="2516-1075">Electron. Struct. (2019 - present)</option><option value="2631-8695">Eng. Res. Express (2019 - present)</option><option value="2515-7620">Environ. Res. Commun. (2018 - present)</option><option value="1748-9326">Environ. Res. Lett. (2006 - present)</option><option value="2752-5295">Environ. Res.: Climate (2022 - present)</option><option value="2752-664X">Environ. Res.: Ecology (2022 - present)</option><option value="2753-3751">Environ. Res.: Energy (2024 - present)</option><option value="2976-601X">Environ. Res.: Food Syst. (2024 - present)</option><option value="2752-5309">Environ. Res.: Health (2022 - present)</option><option value="2634-4505">Environ. Res.: Infrastruct. Sustain. (2021 - present)</option><option value="3033-4942">Environ. Res.: Water (2025 - present)</option><option value="0143-0807">Eur. J. Phys. (1980 - present)</option><option value="2058-8585">Flex. Print. Electron. (2015 - present)</option><option value="1873-7005">Fluid Dyn. Res. (1986 - present)</option><option value="2631-6331">Funct. Compos. Struct. (2018 - present)</option><option value="1755-1315">IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)</option><option value="1757-899X">IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)</option><option value="2633-1357">IOPSciNotes (2020 - 2022)</option><option value="2631-7990">Int. J. Extrem. Manuf. (2019 - present)</option><option value="0266-5611">Inverse Problems (1985 - present)</option><option value="1064-5632">Izv. Math. (1993 - present)</option><option value="1752-7163">J. Breath Res. (2007 - present)</option><option value="1475-7516">J. Cosmol. Astropart. Phys. (2003 - present)</option><option value="1945-7111">J. Electrochem. Soc. (1902 - present)</option><option value="1742-2140">J. Geophys. Eng. (2004 - 2018)</option><option value="1126-6708">J. High Energy Phys. (1997 - 2009)</option><option value="1748-0221">J. Inst. (2006 - present)</option><option value="0960-1317">J. Micromech. Microeng. (1991 - present)</option><option value="1741-2552">J. Neural Eng. (2004 - present)</option><option value="0368-3281">J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)</option><option value="0150-536X">J. Opt. (1977 - 1998)</option><option value="2040-8986">J. Opt. (2010 - present)</option><option value="1464-4258">J. Opt. A: Pure Appl. Opt. (1999 - 2009)</option><option value="1464-4266">J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)</option><option value="0022-3689">J. Phys. A: Gen. Phys. (1968 - 1972)</option><option value="0305-4470">J. Phys. A: Math. Gen. (1975 - 2006)</option><option value="0301-0015">J. Phys. A: Math. Nucl. Gen. (1973 - 1974)</option><option value="1751-8121">J. Phys. A: Math. Theor. (2007 - present)</option><option value="0953-4075">J. Phys. B: At. Mol. Opt. Phys. (1988 - present)</option><option value="0022-3700">J. Phys. B: Atom. Mol. Phys. (1968 - 1987)</option><option value="0022-3719">J. Phys. C: Solid State Phys. (1968 - 1988)</option><option value="2399-6528">J. Phys. Commun. (2017 - present)</option><option value="2632-072X">J. Phys. Complex. (2019 - present)</option><option value="0022-3727">J. Phys. D: Appl. Phys. (1968 - present)</option><option value="0022-3735">J. Phys. E: Sci. Instrum. (1968 - 1989)</option><option value="2515-7655">J. Phys. Energy (2018 - present)</option><option value="0305-4608">J. Phys. F: Met. Phys. (1971 - 1988)</option><option value="0954-3899">J. Phys. G: Nucl. Part. Phys. (1989 - present)</option><option value="0305-4616">J. Phys. G: Nucl. Phys. (1975 - 1988)</option><option value="2515-7639">J. Phys. Mater. (2018 - present)</option><option value="2515-7647">J. Phys. Photonics (2018 - present)</option><option value="0953-8984">J. Phys.: Condens. Matter (1989 - present)</option><option value="1742-6596">J. Phys.: Conf. Ser. (2004 - present)</option><option value="0952-4746">J. Radiol. Prot. (1988 - present)</option><option value="3050-2454">J. Reliab. Sci. Eng. (2025 - present)</option><option value="0950-7671">J. Sci. Instrum. (1923 - 1967)</option><option value="1674-4926">J. Semicond. (2009 - present)</option><option value="0260-2814">J. Soc. Radiol. Prot. (1981 - 1987)</option><option value="1742-5468">J. Stat. Mech. (2004 - present)</option><option value="1468-5248">JoT (2000 - 2004)</option><option value="1347-4065">Jpn. J. Appl. Phys. (1962 - present)</option><option value="1555-6611">Laser Phys. (2013 - present)</option><option value="1612-202X">Laser Phys. Lett. (2004 - present)</option><option value="3049-4753">Mach. Learn.: Earth (2025 - present)</option><option value="3049-4761">Mach. Learn.: Eng. (2025 - present)</option><option value="3049-477X">Mach. Learn.: Health (2025 - present)</option><option value="2632-2153">Mach. Learn.: Sci. Technol. (2019 - present)</option><option value="2752-5724">Mater. Futures (2022 - present)</option><option value="2633-4356">Mater. Quantum. Technol. (2020 - present)</option><option value="2053-1591">Mater. Res. Express (2014 - present)</option><option value="0025-5726">Math. USSR Izv. (1967 - 1992)</option><option value="0025-5734">Math. USSR Sb. (1967 - 1993)</option><option value="0957-0233">Meas. Sci. Technol. (1990 - present)</option><option value="2151-2043">Meet. Abstr. (2002 - present)</option><option value="2050-6120">Methods Appl. Fluoresc. (2013 - present)</option><option value="0026-1394">Metrologia (1965 - present)</option><option value="0965-0393">Modelling Simul. Mater. Sci. Eng. (1992 - present)</option><option value="2399-7532">Multifunct. Mater. (2018 - 2022)</option><option value="2632-959X">Nano Ex. (2020 - present)</option><option value="2399-1984">Nano Futures (2017 - present)</option><option value="0957-4484">Nanotechnology (1990 - present)</option><option value="0954-898X">Network (1990 - 2004)</option><option value="2634-4386">Neuromorph. Comput. Eng. (2021 - present)</option><option value="1367-2630">New J. Phys. (1998 - present)</option><option value="0951-7715">Nonlinearity (1988 - present)</option><option value="0335-7368">Nouvelle Revue d'Optique (1973 - 1976)</option><option value="0029-4780">Nouvelle Revue d'Optique Appliquée (1970 - 1972)</option><option value="0029-5515">Nucl. Fusion (1960 - present)</option><option value="1538-3873">PASP (1889 - present)</option><option value="1478-3975">Phys. Biol. (2004 - present)</option><option value="0031-9112">Phys. Bull. (1950 - 1988)</option><option value="0031-9120">Phys. Educ. (1966 - present)</option><option value="0031-9155">Phys. Med. Biol. (1956 - present)</option><option value="1402-4896">Phys. Scr. (1970 - present)</option><option value="2058-7058">Phys. World (1988 - present)</option><option value="1063-7869">Phys.-Usp. (1993 - present)</option><option value="0305-4624">Physics in Technology (1973 - 1988)</option><option value="0967-3334">Physiol. Meas. (1993 - present)</option><option value="0741-3335">Plasma Phys. Control. Fusion (1984 - present)</option><option value="0032-1028">Plasma Physics (1967 - 1983)</option><option value="2516-1067">Plasma Res. Express (2018 - 2022)</option><option value="1009-0630">Plasma Sci. Technol. (1999 - present)</option><option value="0963-0252">Plasma Sources Sci. Technol. (1992 - present)</option><option value="0959-5309">Proc. Phys. Soc. (1926 - 1948)</option><option value="0370-1328">Proc. Phys. Soc. (1958 - 1967)</option><option value="0370-1298">Proc. Phys. Soc. A (1949 - 1957)</option><option value="0370-1301">Proc. Phys. Soc. B (1949 - 1957)</option><option value="1478-7814">Proc. Phys. Soc. London (1874 - 1925)</option><option value="2576-1579">Proc. Vol. (1967 - 2005)</option><option value="2516-1091">Prog. Biomed. Eng. (2018 - present)</option><option value="2516-1083">Prog. Energy (2018 - present)</option><option value="0963-6625">Public Understand. Sci. (1992 - 2002)</option><option value="0963-9659">Pure Appl. Opt. (1992 - 1998)</option><option value="1469-7688">Quantitative Finance (2001 - 2004)</option><option value="1063-7818">Quantum Electron. (1993 - present)</option><option value="0954-8998">Quantum Opt. (1989 - 1994)</option><option value="2058-9565">Quantum Sci. Technol. (2015 - present)</option><option value="1355-5111">Quantum Semiclass. Opt. (1995 - 1998)</option><option value="0034-4885">Rep. Prog. Phys. (1934 - present)</option><option value="1674-4527">Res. Astron. Astrophys. (2009 - present)</option><option value="2515-5172">Research Notes of the AAS (2017 - present)</option><option value="0034-6683">RevPhysTech (1970 - 1972)</option><option value="0036-021X">Russ. Chem. Rev. (1960 - present)</option><option value="0036-0279">Russ. Math. Surv. (1960 - present)</option><option value="1064-5616">Sb. Math. (1993 - present)</option><option value="1468-6996">Sci. Technol. Adv. Mater. (2000 - 2015)</option><option value="0268-1242">Semicond. Sci. Technol. (1986 - present)</option><option value="0964-1726">Smart Mater. Struct. (1992 - present)</option><option value="0049-1748">Sov. J. Quantum Electron. (1971 - 1992)</option><option value="0038-5670">Sov. Phys. Usp. (1958 - 1992)</option><option value="0953-2048">Supercond. Sci. Technol. (1988 - present)</option><option value="2051-672X">Surf. Topogr.: Metrol. Prop. (2013 - present)</option><option value="2977-3504">Sustain. Sci. Technol. (2024 - present)</option><option value="1538-3881" selected="selected">The Astronomical Journal (1849 - present)</option><option value="0004-637X">The Astrophysical Journal (1996 - present)</option><option value="2041-8205">The Astrophysical Journal Letters (2010 - present)</option><option value="0067-0049">The Astrophysical Journal Supplement Series (1996 - present)</option><option value="2632-3338">The Planetary Science Journal (2020 - present)</option><option value="2156-7395">Trans. Amer: Electrochem. Soc. (1930 - 1930)</option><option value="1945-6859">Trans. Electrochem. Soc. (1931 - 1948)</option><option value="1475-4878">Trans. Opt. Soc. (1899 - 1932)</option><option value="2053-1613">Transl. Mater. Res. (2014 - 2018)</option><option value="0959-7174">Waves Random Media (1991 - 2004)</option> </select> <label for="CF_VOLUME" class="offscreen-hidden">Volume number:</label> <input type="text" name="CF_VOLUME" id="CF_VOLUME" class="art-lookup__content-finder-field" placeholder="Volume" x-webkit-speech=""> <label for="CF_ISSUE" class="offscreen-hidden">Issue number (if known):</label> <input type="text" name="CF_ISSUE" id="CF_ISSUE" class="art-lookup__content-finder-field" placeholder="Issue" x-webkit-speech=""> <label for="CF_PAGE" class="offscreen-hidden">Article or page number:</label> <input type="text" name="CF_PAGE" id="CF_PAGE" class="art-lookup__content-finder-field art-lookup__content-finder-field--last" placeholder="Article or page" x-webkit-speech=""> <button type="submit" class="btn btn-default art-lookup__submit" name="submit">Lookup</button> </div> </fieldset> </form> </div> </div> </div> </li> <li class="nav-journals nav-item wd-nav-journal"> <button class="nav-top-link-drop-down" data-nav-trigger="journals">Journals<svg aria-hidden="true" class="fa-icon fa-icon--right fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg></button> <div class="nav-drop-down wd-nav-journal-dd" data-nav-item="journals"> <div class="nav-drop-down__grid"> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/journals">Journals list</a> <span class="nav-drop-down__item-info m-hide">Browse more than 100 science journal titles</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/page/subjects">Subject collections</a> <span class="nav-drop-down__item-info m-hide">Read the very best research published in IOP journals</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/journals?type=partner#js-tab-pubpart">Publishing partners</a> <span class="nav-drop-down__item-info m-hide">Partner organisations and publications</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/info/page/openaccess">Open access</a> <span class="nav-drop-down__item-info m-hide">IOP Publishing open access policy guide</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/conference-series">IOP Conference Series</a> <span class="nav-drop-down__item-info m-hide">Read open access proceedings from science conferences worldwide</span> </div> </div> </div> </li> <li class="nav-books nav-item wd-nav-books"> <a href="/booklistinfo/home" class="nav-top-link">Books</a> </li> <li class="nav-publishing-support nav-item wd-publishing-support"> <a href="https://publishingsupport.iopscience.iop.org" class="nav-top-link">Publishing Support</a> </li> <!-- Header Login starts here --> <li class="nav-login nav-item wd-nav-login"> <button class="nav-top-link-drop-down" id="login-drop-down-user" data-nav-trigger="login"><svg aria-hidden="true" class="fa-icon fa-icon--left" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--circle-user--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M399 384.2C376.9 345.8 335.4 320 288 320H224c-47.4 0-88.9 25.8-111 64.2c35.2 39.2 86.2 63.8 143 63.8s107.8-24.7 143-63.8zM0 256a256 256 0 1 1 512 0A256 256 0 1 1 0 256zm256 16a72 72 0 1 0 0-144 72 72 0 1 0 0 144z"/></svg>Login<svg aria-hidden="true" class="fa-icon fa-icon--right fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg></button> <div class="nav-drop-down wd-nav-login-dd" data-nav-item="login"> <a href="https://myiopscience.iop.org/signin?origin=a0&return=https%3A%2F%2Fiopscience.iop.org%2Fjournal%2F1538-3881" id="wd-login-link">IOPscience login / Sign Up</a> </div> </li> <!-- Header Login ends here --> </ul> </nav> </div> </header> <div class="page-body" > <!-- Start two column layout --> <!-- Start two column layout --> <div class="grid-2-col db-showgrid tb-showgrid cf"> <main id="skip-to-content-link-target"> <!-- Secondary header starts --> <div class="secondary-header cf" id="wd-secondary-header"> <!-- Branded journal header starts --> <!-- Branded journal header starts --> <div class="big-branded"> <div class="publication-name" id="wd-pub-name"> <h1 class="publication-title" itemprop="name" itemid="periodical"> <!-- Branded journal header starts --> <!-- Journal image link starts --> <!