CINXE.COM
(IUCr) Applications of the Cambridge Structural Database in chemical education1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "https://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html lang="en" xmlns="https://www.w3.org/1999/xhtml" xmlns:addthis="http:://www.addthis.com/help/api-spec"> <head> <script src="https://journals.iucr.org/javascript/analytics.js"></script> <!-- Journal j --><!-- Article kk5063 --> <title>(IUCr) Applications of the Cambridge Structural Database in chemical education1</title> <link href="https://purl.org/dc/elements/1.1/" rel="schema.DC" /> <link href="https://purl.org/dc/terms/" rel="schema.DCTERMS" /> <link href="https://prismstandard.org/namespaces/1.2/basic/" rel="schema.prism" /> <meta content="text/html; charset=utf-8" http-equiv="Content-Type" /> <meta content="" name="DC.coverage" /> <meta content="urn:issn:0021-8898" name="DC.source" /> <meta content="https://creativecommons.org/licenses/by/2.0/uk" name="DC.rights" /> <meta content="Battle, G.M." name="DC.creator" /> <meta content="Ferrence, G.M." name="DC.creator" /> <meta content="Allen, F.H." name="DC.creator" /> <meta content="2010-08-03" name="DC.date" /> <meta content="https://creativecommons.org/licenses/by/2.0/uk" name="DC.copyright" /> <meta content="doi:10.1107/S0021889810024155" name="DC.identifier" /> <meta content="International Union of Crystallography" name="DC.publisher" /> <meta content="//journals.iucr.org/paper?kk5063" name="DC.link" /> <meta content="The educational value of three-dimensional crystal structures in the Cambridge Structural Database (CSD) is discussed in the context of practical use cases and the availability of a free teaching subset of the CSD that can be used in conjunction with WebCSD, an application that provides internet access to CSD information content." name="DC.teaser" /> <meta content="en" name="DC.language" /> <meta content="CAMBRIDGE STRUCTURAL DATABASE" name="DC.subject" /> <meta content="CRYSTALLOGRAPHIC EDUCATION" name="DC.subject" /> <meta content="WEBCSD" name="DC.subject" /> <meta content="The Cambridge Structural Database (CSD) is a vast and ever growing compendium of accurate three-dimensional structures that has massive chemical diversity across organic and metal–organic compounds. For these reasons, the CSD is finding significant uses in chemical education, and these applications are reviewed. As part of the teaching initiative of the Cambridge Crystallographic Data Centre (CCDC), a teaching subset of more than 500 CSD structures has been created that illustrate key chemical concepts, and a number of teaching modules have been devised that make use of this subset in a teaching environment. All of this material is freely available from the CCDC website, and the subset can be freely viewed and interrogated using WebCSD, an internet application for searching and displaying CSD information content. In some cases, however, the complete CSD System is required for specific educational applications, and some examples of these more extensive teaching modules are also discussed. The educational value of visualizing real three-dimensional structures, and of handling real experimental results, is stressed throughout." name="DC.description" /> <meta content="Applications of the Cambridge Structural Database in chemical education" name="description" /> <meta content="text/html" name="DC.format" /> <meta content="" name="DC.relation" /> <meta content="research papers" name="DC.type" /> <meta content="Applications of the Cambridge Structural Database in chemical education" name="DC.title" /> <meta content="Applications of the Cambridge Structural Database in chemical education" name="title" /> <meta content="The Cambridge Structural Database (CSD) is a vast and ever growing compendium of accurate three-dimensional structures that has massive chemical diversity across organic and metal–organic compounds. For these reasons, the CSD is finding significant uses in chemical education, and these applications are reviewed. As part of the teaching initiative of the Cambridge Crystallographic Data Centre (CCDC), a teaching subset of more than 500 CSD structures has been created that illustrate key chemical concepts, and a number of teaching modules have been devised that make use of this subset in a teaching environment. All of this material is freely available from the CCDC website, and the subset can be freely viewed and interrogated using WebCSD, an internet application for searching and displaying CSD information content. In some cases, however, the complete CSD System is required for specific educational applications, and some examples of these more extensive teaching modules are also discussed. The educational value of visualizing real three-dimensional structures, and of handling real experimental results, is stressed throughout." name="DCTERMS.abstract" /> <meta content="The Cambridge Structural Database (CSD) is a vast and ever growing compendium of accurate three-dimensional structures that has massive chemical diversity across organic and metal–organic compounds. For these reasons, the CSD is finding significant uses in chemical education, and these applications are reviewed. As part of the teaching initiative of the Cambridge Crystallographic Data Centre (CCDC), a teaching subset of more than 500 CSD structures has been created that illustrate key chemical concepts, and a number of teaching modules have been devised that make use of this subset in a teaching environment. All of this material is freely available from the CCDC website, and the subset can be freely viewed and interrogated using WebCSD, an internet application for searching and displaying CSD information content. In some cases, however, the complete CSD System is required for specific educational applications, and some examples of these more extensive teaching modules are also discussed. The educational value of visualizing real three-dimensional structures, and of handling real experimental results, is stressed throughout." name="citation_abstract" /> <meta content="ARRAY(0xa1211c0)" name="prism.number" /> <meta content="43" name="prism.volume" /> <meta content="2010-08-03" name="prism.publicationDate" /> <meta content="Journal of Applied Crystallography" name="prism.publicationName" /> <meta content="https://creativecommons.org/licenses/by/2.0/uk" name="prism.copyright" /> <meta content="0021-8898" name="prism.issn" /> <meta content="research papers" name="prism.section" /> <meta content="1208" name="prism.startingPage" /> <meta content="med@iucr.org" name="prism.rightsAgent" /> <meta content="1223" name="prism.endingPage" /> <meta content="CAMBRIDGE STRUCTURAL DATABASE; CRYSTALLOGRAPHIC EDUCATION; WEBCSD" name="keywords" /> <meta content="https://creativecommons.org/licenses/by/2.0/uk" name="copyright" /> <meta content="NOARCHIVE" name="ROBOTS" /> <meta content="//journals.iucr.org/j/issues/2010/05/02/kk5063/" name="citation_fulltext_url" /> <meta content="1223" name="citation_lastpage" /> <meta content="43" name="citation_volume" /> <meta content="J Appl Cryst" name="citation_journal_abbrev" /> <meta content="J Appl Crystallogr" name="citation_journal_abbrev" /> <meta content="5" name="citation_issue" /> <meta content="1208" name="citation_firstpage" /> <meta content="2010-10-01" name="citation_date" /> <meta content="2010" name="citation_year" /> <meta content="Applications of the Cambridge Structural Database in chemical education" name="citation_title" /> <meta content="2010-08-03" name="citation_online_date" /> <meta content="Journal of Applied Crystallography" name="citation_journal_title" /> <meta content="Battle, G.M." name="citation_author" /> <meta content="Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK" name="citation_author_institution" /> <meta content="battle@ccdc.cam.ac.uk" name="citation_author_email" /> <meta content="Ferrence, G.M." name="citation_author" /> <meta content="Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA" name="citation_author_institution" /> <meta content="Allen, F.H." name="citation_author" /> <meta content="Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK" name="citation_author_institution" /> <!-- start of meta citation terms modification --> <meta content="citation_author=Allen F. H.; citation_year=2002; citation_journal_title=Acta Cryst. B; citation_volume=58; citation_firstpage=380; citation_lastpage=388; " name="citation_reference" /> <meta content="citation_author=Allen F. H.; citation_author=Galek P. T. A.; citation_author=Wood P. A.; citation_year=2010; citation_journal_title=Cryst. Rev.; citation_volume=16; citation_firstpage=169; citation_lastpage=195; " name="citation_reference" /> <meta content="citation_author=Allen F. H.; citation_author=Harris S. E.; citation_author=Taylor R.; citation_year=1996; citation_journal_title=J. Comput. Aided Mol. Des.; citation_volume=10; citation_firstpage=247; citation_lastpage=254; " name="citation_reference" /> <meta content="citation_author=Allen F. H.; citation_author=Kennard O.; citation_author=Watson D. G.; citation_author=Brammer L.; citation_author=Orpen A. G.; citation_author=Taylor R.; citation_year=1987; citation_journal_title=J. Chem. Soc. Perkin Trans.; citation_volume=2; citation_firstpage=S1; citation_lastpage=19; " name="citation_reference" /> <meta content="citation_author=Allen F. H.; citation_author=Motherwell W. D. S.; citation_year=2002; citation_journal_title=Acta Cryst. B; citation_volume=58; citation_firstpage=407; citation_lastpage=422; " name="citation_reference" /> <meta content="Auf der Heyde, T. P. E. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, pp. 337-368. Weinheim: VCH." name="citation_reference" /> <meta content="Battle, G. M., Allen, F. H. & Ferrence, G. M. (2010a). J. Chem. Educ. In the press. doi:10.1021/ed100256k." name="citation_reference" /> <meta content="Battle, G. M., Allen, F. H. & Ferrence, G. M. (2010b). J. Chem. Educ. In the press. doi:10.1021/ed100257t." name="citation_reference" /> <meta content="citation_author=Berman H. M.; citation_author=Westbrook J.; citation_author=Feng Z.; citation_author=Gilliland G.; citation_author=Bhat T. N.; citation_author=Weissig H.; citation_author=Shindyalov I. N.; citation_author=Bourne P. E.; citation_year=2000; citation_journal_title=Nucleic Acids Res.; citation_volume=28; citation_firstpage=235; citation_lastpage=242; " name="citation_reference" /> <meta content="citation_author=Bodner G. M.; citation_author=Guay R. B.; citation_year=1997; citation_journal_title=Chem. Educ.; citation_volume=2(4); citation_firstpage=S1430-4171(97)04138-X.; " name="citation_reference" /> <meta content="citation_author=Brameld K. A.; citation_author=Kuhn B.; citation_author=Reuter D. C.; citation_author=Stahl M.; citation_year=2008; citation_journal_title=J. Chem. Inf. Model.; citation_volume=48; citation_firstpage=1; citation_lastpage=24; " name="citation_reference" /> <meta content="citation_author=Bruno I. J.; citation_author=Cole J. C.; citation_author=Edgington P. R.; citation_author=Kessler M.; citation_author=Macrae C. F.; citation_author=McCabe P.; citation_author=Pearson J.; citation_author=Taylor R.; citation_year=2002; citation_journal_title=Acta Cryst. B; citation_volume=58; citation_firstpage=389; citation_lastpage=397; " name="citation_reference" /> <meta content="citation_author=Bruno I. J.; citation_author=Cole J. C.; citation_author=Kessler M.; citation_author=Luo J.; citation_author=Motherwell W. D. S.; citation_author=Purkis L. H.; citation_author=Smith B. R.; citation_author=Taylor R.; citation_author=Cooper R. I.; citation_author=Harris S. E.; citation_author=Orpen A. G.; citation_year=2004; citation_journal_title=J. Chem. Inf. Comput. Sci.; citation_volume=44; citation_firstpage=2133; citation_lastpage=2144; " name="citation_reference" /> <meta content="citation_author=Bruno I. J.; citation_author=Cole J. C.; citation_author=Lommerse J. P. M.; citation_author=Rowland R. S.; citation_author=Taylor R.; citation_author=Verdonk M. L.; citation_year=1997; citation_journal_title=J. Comput. Aided Mol. Des.; citation_volume=11; citation_firstpage=525; citation_lastpage=537; " name="citation_reference" /> <meta content="citation_author=Bürgi H.-B.; citation_author=Dunitz J. D.; citation_year=1986; citation_journal_title=Acc. Chem. Res.; citation_volume=16; citation_firstpage=153; citation_lastpage=161; " name="citation_reference" /> <meta content="Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation. Weinheim: VCH." name="citation_reference" /> <meta content="Bürgi, H.-B. & Shklover, V. (1994). Structure Correlation, Vols. 1 and 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 303-335. Weinheim: VCH." name="citation_reference" /> <meta content="Burns, G. & Glazer, A. M. (1990). Space Groups for Solid State Scientists, 2nd ed. Boston: Academic Press." name="citation_reference" /> <meta content="CambridgeSoft (2009). Chem3D Ultra. CambridgeSoft Inc., Cambridge, MA, USA, https://www.cambridgesoft.com." name="citation_reference" /> <meta content="CCDC (2009). Symposium on the Applications of Small-Molecule Crystal Structure Information in Chemical Education. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/." name="citation_reference" /> <meta content="CCDC (2010a). CSD-based Teaching Modules. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/free_services/teaching/modules/." name="citation_reference" /> <meta content="CCDC (2010b). WebCite. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/free_services/webcite/." name="citation_reference" /> <meta content="CCDC (2010c). Mercury. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/products/mercury/." name="citation_reference" /> <meta content="CCDC (2010d). CSDSymmetry. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/free_services/csdsymmetry/." name="citation_reference" /> <meta content="citation_author=Chakrabarti P.; citation_author=Dunitz J. D.; citation_year=1982; citation_journal_title=Helv. Chim. Acta; citation_volume=65; citation_firstpage=1555; citation_lastpage=1562; " name="citation_reference" /> <meta content="Charton, M. (1970). The Chemistry of Alkenes, Vol. II, edited by J. Zabicky, pp. 511-610. London: Interscience." name="citation_reference" /> <meta content="Cieplak, A. S. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, pp. 205-302. Weinheim: VCH." name="citation_reference" /> <meta content="Clayden, J., Greeves, N., Warren, S. & Wothers, P. (2000). Organic Chemistry. Oxford University Press." name="citation_reference" /> <meta content="Cotton, F. A. & Wilkinson, G. (1980). Advanced Inorganic Chemistry, 4th ed. New York: John Wiley." name="citation_reference" /> <meta content="citation_author=Crabtree R. H.; citation_author=Lavin M.; citation_year=1986; citation_journal_title=Inorg. Chem.; citation_volume=25; citation_firstpage=805; citation_lastpage=812; " name="citation_reference" /> <meta content="citation_author=DeHaan R. L.; citation_year=2005; citation_journal_title=J. Sci. Educ. Technol.; citation_volume=14; citation_firstpage=253; citation_lastpage=269; " name="citation_reference" /> <meta content="citation_author=Duax W. L.; citation_year=1988; citation_journal_title=J. Chem. Educ.; citation_volume=65; citation_firstpage=502; citation_lastpage=507; " name="citation_reference" /> <meta content="Eliel, E. H. & Wilen, S. H. (1994). Stereochemistry of Organic Compounds. New York: Wiley-Interscience." name="citation_reference" /> <meta content="Hahn, T. (2005). Editor. International Tables for Crystallography, Brief Teaching Edition of Volume A: Space-Group Symmetry, 5th ed. Heidelberg: Springer." name="citation_reference" /> <meta content="citation_author=Handelsman J.; citation_author=Ebert-May D.; citation_author=Beichner R.; citation_author=Burns P.; citation_author=Chang A.; citation_author=DeHaan R.; citation_author=Gentile J.; citation_author=Lauffer S.; citation_author=Stewart J.; citation_author=Tilghman S. M.; citation_author=Wood W. B.; citation_year=2004; citation_journal_title=Science; citation_volume=304; citation_firstpage=521; citation_lastpage=522; " name="citation_reference" /> <meta content="Hanson, R. (2009a). Teaching Molecular Structure Using Jmol, https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/." name="citation_reference" /> <meta content="Hanson, R. (2009b). Jmol Crystal Symmetry Explorer, https://chemapps.stolaf.edu/jmol/docs/examples-11/jcse/explore.htm." name="citation_reference" /> <meta content="citation_author=Hoffmann R.; citation_year=1982; citation_journal_title=Angew. Chem. Int. Ed. Engl.; citation_volume=21; citation_firstpage=711; citation_lastpage=800; " name="citation_reference" /> <meta content="Housecroft, C. E. & Sharpe, A. R. (2005). Inorganic Chemistry, 2nd ed. Harlow: Pearson Education Limited." name="citation_reference" /> <meta content="Jmol. (2010). https://www.jmol.org/." name="citation_reference" /> <meta content="Johnston, D. (2009a). Using the Cambridge Structural Database to Explore Concepts of Symmetry, https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/." name="citation_reference" /> <meta content="Johnston, D. (2009b). Symmetry Resources at Otterbein College, https://symmetry.otterbein.edu." name="citation_reference" /> <meta content="Jorgensen, W. F. & Salem, L. (1973). The Organic Chemist's Book of Orbitals. New York: Academic Press." name="citation_reference" /> <meta content="citation_author=Kepert D. L.; citation_year=1972; citation_journal_title=Inorg. Chem.; citation_volume=11; citation_firstpage=1561; citation_lastpage=1567; " name="citation_reference" /> <meta content="citation_author=Macrae C. F.; citation_author=Edgington P. R.; citation_author=McCabe P.; citation_author=Pidcock E.; citation_author=Shields G. P.; citation_author=Taylor R.; citation_author=Towler M.; citation_author=van de Streek J.; citation_year=2006; citation_journal_title=J. Appl. Cryst.; citation_volume=39; citation_firstpage=453; citation_lastpage=457; " name="citation_reference" /> <meta content="McKie, D. & McKie, D. (1986). Essentials of Crystallography. Boston: Blackwell Scientific." name="citation_reference" /> <meta content="citation_author=Murray-Rust P.; citation_author=Glusker J. P.; citation_year=1984; citation_journal_title=J. Am. Chem. Soc.; citation_volume=106; citation_firstpage=1018; citation_lastpage=1025; " name="citation_reference" /> <meta content="OpenAstexViewer. (2010). https://openastexviewer.net/." name="citation_reference" /> <meta content="citation_author=Orpen A. G.; citation_year=2002; citation_journal_title=Acta Cryst. B; citation_volume=58; citation_firstpage=398; citation_lastpage=406; " name="citation_reference" /> <meta content="citation_author=Orpen G.; citation_author=Brammer L.; citation_author=Allen F. H.; citation_author=Kennard O.; citation_author=Watson D. G.; citation_author=Taylor R.; citation_year=1989; citation_journal_title=J. Chem. Soc. Dalton Trans.; citation_volume=; citation_firstpage=S1; citation_lastpage=83; " name="citation_reference" /> <meta content="citation_author=Pidcock E.; citation_author=Motherwell W. D. S.; citation_author=Cole J. C.; citation_year=2003; citation_journal_title=Acta Cryst. B; citation_volume=59; citation_firstpage=634; citation_lastpage=640; " name="citation_reference" /> <meta content="citation_author=Prince M.; citation_year=2004; citation_journal_title=J. Eng. Educ.; citation_volume=89; citation_firstpage=1; citation_lastpage=9; " name="citation_reference" /> <meta content="citation_author=Rosenfield R. E.; citation_author=Parthasarathy R.; citation_author=Dunitz J. D.; citation_year=1977; citation_journal_title=J. Am. Chem. Soc.; citation_volume=99; citation_firstpage=4860; citation_lastpage=4862; " name="citation_reference" /> <meta content="citation_author=Schweizer B.; citation_author=Dunitz J. D.; citation_year=1982; citation_journal_title=Helv. Chim. Acta; citation_volume=65; citation_firstpage=1547; citation_lastpage=1552; " name="citation_reference" /> <meta content="citation_author=Streek J. van de; citation_year=2006; citation_journal_title=Acta Cryst. B; citation_volume=62; citation_firstpage=567; citation_lastpage=579; " name="citation_reference" /> <meta content="citation_author=Taylor R.; citation_year=2002; citation_journal_title=Acta Cryst. D; citation_volume=58; citation_firstpage=879; citation_lastpage=888; " name="citation_reference" /> <meta content="citation_author=Taylor R.; citation_author=Kennard O.; citation_year=1982; citation_journal_title=J. Am. Chem. Soc.; citation_volume=104; citation_firstpage=5063; citation_lastpage=5070; " name="citation_reference" /> <meta content="citation_author=Thomas I. R.; citation_author=Bruno I. J.; citation_author=Cole J. C.; citation_author=Macrae C. F.; citation_author=Pidcock E.; citation_author=Wood P. A.; citation_year=2010; citation_journal_title=J. Appl. Cryst.; citation_volume=43; citation_firstpage=362; citation_lastpage=366; " name="citation_reference" /> <meta content="USNC/IUCr/ACA (2006). Crystallography Education Policies for the Physical and Life Sciences: Sustaining the Science of Molecular Structure in the 21st Century, https://sites.nationalacademies.org/pga/biso/IUCr/index.htm#meetings." name="citation_reference" /> <meta content="citation_author=Wackerly J. W.; citation_author=Janowicz P. A.; citation_author=Ritchey J. A.; citation_author=Caruso M. M.; citation_author=Elliot E. L.; citation_author=Moore J. S.; citation_year=2009; citation_journal_title=J. Chem. Educ.; citation_volume=86; citation_firstpage=460; citation_lastpage=464; " name="citation_reference" /> <meta content="citation_author=Walsh A. D.; citation_year=1949; citation_journal_title=Trans. Faraday Soc.; citation_volume=45; citation_firstpage=179; citation_lastpage=190; " name="citation_reference" /> <meta content="WebCSD. (2010). https://webcsd.ccdc.cam.ac.uk/teaching_database_demo.php/." name="citation_reference" /> <meta content="Wheeler, K. A. (2009). Conceptualizing Reaction Mechanisms using Crystallographic Data, https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/." name="citation_reference" /> <meta content="citation_author=Williamson V. M.; citation_author=Jose T. J.; citation_year=2008; citation_journal_title=J. Chem. Educ.; citation_volume=85; citation_firstpage=718; citation_lastpage=723; " name="citation_reference" /> <meta content="citation_author=Wu H. K.; citation_author=Shah P.; citation_year=2004; citation_journal_title=Sci. Educ. Res. Pract.; citation_volume=8; citation_firstpage=61; citation_lastpage=72; " name="citation_reference" /> <meta content="citation_author=Yao J. W.; citation_author=Cole J. C.; citation_author=Pidcock E.; citation_author=Allen F. H.; citation_author=Howard J. A. K.; citation_author=Motherwell W. D. S.; citation_year=2002; citation_journal_title=Acta Cryst. B; citation_volume=58; citation_firstpage=640; citation_lastpage=646; " name="citation_reference" /> <!-- end of meta citation terms modification --> <meta content="International Union of Crystallography" name="citation_publisher" /> <meta content="10.1107/S0021889810024155" name="citation_doi" /> <meta content="https://doi.org/10.1107/S0021889810024155" name="prism.doi" /> <meta content="" name="citation_fulltext_world_readable" /> <meta content="en" name="citation_language" /> <meta content="//journals.iucr.org/paper?kk5063" name="citation_abstract_html_url" /> <meta content="//journals.iucr.org/j/issues/2010/05/02/kk5063/kk5063.pdf" name="citation_pdf_url" /> <meta content="0021-8898" name="citation_issn" /> <meta content="CAMBRIDGE STRUCTURAL DATABASE; CRYSTALLOGRAPHIC EDUCATION; WEBCSD" name="citation_keywords" /> <!-- <rdf:RDF xmlns="https://web.resource.org/cc/" xmlns:dc="https://purl.org/dc/elements/1.1/" xmlns:rdf="https://www.w3.org/1999/02/22-rdf-syntax-ns#"> <Work rdf:about="//journals.iucr.org/paper?kk5063"> <license rdf:resource="https://creativecommons.org/licenses/by/2.0/uk/" /> <dc:title>Applications of the Cambridge Structural Database in chemical education1</dc:title> </Work> <License rdf:about="https://creativecommons.org/licenses/by/2.0/uk/"> <permits rdf:resource="https://creativecommons.org/ns#Reproduction"/> <permits rdf:resource="https://creativecommons.org/ns#Distribution"/> <requires rdf:resource="https://creativecommons.org/ns#Notice"/> <requires rdf:resource="https://creativecommons.org/ns#Attribution"/> <permits rdf:resource="https://creativecommons.org/ns#DerivativeWorks"/> </License> </rdf:RDF> --> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <link href="//code.jquery.com/ui/1.10.0/themes/base/jquery-ui.css" rel="stylesheet" /> <link href="/style/debugging.css" rel="stylesheet" type="text/css" /> <link href="/style/iustyle1.css" rel="stylesheet" type="text/css" /> <link href="/style/iustyle2.css" media="all and (min-width: 20px)" rel="stylesheet" type="text/css" /> <!--[if !IE]>--> <!-- <link media="only screen and (max-device-width: 480px)" href="/style/iustyle2.css" type= "text/css" rel="stylesheet"> --> <!--<![endif]--> <!--[if (lt IE 9)&(!IEMobile)]> <link rel="stylesheet" href="/style/iustyle2.css" media="all" /> <link rel="stylesheet" href="/style/iustyle3.css" media="all" /> <![endif]--> <link href="/style/iustyleprint.css" media="print" rel="stylesheet" type="text/css" /> <!