-- Logo starts --> <a href="/journal/1538-3881" itemprop="url"> <img src="https://cms.iopscience.org/917eccb2-d09c-11e5-b0b6-759f86a2008e/aj-2016.png?guest=true" alt="The Astronomical Journal"/> </a> <!-- Logo ends --> <!-- Journal image link ends --> </h1> </div> <div class="partner-logos m-hide" id="wd-partner-logos"> <div class="partner-logo-alignment"> <!-- Partner logo starts --> <button class="overlay-launch partner-logo" aria-expanded="false"> <img src="https://cms.iopscience.org/8d609219-d09c-11e5-b0b6-759f86a2008e/aas-2018.png?guest=true" alt="The American Astronomical Society, find out more."> </button> <span class="overlay-set"> <div class="tint-screen"></div> <div role="dialog" aria-label="The American Astronomical Society" aria-modal="true" class="overlay-panel"> <button class="close-icon close-overlay" aria-label="Close"><svg aria-hidden="true" class="fa-icon fa-icon--xlrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--circle-xmark--><!--!Font Awesome Free 6.5.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M256 512A256 256 0 1 0 256 0a256 256 0 1 0 0 512zM175 175c9.4-9.4 24.6-9.4 33.9 0l47 47 47-47c9.4-9.4 24.6-9.4 33.9 0s9.4 24.6 0 33.9l-47 47 47 47c9.4 9.4 9.4 24.6 0 33.9s-24.6 9.4-33.9 0l-47-47-47 47c-9.4 9.4-24.6 9.4-33.9 0s-9.4-24.6 0-33.9l47-47-47-47c-9.4-9.4-9.4-24.6 0-33.9z"/></svg></button> <div class="overlay-img"> <img src="https://cms.iopscience.org/8d609219-d09c-11e5-b0b6-759f86a2008e/aas-2018.png?guest=true" alt="The American Astronomical Society logo."/> </div> <div class="overlay-text"> <p><a href="https://aas.org/">The American Astronomical Society (AAS)</a>, established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. Its membership of about 7,000 individuals also includes physicists, mathematicians, geologists, engineers, and others whose research and educational interests lie within the broad spectrum of subjects comprising contemporary astronomy. The mission of the AAS is to enhance and share humanity's scientific understanding of the universe.</p> </div> </div> </span> <!-- Partner logo ends --> <!-- Partner logo starts --> <button class="overlay-launch partner-logo" aria-expanded="false"> <img src="https://cms.iopscience.org/5759f22a-0439-11e9-b401-cfe9679c40e3/iop-2016.png?guest=true" alt="The Institute of Physics, find out more."> </button> <span class="overlay-set"> <div class="tint-screen"></div> <div role="dialog" aria-label="The Institute of Physics" aria-modal="true" class="overlay-panel"> <button class="close-icon close-overlay" aria-label="Close"><svg aria-hidden="true" class="fa-icon fa-icon--xlrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--circle-xmark--><!--!Font Awesome Free 6.5.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M256 512A256 256 0 1 0 256 0a256 256 0 1 0 0 512zM175 175c9.4-9.4 24.6-9.4 33.9 0l47 47 47-47c9.4-9.4 24.6-9.4 33.9 0s9.4 24.6 0 33.9l-47 47 47 47c9.4 9.4 9.4 24.6 0 33.9s-24.6 9.4-33.9 0l-47-47-47 47c-9.4 9.4-24.6 9.4-33.9 0s-9.4-24.6 0-33.9l47-47-47-47c-9.4-9.4-9.4-24.6 0-33.9z"/></svg></button> <div class="overlay-img"> <img src="https://cms.iopscience.org/5759f22a-0439-11e9-b401-cfe9679c40e3/iop-2016.png?guest=true" alt="The Institute of Physics logo."/> </div> <div class="overlay-text"> <p><a href="https://www.iop.org">The Institute of Physics (IOP)</a> is a leading scientific society promoting physics and bringing physicists together for the benefit of all. It has a worldwide membership of around 50 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications.</p> </div> </div> </span> <!-- Partner logo ends --> <p>A publishing partnership</p> </div> </div> </div> <!-- Branded journal header ends --> </div> <!-- Secondary header ends --> <div class="db1 tb1"> <!-- Start Journal Content --> <div class="flex-container"> <!-- Start Journal introduction --> <div class="mb-2" id="wd-jnl-hm-intro"> <div class="pull-left"> <img alt="" width="125" src="https://cms.iopscience.org/1576b361-ec1f-11e5-b0b6-759f86a2008e/journal_cover?guest=true" border="0"/> </div> <div class="media-body"> <strong style="color: #CC0000">OPEN ACCESS</strong> <p><em>The Astronomical Journal</em> is an open access journal publishing original astronomical research, with an emphasis on significant scientific results derived from observations. Publications in <em>AJ</em> include descriptions of data capture, surveys, analysis techniques, astronomical interpretation, instrumentation, and software and computing.</p> <p><a href="https://baas.aas.org/pub/2020i0301/">Remembering former AJ editor, Paul W. Hodge (1934–2019)</a></p> <p>GOLD OPEN ACCESS FROM 1 JANUARY 2022</p> <div class="btn-multi-block"> <a id="jhp-submit" href="http://aas.msubmit.net" target="_blank" class="btn btn-default" rel="noopener">Submit an article <span class="offscreen-hidden">opens in new tab</span></a> <div class="jnl-notifications print-hide"> <!-- BEGIN JHP RSS feed link --> <div class="jnl-notifications-wrapper"> <a class="link--decoration-none" href="/journal/rss/1538-3881"> <svg aria-hidden="true" class="fa-icon fa-icon--left" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--rss--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M0 64C0 46.3 14.3 32 32 32c229.8 0 416 186.2 416 416c0 17.7-14.3 32-32 32s-32-14.3-32-32C384 253.6 226.4 96 32 96C14.3 96 0 81.7 0 64zM0 416a64 64 0 1 1 128 0A64 64 0 1 1 0 416zM32 160c159.1 0 288 128.9 288 288c0 17.7-14.3 32-32 32s-32-14.3-32-32c0-123.7-100.3-224-224-224c-17.7 0-32-14.3-32-32s14.3-32 32-32z"/></svg>RSS</a> </div> <!-- END JHP RSS feed link --> <!-- Start Email Alert --> <div class="jnl-notifications-wrapper"> <a class="link--decoration-none loginRequired" href="https://myiopscience.iop.org/signin?origin=a0&return=https%3A%2F%2Fiopscience.iop.org%2Fjournal%2F1538-3881" id="corridors-create-manage" data-ga-event="journal_alert_sign_up"> <svg aria-hidden="true" class="fa-icon fa-icon--left" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--bell--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M224 0c-17.7 0-32 14.3-32 32V51.2C119 66 64 130.6 64 208v18.8c0 47-17.3 92.4-48.5 127.6l-7.4 8.3c-8.4 9.4-10.4 22.9-5.3 34.4S19.4 416 32 416H416c12.6 0 24-7.4 29.2-18.9s3.1-25-5.3-34.4l-7.4-8.3C401.3 319.2 384 273.9 384 226.8V208c0-77.4-55-142-128-156.8V32c0-17.7-14.3-32-32-32zm45.3 493.3c12-12 18.7-28.3 18.7-45.3H224 160c0 17 6.7 33.3 18.7 45.3s28.3 18.7 45.3 18.7s33.3-6.7 45.3-18.7z"/></svg>Create or edit your corridor alerts </a> <!-- Start TOC Subjects Popup --> <span class="overlay-set" id="corridor-alerts-overlay"> <div class="tint-screen"></div> <div role="dialog" aria-labelledby="alerts-box-title" aria-describedby="alerts-box-desc" aria-modal="true" class="overlay-panel two-columns"> <div id="innerContainer"> <button class="close-icon close-overlay" aria-label="Close"> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--circle-xmark--><!--!Font Awesome Free 6.5.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M256 512A256 256 0 1 0 256 0a256 256 0 1 0 0 512zM175 175c9.4-9.4 24.6-9.4 33.9 0l47 47 47-47c9.4-9.4 24.6-9.4 33.9 0s9.4 24.6 0 33.9l-47 47 47 47c9.4 9.4 9.4 24.6 0 33.9s-24.6 9.4-33.9 0l-47-47-47 47c-9.4 9.4-24.6 9.4-33.9 0s-9.4-24.6 0-33.9l47-47-47-47c-9.4-9.4-9.4-24.6 0-33.9z"/></svg> </button> <form id="alertsForm" class="overlay-panel__form" method="post" action="" role="form" aria-labelledby="alerts-box-title"> <div class="overlay-panel__header"> <div class="overlay-panel__logo"></div> <span id="alerts-box-title" class="replica-h2">Corridor alerts</span> <p id="alerts-box-desc"> Receive alerts on all new research papers in American Astronomical Society (<span class="abbr__aas">A A S </span>) journals as soon as they are published. Select your desired journals and corridors below. You will need to select a minimum of one corridor. </p> </div> <div class="overlay-panel__container"> <div class="overlay-panel__col"> <fieldset id="alerts-corridors-list"> <legend id="corridors-title" class="overlay-panel__heading replica-h3 mb-05">Corridors</legend> </fieldset> </div> <div class="overlay-panel__col"> <fieldset id="alerts-journals-list"> <legend id="journals-title" class="overlay-panel__heading replica-h3 mb-05">Journals</legend> </fieldset> </div> <div class="boxout-bg-blue-light overlay-panel__extra-info"> <p> Please note, The Planetary Science Journal (PSJ) does not currently use the corridors. </p> </div> </div> <div class="overlay-panel__footer"> <div class="overlay-panel__inner-footer"> <button type="submit" class="btn btn-default overlay-panel__btn"><span id="update-alerts">Create alert</span><svg aria-hidden="true" class="fa-icon fa-icon--right fa-icon--lrg fa-icon--spin overlay-panel__loading" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--spinner--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M304 48a48 48 0 1 0 -96 0 48 48 0 1 0 96 0zm0 416a48 48 0 1 0 -96 0 48 48 0 1 0 96 0zM48 304a48 48 0 1 0 0-96 48 48 0 1 0 0 96zm464-48a48 48 0 1 0 -96 0 48 48 0 1 0 96 0zM142.9 437A48 48 0 1 0 75 369.1 48 48 0 1 0 142.9 437zm0-294.2A48 48 0 1 0 75 75a48 48 0 1 0 67.9 67.9zM369.1 437A48 48 0 1 0 437 369.1 48 48 0 1 0 369.1 437z"/></svg></button> </div> </div> </form> </div> </div> </span> <!-- End TOC Subjects Popup --> <p class="mb-0"> <!-- BEGIN What are corridors link --> <a class="link--decoration-none jnl-notifications__extra-info" href="https://journals.aas.org/topical-corridors/" target="_blank" rel="noopener"> What are corridors?<svg class="fa-icon fa-icon--right" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--arrow-up-right-from-square--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><title>opens in new tab</title><path d="M320 0c-17.7 0-32 14.3-32 32s14.3 32 32 32h82.7L201.4 265.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0L448 109.3V192c0 17.7 14.3 32 32 32s32-14.3 32-32V32c0-17.7-14.3-32-32-32H320zM80 32C35.8 32 0 67.8 0 112V432c0 44.2 35.8 80 80 80H400c44.2 0 80-35.8 80-80V320c0-17.7-14.3-32-32-32s-32 14.3-32 32V432c0 8.8-7.2 16-16 16H80c-8.8 0-16-7.2-16-16V112c0-8.8 7.2-16 16-16H192c17.7 0 32-14.3 32-32s-14.3-32-32-32H80z"/></svg> </a> <!-- END What are corridors link --> </p> </div> <!-- End Email Alert --> <!-- End Email Alert --> <!-- End Email Alert --> </div> </div> </div> </div> <!-- End Journal intro --> <!-- Start Journal home volume listings --> <div id="wd-jnl-hm-vol-forms" class="mb-2 mid-table-mb-25 clear-fl"> <div class="cf"> <div class="mid-tablet-half-left"> <form id="currentVolumeIssuesForm" class="select-w-btn mb-1 cf" name="currentVolumeIssuesForm" action="/issue" method="get" onsubmit="return false" accept-charset="utf-8,iso-8859-1"> <label for="latestVolumeIssuesSelector" class="cf">Current volume</label> <select name="latestVolumeIssuesSelect" id="latestVolumeIssuesSelector"> <option value="/issue/1538-3881/168/6">Number 6, 2024 December 2</option><option value="/issue/1538-3881/168/5">Number 5, 2024 November 1</option><option value="/issue/1538-3881/168/4">Number 4, 2024 October 1</option><option value="/issue/1538-3881/168/3">Number 3, 2024 September 2</option><option value="/issue/1538-3881/168/2">Number 2, 2024 August 1</option><option value="/issue/1538-3881/168/1">Number 1, 2024 July 1</option> </select> <button type="submit" id="latestVolumeIssues" class="btn btn-primary-2 select-w-btn__submit">Go</button> </form> </div> <div class="mid-tablet-half-right"> <form id="allVolumesForm" name="allVolumesForm" class="select-w-btn mb-1 cf" action="/volume" method="get" onsubmit="return false" accept-charset="utf-8,iso-8859-1"> <label for="allVolumesSelector" class="cf">Journal archive</label> <select name="allVolumesSelect" id="allVolumesSelector"> <option value="/volume/1538-3881/168">Vol 168, 2024</option><option value="/volume/1538-3881/167">Vol 167, 2024</option><option value="/volume/1538-3881/166">Vol 166, 2023</option><option value="/volume/1538-3881/165">Vol 165, 2023</option><option value="/volume/1538-3881/164">Vol 164, 2022</option><option value="/volume/1538-3881/163">Vol 163, 2022</option><option value="/volume/1538-3881/162">Vol 162, 2021</option><option value="/volume/1538-3881/161">Vol 161, 2021</option><option value="/volume/1538-3881/160">Vol 160, 2020</option><option value="/volume/1538-3881/159">Vol 159, 2020</option><option value="/volume/1538-3881/158">Vol 158, 2019</option><option value="/volume/1538-3881/157">Vol 157, 2019</option><option value="/volume/1538-3881/156">Vol 156, 2018</option><option value="/volume/1538-3881/155">Vol 155, 2018</option><option value="/volume/1538-3881/154">Vol 154, 2017</option><option value="/volume/1538-3881/153">Vol 153, 2017</option><option value="/volume/1538-3881/152">Vol 152, 2016</option><option value="/volume/1538-3881/151">Vol 151, 2016</option><option value="/volume/1538-3881/150">Vol 150, 2015</option><option value="/volume/1538-3881/149">Vol 149, 2015</option><option value="/volume/1538-3881/148">Vol 148, 2014</option><option value="/volume/1538-3881/147">Vol 147, 2014</option><option value="/volume/1538-3881/146">Vol 146, 2013</option><option value="/volume/1538-3881/145">Vol 145, 2013</option><option value="/volume/1538-3881/144">Vol 144, 2012</option><option value="/volume/1538-3881/143">Vol 143, 2012</option><option value="/volume/1538-3881/142">Vol 142, 2011</option><option value="/volume/1538-3881/141">Vol 141, 2011</option><option value="/volume/1538-3881/140">Vol 140, 2010</option><option value="/volume/1538-3881/139">Vol 139, 2010</option><option value="/volume/1538-3881/138">Vol 138, 2009</option><option value="/volume/1538-3881/137">Vol 137, 2009</option><option value="/volume/1538-3881/136">Vol 136, 2008</option><option value="/volume/1538-3881/135">Vol 135, 2008</option><option value="/volume/1538-3881/134">Vol 134, 2007</option><option value="/volume/1538-3881/133">Vol 133, 2007</option><option value="/volume/1538-3881/132">Vol 132, 2006</option><option value="/volume/1538-3881/131">Vol 131, 2006</option><option value="/volume/1538-3881/130">Vol 130, 2005</option><option value="/volume/1538-3881/129">Vol 129, 2005</option><option value="/volume/1538-3881/128">Vol 128, 2004</option><option value="/volume/1538-3881/127">Vol 127, 2004</option><option value="/volume/1538-3881/126">Vol 126, 2003</option><option value="/volume/1538-3881/125">Vol 125, 2003</option><option value="/volume/1538-3881/124">Vol 124, 2002</option><option value="/volume/1538-3881/123">Vol 123, 2002</option><option value="/volume/1538-3881/122">Vol 122, 2001</option><option value="/volume/1538-3881/121">Vol 121, 2001</option><option value="/volume/1538-3881/120">Vol 120, 2000</option><option value="/volume/1538-3881/119">Vol 119, 2000</option><option value="/volume/1538-3881/118">Vol 118, 1999</option><option value="/volume/1538-3881/117">Vol 117, 1999</option><option value="/volume/1538-3881/116">Vol 116, 1998</option><option value="/volume/1538-3881/115">Vol 115, 1998</option> </select> <button type="submit" id="allVolumes" class="btn btn-primary-2 select-w-btn__submit event_journal-vol">Go</button> </form> </div> <!-- For Conference Series Journal --> <!-- Start Focus issues --> <!-- End Focus issues --> </div> </div> <!-- End Journal home volume listings --> </div> <!-- Start Journal Metrics --> <div id="wd-journal-metrics" class="metrics"> <div class="metrics__grid"> <div class="metrics__metric"> <span class="metrics__description">Impact factor</span> <span class="metrics__score">5.1</span> </div> </div> </div> <!-- End Journal Metrics --> <div class="cf mb-1"> <!-- Start of Editorial news section --> <!-- End of Editorial news section --> <!-- Start Article listing tabs --> <div class="tabs cf mb-2 mt-1 tabs--vertical" id="wd-jnl-hm-art-list"> <!-- Start Tabs list --> <div role="tablist"> <button role="tab" aria-selected="false" aria-controls="most-read-tab" id="most-read" class="event_tabs" tabindex="-1"> Most read </button> <button role="tab" aria-selected="true" aria-controls="latest-articles-tab" id="latest-articles" class="event_tabs"> Latest articles </button> <button role="tab" aria-selected="false" aria-controls="open-access-articles-tab" id="open-access-articles" class="event_tabs" tabindex="-1"> Open Access </button> </div> <!-- End Tabs list --> <!-- Start Most read tabpanel --> <div tabindex="0" role="tabpanel" id="most-read-tab" aria-labelledby="most-read" hidden="hidden"> <div class=" reveal-container reveal-closed reveal-enabled reveal-container--jnl-tab"> <h2 class="tabpanel__title"> <button type="button" class="reveal-trigger event_tabs-accordion" aria-expanded="false"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg>Most read</button> </h2> <div class="reveal-content tabpanel__content" style="display: none"> <p> <button data-reveal-label-alt="Close all abstracts" class="reveal-all-trigger mr-2 small" data-reveal-text="Open all abstracts" data-link-purpose-append="in this tab" data-link-purpose-append-open="in this tab"> Open all abstracts<span class="offscreen-hidden">, in this tab</span> </button> </p> <!-- articleEntryList start--> <div class="art-list"> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1086/300568" class="art-list-item-title event_main-link">A New Analysis of RR Lyrae Kinematics in the Solar Neighborhood</a> <p class="small art-list-item-meta"> John C. Martin and Heather L. Morrison 1998 <em>AJ</em> <b>116</b> 1724 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="A New Analysis of RR Lyrae Kinematics in the Solar Neighborhood" data-link-purpose-append-open="A New Analysis of RR Lyrae Kinematics in the Solar Neighborhood">Open abstract</span> </button> <a href="/article/10.1086/300568/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, A New Analysis of RR Lyrae Kinematics in the Solar Neighborhood</span></a> <a href="/article/10.1086/300568/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, A New Analysis of RR Lyrae Kinematics in the Solar Neighborhood</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> Full space velocities are computed for a sample of 130 nearby RR Lyrae variables using both ground-based and <i>Hipparcos</i> proper motions. In many cases proper motions for the same star from multiple sources have been averaged to produce approximately a factor of 2 improvement in the transverse space velocity errors. In most cases, this exceeds the accuracy attained using <i>Hipparcos</i> proper motions alone. The velocity ellipsoids computed for halo and thick-disk samples are in agreement with those reported in previous studies. A distinct sample of thin-disk RR Lyrae variables has not been isolated, but there is kinematic evidence for some thin-disk contamination in our thick-disk samples. Using kinematic and spatial parameters, a sample of 21 stars with [Fe/H] < -1.0 and disklike kinematics have been isolated. From their kinematics and spatial distribution we conclude that these stars represent a sample of RR Lyrae variables in the metal-weak tail of the thick disk that extends to [Fe/H] = -2.05. In the halo samples, the distribution of <i>V</i> velocities is not Gaussian, even when the metal-weak thick-disk stars are removed. Possibly related, a plot of <i>U</i> and <i>W</i> velocities as a function of <i>V</i> velocity for the kinematically unbiased halo sample shows some curious structure. The cause of these kinematic anomalies is not clear. In addition, systematic changes to the distance scale within the range of currently accepted values of <i>M</i><sub><i>v</i></sub>(RR) are shown to significantly change the calculated halo kinematics. Fainter values of <i>M</i><sub><i>v</i></sub>(RR), such as those obtained by statistical parallax (∼0.60 to 0.70 at [Fe/H] = -1.9), result in local halo kinematics similar to those reported in independent studies of halo kinematics, while brighter values of <i>M</i><sub><i>v</i></sub>(RR), such as those obtained through recent analysis of <i>Hipparcos</i> subdwarf parallaxes (∼0.30 to 0.40 at [Fe/H] = -1.9), result in a halo with retrograde rotation and significantly enlarged velocity dispersions.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1086/300568">https://doi.org/10.1086/300568</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.3847/0004-6256/151/2/22" class="art-list-item-title event_main-link">EVIDENCE FOR A DISTANT GIANT PLANET IN THE SOLAR SYSTEM</a> <p class="small art-list-item-meta"> Konstantin Batygin and Michael E. Brown 2016 <em>AJ</em> <b>151</b> 22 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="EVIDENCE FOR A DISTANT GIANT PLANET IN THE SOLAR SYSTEM" data-link-purpose-append-open="EVIDENCE FOR A DISTANT GIANT PLANET IN THE SOLAR SYSTEM">Open abstract</span> </button> <a href="/article/10.3847/0004-6256/151/2/22/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, EVIDENCE FOR A DISTANT GIANT PLANET IN THE SOLAR SYSTEM</span></a> <a href="/article/10.3847/0004-6256/151/2/22/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, EVIDENCE FOR A DISTANT GIANT PLANET IN THE SOLAR SYSTEM</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Recent analyses have shown that distant orbits within the scattered disk population of the Kuiper Belt exhibit an unexpected clustering in their respective arguments of perihelion. While several hypotheses have been put forward to explain this alignment, to date, a theoretical model that can successfully account for the observations remains elusive. In this work we show that the orbits of distant Kuiper Belt objects (KBOs) cluster not only in argument of perihelion, but also in physical space. We demonstrate that the perihelion positions and orbital planes of the objects are tightly confined and that such a clustering has only a probability of 0.007% to be due to chance, thus requiring a dynamical origin. We find that the observed orbital alignment can be maintained by a distant eccentric planet with mass ≳10 <i>m</i><sub>⊕</sub> whose orbit lies in approximately the same plane as those of the distant KBOs, but whose perihelion is 180° away from the perihelia of the minor bodies. In addition to accounting for the observed orbital alignment, the existence of such a planet naturally explains the presence of high-perihelion Sedna-like objects, as well as the known collection of high semimajor axis objects with inclinations between 60° and 150° whose origin was previously unclear. Continued analysis of both distant and highly inclined outer solar system objects provides the opportunity for testing our hypothesis as well as further constraining the orbital elements and mass of the distant planet.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/0004-6256/151/2/22">https://doi.org/10.3847/0004-6256/151/2/22</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad5bdb" class="art-list-item-title event_main-link">First Very Long Baseline Interferometry Detections at 870 <i>μ</i>m</a> <p class="small art-list-item-meta"> Alexander W. Raymond <em>et al</em> 2024 <em>AJ</em> <b>168</b> 130 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="First Very Long Baseline Interferometry Detections at 870 μm" data-link-purpose-append-open="First Very Long Baseline Interferometry Detections at 870 μm">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad5bdb/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, First Very Long Baseline Interferometry Detections at 870 μm</span></a> <a href="/article/10.3847/1538-3881/ad5bdb/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, First Very Long Baseline Interferometry Detections at 870 μm</span></a> <a href="/article/10.3847/1538-3881/ad5bdb/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, First Very Long Baseline Interferometry Detections at 870 μm</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>The first very long baseline interferometry (VLBI) detections at 870 <i>μ</i>m wavelength (345 GHz frequency) are reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth and the highest-frequency example of the VLBI technique to date. These include strong detections for multiple sources observed on intercontinental baselines between telescopes in Chile, Hawaii, and Spain, obtained during observations in 2018 October. The longest-baseline detections approach 11 G<i>λ</i>, corresponding to an angular resolution, or fringe spacing, of 19 <i>μ</i>as. The Allan deviation of the visibility phase at 870 <i>μ</i>m is comparable to that at 1.3 mm on the relevant integration timescales between 2 and 100 s. The detections confirm that the sensitivity and signal chain stability of stations in the Event Horizon Telescope (EHT) array are suitable for VLBI observations at 870 <i>μ</i>m. Operation at this short wavelength, combined with anticipated enhancements of the EHT, will lead to a unique high angular resolution instrument for black hole studies, capable of resolving the event horizons of supermassive black holes in both space and time.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad5bdb">https://doi.org/10.3847/1538-3881/ad5bdb</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/abd414" class="art-list-item-title event_main-link">The JPL Planetary and Lunar Ephemerides DE440 and DE441</a> <p class="small art-list-item-meta"> Ryan S. Park <em>et al</em> 2021 <em>AJ</em> <b>161</b> 105 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="The JPL Planetary and Lunar Ephemerides DE440 and DE441" data-link-purpose-append-open="The JPL Planetary and Lunar Ephemerides DE440 and DE441">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/abd414/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, The JPL Planetary and Lunar Ephemerides DE440 and DE441</span></a> <a href="/article/10.3847/1538-3881/abd414/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, The JPL Planetary and Lunar Ephemerides DE440 and DE441</span></a> <a href="/article/10.3847/1538-3881/abd414/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, The JPL Planetary and Lunar Ephemerides DE440 and DE441</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>The planetary and lunar ephemerides called DE440 and DE441 have been generated by fitting numerically integrated orbits to ground-based and space-based observations. Compared to the previous general-purpose ephemerides DE430, seven years of new data have been added to compute DE440 and DE441, with improved dynamical models and data calibration. The orbit of Jupiter has improved substantially by fitting to the Juno radio range and Very Long Baseline Array (VLBA) data of the Juno spacecraft. The orbit of Saturn has been improved by radio range and VLBA data of the Cassini spacecraft, with improved estimation of the spacecraft orbit. The orbit of Pluto has been improved from use of stellar occultation data reduced against the Gaia star catalog. The ephemerides DE440 and DE441 are fit to the same data set, but DE441 assumes no damping between the lunar liquid core and the solid mantle, which avoids a divergence when integrated backward in time. Therefore, DE441 is less accurate than DE440 for the current century, but covers a much longer duration of years −13,200 to +17,191, compared to DE440 covering years 1550–2650.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/abd414">https://doi.org/10.3847/1538-3881/abd414</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/aceaf0" class="art-list-item-title event_main-link">Is There an Earth-like Planet in the Distant Kuiper Belt?</a> <p class="small art-list-item-meta"> Patryk Sofia Lykawka and Takashi Ito 2023 <em>AJ</em> <b>166</b> 118 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Is There an Earth-like Planet in the Distant Kuiper Belt?" data-link-purpose-append-open="Is There an Earth-like Planet in the Distant Kuiper Belt?">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/aceaf0/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Is There an Earth-like Planet in the Distant Kuiper Belt?</span></a> <a href="/article/10.3847/1538-3881/aceaf0/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Is There an Earth-like Planet in the Distant Kuiper Belt?</span></a> <a href="/article/10.3847/1538-3881/aceaf0/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, Is There an Earth-like Planet in the Distant Kuiper Belt?