-- call in additional libraries for semantic tagging etc. --> <!-- old GA callout1 --> </head> <body> <!-- body class="iucrjournals"--> <!-- body onload="document.getElementById('optionbuttons').style.display = 'inline';getHighlights();checkDisplay();"--> <!-- body class="iucrdictcontent"--><div id="jpage_j"><div id="article"> <div id="header"> <div id="hd_top"> <div id="hd_icon"> <table class="layout" id="hd_jicon" style=""><tr><td><a href="/j"><img alt="Journal logo" class="jicon" src="//journals.iucr.org/logos/jicons/j_96x112.png" /></a></td><td><span class="hd_jicon_actatitle">Journal of Applied Crystallography</span> <span class="hd_jicon_actatitle_narrow">Journal of Applied<br />Crystallography</span> </td></tr></table> </div><!-- end of div hd_icon --> <div id="hd_right"> <div id="hd_mlink"> <a class="hd_blink" href="//journals.iucr.org" id="hd_cjoi" title="Crystallography Journals Online"><img alt="Journals Logo" height="20px" src="//journals.iucr.org/logos/iucr_journals_logo_spaces.png" /></a> <a class="hd_blink" href="https://www.iucr.org" id="hd_iucr" title="International Union of Crystallography">IUCr</a> <a class="hd_blink" href="https://it.iucr.org" id="hd_it" title="International Tables">IT</a> <a class="hd_blink" href="https://wdc.iucr.org" id="hd_wdc" title="World Directory of Crystallographers">WDC</a> </div><!-- end of id "hd_mlink" --> <form accept-charset="utf-8" action="//scripts.iucr.org/cgi-bin/full_search" class="inputWrap" id="hd_search_form" method="post"> <div id="hd_search"> <label for="hd_words">search IUCr Journals</label><input id="hd_words" name="words" title="Search IUCr Journals" type="text" value="" /> <input id="hd_go" name="Action" type="submit" value="GO" /> </div><!-- end of id "hd_search" --> </form> </div><!-- end of id "hd_right" --> </div><!-- end of id "hd_top" --> <div class="clear"></div> <div id="hd_navigate"> <a class="hd_navlink" href="/j/">home </a> <a class="hd_navlink" href="/j/services/archive.html">archive </a> <a class="hd_navlink" href="/j/services/editors.html">editors </a> <a class="hd_navlink" href="/j/services/authorservices.html">for authors </a> <a class="hd_navlink" href="/j/services/readerservices.html">for readers </a> <a class="hd_navlink" href="/j/services/submit.html">submit </a> <a class="hd_navlink" href="/services/subscriberservices.html">subscribe </a> <a class="hd_navlink" href="/services/oa/openaccess_hybrid.html">open access </a> </div><!-- End of div hd_navigate --> <div id="hd_navigatesmall"> <div class="hd_navigatetitle hide"> <img alt="" class="" src="/logos/arrows/smarrr_white.png" /><img alt="" class="hide" src="/logos/arrows/smarrd_white.png" />journal menu</div> <div class="sitelink hide"> <a class="hd_navlink" href="/j/">home </a> <a class="hd_navlink" href="/j/services/archive.html">archive </a> <a class="hd_navlink" href="/j/services/editors.html">editors </a> <a class="hd_navlink" href="/j/services/authorservices.html">for authors </a> <a class="hd_navlink" href="/j/services/readerservices.html">for readers </a> <a class="hd_navlink" href="/j/services/submit.html">submit </a> <a class="hd_navlink" href="/services/subscriberservices.html">subscribe </a> <a class="hd_navlink" href="/services/oa/openaccess_hybrid.html">open access </a> </div> </div><!-- End of div hd_navigatesmall --> </div><!-- end of id "header" --> <div id="pagebody"> <div class="layout_cjo_singlecolumn"> <div class="article" id="main" style=""> <div id="art_leftbox"> <div class="article_functions af_vertical"> <!-- AF: kk5063 issuecontents --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="/j/issues/2010/05/02/index.html" title="Issue contents"> <img alt="" class="art_icon" id="art_leftbox_kk5063_vertical_contents" src="/logos/buttonlogos/issue.png" style="top: 4px; left: 0px;" title="Issue contents" /> </a> </div> <div class="popup" style="opacity: 0;"> <span class="popuphd"><a href="/j/issues/2010/05/02/index.html" title="Issue contents">Issue contents</a></span> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> </div> </div> <!-- AF: kk5063 pdf --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="/j/issues/2010/05/02/kk5063/kk5063.pdf" title="PDF"> <img alt="" class="art_icon" id="art_leftbox_kk5063_vertical_pdf" src="/logos/buttonlogos/pdf.png" style="top: 40px; left: 0px;" title="Download PDF of article" /> </a> </div> <div class="popup" style="opacity: 0;"> <span class="popuphd"><a href="/j/issues/2010/05/02/kk5063/kk5063.pdf" title="PDF">Download PDF of article</a></span> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> </div> </div> <!-- AF: kk5063 navigation --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="" title="Navigation"> <img alt="" class="art_icon" id="art_leftbox_kk5063_vertical_tocs" src="/logos/buttonlogos/navigate.png" style="top: 76px; left: 0px;" title="Navigation" /> </a> </div> <div class="popup" style="opacity: 0;"> <span class="popuphd">Navigation</span> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> <br /><ul> <li><a href="#SEC1">1. Introduction</a></li> <li><a href="#SEC2">2. Data sources and software</a></li> <li><a href="#SEC3">3. Teaching applications using the CSD subset via WebCSD</a></li> <li><a href="#SEC4">4. Teaching applications using the full CSD System</a></li> <li><a href="#SEC5">5. Molecular symmetry and crystallographic symmetry</a></li> <li><a href="#SEC6">6. Conclusion</a></li> <li><a href="#References">References</a></li> </ul> </div> </div> <!-- AF: kk5063 highlightwords --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="/services/help/highlight.html" title="highlighting"> <img alt="" class="art_icon" id="art_leftbox_kk5063_vertical_highlight" src="/logos/buttonlogos/settings.png" style="top: 112px; left: 0px;" title="highlighting" /> </a> </div> <div class="popup" style="opacity: 0;"> <span class="popuphd">Highlighting</span> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> <br /> <span class="optionbuttons" style="display: inline;"> Dictionary of Crystallography <a class="ref_lookup_button_yellow" href="#" title="Dictionary of Crystallography"> <img alt="reference" border="0" class="yellowimg" src="/logos/buttonlogos/unchecked.png" /> </a><br /> IUPAC Gold Book <a class="ref_lookup_button_orange" href="#" title="IUPAC Gold Book"> <img alt="reference" border="0" class="orangeimg" src="/logos/buttonlogos/unchecked.png" /> </a> </span><br /> <span class="hidemore"><a href="/services/help/highlight.html">more ...</a></span> </div> </div> <!-- AF: kk5063 downloadcitation --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="//scripts.iucr.org/cgi-bin/biblio_page?kk5063" title="Download citation"> <img alt="" class="art_icon" id="art_leftbox_kk5063_vertical_citation" src="/logos/buttonlogos/citation.png" style="top: 148px; left: 0px;" title="Download citation" /> </a> </div> <div class="popup" style="opacity: 0;"> <span class="popuphd">Download citation</span> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> <form action="//scripts.iucr.org/cgi-bin/biblio" method="post"><table class="citation"><tbody><tr><td align="right">Format<input name="cnor" type="hidden" value="kk5063" /></td><td align="right"><input checked="checked" name="saveas" type="radio" value="BIBTeX" /></td><td align="left">BIBTeX</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="EndNote" /></td><td align="left">EndNote</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="RefMan" /></td><td align="left">RefMan</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="Refer" /></td><td align="left">Refer</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="Medline" /></td><td align="left">Medline</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="CIF" /></td><td align="left">CIF</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="SGML" /></td><td align="left">SGML</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="plaintext" /></td><td align="left">Plain Text</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="text" /></td><td align="left">Text</td></tr><tr><td align="center" colspan="3"><input class="downloadbutton" name="Action" type="submit" value="download" /></td></tr></tbody></table></form> </div> </div> <!-- AF: kk5063 pageviews --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="//scripts.iucr.org/cgi-bin/citedin?kk5063" title="Statistics"> <img alt="" class="art_icon downloads" id="kk5063_divwide" src="/logos/buttonlogos/pageviews.png" style="top: 184px; left: 0px;" title="Statistics" /> </a> </div> <div class="popup" style="opacity: 0;"> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> <div class="" id="kk5063_stats"><span class="popuphd"><a href="//scripts.iucr.org/cgi-bin/citedin?kk5063" title="Statistics">Article statistics</a></span></div> </div> </div> <!-- AF: kk5063 addthis --> <div class="bubbleInfo"> <div class="sidebutton"> <a addthis:description="" addthis:title="Applications of the Cambridge Structural Database in chemical education1" addthis:url="https://dx.doi.org/10.1107/S0021889810024155" class="addthis_button_compact" href="#" id="cr"> <img alt="share" class="art_icon" onclick="$('#pr').css('display','none')" src="/logos/buttonlogos/addthis.png" style="top: 220px; left: 0px;" /> </a> </div> <div class="popup" id="pr" style="opacity: 0;"> <span class="popuphd" onclick="$(this).parent().css('display','none');$('#cr').trigger('click');return false;"><a href="" onclick="return false;">Share</a></span><img alt="close" class="but_close" src="/logos/buttonlogos/cross.png" /> </div> </div> <!-- AF: kk5063 previousarticle --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="/j/issues/2010/05/02/kk5077/" title="Previous article"> <img alt="" class="art_icon" id="art_leftbox_kk5063_vertical_previousarticle" src="/logos/buttonlogos/previous_art.png" style="top: 256px; left: 0px;" title="Previous article" /> </a> </div> <div class="popup" style="opacity: 0;"> <span class="popuphd"><a href="/j/issues/2010/05/02/kk5077/" title="Previous article">Previous article</a></span> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> </div> </div> <!-- AF: kk5063 nextarticle --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="/j/issues/2010/05/02/kk5062/" title="Next article"> <img alt="" class="art_icon" id="art_leftbox_kk5063_vertical_nextarticle" src="/logos/buttonlogos/next_art.png" style="top: 292px; left: 0px;" title="Next article" /> </a> </div> <div class="popup" style="opacity: 0;"> <span class="popuphd"><a href="/j/issues/2010/05/02/kk5062/" title="Next article">Next article</a></span> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> </div> </div> </div><!-- end div article_functions af_vertical --> </div><!-- end div art_leftbox --> <div id="art_leftbox_narrow"> <div class="article_functions af_horizontal"> <!-- AF: kk5063 previousarticle --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="/j/issues/2010/05/02/kk5077/" title="Previous article"> <img alt="" class="art_icon" id="art_leftbox_narrow_kk5063_horizontal_previousarticle" src="/logos/buttonlogos/previous_art.png" style="top: 12px; left: 0px; width: 20px;" title="Previous article" /> </a> </div> <div class="popup" style="opacity: 0;"> <span class="popuphd"><a href="/j/issues/2010/05/02/kk5077/" title="Previous article">Previous article</a></span> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> </div> </div> <!-- AF: kk5063 issuecontents --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="/j/issues/2010/05/02/index.html" title="Issue contents"> <img alt="" class="art_icon" id="art_leftbox_narrow_kk5063_horizontal_contents" src="/logos/buttonlogos/issue.png" style="top: 12px; left: 23px; width: 20px;" title="Issue contents" /> </a> </div> <div class="popup" style="opacity: 0;"> <span class="popuphd"><a href="/j/issues/2010/05/02/index.html" title="Issue contents">Issue contents</a></span> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> </div> </div> <!-- AF: kk5063 pdf --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="/j/issues/2010/05/02/kk5063/kk5063.pdf" title="PDF"> <img alt="" class="art_icon" id="art_leftbox_narrow_kk5063_horizontal_pdf" src="/logos/buttonlogos/pdf.png" style="top: 12px; left: 46px; width: 20px;" title="Download PDF of article" /> </a> </div> <div class="popup" style="opacity: 0;"> <span class="popuphd"><a href="/j/issues/2010/05/02/kk5063/kk5063.pdf" title="PDF">Download PDF of article</a></span> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> </div> </div> <!-- AF: kk5063 navigation --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="" title="Navigation"> <img alt="" class="art_icon" id="art_leftbox_narrow_kk5063_horizontal_tocs" src="/logos/buttonlogos/navigate.png" style="top: 12px; left: 69px; width: 20px;" title="Navigation" /> </a> </div> <div class="popup" style="opacity: 0;"> <span class="popuphd">Navigation</span> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> <br /><ul> <li><a href="#SEC1">1. Introduction</a></li> <li><a href="#SEC2">2. Data sources and software</a></li> <li><a href="#SEC3">3. Teaching applications using the CSD subset via WebCSD</a></li> <li><a href="#SEC4">4. Teaching applications using the full CSD System</a></li> <li><a href="#SEC5">5. Molecular symmetry and crystallographic symmetry</a></li> <li><a href="#SEC6">6. Conclusion</a></li> <li><a href="#References">References</a></li> </ul> </div> </div> <!-- AF: kk5063 highlightwords --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="/services/help/highlight.html" title="highlighting"> <img alt="" class="art_icon" id="art_leftbox_narrow_kk5063_horizontal_highlight" src="/logos/buttonlogos/settings.png" style="top: 12px; left: 92px; width: 20px;" title="highlighting" /> </a> </div> <div class="popup" style="opacity: 0;"> <span class="popuphd">Highlighting</span> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> <br /> <span class="optionbuttons" style="display: inline;"> Dictionary of Crystallography <a class="ref_lookup_button_yellow" href="#" title="Dictionary of Crystallography"> <img alt="reference" border="0" class="yellowimg" src="/logos/buttonlogos/unchecked.png" /> </a><br /> IUPAC Gold Book <a class="ref_lookup_button_orange" href="#" title="IUPAC Gold Book"> <img alt="reference" border="0" class="orangeimg" src="/logos/buttonlogos/unchecked.png" /> </a> </span><br /> <span class="hidemore"><a href="/services/help/highlight.html">more ...</a></span> </div> </div> <!-- AF: kk5063 downloadcitation --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="//scripts.iucr.org/cgi-bin/biblio_page?kk5063" title="Download citation"> <img alt="" class="art_icon" id="art_leftbox_narrow_kk5063_horizontal_citation" src="/logos/buttonlogos/citation.png" style="top: 12px; left: 115px; width: 20px;" title="Download citation" /> </a> </div> <div class="popup" style="opacity: 0;"> <span class="popuphd">Download citation</span> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> <form action="//scripts.iucr.org/cgi-bin/biblio" method="post"><table class="citation"><tbody><tr><td align="right">Format<input name="cnor" type="hidden" value="kk5063" /></td><td align="right"><input checked="checked" name="saveas" type="radio" value="BIBTeX" /></td><td align="left">BIBTeX</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="EndNote" /></td><td align="left">EndNote</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="RefMan" /></td><td align="left">RefMan</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="Refer" /></td><td align="left">Refer</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="Medline" /></td><td align="left">Medline</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="CIF" /></td><td align="left">CIF</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="SGML" /></td><td align="left">SGML</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="plaintext" /></td><td align="left">Plain Text</td></tr><tr><td></td><td align="right"><input name="saveas" type="radio" value="text" /></td><td align="left">Text</td></tr><tr><td align="center" colspan="3"><input class="downloadbutton" name="Action" type="submit" value="download" /></td></tr></tbody></table></form> </div> </div> <!-- AF: kk5063 pageviews --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="//scripts.iucr.org/cgi-bin/citedin?kk5063" title="Statistics"> <img alt="" class="art_icon downloads" id="kk5063_divnrw" src="/logos/buttonlogos/pageviews.png" style="top: 12px; left: 138px; width: 20px;" title="Statistics" /> </a> </div> <div class="popup" style="opacity: 0;"> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> <div class="" id="kk5063_stnar"><span class="popuphd"><a href="//scripts.iucr.org/cgi-bin/citedin?kk5063" title="Statistics">Article statistics</a></span></div> </div> </div> <!-- AF: kk5063 addthis --> <div class="bubbleInfo"> <div class="sidebutton"> <a addthis:description="" addthis:title="Applications of the Cambridge Structural Database in chemical education1" addthis:url="https://dx.doi.org/10.1107/S0021889810024155" class="addthis_button_compact" href="#" id="cl"> <img alt="share" class="art_icon" onclick="$('#pl').css('display','none')" src="/logos/buttonlogos/addthis.png" style="top: 12px; left: 161px; width: 20px;" /> </a> </div> <div class="popup" id="pl" style="opacity: 0;"> <span class="popuphd" onclick="$(this).parent().css('display','none');$('#cl').trigger('click');return false;"><a href="" onclick="return false;">Share</a></span><img alt="close" class="but_close" src="/logos/buttonlogos/cross.png" /> </div> </div> <!-- AF: kk5063 nextarticle --> <div class="bubbleInfo"> <div class="sidebutton"> <a href="/j/issues/2010/05/02/kk5062/" title="Next article"> <img alt="" class="art_icon" id="art_leftbox_narrow_kk5063_horizontal_nextarticle" src="/logos/buttonlogos/next_art.png" style="top: 12px; left: 184px; width: 20px;" title="Next article" /> </a> </div> <div class="popup" style="opacity: 0;"> <span class="popuphd"><a href="/j/issues/2010/05/02/kk5062/" title="Next article">Next article</a></span> <img alt="cross.png" class="but_close" src="/logos/buttonlogos/cross.png" /> </div> </div> </div><!-- end div article_functions af_horizontal --> </div><!-- end div art_leftbox_narrow --> <div class="clear"></div> <div id="iucr-art"><div id="fm"> <h2 class="mainheading"><a id="top">teaching and education</a><span style="display:none">\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)</span></h2><div class="jinfo_header jinfo_header_article"> <div class="jh_catchline"> <div class="jh_left"> <div class="jicon_j"><table class="layout" style=""><tr><td><a href="/j"><img alt="Journal logo" class="jicon" src="//journals.iucr.org/logos/jicons/j_96x112.png" /></a></td><td><span class="jicon_logotitle">JOURNAL OF<br />APPLIED<br />CRYSTALLOGRAPHY</span></td></tr></table></div><!-- end div jicon_ --> <div class="clear"></div> <div class="jh_issn">ISSN: 1600-5767</div><!-- end div jh_issn --><div class="clear"></div> </div> <div class="jh_right"> <div class="jh_issueinfo"><span class="jh_volume" style=""><a href="/j/services/archive.html" style=""><span style="">Volume 43</span></a></span><span class="jh_biblspace" style="">|</span> <span class="jh_part"><a href="../index.html">Part 5</a></span><span class="jh_biblspace" style="">|</span> <span class="jh_monthandyear"><a href="../index.html"><span style="">October 2010</span></a></span><span class="jh_biblspace" style="">|</span> <span class="jh_pages">Pages 1208-1223</span><br /></div><!-- end div jh_issueinfo --><div class="clear"></div> <div class="jh_doi"> <span class="doi_catchline"><a href="https://dx.doi.org/10.1107/S0021889810024155">doi:10.1107/S0021889810024155</a></span> </div><div class="clear"></div> <div class="jh_openaccesslogo" style="float: right;"><div class="openaccesslogo"><div class="oalogotext" style="" title="This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.">Open <img alt="Open Access" class="oalogo" src="/logos/open.png" /> access</div></div> </div> <div class="clear"></div> </div><div class="clear"></div> </div><!-- end div jh_catchline --> </div><div id="right_hand_title_box"> <div id="atl"> <h2>Applications of the Cambridge Structural Database in chemical education<a href="#fn1" id="fnr1"><sup><b>1</b></sup></a></h2> </div> <!-- Start Crossmark 2.0 widget --> <div style="float: right; text-align: right; width: 100px;"> <script src="//crossmark-cdn.crossref.org/widget/v2.0/widget.js"></script> <a data-target="crossmark"><img alt="CROSSMARK_Color_square_no_text.svg" src="https://crossmark-cdn.crossref.org/widget/v2.0/logos/CROSSMARK_Color_square_no_text.svg" width="60" /></a> </div> <!-- End Crossmark 2.0 widget --> <div id="aug"> <div class="au"> <b> <a href="//scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Battle%2C%20G%2EM%2E"><span class="au">Gary M. Battle</span></a>,<a href="#oida"><sup>a</sup></a><a href="#cor"><sup>*</sup></a> <a href="//scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Ferrence%2C%20G%2EM%2E"><span class="au">Gregory M. Ferrence</span></a><a href="#oidb"><sup>b</sup></a> and <a href="//scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Allen%2C%20F%2EH%2E"><span class="au">Frank H. Allen</span></a><a href="#oida"><sup>a</sup></a></b> </div> <div id="aff"> <p><span class="font_size_2"><a id="oida"><sup><b>a</b></sup></a>Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK, and <a id="oidb"><sup><b>b</b></sup></a>Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA<br /><a id="cor"></a><sup>*</sup>Correspondence e-mail: <a href="mailto:battle%40ccdc.cam.ac.uk">battle@ccdc.cam.ac.uk</a></span></p> </div> </div> <div id="editdetails">(<span class="ed_rec">Received 27 January 2010;</span> <span class="ed_acc">accepted 21 June 2010;</span> <span class="ed_web">online 3 August 2010</span>)</div> <div id="abs"> <p>The Cambridge Structural Database (CSD) is a vast and ever growing compendium of accurate three-dimensional structures that has massive chemical diversity across organic and metal–organic compounds. For these reasons, the CSD is finding significant uses in chemical education, and these applications are reviewed. As part of the teaching initiative of the Cambridge Crystallographic Data Centre (CCDC), a teaching subset of more than 500 CSD structures has been created that illustrate key chemical concepts, and a number of teaching modules have been devised that make use of this subset in a teaching environment. All of this material is freely available from the CCDC website, and the subset can be freely viewed and interrogated using <span class="it"><i>WebCSD</i></span>, an internet application for searching and displaying CSD information content. In some cases, however, the complete CSD System is required for specific educational applications, and some examples of these more extensive teaching modules are also discussed. The educational value of visualizing real three-dimensional structures, and of handling real experimental results, is stressed throughout.</p> </div> <div id="kwdg"> <p><span class="kwdg_head">Keywords: </span> <a href="//scripts.iucr.org/cgi-bin/full_search?words=Cambridge%20Structural%20Database&Action=Search">Cambridge Structural Database</a>; <a href="//scripts.iucr.org/cgi-bin/full_search?words=crystallographic%20education&Action=Search">crystallographic education</a>; <a href="//scripts.iucr.org/cgi-bin/full_search?words=WebCSD&Action=Search"><span class="it"><i>WebCSD</i></span></a>.</p></div> <div class="art_codelinks"> </div> <script src="//api.growkudos.com/widgets/article/10.1107/S0021889810024155" type="text/javascript"></script> </div> </div> <div id="body"> <div class="sec1" id="DIVSEC1"> <h3><a id="SEC1"></a>1. Introduction</h3> <p>In June 1988, the <span class="it"><i>Journal of Chemical Education</i></span> (JCE) published a series of eight papers arising from a symposium on teaching crystallography that was held at the 1987 Meeting of the American Crystallographic Association in Austin, Texas. In his contribution, Duax (1988<a id="sourceBB32"></a><a href="#BB32"><img alt="[Duax, W. L. (1988). J. Chem. Educ. 65, 502-507.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Duax, W. L. (1988). J. Chem. Educ. 65, 502-507." /></a>) described a course for first-year graduate students of pharmacology, medicinal chemistry and biochemistry on how to interpret, evaluate and use information provided by <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystal_structure' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystal_structure", 'Navigator')">crystal structure</a> determinations. Central to that course were modules on basic crystallographic concepts – lattices, crystal systems, space groups, symmetry (crystallographic and molecular) and crystal packing – and on molecular geometry – molecular dimensions, stereochemistry, <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/C01259.html' onclick="return makeSubWindow("https://goldbook.iupac.org/C01259.html", 'Navigator')">conformational analysis,</a> structure representation and visualization, and the relationship between structure and properties. This latter section made significant use of the Cambridge Structural Database (CSD; Allen, 2002<a id="sourceBB3"></a><a href="#BB3"><img alt="[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Allen, F. H. (2002). Acta Cryst. B58, 380-388." /></a>) which, in 1988, recorded some 55 000 small-molecule crystal structures.