</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>The orbits of trans-Neptunian objects (TNOs) can indicate the existence of an undiscovered planet in the outer solar system. Here we used <i>N</i>-body computer simulations to investigate the effects of a hypothetical Kuiper Belt planet (KBP) on the orbital structure of TNOs in the distant Kuiper Belt beyond ∼50 au. We used observations to constrain model results, including the well-characterized Outer Solar System Origins Survey (OSSOS). We determined that an Earth-like planet (<i>m</i> ∼ 1.5–3 <i>M</i><sub>⊕</sub>) located on a distant (semimajor axis <i>a</i> ∼ 250–500 au, perihelion <i>q</i> ∼ 200 au) and inclined (<i>i</i> ∼ 30°) orbit can explain three fundamental properties of the distant Kuiper Belt: a prominent population of TNOs with orbits beyond Neptune's gravitational influence (i.e., detached objects with <i>q</i> > 40 au), a significant population of high-<i>i</i> objects (<i>i</i> > 45°), and the existence of some extreme objects with peculiar orbits (e.g., Sedna). Furthermore, the proposed KBP is compatible with the existence of identified gigayear-stable TNOs in the 2:1, 5:2, 3:1, 4:1, 5:1, and 6:1 Neptunian mean motion resonances. These stable populations are often neglected in other studies. We predict the existence of an Earth-like planet and several TNOs on peculiar orbits in the outer solar system, which can serve as observationally testable signatures of the putative planet's perturbations.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/aceaf0">https://doi.org/10.3847/1538-3881/aceaf0</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/acfda4" class="art-list-item-title event_main-link">A Search for Technosignatures Around 11,680 Stars with the Green Bank Telescope at 1.15–1.73 GHz</a> <p class="small art-list-item-meta"> Jean-Luc Margot <em>et al</em> 2023 <em>AJ</em> <b>166</b> 206 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="A Search for Technosignatures Around 11,680 Stars with the Green Bank Telescope at 1.15–1.73 GHz" data-link-purpose-append-open="A Search for Technosignatures Around 11,680 Stars with the Green Bank Telescope at 1.15–1.73 GHz">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/acfda4/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, A Search for Technosignatures Around 11,680 Stars with the Green Bank Telescope at 1.15–1.73 GHz</span></a> <a href="/article/10.3847/1538-3881/acfda4/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, A Search for Technosignatures Around 11,680 Stars with the Green Bank Telescope at 1.15–1.73 GHz</span></a> <a href="/article/10.3847/1538-3881/acfda4/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, A Search for Technosignatures Around 11,680 Stars with the Green Bank Telescope at 1.15–1.73 GHz</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>We conducted a search for narrowband radio signals over four observing sessions in 2020–2023 with the <i>L</i>-band receiver (1.15–1.73 GHz) of the 100 m diameter Green Bank Telescope. We pointed the telescope in the directions of 62 TESS Objects of Interest, capturing radio emissions from a total of ∼11,680 stars and planetary systems in the ∼9' beam of the telescope. All detections were either automatically rejected or visually inspected and confirmed to be of anthropogenic nature. We also quantified the end-to-end efficiency of radio SETI pipelines with a signal injection and recovery analysis. The UCLA SETI pipeline recovers 94.0% of the injected signals over the usable frequency range of the receiver and 98.7% of the injections when regions of dense radio frequency interference are excluded. In another pipeline that uses incoherent sums of 51 consecutive spectra, the recovery rate is ∼15 times smaller at ∼6%. The pipeline efficiency affects calculations of transmitter prevalence and SETI search volume. Accordingly, we developed an improved Drake figure of merit and a formalism to place upper limits on transmitter prevalence that take the pipeline efficiency and transmitter duty cycle into account. Based on our observations, we can state at the 95% confidence level that fewer than 6.6% of stars within 100 pc host a transmitter that is continuously transmitting a narrowband signal with an equivalent isotropic radiated power (EIRP) > 10<sup>13</sup> W. For stars within 20,000 ly, the fraction of stars with detectable transmitters (EIRP > 5 <b>×</b> 10<sup>16</sup> W) is at most 3 <b>×</b> 10<sup>−4</sup>. Finally, we showed that the UCLA SETI pipeline natively detects the signals detected with AI techniques by Ma et al.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/acfda4">https://doi.org/10.3847/1538-3881/acfda4</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad7a78" class="art-list-item-title event_main-link">Empirical Stability Criteria for 3D Hierarchical Triple Systems. I. Circumbinary Planets</a> <p class="small art-list-item-meta"> Nikolaos Georgakarakos <em>et al</em> 2024 <em>AJ</em> <b>168</b> 224 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Empirical Stability Criteria for 3D Hierarchical Triple Systems. I. Circumbinary Planets" data-link-purpose-append-open="Empirical Stability Criteria for 3D Hierarchical Triple Systems. I. Circumbinary Planets">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad7a78/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Empirical Stability Criteria for 3D Hierarchical Triple Systems. I. Circumbinary Planets</span></a> <a href="/article/10.3847/1538-3881/ad7a78/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Empirical Stability Criteria for 3D Hierarchical Triple Systems. I. Circumbinary Planets</span></a> <a href="/article/10.3847/1538-3881/ad7a78/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, Empirical Stability Criteria for 3D Hierarchical Triple Systems. I. Circumbinary Planets</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>In this work we revisit the problem of the dynamical stability of hierarchical triple systems with applications to circumbinary planetary orbits. We derive critical semimajor axes based on simulating and analyzing the dynamical behavior of 3 <b>×</b> 10<sup>8</sup> binary star–planet configurations. For the first time, three-dimensional and eccentric planetary orbits are considered. We explore systems with a variety of binary and planetary mass ratios, binary and planetary eccentricities from 0 to 0.9, and orbital mutual inclinations ranging from 0° to 180°. Planetary masses range between the size of Mercury and the lower fusion boundary (approximately 13 Jupiter masses). The stability of each system is monitored over 10<sup>6</sup> planetary orbital periods. We provide empirical expressions in the form of multidimensional, parameterized fits for two borders that separate dynamically stable, unstable, and mixed zones. In addition, we offer a machine learning model trained on our data set as an alternative tool for predicting the stability of circumbinary planets. Both the empirical fits and the machine learning model are tested for their predictive capabilities against randomly generated circumbinary systems with very good results. The empirical formulae are also applied to the Kepler and TESS circumbinary systems, confirming that many planets orbit their host stars close to the stability limit of those systems. Finally, we present a REST application programming interface with a web-based application for convenient access to our simulation data set.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad7a78">https://doi.org/10.3847/1538-3881/ad7a78</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.3847/0004-6256/152/2/41" class="art-list-item-title event_main-link">NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3</a> <p class="small art-list-item-meta"> Andrej Prša <em>et al</em> 2016 <em>AJ</em> <b>152</b> 41 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3" data-link-purpose-append-open="NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3">Open abstract</span> </button> <a href="/article/10.3847/0004-6256/152/2/41/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3</span></a> <a href="/article/10.3847/0004-6256/152/2/41/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the time of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of <i>nominal</i> solar and planetary values, which are by definition <i>exact</i> and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/0004-6256/152/2/41">https://doi.org/10.3847/0004-6256/152/2/41</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1086/300499" class="art-list-item-title event_main-link">Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant</a> <p class="small art-list-item-meta"> Adam G. Riess <em>et al</em> 1998 <em>AJ</em> <b>116</b> 1009 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant" data-link-purpose-append-open="Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant">Open abstract</span> </button> <a href="/article/10.1086/300499/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant</span></a> <a href="/article/10.1086/300499/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 ≤ <i>z</i> ≤ 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-<i>z</i> Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmological parameters: the Hubble constant (<i>H</i><sub>0</sub>), the mass density (Ω<sub><i>M</i></sub>), the cosmological constant (i.e., the vacuum energy density, Ω<sub>Λ</sub>), the deceleration parameter (<i>q</i><sub>0</sub>), and the dynamical age of the universe (<i>t</i><sub>0</sub>). The distances of the high-redshift SNe Ia are, on average, 10%–15% farther than expected in a low mass density (Ω<sub><i>M</i></sub> = 0.2) universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., Ω<sub>Λ</sub> > 0) and a current acceleration of the expansion (i.e., <i>q</i><sub>0</sub> < 0). With no prior constraint on mass density other than Ω<sub><i>M</i></sub> ≥ 0, the spectroscopically confirmed SNe Ia are statistically consistent with <i>q</i><sub>0</sub> < 0 at the 2.8 σ and 3.9 σ confidence levels, and with Ω<sub>Λ</sub> > 0 at the 3.0 σ and 4.0 σ confidence levels, for two different fitting methods, respectively. Fixing a "minimal" mass density, Ω<sub><i>M</i></sub> = 0.2, results in the weakest detection, Ω<sub>Λ</sub> > 0 at the 3.0 σ confidence level from one of the two methods. For a flat universe prior (Ω<sub><i>M</i></sub> + Ω<sub>Λ</sub> = 1), the spectroscopically confirmed SNe Ia require Ω<sub>Λ</sub> > 0 at 7 σ and 9 σ formal statistical significance for the two different fitting methods. A universe closed by ordinary matter (i.e., Ω<sub><i>M</i></sub> = 1) is formally ruled out at the 7 σ to 8 σ confidence level for the two different fitting methods. We estimate the dynamical age of the universe to be 14.2 ± 1.7 Gyr including systematic uncertainties in the current Cepheid distance scale. We estimate the likely effect of several sources of systematic error, including progenitor and metallicity evolution, extinction, sample selection bias, local perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of these effects appear to reconcile the data with Ω<sub>Λ</sub> = 0 and <i>q</i><sub>0</sub> ≥ 0.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1086/300499">https://doi.org/10.1086/300499</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad7fea" class="art-list-item-title event_main-link">The Components of Cepheid Systems: The FN Vel System</a> <p class="small art-list-item-meta"> Nancy Remage Evans <em>et al</em> 2024 <em>AJ</em> <b>168</b> 221 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="The Components of Cepheid Systems: The FN Vel System" data-link-purpose-append-open="The Components of Cepheid Systems: The FN Vel System">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad7fea/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, The Components of Cepheid Systems: The FN Vel System</span></a> <a href="/article/10.3847/1538-3881/ad7fea/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, The Components of Cepheid Systems: The FN Vel System</span></a> <a href="/article/10.3847/1538-3881/ad7fea/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, The Components of Cepheid Systems: The FN Vel System</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Cepheid masses continue to be important tests of evolutionary tracks for intermediate-mass stars as well as important predictors of their future fate. For systems where the secondary is a B star, Hubble Space Telescope ultraviolet spectra have been obtained. From these spectra a temperature can be derived, and from this a mass of the companion <i>M</i><sub>2</sub>. Once Gaia DR4 is available, proper motions can be used to determine the inclination of the orbit. Combining mass of the companion, <i>M</i><sub>2</sub>, the mass function from the ground-based orbit of the Cepheid and the inclination produces the mass of the Cepheid, <i>M</i><sub>1</sub>. The Cepheid system FN Vel is used here to demonstrate this approach and what limits can be put on the Cepheid mass for inclination between 50° and 130°.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad7fea">https://doi.org/10.3847/1538-3881/ad7fea</a> </div> </div> </div> </div> </div> <!-- articleEntryList end--> </div> </div> </div> <!-- End Most read tabpanel --> <!-- Start Latest tabpanel --> <div tabindex="0" role="tabpanel" id="latest-articles-tab" aria-labelledby="latest-articles"> <div class=" reveal-container reveal-closed reveal-enabled reveal-container--jnl-tab"> <h2 class="tabpanel__title"> <button type="button" class="reveal-trigger event_tabs-accordion" aria-expanded="false"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg>Latest articles</button> </h2> <div class="reveal-content tabpanel__content" style="display: none"> <p> <button data-reveal-label-alt="Close all abstracts" class="reveal-all-trigger mr-2 small" data-reveal-text="Open all abstracts" data-link-purpose-append="in this tab" data-link-purpose-append-open="in this tab"> Open all abstracts<span class="offscreen-hidden">, in this tab</span> </button> </p> <!-- articleEntryList start--> <div class="art-list"> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad7e18" class="art-list-item-title event_main-link">The Breakthrough Listen Search for Intelligent Life: Galactic Center Search for Scintillated Technosignatures</a> <p class="small art-list-item-meta"> Bryan Brzycki <em>et al</em> 2024 <em>AJ</em> <b>168</b> 284 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="The Breakthrough Listen Search for Intelligent Life: Galactic Center Search for Scintillated Technosignatures" data-link-purpose-append-open="The Breakthrough Listen Search for Intelligent Life: Galactic Center Search for Scintillated Technosignatures">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad7e18/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, The Breakthrough Listen Search for Intelligent Life: Galactic Center Search for Scintillated Technosignatures</span></a> <a href="/article/10.3847/1538-3881/ad7e18/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, The Breakthrough Listen Search for Intelligent Life: Galactic Center Search for Scintillated Technosignatures</span></a> <a href="/article/10.3847/1538-3881/ad7e18/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, The Breakthrough Listen Search for Intelligent Life: Galactic Center Search for Scintillated Technosignatures</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>The search for extraterrestrial intelligence at radio frequencies has focused on spatial filtering as a primary discriminant from terrestrial interference. Individual search campaigns further choose targets or frequencies based on criteria that theoretically maximize the likelihood of detection, serving as high-level filters for interesting targets. Most filters for technosignatures do not rely on intrinsic signal properties, as the radio-frequency interference (RFI) environment is difficult to characterize. In B. Brzycki et al. (2023), we proposed that the effects of interstellar medium (ISM) scintillation on narrowband technosignatures may be detectable under certain conditions. In this work, we perform a dedicated survey for scintillated technosignatures toward the Galactic center and Galactic plane at the <i>C</i> band (3.95–8.0 GHz) using the Robert C. Byrd Green Bank Telescope (GBT) as part of the Breakthrough Listen program. We conduct a Doppler drift search and directional filter to identify potential candidates and analyze results for evidence of scintillation. We characterize the <i>C</i>-band RFI environment at the GBT across multiple observing sessions spread over months and detect RFI signals with confounding scintillation-like intensity modulation. We do not find evidence of putative narrowband transmitters with drift rates between ±10 Hz s<sup>−1</sup> toward the Galactic center, ISM-scintillated or otherwise, above an equivalent isotropic radiated power of 1.9 <b>×</b> 10<sup>17</sup> W up to 8.5 kpc.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad7e18">https://doi.org/10.3847/1538-3881/ad7e18</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad823c" class="art-list-item-title event_main-link">A Radio Technosignature Search of TRAPPIST-1 with the Allen Telescope Array</a> <p class="small art-list-item-meta"> Nick Tusay <em>et al</em> 2024 <em>AJ</em> <b>168</b> 283 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="A Radio Technosignature Search of TRAPPIST-1 with the Allen Telescope Array" data-link-purpose-append-open="A Radio Technosignature Search of TRAPPIST-1 with the Allen Telescope Array">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad823c/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, A Radio Technosignature Search of TRAPPIST-1 with the Allen Telescope Array</span></a> <a href="/article/10.3847/1538-3881/ad823c/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, A Radio Technosignature Search of TRAPPIST-1 with the Allen Telescope Array</span></a> <a href="/article/10.3847/1538-3881/ad823c/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, A Radio Technosignature Search of TRAPPIST-1 with the Allen Telescope Array</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Planet–planet occultations (PPOs) occur when one exoplanet occults another exoplanet in the same system, as seen from the Earth's vantage point. PPOs may provide a unique opportunity to observe radio "spillover" from extraterrestrial intelligences' radio transmissions or radar being transmitted from the farther exoplanet toward the nearer one for the purposes of communication or scientific exploration. Planetary systems with many tightly packed, low-inclination planets, such as TRAPPIST-1, are predicted to have frequent PPOs. Here, the narrowband technosignature search code <span style="font-family: monospace">turboSETI</span> was used in combination with the newly developed <span style="font-family: monospace">NbeamAnalysis</span> filtering pipeline to analyze 28 hr of beamformed data taken with the Allen Telescope Array during 2022 late October and early November, from 0.9 to 9.3 GHz, targeting TRAPPIST-1. During this observing window, seven possible PPO events were predicted using the <span style="font-family: monospace">NbodyGradient</span> code. The filtering pipeline reduced the original list of 25 million candidate signals down to 6 million by rejecting signals that were not sky-localized and, from these, identified a final list of 11,127 candidate signals above a power-law cutoff designed to segregate signals by their attenuation and morphological similarity between beams. All signals were plotted for visual inspection, 2264 of which were found to occur during PPO windows. We report no detections of signals of nonhuman origin, with upper limits calculated for each PPO event exceeding equivalent isotropic radiated powers of 2.17–13.3 TW for minimally drifting signals and 40.8–421 TW in the maximally drifting case. This work constitutes the longest single-target radio search for extraterrestrial intelligence of TRAPPIST-1 to date.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad823c">https://doi.org/10.3847/1538-3881/ad823c</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad8a5d" class="art-list-item-title event_main-link">The Radiative–Convective Gap: Fact or Fiction?</a> <p class="small art-list-item-meta"> Wolfgang Brandner <em>et al</em> 2024 <em>AJ</em> <b>168</b> 282 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="The Radiative–Convective Gap: Fact or Fiction?" data-link-purpose-append-open="The Radiative–Convective Gap: Fact or Fiction?">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad8a5d/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, The Radiative–Convective Gap: Fact or Fiction?</span></a> <a href="/article/10.3847/1538-3881/ad8a5d/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, The Radiative–Convective Gap: Fact or Fiction?</span></a> <a href="/article/10.3847/1538-3881/ad8a5d/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, The Radiative–Convective Gap: Fact or Fiction?</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Gaia characterizes the stellar populations of nearby open clusters with unprecedented precision. We investigate the Böhm-Vitense gap, which has been found as a prominent feature in the stellar sequence of open clusters. Using PARSEC isochrone fitting, we derive astrophysical parameters for more than 1100 bona fide single stars each in Praesepe, identify more than 1100 bona fide single stars in the <i>α</i> Persei (Melotte 20) open cluster, and confirm their approximate match in terms of age (≈710 and ≈45 Myr) and metallicity ([M/H] ≈ +0.15 and ≈+0.13 dex) to the Hyades and Pleiades, respectively. By merging data of the cluster pairs, we improve number statistics. We do not find a clear gap in the combined observational <i>G</i><sub>abs</sub> versus BP − RP color–magnitude diagram (CMD) in the stellar mass range corresponding to the location of the Böhm-Vitense gap. We reproduce gaps in simulated Hyades-type CMDs randomly drawn from an initial mass function. There is no strong evidence for a discontinuity originating in the transition from radiative to convective energy transport in the stellar photosphere. We conclude that the observed gaps in the stellar sequences of open clusters could be explained by small number statistics and the uneven mass–color relation at the transition from spectral type A to F.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad8a5d">https://doi.org/10.3847/1538-3881/ad8a5d</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad82eb" class="art-list-item-title event_main-link">Revisiting the Relationship Between Rocky Exoplanet and Stellar Compositions: Reduced Evidence for a Super-Mercury Population</a> <p class="small art-list-item-meta"> Casey L. Brinkman <em>et al</em> 2024 <em>AJ</em> <b>168</b> 281 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Revisiting the Relationship Between Rocky Exoplanet and Stellar Compositions: Reduced Evidence for a Super-Mercury Population" data-link-purpose-append-open="Revisiting the Relationship Between Rocky Exoplanet and Stellar Compositions: Reduced Evidence for a Super-Mercury Population">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad82eb/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Revisiting the Relationship Between Rocky Exoplanet and Stellar Compositions: Reduced Evidence for a Super-Mercury Population</span></a> <a href="/article/10.3847/1538-3881/ad82eb/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Revisiting the Relationship Between Rocky Exoplanet and Stellar Compositions: Reduced Evidence for a Super-Mercury Population</span></a> <a href="/article/10.3847/1538-3881/ad82eb/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, Revisiting the Relationship Between Rocky Exoplanet and Stellar Compositions: Reduced Evidence for a Super-Mercury Population</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Planets and the stars they orbit are born from the same cloud of gas and dust, and the primordial compositions of rocky exoplanets have been assumed to have iron and refractory abundance ratios consistent with their host star. To test this assumption, we modeled the interior iron-to-rock ratio of 20 super-Earth-sized (1–1.8 <i>R</i><sub>⊕</sub>) exoplanets around stars with homogeneously measured stellar parameters. We computed the core mass fraction (CMF) for each planet and an equivalent "core mass fraction" for each host star based on its Fe and Mg abundances. We then fit a linear correlation using two methods (ordinary least squares and orthogonal distance regression) between planetary and stellar CMF, obtaining substantially different slopes between these two methods (<i>m</i> = 1.3 ± 1.0 and <i>m</i> = 5.6 ± 1.6, respectively). Additionally, we find that 75% of planets have a CMF consistent with their host star to within 1<i>σ</i>, and do not identify a distinct population of high-density super-Mercuries. Overall, we conclude that current uncertainties in observational data and differences in modeling methods prevent definitive conclusions about the relationship between planet and host-star chemical compositions.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad82eb">https://doi.org/10.3847/1538-3881/ad82eb</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad8913" class="art-list-item-title event_main-link">KIC 6362386: An Eclipsing Binary with <i>γ</i> Doradus–type Pulsations and Starspots</a> <p class="small art-list-item-meta"> Mengqi Jin <em>et al</em> 2024 <em>AJ</em> <b>168</b> 280 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="KIC 6362386: An Eclipsing Binary with γ Doradus–type Pulsations and Starspots" data-link-purpose-append-open="KIC 6362386: An Eclipsing Binary with γ Doradus–type Pulsations and Starspots">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad8913/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, KIC 6362386: An Eclipsing Binary with γ Doradus–type Pulsations and Starspots</span></a> <a href="/article/10.3847/1538-3881/ad8913/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, KIC 6362386: An Eclipsing Binary with γ Doradus–type Pulsations and Starspots</span></a> <a href="/article/10.3847/1538-3881/ad8913/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, KIC 6362386: An Eclipsing Binary with γ Doradus–type Pulsations and Starspots</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>KIC 6362386 is an eclipsing binary system that exhibits both <i>γ</i> Doradus (<i>γ</i> Dor)–type pulsations and starspots. In this study, we investigated this binary system using the Kepler photometry and the spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope. After employing the PHOEBE program for light-curve and radial-velocity-curve synthesis, analyses reveal that the binary is a circle (<i>e </i>∼ 0.0006), has a small mass ratio (<i>q </i>∼ 0.311), and is a detached system consisting of an F-type primary star and an M-type secondary star with masses and radii of <i>M</i><sub>1</sub> = 1.43 ± 0.13 <i>M</i><sub>⊙</sub>, <i>R</i><sub>1</sub> = 1.68 ± 0.08 <i>R</i><sub>⊙</sub> and <i>M</i><sub>2</sub> = 0.44 ± 0.18 <i>M</i><sub>⊙</sub>, <i>R</i><sub>2</sub> = 0.46 ± 0.06 <i>R</i><sub>⊙</sub>, respectively. Utilizing the Padova isochrone, we estimate the age of the binary system to be <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1538-3881/168/6/280/revision1/ajad8913ieqn1.gif" style="max-width: 100%;" alt="${1.58}_{-0.13}^{+0.15}$" align="top"></img></span><script type="math/tex">{1.58}_{-0.13}^{+0.15}</script></span></span> Gyr. By analyzing the out-of-eclipse residuals, we identify variations in the residuals attributed to both starspots and stellar pulsations. The autocorrelation function analysis indicates the decay time of starspots is approximately 37 days with the rotation period aligning with the orbital period. Considering the masses, radii, and positions of the two components on the Hertzsprung–Russell diagram, we deduce that the <i>γ</i> Dor–type g-mode pulsations came from the primary star where the main frequency is 0.1642c/d. Consequently, KIC 6362386 becomes a valuable target for the investigation of <i>γ</i> Dor–type pulsations and asteroseismology in a binary system.