</p><p>In a purely crystallographic teaching context, the CSD and other structural database resources, particularly the Protein Data Bank (PDB; Berman <span class="it"><i>et al.</i></span>, 2000<a id="sourceBB9"></a><a href="#BB9"><img alt="[Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235-242.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235-242." /></a>), have been an integral part of a variety of schools and courses, such as the Intensive Courses in X-ray Crystallography given by the British and American Crystallographic Associations (BCA, ACA) and courses offered by other national groups. Additionally, anecdotal and published evidence indicates that further significant teaching applications of the developing CSD have been made in many universities at both undergraduate and graduate levels, and in some high schools. Much of the impetus for these broader developments comes from practising crystallographers who thereby provide expert introduction to the value of the crystallographic method to undergraduate chemistry and biology students. These students, in their turn, are then aware of the power of crystallography in their own careers, and some of them may be attracted to make the subject their speciality. This route into the subject is commonly followed by many professional crystallographers whose undergraduate roots are, <span class="it"><i>inter alia</i></span>, in chemistry, biology and materials science, and is entirely in line with the white paper <span class="it"><i>Crystallography Education Policies for the Physical and Life Sciences: Sustaining the Science of Molecular Structure in the 21st Century</i></span>, published by the US National Committee on Crystallography in collaboration with the ACA and the International Union of Crystallography (USNC/IUCr/ACA, 2006<a id="sourceBB60"></a><a href="#BB60"><img alt="[USNC/IUCr/ACA (2006). Crystallography Education Policies for the Physical and Life Sciences: Sustaining the Science of Molecular Structure in the 21st Century, https://sites.nationalacademies.org/pga/biso/IUCr/index.htm#meetings.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="USNC/IUCr/ACA (2006). Crystallography Education Policies for the Physical and Life Sciences: Sustaining the Science of Molecular Structure in the 21st Century, https://sites.nationalacademies.org/pga/biso/IUCr/index.htm#meetings." /></a>). Here, the importance of educating not only professional crystallographers but also the consumers of their results is clearly stressed, and the role of crystallographers in promoting their subject is an obvious part of this consumer education.</p><p>Twenty years on from the JCE papers, and with a database that is an order of magnitude larger (>500 000 structures), the CSD has much to offer in a teaching environment and, if we now include general organics, organometallics and metal complexes, the Duax (1988<a href="#BB32"><img alt="[Duax, W. L. (1988). J. Chem. Educ. 65, 502-507.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Duax, W. L. (1988). J. Chem. Educ. 65, 502-507." /></a>) course resumé still summarizes the CSD's areas of educational value rather well. A knowledge of the three-dimensional nature of chemical compounds is absolutely fundamental to every chemist and to many in related disciplines. Without this understanding, concepts such as conformation, stereochemistry, <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Chirality' onclick="return makeSubWindow("https://dictionary.iucr.org/Chirality", 'Navigator')">chirality,</a> metal coordination and molecular symmetry cannot be properly assimilated and understood. It is well known that three-dimensional visualizations enhance students' learning experience, spatial abilities and conceptual understanding (Bodner & Guay, 1997<a id="sourceBB10"></a><a href="#BB10"><img alt="[Bodner, G. M. & Guay, R. B. (1997). Chem. Educ. 2(4), S1430-4171(97)04138-X.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Bodner, G. M. & Guay, R. B. (1997). Chem. Educ. 2(4), S1430-4171(97)04138-X." /></a>; Wu & Shah, 2004<a id="sourceBB66"></a><a href="#BB66"><img alt="[Wu, H. K. & Shah, P. (2004). Sci. Educ. Res. Pract. 8, 61-72.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Wu, H. K. & Shah, P. (2004). Sci. Educ. Res. Pract. 8, 61-72." /></a>; Williamson & Jose, 2008<a id="sourceBB65"></a><a href="#BB65"><img alt="[Williamson, V. M. & Jose, T. J. (2008). J. Chem. Educ. 85, 718-723.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Williamson, V. M. & Jose, T. J. (2008). J. Chem. Educ. 85, 718-723." /></a>), yet even today, when high-resolution three-dimensional graphics capabilities are available on every home computer, chemical structures are still taught using quasi-two-dimensional representations. These representations do not convey the levels of comprehension that are opened up to students by the visualization and interactive manipulation of real three-dimensional mol­ecular images in their own personal computing environment.</p><p>In addition to the structural knowledge obtained through crystallography, an exposure to real experimental data further enhances the learning experience for students (Prince, 2004<a id="sourceBB53"></a><a href="#BB53"><img alt="[Prince, M. (2004). J. Eng. Educ. 89, 1-9.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Prince, M. (2004). J. Eng. Educ. 89, 1-9." /></a>; Handelsman <span class="it"><i>et al.</i></span>, 2004<a id="sourceBB36"></a><a href="#BB36"><img alt="[Handelsman, J., Ebert-May, D., Beichner, R., Burns, P., Chang, A., DeHaan, R., Gentile, J., Lauffer, S., Stewart, J., Tilghman, S. M. & Wood, W. B. (2004). Science, 304, 521-522.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Handelsman, J., Ebert-May, D., Beichner, R., Burns, P., Chang, A., DeHaan, R., Gentile, J., Lauffer, S., Stewart, J., Tilghman, S. M. & Wood, W. B. (2004). Science, 304, 521-522." /></a>; DeHaan, 2005<a id="sourceBB31"></a><a href="#BB31"><img alt="[DeHaan, R. L. (2005). J. Sci. Educ. Technol. 14, 253-269.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="DeHaan, R. L. (2005). J. Sci. Educ. Technol. 14, 253-269." /></a>). The experimental errors and statistical variation inherent in directly measured data provide insights into the outputs of experimental science. Because traditional classroom teaching examples instil a bias that chemical structure should be `ideal and perfect', the use of real experimental results prepares students for the realities of research. Finally, it is good for all students of chemistry and associated disciplines to develop a familiarity with the crystallographic method and its results, since crystallography is rarely taught as a sub-discipline at undergraduate or graduate level, but plays a crucial role in all branches of modern chemistry, as well as in structural biology, the pharmaceutical sciences and materials science.</p><p>To address this educational potential, the CCDC has in recent years begun an outreach initiative, principally in structural chemistry but also involving the symmetry aspects of the subject. Here, we summarize that initiative, which involves use both of the complete CSD and its associated software systems, and of a specially chosen teaching subset of 500 CSD entries which can be freely examined using the new CSD web interface <span class="it"><i>WebCSD</i></span> (Thomas <span class="it"><i>et al.</i></span>, 2010<a id="sourceBB59"></a><a href="#BB59"><img alt="[Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362-366.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362-366." /></a>). As part of the initiative, we have created a set of undergraduate teaching examples, available through the CCDC website (CCDC, 2010<span class="it"><i>a</i></span><a id="sourceBB21"></a><a href="#BB21"><img alt="[CCDC (2010a). CSD-based Teaching Modules. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/free_services/teaching/modules/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="CCDC (2010a). CSD-based Teaching Modules. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/free_services/teaching/modules/." /></a>), which will be discussed below. We have also become involved in the US Biannual Conferences on Chemical Education, and a symposium at the Fall 2009 meeting of the American Chemical Society (Division of Chemical Education) specifically addressed the potential of the CSD in chemical education. Speakers at this symposium have kindly made their presentations freely available <span class="it"><i>via</i></span> the CCDC website (CCDC, 2009<a id="sourceBB20"></a><a href="#BB20"><img alt="[CCDC (2009). Symposium on the Applications of Small-Molecule Crystal Structure Information in Chemical Education. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="CCDC (2009). Symposium on the Applications of Small-Molecule Crystal Structure Information in Chemical Education. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/." /></a>). Some of these presentations are referenced individually in this paper under the name of the presenting author.</p></div> <div class="sec1" id="DIVSEC2"> <h3><a id="SEC2"></a>2. Data sources and software</h3> <p>A number of CCDC teaching resources are available free of charge to the educational community:</p><p>(<span class="it"><i>a</i></span>) A teaching subset of <span class="it"><i>ca</i></span> 500 CSD entries illustrating a wide range of three-dimensional structural issues.</p><p>(<span class="it"><i>b</i></span>) A web-based interface for browsing the teaching subset.</p><p>(<span class="it"><i>c</i></span>) A downloadable version of the CCDC's <span class="it"><i>Mercury</i></span> (Macrae <span class="it"><i>et al.</i></span>, 2006<a id="sourceBB46"></a><a href="#BB46"><img alt="[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457." /></a>) visualizer.</p><p>(<span class="it"><i>d</i></span>) Example teaching exercises that utilize the teaching subset.</p><p>The software and database entries are exactly as used by researchers in the field, <span class="it"><i>i.e.</i></span> they are not specially `reduced' versions for classroom use.</p><p>However, more advanced teaching applications require access to the complete CSD System, and this is supplied to individual institutions for a small cost-recovery fee which is further reduced for non-PhD-awarding institutions. The full CSD System includes a suite of computer programs, described in §<a href="#SEC2.1"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>2.1, that facilitate search, analysis and visualization of CSD information. Additionally, online access to the database <span class="it"><i>via WebCSD</i></span> (Thomas <span class="it"><i>et al.</i></span>, 2010<a href="#BB59"><img alt="[Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362-366.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362-366." /></a>; see §<a href="#SEC2.2"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>2.2) is available to those institutions with an unlimited site-wide CSD System licence.</p> <div class="sec2" id="DIVSEC2.1"> <h4><a id="SEC2.1"></a>2.1. The CSD System</h4> <p>The CSD System includes the following elements:</p><p>(i) The Cambridge Structural Database. Compilation of the CSD began in 1965, and the information content of a structural entry is fully described elsewhere (Allen, 2002<a href="#BB3"><img alt="[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Allen, F. H. (2002). Acta Cryst. B58, 380-388." /></a>); only a brief summary is presented here. The CSD records data from single-crystal X-ray and neutron diffraction studies of C-containing compounds: organics and metal–organics. Powder structures are also included. Each entry, identified by a CSD refcode, records the primary numerical results of the analysis: three-dimensional atomic coordinates, cell dimensions and <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Space_group' onclick="return makeSubWindow("https://dictionary.iucr.org/Space_group", 'Navigator')">space group,</a> together with (<span class="it"><i>a</i></span>) a formal two-dimensional chemical diagram and searchable chemical connection table, (<span class="it"><i>b</i></span>) full bibliographic reference, including the DOI, (<span class="it"><i>c</i></span>) chemical name and formula, and (<span class="it"><i>d</i></span>) other information that may be present in the published or directly deposited report.</p><p>(ii) <span class="it"><i>ConQuest</i></span> (Bruno <span class="it"><i>et al.</i></span>, 2002<a id="sourceBB12"></a><a href="#BB12"><img alt="[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397." /></a>) permits searches of all CSD information fields, and most importantly the location of chemical substructures and intermolecular interactions defined using both two-dimensional connectivity and three-dimensional geometric constraints. Apart from locating the required crystal structures, <span class="it"><i>ConQuest</i></span> also outputs user-defined geometrical parameters for the structure or <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Substructure' onclick="return makeSubWindow("https://dictionary.iucr.org/Substructure", 'Navigator')">substructure</a> of interest.</p><p>(iii) <span class="it"><i>Vista</i></span> allows the geometrical data retrieved from the CSD to be presented as a spreadsheet, and displayed as histograms and scattergrams using Cartesian or polar axes. <span class="it"><i>Vista</i></span> will also perform a variety of statistical analyses on the retrieved data, <span class="it"><i>e.g.</i></span> regression, principal components analysis <span class="it"><i>etc</i></span>., and is important in the derivation of mean geometry and in the identification of conformational preferences in chemical substructures. Other software, <span class="it"><i>e.g.</i></span> Microsoft <span class="it"><i>Excel</i></span>, can also read <span class="it"><i>ConQuest</i></span> output and can be used in data analysis.</p><p>(iv) <span class="it"><i>Mercury</i></span> (Macrae <span class="it"><i>et al.</i></span>, 2006<a href="#BB46"><img alt="[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457." /></a>) provides both basic and advanced functionality for viewing molecules in three dimensions, and facilitates the exploration and analysis of extended <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystal_structure' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystal_structure", 'Navigator')">crystal structure</a> motifs and packing arrangements. Molecules may be displayed in a variety of styles and colouring schemes. The contents of any number of unit cells (or fractions of unit cells) can be displayed and crystal structures may be viewed along direct or reciprocal cell axes, or perpendicular to any specified atomic plane. The display of space-group symmetry elements is also facilitated (see §<a href="#SEC5"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>5). Distances, angles and torsions can be measured, and items such as atom labels and unit-cell axes can be shown. Coupled with this general functionality is the ability to build and explore extended networks of molecules and their linking contacts such as hydrogen bonds. This interactive exploration of crystal structures can greatly assist the student's comprehension of the importance of hydrogen bonds, by studying the extended packing arrangement of the structure, and the key intermolecular interactions involved in molecular aggregation.</p><p>(v) Knowledge bases. <span class="it"><i>Mogul</i></span>, a knowledge base of intramolecular geometry (Bruno <span class="it"><i>et al.</i></span>, 2004<a id="sourceBB13"></a><a href="#BB13"><img alt="[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144." /></a>), and <span class="it"><i>IsoStar</i></span>, a knowledge base of intermolecular interactions (Bruno <span class="it"><i>et al.</i></span>, 1997<a id="sourceBB14"></a><a href="#BB14"><img alt="[Bruno, I. J., Cole, J. C., Lommerse, J. P. M., Rowland, R. S., Taylor, R. & Verdonk, M. L. (1997). J. Comput. Aided Mol. Des. 11, 525-537.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Bruno, I. J., Cole, J. C., Lommerse, J. P. M., Rowland, R. S., Taylor, R. & Verdonk, M. L. (1997). J. Comput. Aided Mol. Des. 11, 525-537." /></a>), are also part of the distributed CSD System and provide rapid access to CSD information. These knowledge bases allow students to answer questions such as `what is the preferred solid-state conformation of <span class="it"><i>n</i></span>-butane?' or `is the carbonyl or the ether O atom of an ester group more likely to form a hydrogen bond?' but without the need to construct complex search queries.</p></div> <div class="sec2" id="DIVSEC2.2"> <h4><a id="SEC2.2"></a>2.2. WebCSD</h4> <p>The CSD has recently been made internet-accessible through <span class="it"><i>WebCSD</i></span> (Thomas <span class="it"><i>et al.</i></span>, 2010<a href="#BB59"><img alt="[Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362-366.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362-366." /></a>): a web-based search engine for interrogating the CSD. <span class="it"><i>WebCSD</i></span> allows institutions with site-wide CSD System access to search the full database of over 500 000 structures from any computer at their site using just a standard web browser, and without the need for any local software installations. This ease of access makes the online version of the CSD ideal for use in classroom and computational teaching laboratory environments. In addition to full text and numeric searching, <span class="it"><i>WebCSD</i></span> allows two-dimensional chemical <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Substructure' onclick="return makeSubWindow("https://dictionary.iucr.org/Substructure", 'Navigator')">substructure</a> queries to be defined using an embedded sketcher – thus allowing rapid retrieval of structures of interest. Additionally, a complementary two-dimensional structure-based search option will locate those CSD entries having the highest molecular similarity to a drawn query molecule. This allows non-expert users to locate specific structures of interest, and their analogues, without having to learn the subtleties of <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Substructure' onclick="return makeSubWindow("https://dictionary.iucr.org/Substructure", 'Navigator')">substructure</a> searching.</p><p>The <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystal_structure' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystal_structure", 'Navigator')">crystal structure</a> information accessed either through searches or by simply browsing the CSD is easily accessible in a single pane (Fig. 1<a href="#FIG1"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>). This includes the two-dimensional chemical diagram, full bibliographic information, including author names and journal reference (with links to the original publication), and other text and numerical data, for example, compound name, <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/M03987.html' onclick="return makeSubWindow("https://goldbook.iupac.org/M03987.html", 'Navigator')">molecular formula,</a> precision indicators <span class="it"><i>etc</i></span>. However, <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystal_structure' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystal_structure", 'Navigator')">crystal structure</a> information is inherently focused on three-dimensional data and <span class="it"><i>WebCSD</i></span> provides a choice of two different three-dimensional viewers as embedded Java applets: <span class="it"><i>Jmol</i></span> (2010<a id="sourceBB41"></a><a href="#BB41"><img alt="[Jmol (2010). https://www.jmol.org/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Jmol (2010). https://www.jmol.org/." /></a>) or <span class="it"><i>OpenAstexViewer</i></span> (2010<a id="sourceBB49"></a><a href="#BB49"><img alt="[OpenAstexViewer (2010). https://openastexviewer.net/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="OpenAstexViewer (2010). https://openastexviewer.net/." /></a>). These molecular viewers provide a range of display styles as well as atom labelling and tools to measure distances, angles and torsions. <span class="it"><i>Jmol</i></span> (the default viewer in <span class="it"><i>WebCSD</i></span>) also supports some crystallographic viewing options such as the display of a full <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Unit_cell' onclick="return makeSubWindow("https://dictionary.iucr.org/Unit_cell", 'Navigator')">unit cell</a> or a packing range of 3 × 3 × 3 unit cells.</p><div class="fig"> <table cellpadding="5" class="fig" summary="Figure 1" width="100%"> <tbody> <tr> <td class="td_align_center width_20"> <a href="kk5063fig1.html"><img alt="[Figure 1]" class="figlnkthm img_align_middle" src="kk5063fig1thm.gif" /> <br /></a> </td> <td> <span class="font_size_3"><b><a href="kk5063fig1.html" id="FIG1">Figure 1</a></b></span> <br /><span class="font_size_2 caption"><span class="it"><i>WebCSD</i></span> interface showing chemical information for caffeine (teaching subset entry CAFINE).</span></td> </tr> </tbody> </table> </div> <p>The embedded viewer options allow <span class="it"><i>WebCSD</i></span> to be used effectively without the need for additional client-side applications. However, crystal structures can also be exported from <span class="it"><i>WebCSD</i></span> into <span class="it"><i>Mercury</i></span> (either a single structure as a <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/CIF' onclick="return makeSubWindow("https://dictionary.iucr.org/CIF", 'Navigator')">CIF,</a> or many as a list of CSD refcodes) for more advanced structure visualization and analysis. Thus <span class="it"><i>WebCSD</i></span> can act as a springboard for more advanced studies – allowing very fast searches with links to desktop applications for further investigation of the results.</p></div> <div class="sec2" id="DIVSEC2.3"> <h4><a id="SEC2.3"></a>2.3. The CSD teaching subset</h4> <p>A subset of <span class="it"><i>ca</i></span> 500 structures that have important chemical education applications have been carefully selected from the full CSD of over half a million entries. These structures are available to the educational community free of charge and can be accessed <span class="it"><i>via</i></span> either</p><p>(<span class="it"><i>a</i></span>) a freely accessible online version of the <span class="it"><i>WebCSD</i></span> interface (<span class="it"><i>WebCSD</i></span>, 2010<a id="sourceBB63"></a><a href="#BB63"><img alt="[WebCSD (2010). https://webcsd.ccdc.cam.ac.uk/teaching_database_demo.php/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="WebCSD (2010). https://webcsd.ccdc.cam.ac.uk/teaching_database_demo.php/." /></a>), or</p><p>(<span class="it"><i>b</i></span>) a downloadable version of the CCDC's <span class="it"><i>Mercury</i></span> visualizer (CCDC, 2010<span class="it"><i>c</i></span><a id="sourceBB23"></a><a href="#BB23"><img alt="[CCDC (2010c). Mercury. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/products/mercury/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="CCDC (2010c). Mercury. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/products/mercury/." /></a>).</p><p>Table 1<a href="#TABLE1"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a> contains statistics for selected structure types in the teaching subset. The composition of the 500-structure teaching subset is described more fully elsewhere (Battle <span class="it"><i>et al.</i></span>, 2010<span class="it"><i>a</i></span><a id="sourceBB7"></a><a href="#BB7"><img alt="[Battle, G. M., Allen, F. H. & Ferrence, G. M. (2010a). J. Chem. Educ. In the press. doi:10.1021/ed100256k.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Battle, G. M., Allen, F. H. & Ferrence, G. M. (2010a). J. Chem. Educ. In the press. doi:10.1021/ed100256k." /></a>). While the subset has been selected specifically for the teaching content of the structures included, the CSD comparison statistics included in Table 1<a href="#TABLE1"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a> show that the subset is reasonably representative of the CSD as a whole.</p><div class="table"> <table cellpadding="2" class="bgcolor_FFCC99" summary="Teaching subset composition compared with statistics for the complete CSD" width="100%"> <tbody> <tr> <td> <table class="bgcolor_FFCC99 tbheader" summary="Teaching subset composition compared with statistics for the complete CSD" width="100%"> <tbody> <tr> <td align="left" class="bgcolor_FFCC99" valign="bottom"> <p><span class="font_size_3 table_number"><b><a id="TABLE1">Table 1</a></b></span><br /><span class="font_size_2 tbcaption">Teaching subset composition compared with statistics for the complete CSD</span> </p></td> </tr> </tbody> </table> <table class="bgcolor_FFCC99 tbheader" summary="Teaching subset composition compared with statistics for the complete CSD" width="100%"> <tbody> <tr> <td align="left" class="bgcolor_FFCC99" valign="bottom"> <div class="tbheadn"><p><span class="font_size_2_tbheadn"><span class="it"><i>N</i></span>(subset) and <span class="it"><i>N</i></span>(CSD) are the numbers of structures in the teaching subset and complete CSD, respectively; %(subset) and %(CSD) are the relevant percentages.