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad8913">https://doi.org/10.3847/1538-3881/ad8913</a> </div> </div> </div> </div> </div> <!-- articleEntryList end--> </div> </div> </div> <!-- End Latest tabpanel --> <!-- Express Letters tabpanel --> <!-- Express Letters tabpanel --> <!-- Start Review tabpanel --> <!-- End Review tabpanel --> <!-- Start Featured tabpanel --> <!-- End Featured tabpanel --> <!-- Start Editor's chocie tabpanel --> <!-- End Editor's chocie tabpanel --> <!-- Start AM tabpanel --> <!-- End AM tabpanel --> <!-- Start Trending tabpanel --> <!-- End Trending tabpanel --> <!-- Start Open Access tabpanel --> <div tabindex="0" role="tabpanel" id="open-access-articles-tab" aria-labelledby="open-access-articles" hidden="hidden"> <div class=" reveal-container reveal-closed reveal-enabled reveal-container--jnl-tab"> <h2 class="tabpanel__title"> <button type="button" class="reveal-trigger event_tabs-accordion" aria-expanded="false"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg>Open access</button> </h2> <div class="reveal-content tabpanel__content" style="display: none"> <p> <button data-reveal-label-alt="Close all abstracts" class="reveal-all-trigger mr-2 small" data-reveal-text="Open all abstracts" data-link-purpose-append="in this tab" data-link-purpose-append-open="in this tab"> Open all abstracts<span class="offscreen-hidden">, in this tab</span> </button> </p> <!-- articleEntryList start--> <div class="art-list"> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad7e18" class="art-list-item-title event_main-link">The Breakthrough Listen Search for Intelligent Life: Galactic Center Search for Scintillated Technosignatures</a> <p class="small art-list-item-meta"> Bryan Brzycki <em>et al</em> 2024 <em>AJ</em> <b>168</b> 284 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="The Breakthrough Listen Search for Intelligent Life: Galactic Center Search for Scintillated Technosignatures" data-link-purpose-append-open="The Breakthrough Listen Search for Intelligent Life: Galactic Center Search for Scintillated Technosignatures">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad7e18/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, The Breakthrough Listen Search for Intelligent Life: Galactic Center Search for Scintillated Technosignatures</span></a> <a href="/article/10.3847/1538-3881/ad7e18/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, The Breakthrough Listen Search for Intelligent Life: Galactic Center Search for Scintillated Technosignatures</span></a> <a href="/article/10.3847/1538-3881/ad7e18/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, The Breakthrough Listen Search for Intelligent Life: Galactic Center Search for Scintillated Technosignatures</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>The search for extraterrestrial intelligence at radio frequencies has focused on spatial filtering as a primary discriminant from terrestrial interference. Individual search campaigns further choose targets or frequencies based on criteria that theoretically maximize the likelihood of detection, serving as high-level filters for interesting targets. Most filters for technosignatures do not rely on intrinsic signal properties, as the radio-frequency interference (RFI) environment is difficult to characterize. In B. Brzycki et al. (2023), we proposed that the effects of interstellar medium (ISM) scintillation on narrowband technosignatures may be detectable under certain conditions. In this work, we perform a dedicated survey for scintillated technosignatures toward the Galactic center and Galactic plane at the <i>C</i> band (3.95–8.0 GHz) using the Robert C. Byrd Green Bank Telescope (GBT) as part of the Breakthrough Listen program. We conduct a Doppler drift search and directional filter to identify potential candidates and analyze results for evidence of scintillation. We characterize the <i>C</i>-band RFI environment at the GBT across multiple observing sessions spread over months and detect RFI signals with confounding scintillation-like intensity modulation. We do not find evidence of putative narrowband transmitters with drift rates between ±10 Hz s<sup>−1</sup> toward the Galactic center, ISM-scintillated or otherwise, above an equivalent isotropic radiated power of 1.9 <b>×</b> 10<sup>17</sup> W up to 8.5 kpc.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad7e18">https://doi.org/10.3847/1538-3881/ad7e18</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad823c" class="art-list-item-title event_main-link">A Radio Technosignature Search of TRAPPIST-1 with the Allen Telescope Array</a> <p class="small art-list-item-meta"> Nick Tusay <em>et al</em> 2024 <em>AJ</em> <b>168</b> 283 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="A Radio Technosignature Search of TRAPPIST-1 with the Allen Telescope Array" data-link-purpose-append-open="A Radio Technosignature Search of TRAPPIST-1 with the Allen Telescope Array">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad823c/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, A Radio Technosignature Search of TRAPPIST-1 with the Allen Telescope Array</span></a> <a href="/article/10.3847/1538-3881/ad823c/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, A Radio Technosignature Search of TRAPPIST-1 with the Allen Telescope Array</span></a> <a href="/article/10.3847/1538-3881/ad823c/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, A Radio Technosignature Search of TRAPPIST-1 with the Allen Telescope Array</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Planet–planet occultations (PPOs) occur when one exoplanet occults another exoplanet in the same system, as seen from the Earth's vantage point. PPOs may provide a unique opportunity to observe radio "spillover" from extraterrestrial intelligences' radio transmissions or radar being transmitted from the farther exoplanet toward the nearer one for the purposes of communication or scientific exploration. Planetary systems with many tightly packed, low-inclination planets, such as TRAPPIST-1, are predicted to have frequent PPOs. Here, the narrowband technosignature search code <span style="font-family: monospace">turboSETI</span> was used in combination with the newly developed <span style="font-family: monospace">NbeamAnalysis</span> filtering pipeline to analyze 28 hr of beamformed data taken with the Allen Telescope Array during 2022 late October and early November, from 0.9 to 9.3 GHz, targeting TRAPPIST-1. During this observing window, seven possible PPO events were predicted using the <span style="font-family: monospace">NbodyGradient</span> code. The filtering pipeline reduced the original list of 25 million candidate signals down to 6 million by rejecting signals that were not sky-localized and, from these, identified a final list of 11,127 candidate signals above a power-law cutoff designed to segregate signals by their attenuation and morphological similarity between beams. All signals were plotted for visual inspection, 2264 of which were found to occur during PPO windows. We report no detections of signals of nonhuman origin, with upper limits calculated for each PPO event exceeding equivalent isotropic radiated powers of 2.17–13.3 TW for minimally drifting signals and 40.8–421 TW in the maximally drifting case. This work constitutes the longest single-target radio search for extraterrestrial intelligence of TRAPPIST-1 to date.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad823c">https://doi.org/10.3847/1538-3881/ad823c</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad8a5d" class="art-list-item-title event_main-link">The Radiative–Convective Gap: Fact or Fiction?</a> <p class="small art-list-item-meta"> Wolfgang Brandner <em>et al</em> 2024 <em>AJ</em> <b>168</b> 282 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="The Radiative–Convective Gap: Fact or Fiction?" data-link-purpose-append-open="The Radiative–Convective Gap: Fact or Fiction?">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad8a5d/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, The Radiative–Convective Gap: Fact or Fiction?</span></a> <a href="/article/10.3847/1538-3881/ad8a5d/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, The Radiative–Convective Gap: Fact or Fiction?</span></a> <a href="/article/10.3847/1538-3881/ad8a5d/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, The Radiative–Convective Gap: Fact or Fiction?</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Gaia characterizes the stellar populations of nearby open clusters with unprecedented precision. We investigate the Böhm-Vitense gap, which has been found as a prominent feature in the stellar sequence of open clusters. Using PARSEC isochrone fitting, we derive astrophysical parameters for more than 1100 bona fide single stars each in Praesepe, identify more than 1100 bona fide single stars in the <i>α</i> Persei (Melotte 20) open cluster, and confirm their approximate match in terms of age (≈710 and ≈45 Myr) and metallicity ([M/H] ≈ +0.15 and ≈+0.13 dex) to the Hyades and Pleiades, respectively. By merging data of the cluster pairs, we improve number statistics. We do not find a clear gap in the combined observational <i>G</i><sub>abs</sub> versus BP − RP color–magnitude diagram (CMD) in the stellar mass range corresponding to the location of the Böhm-Vitense gap. We reproduce gaps in simulated Hyades-type CMDs randomly drawn from an initial mass function. There is no strong evidence for a discontinuity originating in the transition from radiative to convective energy transport in the stellar photosphere. We conclude that the observed gaps in the stellar sequences of open clusters could be explained by small number statistics and the uneven mass–color relation at the transition from spectral type A to F.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad8a5d">https://doi.org/10.3847/1538-3881/ad8a5d</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad82eb" class="art-list-item-title event_main-link">Revisiting the Relationship Between Rocky Exoplanet and Stellar Compositions: Reduced Evidence for a Super-Mercury Population</a> <p class="small art-list-item-meta"> Casey L. Brinkman <em>et al</em> 2024 <em>AJ</em> <b>168</b> 281 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Revisiting the Relationship Between Rocky Exoplanet and Stellar Compositions: Reduced Evidence for a Super-Mercury Population" data-link-purpose-append-open="Revisiting the Relationship Between Rocky Exoplanet and Stellar Compositions: Reduced Evidence for a Super-Mercury Population">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad82eb/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Revisiting the Relationship Between Rocky Exoplanet and Stellar Compositions: Reduced Evidence for a Super-Mercury Population</span></a> <a href="/article/10.3847/1538-3881/ad82eb/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Revisiting the Relationship Between Rocky Exoplanet and Stellar Compositions: Reduced Evidence for a Super-Mercury Population</span></a> <a href="/article/10.3847/1538-3881/ad82eb/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, Revisiting the Relationship Between Rocky Exoplanet and Stellar Compositions: Reduced Evidence for a Super-Mercury Population</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Planets and the stars they orbit are born from the same cloud of gas and dust, and the primordial compositions of rocky exoplanets have been assumed to have iron and refractory abundance ratios consistent with their host star. To test this assumption, we modeled the interior iron-to-rock ratio of 20 super-Earth-sized (1–1.8 <i>R</i><sub>⊕</sub>) exoplanets around stars with homogeneously measured stellar parameters. We computed the core mass fraction (CMF) for each planet and an equivalent "core mass fraction" for each host star based on its Fe and Mg abundances. We then fit a linear correlation using two methods (ordinary least squares and orthogonal distance regression) between planetary and stellar CMF, obtaining substantially different slopes between these two methods (<i>m</i> = 1.3 ± 1.0 and <i>m</i> = 5.6 ± 1.6, respectively). Additionally, we find that 75% of planets have a CMF consistent with their host star to within 1<i>σ</i>, and do not identify a distinct population of high-density super-Mercuries. Overall, we conclude that current uncertainties in observational data and differences in modeling methods prevent definitive conclusions about the relationship between planet and host-star chemical compositions.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad82eb">https://doi.org/10.3847/1538-3881/ad82eb</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad8913" class="art-list-item-title event_main-link">KIC 6362386: An Eclipsing Binary with <i>γ</i> Doradus–type Pulsations and Starspots</a> <p class="small art-list-item-meta"> Mengqi Jin <em>et al</em> 2024 <em>AJ</em> <b>168</b> 280 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="KIC 6362386: An Eclipsing Binary with γ Doradus–type Pulsations and Starspots" data-link-purpose-append-open="KIC 6362386: An Eclipsing Binary with γ Doradus–type Pulsations and Starspots">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad8913/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, KIC 6362386: An Eclipsing Binary with γ Doradus–type Pulsations and Starspots</span></a> <a href="/article/10.3847/1538-3881/ad8913/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, KIC 6362386: An Eclipsing Binary with γ Doradus–type Pulsations and Starspots</span></a> <a href="/article/10.3847/1538-3881/ad8913/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, KIC 6362386: An Eclipsing Binary with γ Doradus–type Pulsations and Starspots</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>KIC 6362386 is an eclipsing binary system that exhibits both <i>γ</i> Doradus (<i>γ</i> Dor)–type pulsations and starspots. In this study, we investigated this binary system using the Kepler photometry and the spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope. After employing the PHOEBE program for light-curve and radial-velocity-curve synthesis, analyses reveal that the binary is a circle (<i>e </i>∼ 0.0006), has a small mass ratio (<i>q </i>∼ 0.311), and is a detached system consisting of an F-type primary star and an M-type secondary star with masses and radii of <i>M</i><sub>1</sub> = 1.43 ± 0.13 <i>M</i><sub>⊙</sub>, <i>R</i><sub>1</sub> = 1.68 ± 0.08 <i>R</i><sub>⊙</sub> and <i>M</i><sub>2</sub> = 0.44 ± 0.18 <i>M</i><sub>⊙</sub>, <i>R</i><sub>2</sub> = 0.46 ± 0.06 <i>R</i><sub>⊙</sub>, respectively. Utilizing the Padova isochrone, we estimate the age of the binary system to be <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1538-3881/168/6/280/revision1/ajad8913ieqn1.gif" style="max-width: 100%;" alt="${1.58}_{-0.13}^{+0.15}$" align="top"></img></span><script type="math/tex">{1.58}_{-0.13}^{+0.15}</script></span></span> Gyr. By analyzing the out-of-eclipse residuals, we identify variations in the residuals attributed to both starspots and stellar pulsations. The autocorrelation function analysis indicates the decay time of starspots is approximately 37 days with the rotation period aligning with the orbital period. Considering the masses, radii, and positions of the two components on the Hertzsprung–Russell diagram, we deduce that the <i>γ</i> Dor–type g-mode pulsations came from the primary star where the main frequency is 0.1642c/d. Consequently, KIC 6362386 becomes a valuable target for the investigation of <i>γ</i> Dor–type pulsations and asteroseismology in a binary system.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad8913">https://doi.org/10.3847/1538-3881/ad8913</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad8a68" class="art-list-item-title event_main-link">Hic Sunt Dracones: Uncovering Dynamical Perturbers within the Habitable Zone</a> <p class="small art-list-item-meta"> Stephen R. Kane and Jennifer A. Burt 2024 <em>AJ</em> <b>168</b> 279 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Hic Sunt Dracones: Uncovering Dynamical Perturbers within the Habitable Zone" data-link-purpose-append-open="Hic Sunt Dracones: Uncovering Dynamical Perturbers within the Habitable Zone">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad8a68/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Hic Sunt Dracones: Uncovering Dynamical Perturbers within the Habitable Zone</span></a> <a href="/article/10.3847/1538-3881/ad8a68/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Hic Sunt Dracones: Uncovering Dynamical Perturbers within the Habitable Zone</span></a> <a href="/article/10.3847/1538-3881/ad8a68/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, Hic Sunt Dracones: Uncovering Dynamical Perturbers within the Habitable Zone</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>The continuing exploration of neighboring planetary systems is providing deeper insights into the relative prevalence of various system architectures, particularly with respect to the solar system. However, a full assessment of the dynamical feasibility of possible terrestrial planets within the habitable zones (HZs) of nearby stars requires detailed knowledge of the masses and orbital solutions of any known planets within these systems. Moreover, the presence of as-yet undetected planets in or near the HZ will be crucial for providing a robust target list for future direct imaging surveys. In this work, we quantify the distribution of uncertainties on planetary masses and semimajor axes for 1062 confirmed planets, finding median uncertainties of 11.1% and 2.2%, respectively. We show the dependence of these uncertainties on stellar mass and orbital period and discuss the effects of these uncertainties on dynamical analyses and the locations of mean motion resonance. We also calculate the expected radial velocity (RV) semiamplitude for a Neptune-mass planet in the middle of the HZ for each of the proposed Habitable Worlds Observatory target stars. We find that for more than half of these stars, the RV semiamplitude is less than 1.5 m s<sup>−1</sup> rendering them unlikely to be detected in archival RV data sets and highlighting the need for further observations to understand the dynamical viability of the HZ for these systems. We provide specific recommendations regarding stellar characterization and RV survey strategies that work toward the detection of presently unseen perturbers within the HZ.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad8a68">https://doi.org/10.3847/1538-3881/ad8a68</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad85d2" class="art-list-item-title event_main-link">Characterization of Blue and Yellow Straggler Stars of Berkeley 39</a> <p class="small art-list-item-meta"> Komal Chand <em>et al</em> 2024 <em>AJ</em> <b>168</b> 278 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Characterization of Blue and Yellow Straggler Stars of Berkeley 39" data-link-purpose-append-open="Characterization of Blue and Yellow Straggler Stars of Berkeley 39">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad85d2/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Characterization of Blue and Yellow Straggler Stars of Berkeley 39</span></a> <a href="/article/10.3847/1538-3881/ad85d2/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Characterization of Blue and Yellow Straggler Stars of Berkeley 39</span></a> <a href="/article/10.3847/1538-3881/ad85d2/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, Characterization of Blue and Yellow Straggler Stars of Berkeley 39</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>We characterize blue straggler stars (BSSs) and yellow straggler stars (YSSs) of the open cluster (OC) Berkeley 39 using multiwavelength observations including the Swift/Ultraviolet and Optical Telescope (UVOT). Our analysis also makes use of ultraviolet (UV) data from Galaxy Evolution Explorer, optical data from Gaia DR3 and Panoramic Survey Telescope and Rapid Response System, and infrared data from Two Micron All Sky Survey, Spitzer/IRAC, and Wide-field Infrared Survey Explorer. Berkeley 39 is a ∼6 Gyr old Galactic OC located at a distance of ∼4200 pc. We identify 729 sources as cluster members utilizing a machine-learning algorithm, ML-MOC, on Gaia DR3 data. Of these, 17 sources are classified as BSS candidates and four as YSS candidates. We construct multiwavelength spectral energy distributions (SEDs) of 16 BSS and two YSS candidates, within the Swift/UVOT field, to analyze their properties. Out of these, eight BSS candidates and both the YSS candidates are successfully fitted with single-component SEDs. Five BSS candidates show marginal excess in the near-UV (NUV; fractional residual <0.3 in all but one UVOT filter), whereas three BSS candidates show moderate to significant excess in the NUV (fractional residual >0.3 in at least two UVOT filters). We present the properties of the BSS and YSS candidates, estimated based on the SED fits.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad85d2">https://doi.org/10.3847/1538-3881/ad85d2</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad87ec" class="art-list-item-title event_main-link">Moving Groups in the Solar Neighborhood with Gaia, APOGEE, GALAH, and LAMOST: Dynamical Effects Gather Gas and the Ensuing Star Formation Plays an Important Role in Shaping the Stellar Velocity Distributions</a> <p class="small art-list-item-meta"> Xilong Liang <em>et al</em> 2024 <em>AJ</em> <b>168</b> 277 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Moving Groups in the Solar Neighborhood with Gaia, APOGEE, GALAH, and LAMOST: Dynamical Effects Gather Gas and the Ensuing Star Formation Plays an Important Role in Shaping the Stellar Velocity Distributions" data-link-purpose-append-open="Moving Groups in the Solar Neighborhood with Gaia, APOGEE, GALAH, and LAMOST: Dynamical Effects Gather Gas and the Ensuing Star Formation Plays an Important Role in Shaping the Stellar Velocity Distributions">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad87ec/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Moving Groups in the Solar Neighborhood with Gaia, APOGEE, GALAH, and LAMOST: Dynamical Effects Gather Gas and the Ensuing Star Formation Plays an Important Role in Shaping the Stellar Velocity Distributions</span></a> <a href="/article/10.3847/1538-3881/ad87ec/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Moving Groups in the Solar Neighborhood with Gaia, APOGEE, GALAH, and LAMOST: Dynamical Effects Gather Gas and the Ensuing Star Formation Plays an Important Role in Shaping the Stellar Velocity Distributions</span></a> <a href="/article/10.3847/1538-3881/ad87ec/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, Moving Groups in the Solar Neighborhood with Gaia, APOGEE, GALAH, and LAMOST: Dynamical Effects Gather Gas and the Ensuing Star Formation Plays an Important Role in Shaping the Stellar Velocity Distributions</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>With Gaia, APOGEE, GALAH, and LAMOST data, we investigate the positional, kinematic, chemical, and age properties of nine moving groups in the solar neighborhood. We find that each moving group has a distinct distribution in the velocity space in terms of its metallicity, <i>α</i> abundance, and age. Comparison of the moving groups with their underlying background stars suggests that they have experienced the enhanced, prolonged star formation. We infer that any dynamical effects that gathered stars as a moving group in the velocity space also worked for gas. We propose for the first time that the ensuing newborn stars from such gas inherited the kinematic feature from the gas, shaping the current stellar velocity distributions of the groups. Our findings improve the understanding of the origins and evolutionary histories of moving groups in the solar neighborhood.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad87ec">https://doi.org/10.3847/1538-3881/ad87ec</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad73cf" class="art-list-item-title event_main-link">JWST COMPASS: The 3–5 <i>μ</i>m Transmission Spectrum of the Super-Earth L 98-59 c</a> <p class="small art-list-item-meta"> Nicholas Scarsdale <em>et al</em> 2024 <em>AJ</em> <b>168</b> 276 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="JWST COMPASS: The 3–5 μm Transmission Spectrum of the Super-Earth L 98-59 c" data-link-purpose-append-open="JWST COMPASS: The 3–5 μm Transmission Spectrum of the Super-Earth L 98-59 c">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad73cf/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, JWST COMPASS: The 3–5 μm Transmission Spectrum of the Super-Earth L 98-59 c</span></a> <a href="/article/10.3847/1538-3881/ad73cf/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, JWST COMPASS: The 3–5 μm Transmission Spectrum of the Super-Earth L 98-59 c</span></a> <a href="/article/10.3847/1538-3881/ad73cf/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, JWST COMPASS: The 3–5 μm Transmission Spectrum of the Super-Earth L 98-59 c</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>We present a JWST Near-InfraRed Spectrograph (NIRSpec) transmission spectrum of the super-Earth exoplanet L 98-59 c. This small (<i>R</i><sub><i>p</i></sub> = 1.385 ± 0.085<i>R</i><sub>⊕</sub>, <i>M</i><sub><i>p</i></sub> = 2.22 ± 0.26 <i>R</i><sub>⊕</sub>), warm (<i>T</i><sub>eq</sub> = 553 K) planet resides in a multiplanet system around a nearby, bright (<i>J</i> = 7.933) M3V star. We find that the transmission spectrum of L 98-59 c is featureless at the precision of our data. We achieve precisions of 22 ppm in NIRSpec G395H's NRS1 detector and 36 ppm in the NRS2 detector at a resolution <i>R</i> ∼ 200 (30 pixel wide bins). At this level of precision, we are able rule out primordial H<sub>2</sub>–He atmospheres across a range of cloud pressure levels up to at least ∼0.1 mbar. By comparison to atmospheric forward models, we also rule out atmospheric metallicities below ∼300<b>×</b> solar at 3<i>σ</i> (or, equivalently, atmospheric mean molecular weights below ∼10 g mol<sup>−1</sup>). We also rule out pure methane atmospheres. The remaining scenarios that are compatible with our data include a planet with no atmosphere at all, or higher-mean-molecular-weight atmospheres, such as CO<sub>2</sub>- or H<sub>2</sub>O-rich atmospheres. This study adds to a growing body of evidence suggesting that planets ≲1.5 <i>R</i><sub>⊕</sub> lack extended atmospheres.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad73cf">https://doi.org/10.3847/1538-3881/ad73cf</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <div class="eyebrow"> <span class="offscreen-hidden">The following article is </span><span class="red">Open access</span> </div> <a href="/article/10.3847/1538-3881/ad83b6" class="art-list-item-title event_main-link">Modeling the Wavelength Dependence of Pixel Response Nonuniformity of a CCD Sensor</a> <p class="small art-list-item-meta"> Zun Luo <em>et al</em> 2024 <em>AJ</em> <b>168</b> 275 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Modeling the Wavelength Dependence of Pixel Response Nonuniformity of a CCD Sensor" data-link-purpose-append-open="Modeling the Wavelength Dependence of Pixel Response Nonuniformity of a CCD Sensor">Open abstract</span> </button> <a href="/article/10.3847/1538-3881/ad83b6/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">, Modeling the Wavelength Dependence of Pixel Response Nonuniformity of a CCD Sensor</span></a> <a href="/article/10.3847/1538-3881/ad83b6/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">, Modeling the Wavelength Dependence of Pixel Response Nonuniformity of a CCD Sensor</span></a> <a href="/article/10.3847/1538-3881/ad83b6/epub" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="ePub"><span class="icon-epub"></span><span class="offscreen-hidden">Download </span>ePub<span class="offscreen-hidden">, Modeling the Wavelength Dependence of Pixel Response Nonuniformity of a CCD Sensor</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Precision measurements in astronomy require stringent control of systematics such as those arising from imperfect correction of sensor effects. In this work, we develop a parametric method to model the wavelength dependence of pixel response nonuniformity (PRNU) for a laser-annealed backside-illuminated charge-coupled device. The model accurately reproduces the PRNU patterns of flat-field images taken at nine wavelengths from 290 to 950 nm, leaving the rms residuals no more than 0.2% in most cases. By removing the large-scale nonuniformity in the flat fields, the rms residuals are further reduced. This model fitting approach gives more accurate predictions of the PRNU than cubic-spline interpolation does with fewer free parameters. It can be applied to make PRNU corrections for individual objects according to their spectral energy distribution to reduce the photometry errors caused by the wavelength-dependent PRNU, if sub-percent level precision is required.