</span></p></div> </td> </tr> </tbody> </table> <table summary="Teaching subset composition compared with statistics for the complete CSD" width="100%"> <thead valign="top"> <tr> <th align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="bottom"><span class="font_size_2">Structure type</span></th> <th align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="bottom"><span class="font_size_2"><span class="it"><i>N</i></span>(subset)</span></th> <th align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="bottom"><span class="font_size_2">%(subset)</span></th> <th align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="bottom"><span class="font_size_2"><span class="it"><i>N</i></span>(CSD)</span></th> <th align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="bottom"><span class="font_size_2">%(CSD)</span></th> </tr> </thead> <tbody valign="top"> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">All structures</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">500</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">100.0</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">501857</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">100.0</span></td> </tr> <tr> <td align="left" charoff="50" class="bgcolor_FFFFFF" colspan="5" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Organic</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">331</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">66.2</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">215106</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">42.9</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Transition metal–organic</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">161</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">32.2</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">266333</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">53.1</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Main-group metal</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">86</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">17.2</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">31470</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">6.3</span></td> </tr> <tr> <td align="left" charoff="50" class="bgcolor_FFFFFF" colspan="5" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="5" rowspan="1" valign="top"><span class="font_size_2 table_entry">Organic structures</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Carbohydrates</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">8</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.6</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">5656</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.1</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Nucleosides/nucleotides</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">6</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.2</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1925</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.4</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Amino acids and peptides</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">29</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">5.8</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">10383</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">2.1</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Porphyrins/corrins</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">13</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">2.6</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">6158</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.2</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Steroids</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">12</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">2.4</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">3839</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.8</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Alkaloids</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">10</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">2.0</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">2678</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.5</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Organic polymers</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">8</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.6</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">299</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.1</span></td> </tr> <tr> <td align="left" charoff="50" class="bgcolor_FFFFFF" colspan="5" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="5" rowspan="1" valign="top"><span class="font_size_2 table_entry">Metal–organic structures</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Any metal: three-coordinate</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">9</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.8</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">5527</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.1</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Any metal: four-coordinate</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">37</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">7.4</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">58730</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">11.7</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Any metal: five-coordinate</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">21</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">4.2</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">30537</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">6.1</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Any metal: six-coordinate</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">52</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">10.4</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">83372</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">16.6</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Any metal: seven-coordinate</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">10</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">2.0</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">13065</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">2.6</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Any metal: eight-coordinate</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">10</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">2.0</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">6605</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.3</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Any metal: nine-coordinate</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">6</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.2</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">3123</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.6</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Any metal: ten-coordinate</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">2</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.4</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1051</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.2</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Any metal: (10+)-coordinate</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">5</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.0</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">463</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.1</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry"><span class="symbol">π</span> complexes</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">33</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">6.6</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">54235</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">10.8</span></td> </tr> <tr> <td align="left" charoff="50" class="bgcolor_FFFFFF" colspan="5" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="5" rowspan="1" valign="top"><span class="font_size_2 table_entry">Containing specific keywords</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">`Drug' or `Activity'</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">42</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">8.4</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">15543</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">3.1</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">`Polymorph' or `Form'</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">80</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">16.0</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">16253</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">3.2</span></td> </tr> <tr><td colspan="5"></td></tr></tbody> </table> </td> </tr> </tbody> </table> </div> <p>Many of the key molecules used in standard chemical texts to exemplify core concepts and principles in the undergraduate chemistry curriculum are included in the teaching subset. These include, <span class="it"><i>inter alia</i></span>, (<span class="it"><i>a</i></span>) compounds used to illustrate fundamental concepts of bonding and structure, <span class="it"><i>e.g.</i></span> benzene (CSD refcode BENZEN02), diborane (GAFLAA) and ferrocene (FEROCE27); (<span class="it"><i>b</i></span>) compounds used to exemplify conformational issues, including a wide variety of ring systems, <span class="it"><i>e.g.</i></span> the equi-energetic half-chair and envelope conformations of cyclopentane (LISLOO and IHIPOE, respectively), and the energetically preferred chair form of cyclohexane (CYCHEX); and (<span class="it"><i>c</i></span>) compounds commonly used to teach stereochemistry, <span class="it"><i>e.g.</i></span> the <span class="scp"><!-- font_size_2 -->L<!-- end of font_size_2 --></span>-(<span class="it"><i>R</i></span>)- and <span class="scp"><!-- font_size_2 -->D<!-- end of font_size_2 --></span>-(<span class="it"><i>S</i></span>) forms of alanine (LALNIN23 and ALUCAL05, respectively), and the three <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/S05984.html' onclick="return makeSubWindow("https://goldbook.iupac.org/S05984.html", 'Navigator')">stereoisomers</a> of tartaric acid [the two enantiomers (TARTAC and TARTAL04) and the achiral <span class="it"><i>meso</i></span> form (TARTAM)]. In addition to these key molecules it is important that the teaching subset accurately represents the massive chemical and structural diversity within the CSD. Thus, many major functional groups are represented, as are a wide range of broader chemical classes, including <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/C00820.html' onclick="return makeSubWindow("https://goldbook.iupac.org/C00820.html", 'Navigator')">carbohydrates,</a> <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/N04255.html' onclick="return makeSubWindow("https://goldbook.iupac.org/N04255.html", 'Navigator')">nucleotides,</a> amino acids, <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/S06005.html' onclick="return makeSubWindow("https://goldbook.iupac.org/S06005.html", 'Navigator')">steroids,</a> <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/P04765.html' onclick="return makeSubWindow("https://goldbook.iupac.org/P04765.html", 'Navigator')">porphyrins,</a> <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/A00220.html' onclick="return makeSubWindow("https://goldbook.iupac.org/A00220.html", 'Navigator')">alkaloids,</a> organometallics, metal complexes, <span class="it"><i>catena</i></span> structures and high polymers. A diverse range of molecular geometries are also represented, including simple examples (composed entirely of main-group elements) of all the main VSEPR structure types (see, <span class="it"><i>e.g.</i></span>, Housecroft & Sharpe, 2005<a id="sourceBB40"></a><a href="#BB40"><img alt="[Housecroft, C. E. & Sharpe, A. R. (2005). Inorganic Chemistry, 2nd ed. Harlow: Pearson Education Limited.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Housecroft, C. E. & Sharpe, A. R. (2005). Inorganic Chemistry, 2nd ed. Harlow: Pearson Education Limited." /></a>). Furthermore, the subset includes examples of 80 different crystallographic space groups. A broad range of molecules that can be used to demonstrate concepts of molecular symmetry are also included.</p><p>Structure quality was another important consideration. In order to preserve the unique challenges and advantages afforded by real measured data, no structures were modified in any way before inclusion. Therefore the teaching subset contains, for example, a small number of disordered structures (5.8%). Also, some structures have been determined more than once, and wherever possible the `best' determination of a particular structure, according to the definitions of van de Streek (2006<a id="sourceBB56"></a><a href="#BB56"><img alt="[Streek, J. van de (2006). Acta Cryst. B62, 567-579.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Streek, J. van de (2006). Acta Cryst. B62, 567-579." /></a>), was selected for inclusion in the subset.</p></div> </div> <div class="sec1" id="DIVSEC3"> <h3><a id="SEC3"></a>3. Teaching applications using the CSD subset <span class="it"><i>via WebCSD</i></span></h3> <div class="sec2" id="DIVSEC3.1"> <h4><a id="SEC3.1"></a>3.1. Teaching modules</h4> <p>It is obvious that individual structures, or small groups of structures, from the CSD teaching subset can be used to great effect in illustrating three-dimensional chemical concepts – conformation, stereochemistry, <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Chirality' onclick="return makeSubWindow("https://dictionary.iucr.org/Chirality", 'Navigator')">chirality,</a> hydrogen bonding, metal coordination geometry <span class="it"><i>etc.</i></span> – in any teaching environment. However, the subset can be used creatively to construct teaching modules that involve the student in a fully interactive learning experience. The CCDC website (CCDC, 2010<a href="#BB63"><img alt="[WebCSD (2010). https://webcsd.ccdc.cam.ac.uk/teaching_database_demo.php/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="WebCSD (2010). https://webcsd.ccdc.cam.ac.uk/teaching_database_demo.php/." /></a>) has five teaching modules (Table 2<a href="#TABLE2"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>) based entirely on use of the teaching subset and <span class="it"><i>WebCSD</i></span>. Four more modules that require the full CSD System (Table 3<a href="#TABLE3"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>) are discussed in §<a href="#SEC4"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>4. Each teaching module comprises the following components: (<span class="it"><i>a</i></span>) chemical background to the module, (<span class="it"><i>b</i></span>) the objectives of the exercise, (<span class="it"><i>c</i></span>) database and software requirements, (<span class="it"><i>d</i></span>) steps required to complete the module, fully illustrated by screen shots, and (<span class="it"><i>e</i></span>) a summary of the key concepts that have been learned. The topics and objectives of these modules, together with an overview of the student's interaction with the system, are summarized in Tables 2<a href="#TABLE2"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a> and 3<a href="#TABLE3"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>. These modules are fully discussed elsewhere (Battle <span class="it"><i>et al.</i></span>, 2010<span class="it"><i>b</i></span><a id="sourceBB8"></a><a href="#BB8"><img alt="[Battle, G. M., Allen, F. H. & Ferrence, G. M. (2010b). J. Chem. Educ. In the press. doi:10.1021/ed100257t.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Battle, G. M., Allen, F. H. & Ferrence, G. M. (2010b). J. Chem. Educ. In the press. doi:10.1021/ed100257t." /></a>), so here we briefly exemplify their value in the teaching of (<span class="it"><i>a</i></span>) organic and (<span class="it"><i>b</i></span>) inorganic chemistry with an expanded description of one module in each of these chemical categories.</p><div class="table"> <table cellpadding="2" class="bgcolor_FFCC99" summary="Five teaching modules based entirely on use of the CSD teaching subset and WebCSD" width="100%"> <tbody> <tr> <td> <table class="bgcolor_FFCC99 tbheader" summary="Five teaching modules based entirely on use of the CSD teaching subset and WebCSD" width="100%"> <tbody> <tr> <td align="left" class="bgcolor_FFCC99" valign="bottom"> <p><span class="font_size_3 table_number"><b><a id="TABLE2">Table 2</a></b></span><br /><span class="font_size_2 tbcaption">Five teaching modules based entirely on use of the CSD teaching subset and <span class="it"><i>WebCSD</i></span></span> </p></td> </tr> </tbody> </table> <table class="bgcolor_FFCC99 tbheader" summary="Five teaching modules based entirely on use of the CSD teaching subset and WebCSD" width="100%"> <tbody> <tr> <td align="left" class="bgcolor_FFCC99" valign="bottom"> </td> </tr> </tbody> </table> <table summary="Five teaching modules based entirely on use of the CSD teaching subset and WebCSD" width="100%"> <thead valign="top"> <tr> <th align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="bottom"><span class="font_size_2">Topic and objectives</span></th> <th align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="bottom"><span class="font_size_2">Interactive activities</span></th> </tr> </thead> <tbody valign="top"> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Unit 1: Aromaticity and the planarity of benzene</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">To investigate the structural requirements for aromaticity. To understand the stability of benzene in terms of its molecular orbital description. To apply Huckels rule to predict whether or not certain compounds are aromatic.</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Visualize a series of benzene and cyclooctatetraene derivatives, measure and compare the carbon–carbon bond lengths and planarity of the structures. Relate structural characteristics to the number of <span class="symbol">π</span> electrons. Use findings to predict whether or not certain compounds are aromatic.</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="2" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Unit 2: Ring strain and conformation</span></td> <td align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">To understand that angle strain can occur in cycloalkanes as a result of deviation from the ideal <span class="it"><i>sp</i></span><span class="sup"><sup>3</sup></span> geometry and when neighbouring bonds are forced to be eclipsed (Pitzer strain). To be able to account for the conformations of three- to six-membered carbocycles in terms of the strain present. To explain why cyclohexane is essentially strain free.</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Calculate angle strain for a series of fully saturated planar carbocycles. Measure the actual angle strain in cyclohexane by analysing structural data. Plot and compare calculated angle strain for planar rings with that measured in actual compounds. Visualize three- to six-membered carbocycles and account for the observed conformations.</span></td> </tr> <tr> <td align="left" charoff="50" class="bgcolor_FFFFFF" colspan="2" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Unit 3: Stereochemistry and chirality</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">To recognize a stereogenic (chiral) centre in a molecule. To assign <span class="it"><i>R</i></span> and <span class="it"><i>S</i></span> configurations. To predict, identify and distinguish between enantiomers and diastereomers. To recognize a <span class="it"><i>meso</i></span> compound. To recognize other structural features that can give rise to chirality.</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Compare two crystal structures of alanine and describe their relationship. Identify basic structural features that give rise to chirality. Describe the configuration of chiral centres in given molecules. Visualize and understand the relationship between the structures of threonine, ephedrine and tartaric acid. Examine further structures and recognize other features that can give rise to chirality, <span class="it"><i>e.g.</i></span> quadrivalent and tervalent chiral atoms, restricted rotation, and helicity.</span></td> </tr> <tr> <td align="left" charoff="50" class="bgcolor_FFFFFF" colspan="2" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Unit 4: VSEPR</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">To investigate three-dimensional molecular shape. To understand factors that determine the preferred three-dimensional shape of specific molecules. To use the VSEPR model to predict three-dimensional molecular shape.</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Examine the structures of di-, tri- and tetrachloromercury; determine the main factors that control the geometry adopted. Observe effects of lone pairs on geometry by examining [XeF<span class="inf"><sub>5</sub></span>]<span class="sup"><sup>−</sup></span>, water and dibromodimethylselenium. Apply the VSEPR model to predict the geometry of given molecules. Compare predictions with crystal structures and comment on how closely the observed bond angles agree with the expected ideal values.</span></td> </tr> <tr> <td align="left" charoff="50" class="bgcolor_FFFFFF" colspan="2" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Unit 5: Hapticity</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">To investigate the concept of hapticity and learn its nomenclature. To examine the structural perturbations of ligands as a function of their hapticity.</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Visualize given CSD structures and investigate the different modes of metal–carbon bonding. Relate nomenclature to structural features. Examine a series of structures and identify the hapticity of the organometallic ligands.</span></td> </tr> <tr><td colspan="2"></td></tr></tbody> </table> </td> </tr> </tbody> </table> </div> <div class="table"> <table cellpadding="2" class="bgcolor_FFCC99" summary="Four teaching modules based on use of the complete CSD System" width="100%"> <tbody> <tr> <td> <table class="bgcolor_FFCC99 tbheader" summary="Four teaching modules based on use of the complete CSD System" width="100%"> <tbody> <tr> <td align="left" class="bgcolor_FFCC99" valign="bottom"> <p><span class="font_size_3 table_number"><b><a id="TABLE3">Table 3</a></b></span><br /><span class="font_size_2 tbcaption">Four teaching modules based on use of the complete CSD System</span> </p></td> </tr> </tbody> </table> <table class="bgcolor_FFCC99 tbheader" summary="Four teaching modules based on use of the complete CSD System" width="100%"> <tbody> <tr> <td align="left" class="bgcolor_FFCC99" valign="bottom"> </td> </tr> </tbody> </table> <table summary="Four teaching modules based on use of the complete CSD System" width="100%"> <thead valign="top"> <tr> <th align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="bottom"><span class="font_size_2">Topic and objectives</span></th> <th align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="bottom"><span class="font_size_2">Interactive activities</span></th> </tr> </thead> <tbody valign="top"> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Unit 6: Reaction intermediates – halonium ions</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">To evaluate possible mechanisms for the electrophilic addition of Br<span class="inf"><sub>2</sub></span> to an alkene based on the stereochemistry of the products that are formed. To search the CSD for evidence of the existence of a cyclic bromonium ion intermediate. To account for the observed stability of the adamantylidene­adamantane­bromonium ion.</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Investigate the stereochemistry of halogen addition by searching for evidence in the CSD that the cyclic bromonium ion actually does exist. Find other examples of halonium ions Explain the stability of the halonium ions found in the CSD.</span></td> </tr> <tr> <td align="left" charoff="50" class="bgcolor_FFFFFF" colspan="2" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Unit 7: Metal–carbonyl back bonding</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">To search for molybdenum carbon monoxide complexes in the CSD using <span class="it"><i>ConQuest</i></span> and monitor the Mo—C and C=O bond lengths. To read the search results into <span class="it"><i>Vista</i></span> for further analysis. To rationalize the search results based on electron counting and orbital considerations.</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Define a search for molybdenum carbon monoxide complexes. Define the relevant bond lengths of interest (the Mo—C and C=O bonds) and apply suitable constraints. Set the search running and analyse the results. Try and rationalize your observations.