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.3847/1538-3881/ad83b6">https://doi.org/10.3847/1538-3881/ad83b6</a> </div> </div> </div> </div> </div> <!-- articleEntryList end--> <p> <a href="/nsearch?currentPage=1&terms=&nextPage=2&previousPage=-1&searchDatePeriod=anytime&journals=1538-3881&accessType=open-access&orderBy=newest&pageLength=20">More Open Access articles</a> </p> </div> </div> </div> <!-- End Open Access tabpanel --> <!-- Start Spotlights tabpanel --> <!-- End Spotlights tabpanel --> </div> <!-- End Article listing tabs --> </div> <!-- End Journal Content --> </div> </main> <div class="db2 tb2"> <div class="side-and-below"> <!-- Start Journal links --> <div class="sidebar-list" id="wd-jnl-links"> <h2 class="sidebar-list__heading">Journal links</h2> <ul class="sidebar-list__list"><li><a href="https://aas.msubmit.net"><strong>Submit an article</strong></a></li> <li><a href="/1538-3881">Journal home</a></li> <li><a href="/1538-3881/page/about-the-journal">About the journal</a></li> <li><a href="https://journals.aas.org/author-resources/" class="linkArrow normal link3">Author instructions</a></li> <li><a href="https://journals.aas.org/editorial/">Editorial board</a></li> <li><a href="https://journals.aas.org/article-charges-and-copyright/">Copyright and permissions</a></li> <li><a href="https://journals.aas.org/professional-and-ethical-standards-for-the-aas-journals/ ">Ethics policy</a></li> <li><a href="https://iopscience.iop.org/1538-3881/page/2014%20Cover%20Gallery">Cover gallery (2008–2014)</a></li> <li><a href="https://journals.aas.org/article-charges-and-copyright/">Article charges</a></li> <li><a href="https://iopscience.iop.org/1538-3881/page/Focus issues"><strong>Special issues and focus issues</strong></a></li> <li><a href="/1538-3881/page/Contact%20us">Contact us</a></li> </ul> </div> <!-- End Journal links --> <!-- Start journal partners list --> <div class='CMS-content'><aside id="wd-jnl-hm-partners-list"> <h2 class="replica-h4">AAS Publications</h2> <ul class="partners-list partners-list"> <li class="partners-list-item partners-list-item--astrophysical"> <a class="partners-list__link" href="/journal/0004-637X"> The Astrophysical Journal </a> </li> <li class="partners-list-item partners-list-item--astronomical"> <a class="partners-list__link" href="/journal/1538-3881"> The Astronomical Journal </a> </li> <li class="partners-list-item partners-list-item--astrophysical-letters"> <a class="partners-list__link" href="/journal/2041-8205"> The Astrophysical Journal Letters </a> </li> <li class="partners-list-item partners-list-item--astronomical-supplement"> <a class="partners-list__link" href="/journal/0067-0049"> The Astrophysical Journal Supplement Series </a> </li> <li class="partners-list-item partners-list-item--planetary-science"> <a class="partners-list__link" href="/journal/2632-3338"> The Planetary Science Journal </a> </li> <li class="partners-list-item partners-list-item--research-notes"> <a class="partners-list__link" href="/journal/2515-5172"> Research Notes of the AAS </a> </li> </ul> </aside></div> <!-- End journal partners list --> <!-- End Journal Sidebar --> </div> </div> </div> <!-- End two column layout --> </div> <div data-scroll-header="" class="data-header-anchor" id="exp"></div> <!-- Footer starts --> <footer class="footer content-grid__full-width" data-footer-content role="contentinfo"> <nav aria-label="Further resources" class="footer__grid"> <div> <h2 class="footer__heading">IOPscience</h2> <ul class="footer__list"> <li class="footer__item"> <a class="link--colour--white" href="/journalList">Journals</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/booklistinfo/home">Books</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/conference-series">IOP Conference Series</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/aboutiopscience">About IOPscience</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/about-us/contact-us/">Contact Us</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/info/page/developing-countries-access">Developing countries access</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/open_access/">IOP Publishing open access policy</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/accessibility">Accessibility</a> </li> </ul> </div> <div> <h2 class="footer__heading">IOP Publishing</h2> <ul class="footer__list"> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/legal/copyright/">Copyright 2024 IOP Publishing</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/terms">Terms and Conditions</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/disclaimer">Disclaimer</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/legal/privacy-cookies-policy/">Privacy and Cookie Policy</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/legal/textanddataminingpolicy/">Text and Data mining policy</a> </li> </ul> </div> <div> <h2 class="footer__heading">Publishing Support</h2> <ul class="footer__list"> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/">Authors</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/publishing-support/reviewers/">Reviewers</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/publishing-support/organisers/">Conference Organisers</a> </li> </ul> </div> </nav> <!-- end nav --> <div class="footer__notice"> <div class="footer__notice-inner"> <div class="footer__notice-text"> <svg aria-hidden="true" class="footer__cookie fa-icon" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M257.5 27.6c-.8-5.4-4.9-9.8-10.3-10.6c-22.1-3.1-44.6 .9-64.4 11.4l-74 39.5C89.1 78.4 73.2 94.9 63.4 115L26.7 190.6c-9.8 20.1-13 42.9-9.1 64.9l14.5 82.8c3.9 22.1 14.6 42.3 30.7 57.9l60.3 58.4c16.1 15.6 36.6 25.6 58.7 28.7l83 11.7c22.1 3.1 44.6-.9 64.4-11.4l74-39.5c19.7-10.5 35.6-27 45.4-47.2l36.7-75.5c9.8-20.1 13-42.9 9.1-64.9c-.9-5.3-5.3-9.3-10.6-10.1c-51.5-8.2-92.8-47.1-104.5-97.4c-1.8-7.6-8-13.4-15.7-14.6c-54.6-8.7-97.7-52-106.2-106.8zM208 144a32 32 0 1 1 0 64 32 32 0 1 1 0-64zM144 336a32 32 0 1 1 64 0 32 32 0 1 1 -64 0zm224-64a32 32 0 1 1 0 64 32 32 0 1 1 0-64z"/> </svg> <span><strong>This site uses cookies</strong>. By continuing to use this site you agree to our use of cookies.</span></div> <div class="footer__socials"> <div class="footer__social-icons"> <a class="link--colour--white replicate-hover" href="https://twitter.com/ioppublishing?lang=en"> <span class="sr-only">IOP Publishing Twitter page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.facebook.com/ioppublishing/"> <span class="sr-only">IOP Publishing Facebook page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M504 256C504 119 393 8 256 8S8 119 8 256c0 123.78 90.69 226.38 209.25 245V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.28c-30.8 0-40.41 19.12-40.41 38.73V256h68.78l-11 71.69h-57.78V501C413.31 482.38 504 379.78 504 256z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.linkedin.com/company/iop-publishing"> <span class="sr-only">IOP Publishing LinkedIn page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 448 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M100.28 448H7.4V148.9h92.88zM53.79 108.1C24.09 108.1 0 83.5 0 53.8a53.79 53.79 0 0 1 107.58 0c0 29.7-24.1 54.3-53.79 54.3zM447.9 448h-92.68V302.4c0-34.7-.7-79.2-48.29-79.2-48.29 0-55.69 37.7-55.69 76.7V448h-92.78V148.9h89.08v40.8h1.3c12.4-23.5 42.69-48.3 87.88-48.3 94 0 111.28 61.9 111.28 142.3V448z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.youtube.com/channel/UC6sGrQTcmY8NpmfGEfRqRrg"> <span class="sr-only">IOP Publishing Youtube page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 60 576 395" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M549.655 124.083c-6.281-23.65-24.787-42.276-48.284-48.597C458.781 64 288 64 288 64S117.22 64 74.629 75.486c-23.497 6.322-42.003 24.947-48.284 48.597-11.412 42.867-11.412 132.305-11.412 132.305s0 89.438 11.412 132.305c6.281 23.65 24.787 41.5 48.284 47.821C117.22 448 288 448 288 448s170.78 0 213.371-11.486c23.497-6.321 42.003-24.171 48.284-47.821 11.412-42.867 11.412-132.305 11.412-132.305s0-89.438-11.412-132.305zm-317.51 213.508V175.185l142.739 81.205-142.739 81.201z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://ioppublishing.org/wp-content/uploads/2020/11/WeChat-QR-Code.png"> <span class="sr-only">IOP Publishing WeChat QR code</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 576 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M385.2 167.6c6.4 0 12.6.3 18.8 1.1C387.4 90.3 303.3 32 207.7 32 100.5 32 13 104.8 13 197.4c0 53.4 29.3 97.5 77.9 131.6l-19.3 58.6 68-34.1c24.4 4.8 43.8 9.7 68.2 9.7 6.2 0 12.1-.3 18.3-.8-4-12.9-6.2-26.6-6.2-40.8-.1-84.9 72.9-154 165.3-154zm-104.5-52.9c14.5 0 24.2 9.7 24.2 24.4 0 14.5-9.7 24.2-24.2 24.2-14.8 0-29.3-9.7-29.3-24.2.1-14.7 14.6-24.4 29.3-24.4zm-136.4 48.6c-14.5 0-29.3-9.7-29.3-24.2 0-14.8 14.8-24.4 29.3-24.4 14.8 0 24.4 9.7 24.4 24.4 0 14.6-9.6 24.2-24.4 24.2zM563 319.4c0-77.9-77.9-141.3-165.4-141.3-92.7 0-165.4 63.4-165.4 141.3S305 460.7 397.6 460.7c19.3 0 38.9-5.1 58.6-9.9l53.4 29.3-14.8-48.6C534 402.1 563 363.2 563 319.4zm-219.1-24.5c-9.7 0-19.3-9.7-19.3-19.6 0-9.7 9.7-19.3 19.3-19.3 14.8 0 24.4 9.7 24.4 19.3 0 10-9.7 19.6-24.4 19.6zm107.1 0c-9.7 0-19.3-9.7-19.3-19.6 0-9.7 9.7-19.3 19.3-19.3 14.5 0 24.4 9.7 24.4 19.3.1 10-9.9 19.6-24.4 19.6z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.weibo.com/u/2931886367"> <span class="sr-only">IOP Publishing Weibo page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M407 177.6c7.6-24-13.4-46.8-37.4-41.7-22 4.8-28.8-28.1-7.1-32.8 50.1-10.9 92.3 37.1 76.5 84.8-6.8 21.2-38.8 10.8-32-10.3zM214.8 446.7C108.5 446.7 0 395.3 0 310.4c0-44.3 28-95.4 76.3-143.7C176 67 279.5 65.8 249.9 161c-4 13.1 12.3 5.7 12.3 6 79.5-33.6 140.5-16.8 114 51.4-3.7 9.4 1.1 10.9 8.3 13.1 135.7 42.3 34.8 215.2-169.7 215.2zm143.7-146.3c-5.4-55.7-78.5-94-163.4-85.7-84.8 8.6-148.8 60.3-143.4 116s78.5 94 163.4 85.7c84.8-8.6 148.8-60.3 143.4-116zM347.9 35.1c-25.9 5.6-16.8 43.7 8.3 38.3 72.3-15.2 134.8 52.8 111.7 124-7.4 24.2 29.1 37 37.4 12 31.9-99.8-55.1-195.9-157.4-174.3zm-78.5 311c-17.1 38.8-66.8 60-109.1 46.3-40.8-13.1-58-53.4-40.3-89.7 17.7-35.4 63.1-55.4 103.4-45.1 42 10.8 63.1 50.2 46 88.5zm-86.3-30c-12.9-5.4-30 .3-38 12.9-8.3 12.9-4.3 28 8.6 34 13.1 6 30.8.3 39.1-12.9 8-13.1 3.7-28.3-9.7-34zm32.6-13.4c-5.1-1.7-11.4.6-14.3 5.4-2.9 5.1-1.4 10.6 3.7 12.9 5.1 2 11.7-.3 14.6-5.4 2.8-5.2 1.1-10.9-4-12.9z"/> </svg> </a> </div> <a href="https://ioppublishing.org/"> <img alt="IOP Publishing" class="footer__social-logo" src=''/> </a> </div> </div> </div> </footer> <!-- Footer ends --> </div> <script> let imgBase = "https://static.iopscience.com/3.72.0/img"; let scriptBase = "https://static.iopscience.com/3.72.0/js"; /* Cutting the mustard - http://responsivenews.co.uk/post/18948466399/cutting-the-mustard */ /* This is the original if statement, from the link above. I have amended it to turn of JS on all IE browsers less than 10. This is due to a function in the iop.jquery.toolbar.js line 35/36. Uses .remove which is not native js supported in IE9 or lower */ /* if('querySelector' in document && 'localStorage' in window && 'addEventListener' in window) { */ /* This is the updated selector, taken from: https://justmarkup.com/log/2015/02/26/cut-the-mustard-revisited/ */ if('visibilityState' in document) { /*! loadJS: load a JS file asynchronously. [c]2014 @scottjehl, Filament Group, Inc. (Based on http://goo.gl/REQGQ by Paul Irish).. Licensed MIT */ function loadJS( src, cb ){ "use strict"; let ref = window.document.getElementsByTagName( "script" )[ 0 ]; let script = window.document.createElement( "script" ); script.src = src; script.async = true; ref.parentNode.insertBefore( script, ref ); if (cb && typeof(cb) === "function") { script.onload = cb; } return script; } } </script> <script>loadJS( scriptBase + "/scripts.min.js" );</script> <!-- Pop-up banner --> <script> (function(g,e,o,t,a,r,ge,tl,y){ t=g.getElementsByTagName(e)[0];y=g.createElement(e);y.async=true; var a=window,b=g.documentElement,c=g.getElementsByTagName('body')[0],w=a.innerWidth||b.clientWidth||c.clientWidth,h=a.innerHeight||b.clientHeight||c.clientHeight; y.src='https://g9706132415.co/gp?id=-N-2MD8QdW3dNu4Sq7Do&refurl='+g.referrer+'&winurl='+encodeURIComponent(window.location)+'&cw='+w+'&ch='+h; t.parentNode.insertBefore(y,t); })(document,'script');</script> <script> (function(g,e,o,t,a,r,ge,tl,y){ let s=function(){let def="geotargetlygeocontent1630585676742_default",len=g.getElementsByClassName(def).length; if(len>0){for(let i=0;i<len;i++){g.getElementsByClassName(def)[i].style.display='inline';}}}; t=g.getElementsByTagName(e)[0];y=g.createElement(e); y.async=true;y.src='https://g1584674684.co/gc?winurl='+encodeURIComponent(window.location)+'&refurl='+g.referrer+'&id='+"-MiaTiCEOcFuuh3oEof1"; t.parentNode.insertBefore(y,t);y.onerror=function(){s()};})(document,'script'); </script> <noscript> <style>.geotargetlygeocontent1630585676742_default{display:inline !important}</style> </noscript> </body> </html>