</span></td> </tr> <tr> <td align="left" charoff="50" class="bgcolor_FFFFFF" colspan="2" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Unit 8: Square-planar-to-tetrahedral interconversions at four-coordinate metals</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">To determine the preferred geometries adopted by four-coordinate transition metal complexes by analysing the collected geometric data. To investigate some of the structures with non-idealized coordination geometries.</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Search for four-coordinate transition metal complexes in the CSD and for each hit structure retrieve the values of the <span class="it"><i>L</i></span>—<span class="it"><i>M</i></span>—<span class="it"><i>L</i></span> angles (four `<span class="it"><i>cis</i></span>' and two `<span class="it"><i>trans</i></span>'). Work out a single angular parameter to define the metal coordination geometry, and plot and analyse the data.</span></td> </tr> <tr> <td align="left" charoff="50" class="bgcolor_FFFFFF" colspan="2" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Unit 9: Molecular dimensions (basic)</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry"> </span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">To determine the preferred value of an Sb—Cl bond length in SbCl<span class="inf"><sub>6</sub></span> by generating a bond-length distribution from CSD structures. To evaluate the precision of the results using statistical criteria. To examine the outliers in the bond-length distribution and attempt to distinguish those due to error from those of structural interest.</span></td> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Search for SbCl<span class="inf"><sub>6</sub></span> ions in the CSD and retrieve all Sb—Cl bond lengths. What is the typical Sb—Cl bond length in hexachloro­antimony? How precise is this mean value? Investigate the outliers in the Sb—Cl bond-length distribution. Evaluate the structure that contains the longest observed Sb—Cl bond length.</span></td> </tr> <tr><td colspan="2"></td></tr></tbody> </table> </td> </tr> </tbody> </table> </div> <p>While we are confident that these exercises are of sound pedagogical value, a formal assessment of the learning efficacy of these specific modules has yet to be carried out. Rather, our core purpose here has been threefold: (<span class="it"><i>a</i></span>) to illustrate how the CSD teaching subset can be used in teaching, (<span class="it"><i>b</i></span>) to encourage others to suggest additional structures for inclusion in the subset (email <a href="mailto:teaching%40ccdc.cam.ac.uk">teaching@ccdc.cam.ac.uk</a>) and to derive or suggest additional examples for inclusion in the teaching section of the CCDC website, and (<span class="it"><i>c</i></span>) to encourage others to assess their student learning outcomes upon adoption of these tools in order to help provide a more authoritative discussion of their pedagogical value.</p></div> <div class="sec2" id="DIVSEC3.2"> <h4><a id="SEC3.2"></a>3.2. Organic chemistry</h4> <p>Module 3 on stereochemistry and <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Chirality' onclick="return makeSubWindow("https://dictionary.iucr.org/Chirality", 'Navigator')">chirality</a> introduces the importance of these concepts in organic chemistry, biological systems and drug action. The value of experimental three-dimensional structural information in illustrating basic concepts is reinforced. The student is first asked to compare two crystal structures of alanine: natural <span class="scp"><!-- font_size_2 -->L<!-- end of font_size_2 --></span>-(<span class="it"><i>R</i></span>)-alanine (LALNIN23) and the <span class="scp"><!-- font_size_2 -->D<!-- end of font_size_2 --></span>-(<span class="it"><i>S</i></span>) form (ALUCAL05). These two structures are mirror images and cannot be superimposed. Various manipulations of the structures are performed using <span class="it"><i>WebCSD</i></span>, including viewing each along the C—H bond (Figs. 2<a href="#FIG2"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a><span class="it"><i>a</i></span> and 2<a href="#FIG2"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a><span class="it"><i>b</i></span>) and comparing the results. From this, the tutorial develops rules for <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Chirality' onclick="return makeSubWindow("https://dictionary.iucr.org/Chirality", 'Navigator')">chirality</a> perception, and students are asked to examine a number of structures and determine if they contain a stereogenic centre or not. Next, the concept of <span class="it"><i>R</i></span> and <span class="it"><i>S</i></span> enantiomers is introduced by defining the priority ordering of substituents at the chiral C atom in alanine. Students are asked to make <span class="it"><i>R</i></span> or <span class="it"><i>S</i></span> assignments for several other CSD structures, including carvone (RERXIV), adrenaline (ADRENL) and ibuprofen (JEKNOC10).</p><div class="fig"> <table cellpadding="5" class="fig" summary="Figure 2" width="100%"> <tbody> <tr> <td class="td_align_center width_20"> <a href="kk5063fig2.html"><img alt="[Figure 2]" class="figlnkthm img_align_middle" src="kk5063fig2thm.gif" /> <br /></a> </td> <td> <span class="font_size_3"><b><a href="kk5063fig2.html" id="FIG2">Figure 2</a></b></span> <br /><span class="font_size_2 caption">(<span class="it"><i>a</i></span>) <span class="scp"><!-- font_size_2 -->L<!-- end of font_size_2 --></span>-(<span class="it"><i>R</i></span>)-alanine (LALNIN23), (<span class="it"><i>b</i></span>) <span class="scp"><!-- font_size_2 -->D<!-- end of font_size_2 --></span>-(<span class="it"><i>S</i></span>)-alanine (ALUCAL05), (<span class="it"><i>c</i></span>) (2<span class="it"><i>S</i></span>,3<span class="it"><i>R</i></span>)-threonine (LTHREO01) and (<span class="it"><i>d</i></span>) (2<span class="it"><i>S</i></span>,3<span class="it"><i>R</i></span>)-threonine (two-dimensional wedge/dot bonds representation).</span></td> </tr> </tbody> </table> </div> <p>The tutorial then considers compounds having more than one stereogenic centre, through an examination of threonine (LTHREO01; Figs. 2<a href="#FIG2"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a><span class="it"><i>c</i></span> and 2<a href="#FIG2"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a><span class="it"><i>d</i></span>) which has two chiral centres identifiable as (2<span class="it"><i>S</i></span>,3<span class="it"><i>R</i></span>). The student is asked to determine which other <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/S05984.html' onclick="return makeSubWindow("https://goldbook.iupac.org/S05984.html", 'Navigator')">stereoisomers</a> can exist for threonine (four) and to determine their relationship as two pairs of mirror-image (enantiomeric) structures: (<span class="it"><i>a</i></span>) (2<span class="it"><i>R</i></span>,3<span class="it"><i>R</i></span>)/(2<span class="it"><i>S</i></span>,3<span class="it"><i>S</i></span>) and (<span class="it"><i>b</i></span>) (2<span class="it"><i>R</i></span>,3<span class="it"><i>S</i></span>)/(2<span class="it"><i>S</i></span>,3<span class="it"><i>R</i></span>). The diasteromeric relationship between non-mirror-image pairs is then introduced and exemplified <span class="it"><i>via</i></span> a study of ephedrine (EPHEDR01) and pseudoephedrine (PSEPED01). The final segment of the tutorial discusses the <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/S05984.html' onclick="return makeSubWindow("https://goldbook.iupac.org/S05984.html", 'Navigator')">stereoisomers</a> of tartaric acid (TARTAC, TARTAL04 and TARTAM), where the two stereogenic centres might be expected to generate four <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/S05984.html' onclick="return makeSubWindow("https://goldbook.iupac.org/S05984.html", 'Navigator')">stereoisomers,</a> paired up as for threonine above. In fact, we see only three <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/S05984.html' onclick="return makeSubWindow("https://goldbook.iupac.org/S05984.html", 'Navigator')">stereoisomers:</a> the mirror-image optically active forms (2<span class="it"><i>S</i></span>,3<span class="it"><i>S</i></span>) (TARTAC) and (2<span class="it"><i>R</i></span>,3<span class="it"><i>R</i></span>) (TARTAL04), and TARTAM which is both (2<span class="it"><i>R</i></span>,3<span class="it"><i>S</i></span>) and (2<span class="it"><i>S</i></span>,3<span class="it"><i>R</i></span>) since the molecule has a mirror plane bisecting the central C—C bond, so that no absolute distinction can be made between C<span class="inf"><sub>2</sub></span> and C<span class="inf"><sub>3</sub></span>. Such compounds are not optically active (achiral) and are termed <span class="it"><i>meso</i></span> compounds.</p><p>The <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Chirality' onclick="return makeSubWindow("https://dictionary.iucr.org/Chirality", 'Navigator')">chirality</a> tutorial is followed by suggestions for more advanced exercises covering other kinds of molecules that can display <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Chirality' onclick="return makeSubWindow("https://dictionary.iucr.org/Chirality", 'Navigator')">chirality,</a> <span class="it"><i>e.g.</i></span> (<span class="it"><i>a</i></span>) compounds with other quadrivalent atoms; (<span class="it"><i>b</i></span>) compounds with tervalent chiral atoms, <span class="it"><i>e.g.</i></span> pyramidal N in which the lone pair acts as the fourth substituent; (<span class="it"><i>c</i></span>) compounds that exhibit molecular <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Chirality' onclick="return makeSubWindow("https://dictionary.iucr.org/Chirality", 'Navigator')">chirality;</a> (<span class="it"><i>d</i></span>) <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Chirality' onclick="return makeSubWindow("https://dictionary.iucr.org/Chirality", 'Navigator')">chirality</a> due to <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/R05349.html' onclick="return makeSubWindow("https://goldbook.iupac.org/R05349.html", 'Navigator')">restricted rotation,</a> where a tetra-<span class="it"><i>ortho</i></span>-substituted biphenyl is provided as an example for study; and (<span class="it"><i>e</i></span>) <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Chirality' onclick="return makeSubWindow("https://dictionary.iucr.org/Chirality", 'Navigator')">chirality</a> due to helicity, as exemplified by the hexahelicenes, which illustrate how clockwise and counterclockwise helices are not superimposable.</p></div> <div class="sec2" id="DIVSEC3.3"> <h4><a id="SEC3.3"></a>3.3. Inorganic chemistry</h4> <p>Module 4 (Table 2<a href="#TABLE2"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>) illustrates the VSEPR method. The basic shapes of molecules tend to be controlled by the number of electrons in the valence shell of the central atom. The valence-shell electron-pair repulsion (VSEPR) model facilitates the prediction of three-dimensional molecular shapes. The tutorial begins by asking students to predict three-dimensional structures for di-, tri- and tetrachloromercury, to compare their predictions with structures in the CSD teaching subset – OKAJOZ (linear HgCl<span class="inf"><sub>2</sub></span>), KUSMAM (trigonal planar HgCl<span class="inf"><sub>3</sub></span><span class="sup"><sup>−</sup></span>) and KEYZUK (tetrahedral HgCl<span class="inf"><sub>4</sub></span><span class="sup"><sup>2−</sup></span>) – and to confirm these shapes by measuring Cl—Hg—Cl angles. This agrees with the VSEPR model, which predicts that preferred shapes will ensure that regions of enhanced electron density will take up positions as far apart as possible to generate a minimum-energy arrangement. A table is then provided of the ideal VSEPR geometries for compounds containing from two to eight electron pairs. Using [PF<span class="inf"><sub>6</sub></span>]<span class="sup"><sup>−</sup></span> as an example, students are asked to determine the number of electron pairs present (six), predict the preferred three-dimensional shape (octahedral), and confirm this by examining and measuring valence angles in WINFAA. Several other CSD examples of three–six coordination are then provided to be studied in the same way.</p><p>The tutorial then considers the effect of lone pairs, using the [XeF<span class="inf"><sub>5</sub></span>]<span class="sup"><sup>−</sup></span> ion present in SOBWAH (Fig. 3<a href="#FIG3"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a><span class="it"><i>a</i></span>), which shows the ion to be a planar five-coordinate species – why? The tutorial provides the answer in terms of minimizing lone-pair–lone-pair repulsions. The student is then asked to rationalize (<span class="it"><i>a</i></span>) the `seesaw' shape of dibromodimethylselenium (RIZMIW; Fig. 3<a href="#FIG3"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a><span class="it"><i>b</i></span>), where the lone pair occupies an equatorial position in a trigonal bipyramid to minimize lone-pair–bonding-pair repulsions, and (<span class="it"><i>b</i></span>) the three-dimensional structure of the water solvent in MUSIMO01, which has an H—O—H angle less than the normal tetrahedral value. The tutorial concludes by suggesting a further dozen compounds for application of the VSEPR method, together with CSD refcodes for confirming the predictions.</p><div class="fig"> <table cellpadding="5" class="fig" summary="Figure 3" width="100%"> <tbody> <tr> <td class="td_align_center width_20"> <a href="kk5063fig3.html"><img alt="[Figure 3]" class="figlnkthm img_align_middle" src="kk5063fig3thm.gif" /> <br /></a> </td> <td> <span class="font_size_3"><b><a href="kk5063fig3.html" id="FIG3">Figure 3</a></b></span> <br /><span class="font_size_2 caption">(<span class="it"><i>a</i></span>) The planar [XeF<span class="inf"><sub>5</sub></span>]<span class="sup"><sup>−</sup></span> ion (present in CSD structure SOBWAH) maximizes the lone-pair repulsion so that the F atoms occupy the apices of a pentagonal bipyramid. (<span class="it"><i>b</i></span>) The `seesaw' shape of dibromodimethylselenium (RIZMIW), where the lone pair occupies an equatorial position in a trigonal bipyramid to minimize lone-pair–bonding-pair repulsions.</span></td> </tr> </tbody> </table> </div> </div> <div class="sec2" id="DIVSEC3.4"> <h4><a id="SEC3.4"></a>3.4. Hydrogen bonding</h4> <p>The basic concepts of hydrogen bonding as an electrostatic donor (<span class="it"><i>D</i></span>)–acceptor (<span class="it"><i>A</i></span>) interaction of the form <span class="it"><i>D</i></span>—H<span class="sup"><sup><span class="symbol">δ</span>+</sup></span>⋯<span class="it"><i>A</i></span><span class="sup"><sup><span class="symbol">δ</span>−</sup></span> that is responsible for the formation of many extended structures, and which is vital in biological systems, is readily illustrated by use of structures from the teaching subset. For maximum effectiveness, these should be downloaded and viewed with the <span class="it"><i>Mercury</i></span> software (Macrae <span class="it"><i>et al.</i></span>, 2006<a href="#BB46"><img alt="[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457." /></a>), which detects hydrogen bonds according to (configurable) geometrical criteria, and shows these as `hanging' (red) contacts from the target molecule (<span class="it"><i>e.g.</i></span> as for adipic acid, ADIPAC04; Fig. 4<a href="#FIG4"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a><span class="it"><i>a</i></span>); clicking on these hanging contacts then expands the molecular array, forming a chain of carboxylic acid dimers (Fig. 4<a href="#FIG4"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a><span class="it"><i>b</i></span>). Students might then be asked to examine hydrogen bonding in other acids, <span class="it"><i>e.g.</i></span> acetic acid (ACETAC07), benzoic acid (BENZAC02), acrylic acid (ACRLAC02) <span class="it"><i>etc</i></span>. They should note that acetic acid is unusual in forming an extended <span class="it"><i>catena</i></span> structure, rather than the cyclic dimer exhibited in Fig. 4<a href="#FIG4"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>(<span class="it"><i>b</i></span>). Further insights can be gained by inspecting the hydrogen bonding exhibited by other functional groups, such as amide, hydroxy <span class="it"><i>etc</i></span>. Students might then be asked to examine the more complex hydrogen-bonding possibilities available in simple amino acids, such as the <span class="scp"><!-- font_size_2 -->D<!-- end of font_size_2 --></span>- and <span class="scp"><!-- font_size_2 -->L<!-- end of font_size_2 --></span>-alanines (ALUCAL05, LALNIN23), which are zwitterionic and have three N—H donors and two O=C acceptors; they might extend this study to other amino acids, such as <span class="scp"><!-- font_size_2 -->L<!-- end of font_size_2 --></span>-serine (LSERIN01), which has an additional OH donor/acceptor, and <span class="scp"><!-- font_size_2 -->L<!-- end of font_size_2 --></span>-cystine (LCYSTI10) with six N—H donors and four O=C acceptors. Studies of this type provide insights into the hydrogen-bonding complexities that exist in <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/P04479.html' onclick="return makeSubWindow("https://goldbook.iupac.org/P04479.html", 'Navigator')">peptides</a> and in protein structures.</p><div class="fig"> <table cellpadding="5" class="fig" summary="Figure 4" width="100%"> <tbody> <tr> <td class="td_align_center width_20"> <a href="kk5063fig4.html"><img alt="[Figure 4]" class="figlnkthm img_align_middle" src="kk5063fig4thm.gif" /> <br /></a> </td> <td> <span class="font_size_3"><b><a href="kk5063fig4.html" id="FIG4">Figure 4</a></b></span> <br /><span class="font_size_2 caption"><span class="it"><i>Mercury</i></span> plots exploring hydrogen bonding in the CSD teaching subset. (<span class="it"><i>a</i></span>) Adipic acid (ADIPAC04) with `hanging' hydrogen-bonded O—H⋯O contacts in red, and (<span class="it"><i>b</i></span>) extended chain of molecules formed by carboxylic acid dimers obtained by clicking on the hanging contacts in part (<span class="it"><i>a</i></span>).</span></td> </tr> </tbody> </table> </div> </div> </div> <div class="sec1" id="DIVSEC4"> <h3><a id="SEC4"></a>4. Teaching applications using the full CSD System</h3> <p>While the CSD teaching subset and its application modules provide a significant resource for chemical educators, there are many cases where the full CSD System is essential to make an educational point (Tables 2<a href="#TABLE2"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a> and 3<a href="#TABLE3"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>). This is particularly true when introducing students to variance in real experimental observations, or in examples where many hundreds of observations are required to generate statistically meaningful trends from the structural data. In this section, we trace some important themes in modern organic and inorganic structural chemistry from an educational viewpoint. Some of the examples derive directly from published research applications of the CSD.</p> <div class="sec2" id="DIVSEC4.1"> <h4><a id="SEC4.1"></a>4.1. Organic chemistry</h4> <div class="sec3" id="DIVSEC4.1.1"> <h5><a id="SEC4.1.1"></a>4.1.1. Mean molecular dimensions</h5> <p>The derivation of mean molecular and intermolecular geometrical parameters has been a major research use of the CSD. In the late 1980s, the CCDC and collaborators at the University of Bristol, UK, published printed compilations of mean bond lengths in organic molecules (Allen <span class="it"><i>et al.</i></span>, 1987<a id="sourceBB1"></a><a href="#BB1"><img alt="[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19." /></a>) and in organometallics and complexes of the <span class="it"><i>d</i></span>- and <span class="it"><i>f</i></span>-block metals (Orpen <span class="it"><i>et al.</i></span>, 1989<a id="sourceBB51"></a><a href="#BB51"><img alt="[Orpen, G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Orpen, G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83." /></a>). These compilations in themselves provide key information for students, but it is also informative for students to appreciate the data retrieval and analysis methods that were used in the generation of the mean values given in the tables. A simple example concerning the mean Sb—F distance in SbF<span class="inf"><sub>6</sub></span> ions can be accessed <span class="it"><i>via</i></span> the CCDC website (CCDC, 2010<span class="it"><i>a</i></span><a href="#BB21"><img alt="[CCDC (2010a). CSD-based Teaching Modules. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/free_services/teaching/modules/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="CCDC (2010a). CSD-based Teaching Modules. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/free_services/teaching/modules/." /></a>) (see Table 3<a href="#TABLE3"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>), but we illustrate the fundamentals by expanding on Module 2 of Table 2<a href="#TABLE2"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a> – ring strain and conformation – by (<span class="it"><i>a</i></span>) evaluating the mean C—C bond length in an unstrained C—C single bond, (<span class="it"><i>b</i></span>) comparing this value with mean C—C bond lengths in the strained carbocycles cyclopropane and cyclobutane, and (<span class="it"><i>c</i></span>) performing a more detailed analysis of ring buckling in four-membered carbocycles.</p><p>Since there are millions of C—C bonds in the CSD, we restrict our <span class="it"><i>ConQuest</i></span> search for unstrained examples to the specific <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Substructure' onclick="return makeSubWindow("https://dictionary.iucr.org/Substructure", 'Navigator')">substructure</a> (C<span class="it"><i>sp</i></span><span class="sup"><sup>3</sup></span>)<span class="inf"><sub>2</sub></span>—CH—CH—(C<span class="it"><i>sp</i></span><span class="sup"><sup>3</sup></span>)<span class="inf"><sub>2</sub></span>. In order to avoid C—C bonds from strained rings, <span class="it"><i>ConQuest</i></span> can be instructed to select only acyclic central bonds, and to avoid hits that contain any additional direct links between atoms specified in the query <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Substructure' onclick="return makeSubWindow("https://dictionary.iucr.org/Substructure", 'Navigator')">substructure.</a> After removal of 33 obvious outliers, the histogram of Fig. 5<a href="#FIG5"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>(<span class="it"><i>a</i></span>) was obtained, giving a mean central C—C bond length of 1.540 Å, with a sample s.u., <span class="symbol">σ</span><span class="inf"><sub>s</sub></span>, of 0.016 Å, and an s.u. of the mean, <span class="symbol">σ</span><span class="inf"><sub>m</sub></span>, of <0.001 for the 6301 observations. Similar CSD searches were carried out for cyclopropane and cyclobutane rings, using <span class="it"><i>ConQuest</i></span> settings to avoid fusion to any other ring, with the results for mean C—C bond lengths set out in Table 4<a href="#TABLE4"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>. For cyclobutane, the dihedral angle about one of the ring diagonals (<span class="symbol">θ</span>) was also calculated for each ring, and the <span class="symbol">θ</span> distribution is shown in Fig. 5<a href="#FIG5"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>(<span class="it"><i>b</i></span>). This shows that the majority of rings are puckered, with a preference for <span class="symbol">θ</span> values in the range 15–35°. The puckering relieves the strain in the ring due to the short 1,3-(C,C) distances and the perfectly eclipsed C—<span class="it"><i>X</i></span> substituents that occur in the planar form. Nevertheless, 69 of the 383 rings in this sample are perfectly planar in crystal structures, usually occurring around a centre of symmetry. The increased strain in these planar rings is reflected in the data of Table 4<a href="#TABLE4"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>, which show that the mean C—C bond in planar cyclobutane is longer by almost 0.02 Å than the C—C bond in puckered rings. Given that cyclopropane is planar with fully eclipsed C—<span class="it"><i>X</i></span> substituents, students might imagine that the mean C—C distance here would also be longer than for an unstrained C—C bond. Students will see, however, that the mean C—C bond in cyclopropane is in fact very much shorter than any of the other C—C bonds quoted in Table 4<a href="#TABLE4"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>. This leads immediately to a discussion of the `banana' bonds and Walsh orbitals that explain bonding in cyclopropane (Walsh, 1949<a id="sourceBB62"></a><a href="#BB62"><img alt="[Walsh, A. D. (1949). Trans. Faraday Soc. 45, 179-190.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Walsh, A. D. (1949). Trans. Faraday Soc. 45, 179-190." /></a>; Jorgensen & Salem, 1973<a id="sourceBB44"></a><a href="#BB44"><img alt="[Jorgensen, W. F. & Salem, L. (1973). The Organic Chemist's Book of Orbitals. New York: Academic Press.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Jorgensen, W. F. & Salem, L. (1973). The Organic Chemist's Book of Orbitals. New York: Academic Press." /></a>), and to a discussion of the ethylenic nature of the cyclopropane ring (Charton, 1970<a id="sourceBB26"></a><a href="#BB26"><img alt="[Charton, M. (1970). The Chemistry of Alkenes, Vol. II, edited by J. Zabicky, pp. 511-610. London: Interscience.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Charton, M. (1970). The Chemistry of Alkenes, Vol. II, edited by J. Zabicky, pp. 511-610. London: Interscience." /></a>) in organic systems.</p><div class="table"> <table cellpadding="2" class="bgcolor_FFCC99" summary="Mean C—C bond lengths (Å) in different chemical substructures determined using the CSD System" width="100%"> <tbody> <tr> <td> <table class="bgcolor_FFCC99 tbheader" summary="Mean C—C bond lengths (Å) in different chemical substructures determined using the CSD System" width="100%"> <tbody> <tr> <td align="left" class="bgcolor_FFCC99" valign="bottom"> <p><span class="font_size_3 table_number"><b><a id="TABLE4">Table 4</a></b></span><br /><span class="font_size_2 tbcaption">Mean C—C bond lengths (Å) in different chemical substructures determined using the CSD System</span> </p></td> </tr> </tbody> </table> <table class="bgcolor_FFCC99 tbheader" summary="Mean C—C bond lengths (Å) in different chemical substructures determined using the CSD System" width="100%"> <tbody> <tr> <td align="left" class="bgcolor_FFCC99" valign="bottom"> <div class="tbheadn"><p><span class="font_size_2_tbheadn"><span class="it"><i>N</i></span><span class="inf"><sub>obs</sub></span> is the number of observations retrieved from the CSD, <span class="symbol">σ</span><span class="inf"><sub>m</sub></span> (Å) is the s.u. of the mean value and <span class="symbol">σ</span><span class="inf"><sub>s</sub></span> (Å) is the s.u. of the sample.</span></p></div> </td> </tr> </tbody> </table> <table summary="Mean C—C bond lengths (Å) in different chemical substructures determined using the CSD System" width="100%"> <thead valign="top"> <tr> <th align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="bottom"><span class="font_size_2">Substructure</span></th> <th align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="bottom"><span class="font_size_2">Mean <span class="it"><i>d</i></span>(C—C)</span></th> <th align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="bottom"><span class="font_size_2"><span class="it"><i>N</i></span><span class="inf"><sub>obs</sub></span></span></th> <th align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="bottom"><span class="font_size_2"><span class="symbol">σ</span><span class="inf"><sub>m</sub></span></span></th> <th align="left" charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="bottom"><span class="font_size_2"><span class="symbol">σ</span><span class="inf"><sub>s</sub></span></span></th> </tr> </thead> <tbody valign="top"> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">(C<span class="it"><i>sp</i></span><span class="sup"><sup>3</sup></span>)<span class="inf"><sub>2</sub></span>—CH—CH—(C<span class="it"><i>sp</i></span><span class="sup"><sup>3</sup></span>)<span class="inf"><sub>2</sub></span></span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.540</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">6301</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry"><0.001</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.016</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Cyclopropane</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.505</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">770</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.001</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.013</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Cyclobutane (all bonds)</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.550</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">383</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.002</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.016</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Cyclobutane (puckered)</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.547</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">318</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.002</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.015</span></td> </tr> <tr> <td align="left" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">Cyclobutane (planar)</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">1.564</span></td> <td align="right" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">65</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.002</span></td> <td align="char" char="." charoff="50" class="bgcolor_FFFFFF" colspan="1" rowspan="1" valign="top"><span class="font_size_2 table_entry">0.011</span></td> </tr> <tr><td colspan="5"></td></tr></tbody> </table> </td> </tr> </tbody> </table> </div> <div class="fig"> <table cellpadding="5" class="fig" summary="Figure 5" width="100%"> <tbody> <tr> <td class="td_align_center width_20"> <a href="kk5063fig5.html"><img alt="[Figure 5]" class="figlnkthm img_align_middle" src="kk5063fig5thm.gif" /> <br /></a> </td> <td> <span class="font_size_3"><b><a href="kk5063fig5.html" id="FIG5">Figure 5</a></b></span> <br /><span class="font_size_2 caption">CSD plots of (<span class="it"><i>a</i></span>) mean bond length for central C—C bond in acyclic (C<span class="it"><i>sp</i></span><span class="sup"><sup>3</sup></span>)<span class="inf"><sub>2</sub></span>—CH—CH—(C<span class="it"><i>sp</i></span><span class="sup"><sup>3</sup></span>)<span class="inf"><sub>2</sub></span> substructures, and (<span class="it"><i>b</i></span>) angle of pucker (<span class="symbol">θ</span>) in nonfused/nonbridged cyclobutane rings.</span></td> </tr> </tbody> </table> </div> </div> <div class="sec3" id="DIVSEC4.1.2"> <h5><a id="SEC4.1.2"></a>4.1.2. <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/C01259.html' onclick="return makeSubWindow("https://goldbook.iupac.org/C01259.html", 'Navigator')">Conformational analysis</a> and stereochemistry</h5> <p>The usual student introduction to <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/C01259.html' onclick="return makeSubWindow("https://goldbook.iupac.org/C01259.html", 'Navigator')">conformational analysis</a> is the relationship between <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/P04778.html' onclick="return makeSubWindow("https://goldbook.iupac.org/P04778.html", 'Navigator')">potential energy</a> (<span class="it"><i>E</i></span>) and the H—C—C—H torsion angle (<span class="symbol">τ</span>) in ethane: the equi-energetic staggered conformations (illustrated in the CSD teaching subset by ETHANE01) with <span class="symbol">τ</span> = ±60 (±<span class="it"><i>gauche</i></span>) and 180° (<span class="it"><i>anti</i></span>) are favoured over the fully eclipsed conformers (<span class="symbol">τ</span> = 0 and ±120°) by around 12 kJ mol<span class="sup"><sup>−1</sup></span> (Eliel & Wilen, 1994<a id="sourceBB33"></a><a href="#BB33"><img alt="[Eliel, E. H. & Wilen, S. H. (1994). Stereochemistry of Organic Compounds. New York: Wiley-Interscience.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Eliel, E. H. & Wilen, S. H. (1994). Stereochemistry of Organic Compounds. New York: Wiley-Interscience." /></a>). However, as the H atoms in ethane are progressively replaced by larger groups, <span class="it"><i>e.g.</i></span> methyl groups as in butane (Fig. 6<a href="#FIG6"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a><span class="it"><i>a</i></span>), 2-methylbutane (Fig. 6<a href="#FIG6"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a><span class="it"><i>b</i></span>) and 2,3-dimethylbutane (Fig. 6<a href="#FIG6"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a><span class="it"><i>c</i></span>), then the <span class="it"><i>gauche</i></span> and <span class="it"><i>anti</i></span> forms cease to be equi-energetic and the proportion of <span class="it"><i>gauche</i></span>:<span class="it"><i>anti</i></span> conformers varies considerably, as shown by the CSD <span class="symbol">τ</span> distributions presented in Fig. 6<a href="#FIG6"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>. These distributions have been generated from the November 2009 CSD release using the search and retrieval criteria described by Allen <span class="it"><i>et al.</i></span> (1996<a id="sourceBB2"></a><a href="#BB2"><img alt="[Allen, F. H., Harris, S. E. & Taylor, R. (1996). J. Comput. Aided Mol. Des. 10, 247-254.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Allen, F. H., Harris, S. E. & Taylor, R. (1996). J. Comput. Aided Mol. Des. 10, 247-254." /></a>) and clearly reflect the changes in the <span class="it"><i>gauche</i></span>:<span class="it"><i>anti</i></span> energy relationship shown in the <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/P04778.html' onclick="return makeSubWindow("https://goldbook.iupac.org/P04778.html", 'Navigator')">potential energy</a> curves that are superimposed on the torsional distributions in Fig. 6<a href="#FIG6"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>. The energy curves have been calculated using <span class="it"><i>Chem3D Ultra</i></span> (CambridgeSoft, 2009<a id="sourceBB19"></a><a href="#BB19"><img alt="[CambridgeSoft (2009). Chem3D Ultra. CambridgeSoft Inc., Cambridge, MA, USA, https://www.cambridgesoft.com.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="CambridgeSoft (2009). Chem3D Ultra. CambridgeSoft Inc., Cambridge, MA, USA, https://www.cambridgesoft.com." /></a>) and an MM2 force field, software that is likely to be available in a teaching environment. Allen <span class="it"><i>et al.</i></span> (1996<a href="#BB2"><img alt="[Allen, F. H., Harris, S. E. & Taylor, R. (1996). J. Comput. Aided Mol. Des. 10, 247-254.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Allen, F. H., Harris, S. E. & Taylor, R. (1996). J. Comput. Aided Mol. Des. 10, 247-254." /></a>) show similar <span class="it"><i>E</i></span>–<span class="symbol">τ</span> diagrams for a further nine substructures having freely rotatable acyclic C—C, C—O and C—S bonds that also have educational value. <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystal_structure' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystal_structure", 'Navigator')">Crystal structure</a> data also provide excellent and simple examples of ring conformations and stereochemical features for use in teaching. Parent cyclohexane (CSD teaching subset: CYCHEX) illustrates the archetypal chair-form six-membered ring, while the many examples of <span class="symbol">α</span>- and <span class="symbol">β</span>-pyranose sugars in the main CSD provide valuable insights into axial and equatorial stereochemistry and diastereoisomerism.</p><div class="fig"> <table cellpadding="5" class="fig" summary="Figure 6" width="100%"> <tbody> <tr> <td class="td_align_center width_20"> <a href="kk5063fig6.html"><img alt="[Figure 6]" class="figlnkthm img_align_middle" src="kk5063fig6thm.gif" /> <br /></a> </td> <td> <span class="font_size_3"><b><a href="kk5063fig6.html" id="FIG6">Figure 6</a></b></span> <br /><span class="font_size_2 caption">Torsional distributions from the CSD about the central C—C bond in three simple substructures: (<span class="it"><i>a</i></span>) butane (CH<span class="inf"><sub>3</sub></span>—CH<span class="inf"><sub>2</sub></span>—CH<span class="inf"><sub>2</sub></span>—CH<span class="inf"><sub>3</sub></span>), (<span class="it"><i>b</i></span>) 2-methylbutane [(CH<span class="inf"><sub>3</sub></span>)<span class="inf"><sub>2</sub></span>—CH<span class="inf"><sub>2</sub></span>—CH<span class="inf"><sub>2</sub></span>—CH<span class="inf"><sub>3</sub></span>] and (<span class="it"><i>c</i></span>) 2,3-dimethylbutane [(CH<span class="inf"><sub>3</sub></span>)<span class="inf"><sub>2</sub></span>—CH<span class="inf"><sub>2</sub></span>—CH<span class="inf"><sub>2</sub></span>—(CH<span class="inf"><sub>3</sub></span>)<span class="inf"><sub>2</sub></span>]. <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/P04778.html' onclick="return makeSubWindow("https://goldbook.iupac.org/P04778.html", 'Navigator')">Potential energy</a> curves calculated using <span class="it"><i>Chem3D Ultra</i></span> (CambridgeSoft, 2009<a href="#BB19"><img alt="[CambridgeSoft (2009). Chem3D Ultra. CambridgeSoft Inc., Cambridge, MA, USA, https://www.cambridgesoft.com.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="CambridgeSoft (2009). Chem3D Ultra. CambridgeSoft Inc., Cambridge, MA, USA, https://www.cambridgesoft.com." /></a>) are superimposed on the distributions. (<span class="it"><i>d</i></span>) The distribution of C<span class="inf"><sub>ar</sub></span>—C<span class="inf"><sub>ar</sub></span>—S—C torsion angles in arylsulfones from the CCDC's <span class="it"><i>Mogul</i></span> knowledge base (2008 release).</span></td> </tr> </tbody> </table> </div> <p>Students should be made aware that conformational knowledge obtained from crystal structures is widely used in the design of novel molecules, particularly in the discovery of novel pharmaceuticals, and a recent review by Brameld <span class="it"><i>et al.</i></span> (2008<a id="sourceBB11"></a><a href="#BB11"><img alt="[Brameld, K. A., Kuhn, B., Reuter, D. C. & Stahl, M. (2008). J. Chem. Inf. Model. 48, 1-24.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Brameld, K. A., Kuhn, B., Reuter, D. C. & Stahl, M. (2008). J. Chem. Inf. Model. 48, 1-24." /></a>) covers this topic in a highly accessible manner. These authors stress the importance of the massive chemical diversity of the CSD and of the huge reservoir of conformational information that is available in the <span class="it"><i>Mogul</i></span> knowledge base (Bruno <span class="it"><i>et al.</i></span>, 2004<a href="#BB13"><img alt="[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144." /></a>) at the click of a few buttons in its interface. Fig. 6<a href="#FIG6"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>(<span class="it"><i>d</i></span>) shows the distribution of C<span class="inf"><sub>ar</sub></span>—C<span class="inf"><sub>ar</sub></span>—S—C torsions in arylsulfones generated using the <span class="it"><i>Mogul</i></span> interface.</p></div> <div class="sec3" id="DIVSEC4.1.3"> <h5><a id="SEC4.1.3"></a>4.1.3. Hydrogen bonding and other intermolecular interactions</h5> <p>It is necessary to use the full CSD System in order to obtain a complete overview of the spatial and geometric characteristics of hydrogen-bonded systems and of intermolecular interactions not mediated by hydrogen. The <span class="it"><i>IsoStar</i></span> knowledge base (Bruno <span class="it"><i>et al.</i></span>, 1997<a href="#BB14"><img alt="[Bruno, I. J., Cole, J. C., Lommerse, J. P. M., Rowland, R. S., Taylor, R. & Verdonk, M. L. (1997). J. Comput. Aided Mol. Des. 11, 525-537.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Bruno, I. J., Cole, J. C., Lommerse, J. P. M., Rowland, R. S., Taylor, R. & Verdonk, M. L. (1997). J. Comput. Aided Mol. Des. 11, 525-537." /></a>) is particularly valuable in visualizing interactions between functional groups, defined as central groups and contact groups. The library contains more than 25 000 interaction scatterplots derived from the CSD (20 000 plots), with the remainder coming from higher-resolution (better than 2 Å) protein–ligand complexes from the PDB (Berman <span class="it"><i>et al.</i></span>, 2000<a href="#BB9"><img alt="[Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235-242.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235-242." /></a>). <span class="it"><i>IsoStar</i></span> also presents theoretical energy minima for >1500 key interactions. A typical <span class="it"><i>IsoStar</i></span> plot for an N—H contact group and an amide central group is shown in its `native' and contoured forms in Figs. 7<a href="#FIG7"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>(<span class="it"><i>a</i></span>) and 7<a href="#FIG7"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>(<span class="it"><i>b</i></span>), and shows the preference for the N—H donor to interact with the lone pairs of the amide oxygen. Since the <span class="it"><i>IsoStar</i></span> library contains information for 300 central groups and 48 contact groups, it represents a mine of information not just for researchers but also for students at many levels of instruction. The ability of the <span class="it"><i>ConQuest</i></span> program to search for specified intermolecular interactions is fully illustrated elsewhere (see, <span class="it"><i>e.g.</i></span> Allen <span class="it"><i>et al.</i></span>, 2010<a id="sourceBB4"></a><a href="#BB4"><img alt="[Allen, F. H., Galek, P. T. A. & Wood, P. A. (2010). Cryst. Rev. 16, 169-195.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Allen, F. H., Galek, P. T. A. & Wood, P. A. (2010). Cryst. Rev. 16, 169-195." /></a>; Allen & Motherwell, 2002<a id="sourceBB5"></a><a href="#BB5"><img alt="[Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407-422.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407-422." /></a>) and allows students to quantify, <span class="it"><i>e.g.</i></span>, intermolecular hydrogen bonds (<span class="it"><i>D</i></span>—H⋯<span class="it"><i>A</i></span>—<span class="it"><i>X</i></span>) in terms of (<span class="it"><i>a</i></span>) their <span class="it"><i>D</i></span>⋯<span class="it"><i>A</i></span> and H⋯<span class="it"><i>A</i></span> distances, (<span class="it"><i>b</i></span>) the angle of hydrogen directionality (<span class="it"><i>D</i></span>—H⋯<span class="it"><i>A</i></span>), and (<span class="it"><i>c</i></span>) the angle of hydrogen approach to the acceptor (H⋯<span class="it"><i>A</i></span>—<span class="it"><i>X</i></span>) to examine possible lone-pair involvement in the interaction. Comparisons of hydrogen-bonded distances can also give insights into the relative strengths of interactions involving different functional groups, but computational chemistry procedures are better suited to this task and would form a useful extension of the database studies in the student curriculum.</p><div class="fig"> <table cellpadding="5" class="fig" summary="Figure 7" width="100%"> <tbody> <tr> <td class="td_align_center width_20"> <a href="kk5063fig7.html"><img alt="[Figure 7]" class="figlnkthm img_align_middle" src="kk5063fig7thm.gif" /> <br /></a> </td> <td> <span class="font_size_3"><b><a href="kk5063fig7.html" id="FIG7">Figure 7</a></b></span> <br /><span class="font_size_2 caption"><span class="it"><i>IsoStar</i></span> scatterplots of an N—H contact group around an amide central group: (<span class="it"><i>a</i></span>) standard plot and (<span class="it"><i>b</i></span>) contoured plot.</span></td> </tr> </tbody> </table> </div> </div> <div class="sec3" id="DIVSEC4.1.4"> <h5><a id="SEC4.1.4"></a>4.1.4. Reaction pathways</h5> <p>One of the earliest and most significant correlations of <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystal_structure' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystal_structure", 'Navigator')">crystal structure</a> information with chemical activity was the study of reaction pathways (Bürgi & Dunitz, 1986<a id="sourceBB15"></a><a href="#BB15"><img alt="[Bürgi, H.-B. & Dunitz, J. D. (1986). Acc. Chem. Res. 16, 153-161.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Bürgi, H.-B. & Dunitz, J. D. (1986). Acc. Chem. Res. 16, 153-161." /></a>, 1994<a id="sourceBB16"></a><a href="#BB16"><img alt="[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation. Weinheim: VCH.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation. Weinheim: VCH." /></a>), particularly the use of short N⋯C=O contacts to map the attack of a nitrogen <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/N04249.html' onclick="return makeSubWindow("https://goldbook.iupac.org/N04249.html", 'Navigator')">nucleophile</a> on a carbonyl centre as illustrated in Fig. 8<a href="#FIG8"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>(<span class="it"><i>a</i></span>). The original analysis used just six N⋯C distances ranging from 2.91 Å (nonbonded) to fully bonded N—C values at 1.49 Å, and including N⋯C values of 2.58, 2.55, 1.88 and 1.64 Å to complete the range. These authors used the geometrical construct of Fig. 8<a href="#FIG8"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>(<span class="it"><i>a</i></span>) to map and correlate the available data at a time when <15 000 structures were recorded in the CSD. A recent CSD search located 32 examples of the fragment of Fig. 8<a href="#FIG8"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>(<span class="it"><i>a</i></span>) having a nonbonded N⋯C distance (<span class="it"><i>d</i></span><span class="inf"><sub>1</sub></span>) < 2.6 Å. A plot of <span class="it"><i>d</i></span><span class="inf"><sub>1</sub></span> <span class="it"><i>versus</i></span> the C pyramidality, <span class="symbol">Δ</span>, is essentially linear (Fig. 8<a href="#FIG8"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a><span class="it"><i>b</i></span>): as the N <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/N04249.html' onclick="return makeSubWindow("https://goldbook.iupac.org/N04249.html", 'Navigator')">nucleophile</a> approaches the carbonyl C atom, the carbonyl group deviates increasingly from planarity and the length of the C=O bond also increases, <span class="it"><i>i.e.</i></span> the C atom is in the early stages of changing its <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/H02874.html' onclick="return makeSubWindow("https://goldbook.iupac.org/H02874.html", 'Navigator')">hybridization</a> from <span class="it"><i>sp</i></span><span class="sup"><sup>2</sup></span> to <span class="it"><i>sp</i></span><span class="sup"><sup>3</sup></span>. Importantly also, the angle of nucleophilic approach, N⋯C=O, is always larger than the 90° that might be expected and is also reasonably constant: the mean value for the 32 fragments in this analysis is 107 (2)°. This result can be related to changes that occur in the molecular orbitals as the reaction proceeds, and this nucleophilic approach route has become known as the Bürgi–Dunitz trajectory, a topic that is now included in many undergraduate organic chemistry texts (see, <span class="it"><i>e.g.</i></span>, Clayden <span class="it"><i>et al.</i></span>, 2000<a id="sourceBB28"></a><a href="#BB28"><img alt="[Clayden, J., Greeves, N., Warren, S. & Wothers, P. (2000). Organic Chemistry. Oxford University Press.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Clayden, J., Greeves, N., Warren, S. & Wothers, P. (2000). Organic Chemistry. Oxford University Press." /></a>). A number of chapters in the two-volume book <span class="it"><i>Structure Correlation</i></span> (Bürgi & Dunitz, 1994<a href="#BB16"><img alt="[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation. Weinheim: VCH.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation. Weinheim: VCH." /></a>), particularly those by Cieplak (1994<a id="sourceBB27"></a><a href="#BB27"><img alt="[Cieplak, A. S. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, pp. 205-302. Weinheim: VCH.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Cieplak, A. S. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, pp. 205-302. Weinheim: VCH." /></a>), Burgi & Shklover (1994<a id="sourceBB17"></a><a href="#BB17"><img alt="[Bürgi, H.-B. & Shklover, V. (1994). Structure Correlation, Vols. 1 and 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 303-335. Weinheim: VCH.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Bürgi, H.-B. & Shklover, V. (1994). Structure Correlation, Vols. 1 and 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 303-335. Weinheim: VCH." /></a>) and Auf der Heyde (1994<a id="sourceBB6"></a><a href="#BB6"><img alt="[Auf der Heyde, T. P. E. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, pp. 337-368. Weinheim: VCH.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Auf der Heyde, T. P. E. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, pp. 337-368. Weinheim: VCH." /></a>), suggest many other examples of structure–reactivity correlations that are suitable for teaching purposes, while Wheeler (2009<a id="sourceBB64"></a><a href="#BB64"><img alt="[Wheeler, K. A. (2009). Conceptualizing Reaction Mechanisms using Crystallographic Data, https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Wheeler, K. A. (2009). Conceptualizing Reaction Mechanisms using Crystallographic Data, https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/." /></a>) has described a teaching module that conceptualizes reaction mechanisms using crystallographic data, and which is delivered to undergraduate chemists at the University of Eastern Illinois. In a recent paper in the chemical education literature, Wackerly <span class="it"><i>et al.</i></span> (2009<a id="sourceBB61"></a><a href="#BB61"><img alt="[Wackerly, J. W., Janowicz, P. A., Ritchey, J. A., Caruso, M. M., Elliot, E. L. & Moore, J. S. (2009). J. Chem. Educ. 86, 460-464.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Wackerly, J. W., Janowicz, P. A., Ritchey, J. A., Caruso, M. M., Elliot, E. L. & Moore, J. S. (2009). J. Chem. Educ. 86, 460-464." /></a>) also use structure correlation principles and the CSD to examine the geometry at N and P atoms that are bonded to three C atoms, and to correlate bond lengths, twist angles and pyramidalization in <span class="it"><i>N</i></span>,<span class="it"><i>N</i></span>-disubstituted anilines as a learning exercise.</p><div class="fig"> <table cellpadding="5" class="fig" summary="Figure 8" width="100%"> <tbody> <tr> <td class="td_align_center width_20"> <a href="kk5063fig8.html"><img alt="[Figure 8]" class="figlnkthm img_align_middle" src="kk5063fig8thm.gif" /> <br /></a> </td> <td> <span class="font_size_3"><b><a href="kk5063fig8.html" id="FIG8">Figure 8</a></b></span> <br /><span class="font_size_2 caption">Analysis reaction pathways using CSD data: attack of a nitrogen nucleophile on a carbonyl centre (after Bürgi & Dunitz, 1986<a href="#BB15"><img alt="[Bürgi, H.-B. & Dunitz, J. D. (1986). Acc. Chem. Res. 16, 153-161.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Bürgi, H.-B. & Dunitz, J. D. (1986). Acc. Chem. Res. 16, 153-161." /></a>). (<span class="it"><i>a</i></span>) <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Substructure' onclick="return makeSubWindow("https://dictionary.iucr.org/Substructure", 'Navigator')">Substructure</a> search fragment and geometrical parameters used to locate and plot the reaction pathway, and (<span class="it"><i>b</i></span>) plot of the nonbonded N⋯C distance (<span class="it"><i>d</i></span><span class="inf"><sub>1</sub></span>) <span class="it"><i>versus</i></span> the increasing pyramidality at the carbonyl C atom, measured by the parameter <span class="symbol">Δ</span> in part (<span class="it"><i>a</i></span>).</span></td> </tr> </tbody> </table> </div> </div> </div> <div class="sec2" id="DIVSEC4.2"> <h4><a id="SEC4.2"></a>4.2. Inorganic chemistry</h4> <p>While organic chemists have developed the wedge/dot bond system for depicting pseudo-three-dimensional representations for the compounds (principally) of carbon, nitrogen and oxygen, the three-dimensional nature of inorganic compounds is much more complex, with metal coordination numbers greater than four being commonplace. For this reason, visualizations of crystallographically determined molecular structures are a pre-requisite to understanding and are commonplace in undergraduate inorganic chemistry texts. This dates back to the earliest texts (<span class="it"><i>e.g.</i></span> Cotton & Wilkinson, 1980<a id="sourceBB29"></a><a href="#BB29"><img alt="[Cotton, F. A. & Wilkinson, G. (1980). Advanced Inorganic Chemistry, 4th ed. New York: John Wiley.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Cotton, F. A. & Wilkinson, G. (1980). Advanced Inorganic Chemistry, 4th ed. New York: John Wiley." /></a>, and earlier editions) that chart the renaissance of the subject in the 1960s, and is continued in more modern texts, such as Housecroft & Sharpe (2005<a href="#BB40"><img alt="[Housecroft, C. E. & Sharpe, A. R. (2005). Inorganic Chemistry, 2nd ed. Harlow: Pearson Education Limited.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Housecroft, C. E. & Sharpe, A. R. (2005). Inorganic Chemistry, 2nd ed. Harlow: Pearson Education Limited." /></a>) who show more than 250 three-dimensional structures of key molecules and ions, most of which occur in the CSD. Examples in their book range from the common sulfur allotrope, S<span class="inf"><sub>8</sub></span> (FURHUV), to the rather complex <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/MT06795.html' onclick="return makeSubWindow("https://goldbook.iupac.org/MT06795.html", 'Navigator')">magnetic resonance imaging</a> contrast agent aqua[diethyl­enetriamine-bis(acetic acid methylamide)­triacetato]gadolinium, [Gd(DTPA-BMA)(H<span class="inf"><sub>2</sub></span>O)] (trade name Omniscan; UDOMOP as hexahydrate). This long-term use of <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystal_structure' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystal_structure", 'Navigator')">crystal structure</a> information to teach inorganic chemistry is a manifestation of a synergistic relationship: <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystal_structure' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystal_structure", 'Navigator')">crystal structure</a> analysis is often the only analytical method suitable for characterizing novel inorganic compounds, and it is natural for inorganic chemists to use these images in their teaching activities. As evidence of the inorganic chemistry–crystallography synergy, Table 1<a href="#TABLE1"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a> shows that 53.1% of the compounds in the CSD contain a transition metal, and a further 6.3% contain a main-group metal. With nearly 300 000 metal-containing structures, the CSD obviously contains a plethora of information of value in chemical education. Thus, the database may be used to illustrate coordination stereochemistry by viewing the structures of the <span class="it"><i>cis</i></span> (CCPYPT) and <span class="it"><i>trans</i></span> (CLPYPT) isomers of Cl<span class="inf"><sub>2</sub></span>(py)<span class="inf"><sub>2</sub></span>Pt, or the <span class="it"><i>cis</i></span> (HELREV) and <span class="it"><i>trans</i></span>,<span class="it"><i>trans</i></span>,<span class="it"><i>trans</i></span> (HOKCUF) isomers of Ru(Cl)<span class="inf"><sub>2</sub></span>(CO)<span class="inf"><sub>2</sub></span>(PPh<span class="inf"><sub>3</sub></span>)<span class="inf"><sub>2</sub></span>, or perhaps by comparing [(+)(en)<span class="inf"><sub>3</sub></span>Co]<span class="sup"><sup>3+</sup></span> with [(−)(en)<span class="inf"><sub>3</sub></span>Cr]<span class="sup"><sup>3+</sup></span> in the same structure (COENCL). We now briefly summarize some specific examples where the full CSD System has enormous value in the teaching of inorganic chemistry.</p> <div class="sec3" id="DIVSEC4.2.1"> <h5><a id="SEC4.2.1"></a>4.2.1. Jahn–Teller distortions in octahedral Cu<span class="sup"><sup>II</sup></span> complexes</h5> <p>There are over 600 examples of [<span class="it"><i>M</i></span>(H<span class="inf"><sub>2</sub></span>O)<span class="inf"><sub>6</sub></span>]<span class="sup"><sup><span class="it"><i>n</i></span>+</sup></span> complex ions in the CSD, including examples containing each of the 3<span class="it"><i>d</i></span> transition metals. That each of the central metals in these ions sits in an octahedral coordination environment provides an excellent illustration of the utility of the Kepert (1972<a id="sourceBB45"></a><a href="#BB45"><img alt="[Kepert, D. L. (1972). Inorg. Chem. 11, 1561-1567.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Kepert, D. L. (1972). Inorg. Chem. 11, 1561-1567." /></a>) model and the inapplicability of the VSEPR model to <span class="it"><i>d</i></span>-block metal complexes. Closer examination of the [<span class="it"><i>M</i></span>(H<span class="inf"><sub>2</sub></span>O)<span class="inf"><sub>6</sub></span>]<span class="sup"><sup><span class="it"><i>n</i></span>+</sup></span> structures across the 3<span class="it"><i>d</i></span> transition metals reveals that some possess nearly idealized O<span class="inf"><sub><span class="it"><i>h</i></span></sub></span> point-group symmetry, whereas others are distinctly <span class="it"><i>D</i></span><span class="inf"><sub>4<span class="it"><i>h</i></span></sub></span>. Those with <span class="it"><i>d</i></span><span class="sup"><sup>9</sup></span> and high-spin <span class="it"><i>d</i></span><span class="sup"><sup>4</sup></span> configurations display the expected Jahn–Teller distortions. The Jahn–Teller effect can be readily illustrated to students by using the full CSD System to locate, <span class="it"><i>e.g.</i></span>, all CuO<span class="inf"><sub>6</sub></span> systems, retrieving the six Cu—O bond lengths for each <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Substructure' onclick="return makeSubWindow("https://dictionary.iucr.org/Substructure", 'Navigator')">substructure</a> (using <span class="it"><i>ConQuest</i></span>) and then plotting those bond lengths as a histogram (<span class="it"><i>Vista</i></span>), as shown in Fig. 9<a href="#FIG9"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>. It is then easy to observe the very different distance ranges exhibited by the shorter equatorial Cu—O bonds (four per substructure) and the elongated axial bonds (two per substructure).</p><div class="fig"> <table cellpadding="5" class="fig" summary="Figure 9" width="100%"> <tbody> <tr> <td class="td_align_center width_20"> <a href="kk5063fig9.html"><img alt="[Figure 9]" class="figlnkthm img_align_middle" src="kk5063fig9thm.gif" /> <br /></a> </td> <td> <span class="font_size_3"><b><a href="kk5063fig9.html" id="FIG9">Figure 9</a></b></span> <br /><span class="font_size_2 caption">The Jahn–Teller effect illustrated by a histogram of Cu—O distance in CuO<span class="inf"><sub>6</sub></span> substructures.</span></td> </tr> </tbody> </table> </div> </div> <div class="sec3" id="DIVSEC4.2.2"> <h5><a id="SEC4.2.2"></a>4.2.2. Metal–carbonyl backbonding</h5> <p>The full database is an excellent resource for the exploration of <span class="symbol">π</span> backbonding. For example, in Unit 7 of Table 3<a href="#TABLE3"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a> the correlation between the Mo—C(carbonyl) distance, <span class="it"><i>d</i></span>(MoC), and the carbonyl bond distance, <span class="it"><i>d</i></span>(CO), is explored. The CSD contains over 35 000 entries with carbon monoxide coordinated to one or more transition metal atoms. <span class="it"><i>ConQuest</i></span> is used to carry out a three-dimensional search for CO bound to molybdenum to gather <span class="it"><i>d</i></span>(MoC) and <span class="it"><i>d</i></span>(CO) distances. The parameters from over 1400 monodentate molybdenum-bound carbonyl ligands are shown in the <span class="it"><i>Vista</i></span> scatterplot of Fig. 10<a href="#FIG10"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>, which clearly shows an overall linear relationship between carbonyl lengthening concomitant with Mo—C shortening, a feature consistent with modern <span class="symbol">π</span>-backbonding models.</p><div class="fig"> <table cellpadding="5" class="fig" summary="Figure 10" width="100%"> <tbody> <tr> <td class="td_align_center width_20"> <a href="kk5063fig10.html"><img alt="[Figure 10]" class="figlnkthm img_align_middle" src="kk5063fig10thm.gif" /> <br /></a> </td> <td> <span class="font_size_3"><b><a href="kk5063fig10.html" id="FIG10">Figure 10</a></b></span> <br /><span class="font_size_2 caption">Metal–carbonyl <span class="symbol">π</span> backbonding: plot of <span class="it"><i>d</i></span>(MoC) <span class="it"><i>versus</i></span> <span class="it"><i>d</i></span>(CO) for monodentate molybdenum carbonyl ligands.</span></td> </tr> </tbody> </table> </div> <p>Concepts regarding <span class="symbol">π</span> backbonding may be further explored in a wide range of types of organometallic complexes. A particularly nice example involves contrasting the structures of several transition metal complexes containing <span class="symbol">η</span><span class="sup"><sup>2</sup></span>-bound alkyne ligands with the structure of a lanthanide complex containing a <span class="symbol">η</span><span class="sup"><sup>2</sup></span>-bound 2-butyne ligand. In (<span class="symbol">η</span><span class="sup"><sup>2</sup></span>-PhC≡CPh)<span class="inf"><sub>2</sub></span>Pt (DPACPT10), (<span class="symbol">η</span><span class="sup"><sup>2</sup></span>-PhC≡CPh)Pt(PMe<span class="inf"><sub>3</sub></span>)<span class="inf"><sub>2</sub></span> (GACJAV), (<span class="symbol">η</span><span class="sup"><sup>2</sup></span>-ClC≡CCl)Pt(PPh<span class="inf"><sub>3</sub></span>)<span class="inf"><sub>2</sub></span> (PIYMUF) and (<span class="symbol">η</span><span class="sup"><sup>2</sup></span>-F<span class="inf"><sub>3</sub></span>CC≡CCF<span class="inf"><sub>3</sub></span>)Pt(PPh<span class="inf"><sub>3</sub></span>)<span class="inf"><sub>2</sub></span> (TPFYPT) coordination of the linear alkyne results in substantial bending of the <span class="it"><i>R</i></span>—C≡C bond angles, consistent with a bonding model whereby <span class="symbol">σ</span> donation of ligand <span class="symbol">π</span> electron density to the metal is accompanied by back donation of metal electron density into antibonding ligand orbitals resulting in formation of a metallocyclopropene. In stark contrast, Cp*<span class="inf"><sub>2</sub></span>Yb(<span class="symbol">η</span><span class="sup"><sup>2</sup></span>-MeC≡CMe) (FEKXOI) retains nearly linear Me—C≡C bond angles consistent with the electrostatic (as opposed to covalent) bonding observed for lanthanides.</p></div> <div class="sec3" id="DIVSEC4.2.3"> <h5><a id="SEC4.2.3"></a>4.2.3. Reaction pathways and interconversions of metal geometry</h5> <p>The use of <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystal_structure' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystal_structure", 'Navigator')">crystal structure</a> information for the study of organic reaction pathways is described in §<a href="#SEC4.1.4"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>4.1.4. This principle, when applied to variations of geometry within metal coordination spheres, can be used to investigate the inorganic reaction mechanisms of ligand substitution and exchange. For example, the CSD contains numerous <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystal_structure' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystal_structure", 'Navigator')">crystal structure</a> determinations of iron carbonyl derivatives. These structures contain either a terminal carbonyl group, a carbonyl ligand that symmetrically bridges two Fe atoms or a semi-bridging carbonyl group where the ligand is bound asymmetrically. These bridged compounds may be considered as snapshots of the carbonyl exchange process. The scatterplot (Fig. 11<a href="#FIG11"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>) quantifies the change in geometry that occurs during carbonyl exchange. The carbonyl ligand proceeds through a bridging conformation in which the Fe—Fe—C angle (ANG1) becomes more acute and the Fe—C—O angle (ANG2) less linear. The series of crystal structures shown constitute a smooth continuum in which the Fe—Fe—C angle falls from <span class="it"><i>ca</i></span> 70 to 45° as the carbonyl group moves from the semi-bridging form through to the symmetrically bridged state. During this transition the Fe—C—O angle becomes less linear and the Fe—C distance shortens. Ideal relationships between parameters may be obtained by linear regression. Using these data, the trajectory of a carbonyl ligand during exchange between two iron centres may be plotted. The CO exchange process was originally studied using the structure correlation method by Crabtree & Lavin (1986<a id="sourceBB30"></a><a href="#BB30"><img alt="[Crabtree, R. H. & Lavin, M. (1986). Inorg. Chem. 25, 805-812.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Crabtree, R. H. & Lavin, M. (1986). Inorg. Chem. 25, 805-812." /></a>).</p><div class="fig"> <table cellpadding="5" class="fig" summary="Figure 11" width="100%"> <tbody> <tr> <td class="td_align_center width_20"> <a href="kk5063fig11.html"><img alt="[Figure 11]" class="figlnkthm img_align_middle" src="kk5063fig11thm.gif" /> <br /></a> </td> <td> <span class="font_size_3"><b><a href="kk5063fig11.html" id="FIG11">Figure 11</a></b></span> <br /><span class="font_size_2 caption">Scatterplot quantifying the change in geometry that occurs during carbonyl exchange in iron carbonyls.</span></td> </tr> </tbody> </table> </div> <p>Similarly, this approach can be used to explore the interconversion of alternative coordination geometries. The geometries adopted by four-coordinate transition metal complexes can be described using the sum of the four <span class="it"><i>cis</i></span>-<span class="it"><i>ML</i></span><span class="inf"><sub>2</sub></span> and the two <span class="it"><i>trans</i></span>-<span class="it"><i>ML</i></span><span class="inf"><sub>2</sub></span> angles. The resultant bimodal <span class="it"><i>Vista</i></span> distribution (Fig. 12<a href="#FIG12"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a><span class="it"><i>a</i></span>) shows that four-coordinate metals have a tendency to adopt one of two geometries: square planar or tetrahedral. Structures with tetrahedral geometries can be found around 660° in the histogram (6 × 109.5°), while the square-planar structures are found close to 720° (4 × 90° plus 2 × 180°). However, the preferred square-planar and tetrahedral geometries can be affected by, for example, the nature of the substituents, and thus not all metal complexes have idealized conformations. A plot of the sum of the <span class="it"><i>ML</i></span><span class="inf"><sub>2</sub></span> angles <span class="it"><i>versus</i></span> the angle between the two <span class="it"><i>ML</i></span><span class="inf"><sub>2</sub></span> planes readily demonstrates this (Fig. 12<a href="#FIG12"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a><span class="it"><i>b</i></span>). Although the plot shows that most four-coordinate complexes are either square planar (in the top left of the scattergram) or tetrahedral (bottom right), there are many database entries linking the two geometries resulting in a continuum. The structures that are neither square planar nor tetrahedral can be regarded as snapshots of transition states along the interconversion pathway.</p><div class="fig"> <table cellpadding="5" class="fig" summary="Figure 12" width="100%"> <tbody> <tr> <td class="td_align_center width_20"> <a href="kk5063fig12.html"><img alt="[Figure 12]" class="figlnkthm img_align_middle" src="kk5063fig12thm.gif" /> <br /></a> </td> <td> <span class="font_size_3"><b><a href="kk5063fig12.html" id="FIG12">Figure 12</a></b></span> <br /><span class="font_size_2 caption">(<span class="it"><i>a</i></span>) The geometries adopted by four-coordinate transition metal complexes described using the sum of the four <span class="it"><i>cis</i></span>-<span class="it"><i>ML</i></span><span class="inf"><sub>2</sub></span> angles and the two <span class="it"><i>trans</i></span>-<span class="it"><i>ML</i></span><span class="inf"><sub>2</sub></span> angles. (<span class="it"><i>b</i></span>) Pathway for the interconversion between square-planar and tetrahedral geometries mapped using the sum of the <span class="it"><i>ML</i></span><span class="inf"><sub>2</sub></span> angles <span class="it"><i>versus</i></span> the angle between the two <span class="it"><i>ML</i></span><span class="inf"><sub>2</sub></span> planes.</span></td> </tr> </tbody> </table> </div> <p>Examples also exist which illustrate the sometimes subtle energetic difference between these two geometries. The <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystal_structure' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystal_structure", 'Navigator')">crystal structure</a> of dibromo-bis(benzyldiphenylphosphine)nickel(II) (DBBZPN) is an unusual example of an interallogon <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystal_structure' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystal_structure", 'Navigator')">crystal structure.</a> Two crystallographically independent Br<span class="inf"><sub>2</sub></span>(Bn<span class="inf"><sub>3</sub></span>P)<span class="inf"><sub>2</sub></span>Ni molecules are present, and one contains the nickel in a square-planar coordination environment, while the other contains the nickel in a distinctly tetrahedral coordination environment.</p></div> <div class="sec3" id="DIVSEC4.2.4"> <h5><a id="SEC4.2.4"></a>4.2.4. The isolobal analogy</h5> <p>In his Nobel Prize lecture <span class="it"><i>Building Bridges Between Inorganic and Organic Chemistry</i></span>, Hoffmann (1982<a id="sourceBB39"></a><a href="#BB39"><img alt="[Hoffmann, R. (1982). Angew. Chem. Int. Ed. Engl. 21, 711-800.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Hoffmann, R. (1982). Angew. Chem. Int. Ed. Engl. 21, 711-800." /></a>) discussed the isolobal analogy, which compares the frontier molecular orbitals of traditional organic fragments with those of organometallic fragments, and elegantly illustrates how many, including some apparently complicated, organometallic molecules may be reduced to more simplistic but analogous complexes, and often to relatively simple organic molecules. This paper is an excellent case study for use in an advanced undergraduate inorganic chemistry course, since the isolobal analogy is a modern and useful model, and the manuscript is readily comprehensible by the typical target student audience. The principles and utility of the isolobal analogy are widely illustrated and defended in the paper through presentation of examples that can be found in the CSD. For example, the paper explores the similarities between the purely organic tetrahedranes, such as (Me<span class="inf"><sub>3</sub></span>CC)<span class="inf"><sub>4</sub></span> (CUCZUP), and the tetrameric iridium carbonyl Ir<span class="inf"><sub>4</sub></span>(CO)<span class="inf"><sub>12</sub></span> (FOJVEF). Visualizing these structures using <span class="it"><i>Mercury</i></span> will help students to obtain a clearer understanding of the examples, as well as to reinforce that this theoretical analogy is strongly supported by structural information obtained from known compounds.</p></div> <div class="sec3" id="DIVSEC4.2.5"> <h5><a id="SEC4.2.5"></a>4.2.5. Crystal packing</h5> <p>Examples taken from the CSD may also be used to better illustrate concepts that are traditionally taught using more simplistic examples. This helps to mitigate the inadvertent teaching of misconceptions that will later need to be `unlearned'. Commonly, freshman chemistry students are taught the basics of solid-state packing through exclusive use of simple inorganic salts such as sodium chloride, caesium chloride, fluorite and zinc sulfide. Most of the traditional choices involve cubic lattices with anions occupying the primary special positions. This tends to suggest that most solid-state structures involve cubic lattices when, in fact, less than 0.5% of known structures pack in cubic arrays. Even more importantly, it promotes the misconception that atoms always lie on unit-cell corners, face centres, body centres and unit-cell edges. Consider the structure of the caesium salt of the C<span class="inf"><sub>60</sub></span><span class="sup"><sup>6−</sup></span> buckyball hexanion (FULLER). The structure clearly contains body-centred cubic packing; however, no atoms lie at the corners of the <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Unit_cell' onclick="return makeSubWindow("https://dictionary.iucr.org/Unit_cell", 'Navigator')">unit cell</a> or at the centre of the <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Unit_cell' onclick="return makeSubWindow("https://dictionary.iucr.org/Unit_cell", 'Navigator')">unit cell.</a> Rather, it is the centres of the C<span class="inf"><sub>60</sub></span><span class="sup"><sup>6−</sup></span> ions that are positioned at the corners and centre of the <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Unit_cell' onclick="return makeSubWindow("https://dictionary.iucr.org/Unit_cell", 'Navigator')">unit cell.</a> One might also choose to illustrate that, while a face-centred cubic lattice might include atoms at the corners and face centres of unit cells (JUKPAG), corners and face centres may represent points in space about which molecules are arranged (GALGUV01), or all atoms and molecules may be well offset from these special positions. The same scenario may be described for a primitive cubic example like the structure of [Tl][Co(CO)<span class="inf"><sub>4</sub></span>] (FUBZOR), and it is relatively easy, when visualizing with <span class="it"><i>Mercury</i></span>, to explore beyond just cubic examples.</p></div> </div> <div class="sec2" id="DIVSEC4.3"> <h4><a id="SEC4.3"></a>4.3. Lessons from the literature</h4> <p>A number of the examples discussed in this paper have their origins in published analyses of <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystal_structure' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystal_structure", 'Navigator')">crystal structure</a> data, the most obvious example being the reaction pathway studies of Bürgi, Dunitz and co-workers discussed above (Bürgi & Dunitz, 1986<a href="#BB15"><img alt="[Bürgi, H.-B. & Dunitz, J. D. (1986). Acc. Chem. Res. 16, 153-161.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Bürgi, H.-B. & Dunitz, J. D. (1986). Acc. Chem. Res. 16, 153-161." /></a>, 1994<a href="#BB16"><img alt="[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation. Weinheim: VCH.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation. Weinheim: VCH." /></a>). For many years, the CCDC has maintained a bibliography of major research studies that use the CSD and other CCDC products. This database is freely available and searchable <span class="it"><i>via</i></span> the CCDC website (CCDC, 2010<span class="it"><i>b</i></span><a id="sourceBB22"></a><a href="#BB22"><img alt="[CCDC (2010b). WebCite. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/free_services/webcite/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="CCDC (2010b). WebCite. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/free_services/webcite/." /></a>) and contains a variety of CSD research applications which are likely to transfer rather well into the teaching environment. Clear examples are early papers by Dunitz and co-workers which studied the structural characteristics of carboxylic <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/A00266.html' onclick="return makeSubWindow("https://goldbook.iupac.org/A00266.html", 'Navigator')">amides</a> (Chakrabarti & Dunitz, 1982<a id="sourceBB25"></a><a href="#BB25"><img alt="[Chakrabarti, P. & Dunitz, J. D. (1982). Helv. Chim. Acta, 65, 1555-1562.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Chakrabarti, P. & Dunitz, J. D. (1982). Helv. Chim. Acta, 65, 1555-1562." /></a>) and carboxylic <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/E02219.html' onclick="return makeSubWindow("https://goldbook.iupac.org/E02219.html", 'Navigator')">esters</a> (Schweizer & Dunitz, 1982<a id="sourceBB55"></a><a href="#BB55"><img alt="[Schweizer, B. & Dunitz, J. D. (1982). Helv. Chim. Acta, 65, 1547-1552.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Schweizer, B. & Dunitz, J. D. (1982). Helv. Chim. Acta, 65, 1547-1552." /></a>), as well as work on the directional preferences of nonbonded atomic contacts by electrophiles and nucleophiles with divalent sulfur (Rosenfield <span class="it"><i>et al.</i></span>, 1977<a id="sourceBB54"></a><a href="#BB54"><img alt="[Rosenfield, R. E., Parthasarathy, R. & Dunitz, J. D. (1977). J. Am. Chem. Soc. 99, 4860-4862.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Rosenfield, R. E., Parthasarathy, R. & Dunitz, J. D. (1977). J. Am. Chem. Soc. 99, 4860-4862." /></a>). Other key intermolecular studies include the analysis of directional preferences in hydrogen bonding to O-atom acceptors (Murray-Rust & Glusker, 1984<a id="sourceBB48"></a><a href="#BB48"><img alt="[Murray-Rust, P. & Glusker, J. P. (1984). J. Am. Chem. Soc. 106, 1018-1025.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Murray-Rust, P. & Glusker, J. P. (1984). J. Am. Chem. Soc. 106, 1018-1025." /></a>) and proof positive of the existence of hydrogen bonds involving C—H donors (Taylor & Kennard, 1982<a id="sourceBB58"></a><a href="#BB58"><img alt="[Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070." /></a>). Some recent reviews in a database special issue of <span class="it"><i>Acta Crystallographica Sections B</i></span> and <span class="it"><i>D</i></span> are also useful in selecting potential teaching material. These reviews covered CSD applications in molecular inorganic chemistry (Orpen, 2002<a id="sourceBB50"></a><a href="#BB50"><img alt="[Orpen, A. G. (2002). Acta Cryst. B58, 398-406.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Orpen, A. G. (2002). Acta Cryst. B58, 398-406." /></a>), the life sciences (Taylor, 2002<a id="sourceBB57"></a><a href="#BB57"><img alt="[Taylor, R. (2002). Acta Cryst. D58, 879-888.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Taylor, R. (2002). Acta Cryst. D58, 879-888." /></a>), and organic and crystal chemistry (Allen & Motherwell, 2002<a href="#BB5"><img alt="[Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407-422.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407-422." /></a>).</p></div> </div> <div class="sec1" id="DIVSEC5"> <h3><a id="SEC5"></a>5. Molecular symmetry and crystallographic symmetry</h3> <p>An understanding of the symmetry properties of molecules and crystals, and the inter-relationships between molecular and <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystallographic_symmetry' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystallographic_symmetry", 'Navigator')">crystallographic symmetry,</a> is fundamental to crystallography and is also central to many aspects of physics, chemistry, materials science and materials engineering. Individual symmetry elements are typically represented in text books by simple drawings (see, <span class="it"><i>e.g.</i></span>, Burns & Glazer, 1990<a id="sourceBB18"></a><a href="#BB18"><img alt="[Burns, G. & Glazer, A. M. (1990). Space Groups for Solid State Scientists, 2nd ed. Boston: Academic Press.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Burns, G. & Glazer, A. M. (1990). Space Groups for Solid State Scientists, 2nd ed. Boston: Academic Press." /></a>; McKie & McKie, 1986<a id="sourceBB47"></a><a href="#BB47"><img alt="[McKie, D. & McKie, D. (1986). Essentials of Crystallography. Boston: Blackwell Scientific.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="McKie, D. & McKie, D. (1986). Essentials of Crystallography. Boston: Blackwell Scientific." /></a>), and for crystallographic point groups and space groups various graphical representations are commonly used (Hahn, 2005<a id="sourceBB35"></a><a href="#BB35"><img alt="[Hahn, T. (2005). Editor. International Tables for Crystallography, Brief Teaching Edition of Volume A: Space-Group Symmetry, 5th ed. Heidelberg: Springer.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Hahn, T. (2005). Editor. International Tables for Crystallography, Brief Teaching Edition of Volume A: Space-Group Symmetry, 5th ed. Heidelberg: Springer." /></a>). Students can find these representations difficult to interpret in the abstract, whereas direct visualization of real structures by means of computer graphics can greatly aid the teaching of point-group and space-group symmetry at the undergraduate and graduate levels.</p><p>The <span class="it"><i>Mercury</i></span> program (Macrae <span class="it"><i>et al.</i></span>, 2006<a href="#BB46"><img alt="[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457." /></a>) will display the space-group symmetry elements of a structure. Different graphics elements are used to denote, for example, inversion centres, rotation axes, screw axes, mirrors and glide planes. Thus, (18)annulene (teaching subset: ANULEN) displays <span class="it"><i>D</i></span>(6<span class="it"><i>h</i></span>) molecular symmetry, a <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Point_group' onclick="return makeSubWindow("https://dictionary.iucr.org/Point_group", 'Navigator')">point group</a> that is relatively rare in the CSD. However, like most molecules belonging to a <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Point_group' onclick="return makeSubWindow("https://dictionary.iucr.org/Point_group", 'Navigator')">point group</a> that encompasses inversion symmetry, it crystallizes on an inversion centre, in this case in the most popular <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Space_group' onclick="return makeSubWindow("https://dictionary.iucr.org/Space_group", 'Navigator')">space group</a> <span class="it"><i>P</i></span>21/<span class="it"><i>c</i></span> for which the <span class="it"><i>Mercury</i></span> plot showing the relevant symmetry elements is shown in Fig. 13<a href="#FIG13"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>. Alternatively, <span class="it"><i>Jmol</i></span> (2010<a href="#BB41"><img alt="[Jmol (2010). https://www.jmol.org/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Jmol (2010). https://www.jmol.org/." /></a>) now also provides a number of <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystallographic_symmetry' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystallographic_symmetry", 'Navigator')">crystallographic symmetry</a> display capabilities (Hanson, 2009<span class="it"><i>a</i></span><a id="sourceBB37"></a><a href="#BB37"><img alt="[Hanson, R. (2009a). Teaching Molecular Structure Using Jmol, https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Hanson, R. (2009a). Teaching Molecular Structure Using Jmol, https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/." /></a>,<span class="it"><i>b</i></span><a id="sourceBB38"></a><a href="#BB38"><img alt="[Hanson, R. (2009b). Jmol Crystal Symmetry Explorer, https://chemapps.stolaf.edu/jmol/docs/examples-11/jcse/explore.htm.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Hanson, R. (2009b). Jmol Crystal Symmetry Explorer, https://chemapps.stolaf.edu/jmol/docs/examples-11/jcse/explore.htm." /></a>) applicable to CSD entries and other structures.</p><div class="fig"> <table cellpadding="5" class="fig" summary="Figure 13" width="100%"> <tbody> <tr> <td class="td_align_center width_20"> <a href="kk5063fig13.html"><img alt="[Figure 13]" class="figlnkthm img_align_middle" src="kk5063fig13thm.gif" /> <br /></a> </td> <td> <span class="font_size_3"><b><a href="kk5063fig13.html" id="FIG13">Figure 13</a></b></span> <br /><span class="font_size_2 caption"><span class="it"><i>Mercury</i></span> display of symmetry elements in (18)annulene.</span></td> </tr> </tbody> </table> </div> <p>The relationship between molecular and <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystallographic_symmetry' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystallographic_symmetry", 'Navigator')">crystallographic symmetry</a> in CSD entries is the subject of a separate relational database called CSDSymmetry (Yao <span class="it"><i>et al.</i></span>, 2002<a id="sourceBB67"></a><a href="#BB67"><img alt="[Yao, J. W., Cole, J. C., Pidcock, E., Allen, F. H., Howard, J. A. K. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 640-646.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Yao, J. W., Cole, J. C., Pidcock, E., Allen, F. H., Howard, J. A. K. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 640-646." /></a>). This database, built using Microsoft <span class="it"><i>Access</i></span>, is regularly updated and is freely available <span class="it"><i>via</i></span> the CCDC website (CCDC, 2010<span class="it"><i>d</i></span><a id="sourceBB24"></a><a href="#BB24"><img alt="[CCDC (2010d). CSDSymmetry. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/free_services/csdsymmetry/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="CCDC (2010d). CSDSymmetry. Cambridge Crystallographic Data Centre, Cambridge, UK, https://www.ccdc.cam.ac.uk/free_services/csdsymmetry/." /></a>). The database contains information such as the molecular <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Point_group' onclick="return makeSubWindow("https://dictionary.iucr.org/Point_group", 'Navigator')">point group,</a> crystallographic <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Space_group' onclick="return makeSubWindow("https://dictionary.iucr.org/Space_group", 'Navigator')">space group,</a> <span class="it"><i>Z</i></span>, <span class="it"><i>Z</i></span>′ and the symmetry of the occupied Wyckoff positions for >400 000 unique CSD molecules. Auxiliary tables provide further information, such as the symmetry operators of the 230 space groups and the symmetry elements of the 38 point groups. CSDSymmetry can be interrogated with a wide variety of queries, for example `return all molecules with a mirror plane that are located on a crystallographic twofold axis', thus allowing teachers to readily identify interesting molecules with which to exemplify symmetry concepts. CSDSymmetry has been surveyed by Pidcock <span class="it"><i>et al.</i></span> (2003<a id="sourceBB52"></a><a href="#BB52"><img alt="[Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2003). Acta Cryst. B59, 634-640.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2003). Acta Cryst. B59, 634-640." /></a>) to obtain distributions of molecules over the different Wyckoff positions and to characterize some relationships between molecular and crystallographic symmetry.</p><p>The definition of symmetry operations involves the concept of motion of an object: an object has a symmetry property when it can be brought into self-coincidence by an isometric motion (<span class="it"><i>i.e.</i></span> by a translation, rotation, mirror or inversion operation), and students can struggle to perform these mental operations on three-dimensional objects without actually observing them using models or computer graphics. This issue has been addressed by Johnston (2009<span class="it"><i>a</i></span><a id="sourceBB42"></a><a href="#BB42"><img alt="[Johnston, D. (2009a). Using the Cambridge Structural Database to Explore Concepts of Symmetry, https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Johnston, D. (2009a). Using the Cambridge Structural Database to Explore Concepts of Symmetry, https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/." /></a>) who has created a website (Johnston, 2009<span class="it"><i>b</i></span><a id="sourceBB43"></a><a href="#BB43"><img alt="[Johnston, D. (2009b). Symmetry Resources at Otterbein College, https://symmetry.otterbein.edu.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Johnston, D. (2009b). Symmetry Resources at Otterbein College, https://symmetry.otterbein.edu." /></a>) containing resources designed to help students learn concepts of molecular symmetry and to help faculty at Otterbein College (Westerville, Ohio, USA) and elsewhere teach these concepts. A point-group symmetry tutorial guides students through all of the symmetry elements and operations using interactive displays and animations. Johnston has used prior knowledge and CSDSymmetry to assemble a symmetry gallery of 70 unique molecules, which is provided with an interactive and animated display of symmetry elements as illustrated (statically) in Fig. 14<a href="#FIG14"><img alt="[link]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" /></a>. The molecules are organized by <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Point_group' onclick="return makeSubWindow("https://dictionary.iucr.org/Point_group", 'Navigator')">point group,</a> so educators can readily select examples to demonstrate particular symmetry elements. Additionally, a simple interface for searching CSDSymmetry by <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Point_group' onclick="return makeSubWindow("https://dictionary.iucr.org/Point_group", 'Navigator')">point group</a> is provided. The site also contains a symmetry challenge section, incorporating a flow chart that details the process of determining the <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Point_group' onclick="return makeSubWindow("https://dictionary.iucr.org/Point_group", 'Navigator')">point group</a> of a particular molecule, thus providing an interactive route for students to practice point-group determination.</p><div class="fig"> <table cellpadding="5" class="fig" summary="Figure 14" width="100%"> <tbody> <tr> <td class="td_align_center width_20"> <a href="kk5063fig14.html"><img alt="[Figure 14]" class="figlnkthm img_align_middle" src="kk5063fig14thm.gif" /> <br /></a> </td> <td> <span class="font_size_3"><b><a href="kk5063fig14.html" id="FIG14">Figure 14</a></b></span> <br /><span class="font_size_2 caption">Display of symmetry elements in YbI<span class="inf"><sub>2</sub></span>(THF)<span class="inf"><sub>5</sub></span> (THF is tetrahydrofuran) from Johnston's (2009<span class="it"><i>b</i></span><a href="#BB43"><img alt="[Johnston, D. (2009b). Symmetry Resources at Otterbein College, https://symmetry.otterbein.edu.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Johnston, D. (2009b). Symmetry Resources at Otterbein College, https://symmetry.otterbein.edu." /></a><a href="#BB64"><img alt="[Wheeler, K. A. (2009). Conceptualizing Reaction Mechanisms using Crystallographic Data, https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/.]" class="linkarrow img_align_bottom img_border_0" src="../../../../../../logos/arrows/j_arr.gif" title="Wheeler, K. A. (2009). Conceptualizing Reaction Mechanisms using Crystallographic Data, https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/." /></a>) symmetry gallery.</span></td> </tr> </tbody> </table> </div> </div> <div class="sec1" id="DIVSEC6"> <h3><a id="SEC6"></a>6. Conclusion</h3> <p>The CSD is, of course, a crystallographic database, and has tremendous value to teachers of the subject in choosing examples of specific types of structure for more detailed study as part of a formal course. Issues connected with crystallographic and molecular symmetry are discussed in the main text, and it is worth noting that examples of all 230 space groups are represented in the database. Additionally, it is a simple matter to locate examples of disorder (in all its aspects), <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Twinning' onclick="return makeSubWindow("https://dictionary.iucr.org/Twinning", 'Navigator')">twinning,</a> <a target='Navigator' class="ref_lookup_orange hideorange" href='https://goldbook.iupac.org/A00020.html' onclick="return makeSubWindow("https://goldbook.iupac.org/A00020.html", 'Navigator')">absolute configuration</a> determination, neutron studies, structures determined by X-ray and neutron powder diffraction <span class="it"><i>etc.</i></span> However, the principal strength of the CSD is that it represents a vast and growing compendium of three-dimensional chemical structures, and it is this aspect, arguably, that resonates most with a broad constituency of chemical educators. It is for this reason that we have concentrated almost entirely here on the value of three-dimensional chemical structures in the teaching environment. Our observation in recent years is that a growing number of teachers of undergraduate chemistry courses are finding value in the crystallographic databases in general, and the CSD and PDB in particular. Not only does this activity introduce students to the crucial importance of crystallographic methods in furthering our understanding of three-dimensional chemistry in all its aspects, it also introduces them to the three-dimensional realities of the chemical world.</p></div> <div class="footnotes"> <h3>Footnotes</h3><p> <a id="fn1"></a><a href="#fnr1"><sup><b>1</b></sup></a>This paper is part of a short series celebrating the archiving of the 500 000th <a target='Navigator' class="ref_lookup_yellow hideyellow" href='https://dictionary.iucr.org/Crystal_structure' onclick="return makeSubWindow("https://dictionary.iucr.org/Crystal_structure", 'Navigator')">crystal structure</a> to the Cambridge Structural Database in November 2009.</p> </div></div> <div id="bm"> <div id="ack"> <h3>Acknowledgements</h3><p>The creation of the CSD teaching subset of the CSD is based upon work supported by the United States National Science Foundation under grant No. 0725294. We also thank contributors to the ACS (Fall 2009) Symposium for permission to make their presentations available <span class="it"><i>via</i></span> the CCDC website, and Dr Peter Wood (CCDC) for assistance in the preparation of Fig. 6.</p></div> <div id="bibl"> <h3><a id="References"></a>References</h3><p><span class="font_size_3 bb"><a href="#sourceBB3"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB3"></a>Allen, F. H. (2002). <span class="it"><i>Acta Cryst.</i></span> B<span class="b"><b>58</b></span>, 380–388. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000176270700010">Web of Science</a> <a class="biblink" href="https://www.ccdc.cam.ac.uk/services/structure_request?sid=iucr&id=doi:10.1107%2FS0108768102003890">CSD</a> <a class="biblink" href="https://dx.doi.org/10.1107%2FS0108768102003890">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BD38XktVOqu74%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=39bd6a4690ae6df16545823ca3be8aa6">CAS</a> <a class="biblink" href="https://journals.iucr.org/paper?an0610">IUCr Journals</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Allen%2C%20F.%20H.%20%282002%29.%20Acta%20Cryst.%20B58%2C%20380%E2%80%93388.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB4"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB4"></a>Allen, F. H., Galek, P. T. A. & Wood, P. A. (2010). <span class="it"><i>Cryst. Rev.</i></span> <span class="b"><b>16</b></span>, 169–195. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000280236900002">Web of Science</a> <a class="biblink" href="https://dx.doi.org/10.1080%2F08893110903476919">CrossRef</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Allen%2C%20F.%20H.%2C%20Galek%2C%20P.%20T.%20A.%20%26%20Wood%2C%20P.%20A.%20%282010%29.%20Cryst.%20Rev.%2016%2C%20169%E2%80%93195.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB2"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB2"></a>Allen, F. H., Harris, S. E. & Taylor, R. (1996). <span class="it"><i>J. Comput. Aided Mol. Des.</i></span> <span class="b"><b>10</b></span>, 247–254. <a class="biblink" href="https://dx.doi.org/10.1007%2FBF00355046">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DyaK28XjvFGktbs%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=6126680185a74c4e3d14e0b5458feae8">CAS</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=pmed&pmid=8808740">PubMed</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=A1996UV02000006">Web of Science</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Allen%2C%20F.%20H.%2C%20Harris%2C%20S.%20E.%20%26%20Taylor%2C%20R.%20%281996%29.%20J.%20Comput.%20Aided%20Mol.%20Des.%2010%2C%20247%E2%80%93254.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB1"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB1"></a>Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). <span class="it"><i>J. Chem. Soc. Perkin Trans. 2</i></span>, pp. S1–19. <a class="biblink" href="https://www.ccdc.cam.ac.uk/services/structure_request?sid=iucr&id=doi:10.1039%2Fp298700000s1">CSD</a> <a class="biblink" href="https://dx.doi.org/10.1039%2Fp298700000s1">CrossRef</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=A1987L439900036">Web of Science</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Allen%2C%20F.%20H.%2C%20Kennard%2C%20O.%2C%20Watson%2C%20D.%20G.%2C%20Brammer%2C%20L.%2C%20Orpen%2C%20A.%20G.%20%26%20Taylor%2C%20R.%20%281987%29.%20J.%20Chem.%20Soc.%20Perkin%20Trans.%202%2C%20pp.%20S1%E2%80%9319.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB5"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB5"></a>Allen, F. H. & Motherwell, W. D. S. (2002). <span class="it"><i>Acta Cryst.</i></span> B<span class="b"><b>58</b></span>, 407–422. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000176270700013">Web of Science</a> <a class="biblink" href="https://dx.doi.org/10.1107%2FS0108768102004895">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BD38XktVOqu70%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=51476abe87c7f4f0aa96bcf820ceb1f7">CAS</a> <a class="biblink" href="https://journals.iucr.org/paper?an0611">IUCr Journals</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Allen%2C%20F.%20H.%20%26%20Motherwell%2C%20W.%20D.%20S.%20%282002%29.%20Acta%20Cryst.%20B58%2C%20407%E2%80%93422.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB6"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB6"></a>Auf der Heyde, T. P. E. (1994). <span class="it"><i>Structure Correlation</i></span>, edited by H.-B. Bürgi & J. D. Dunitz, pp. 337–368. Weinheim: VCH. <a class="biblink" href="https://scholar.google.com/scholar?q=Auf%20der%20Heyde%2C%20T.%20P.%20E.%20%281994%29.%20Structure%20Correlation%2C%20edited%20by%20H.-B.%20B%C3%BCrgi%20%26%20J.%20D.%20Dunitz%2C%20pp.%20337%E2%80%93368.%20Weinheim%3A%20VCH.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB7"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB7"></a>Battle, G. M., Allen, F. H. & Ferrence, G. M. (2010<span class="it"><i>a</i></span>). <span class="it"><i>J. Chem. Educ.</i></span> In the press. doi:10.1021/ed100256k. <a class="biblink" href="https://scholar.google.com/scholar?q=Battle%2C%20G.%20M.%2C%20Allen%2C%20F.%20H.%20%26%20Ferrence%2C%20G.%20M.%20%282010a%29.%20J.%20Chem.%20Educ.%20In%20the%20press.%20doi%3A10.1021%2Fed100256k.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB8"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB8"></a>Battle, G. M., Allen, F. H. & Ferrence, G. M. (2010<span class="it"><i>b</i></span>). <span class="it"><i>J. Chem. Educ.</i></span> In the press. doi:10.1021/ed100257t. <a class="biblink" href="https://scholar.google.com/scholar?q=Battle%2C%20G.%20M.%2C%20Allen%2C%20F.%20H.%20%26%20Ferrence%2C%20G.%20M.%20%282010b%29.%20J.%20Chem.%20Educ.%20In%20the%20press.%20doi%3A10.1021%2Fed100257t.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB9"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB9"></a>Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). <span class="it"><i>Nucleic Acids Res.</i></span> <span class="b"><b>28</b></span>, 235–242. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000084896300069">Web of Science</a> <a class="biblink" href="https://dx.doi.org/10.1093%2Fnar%2F28.1.235">CrossRef</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=pmed&pmid=10592235">PubMed</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BD3cXhvVKjt7w%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=7cd74a698d697d0fb64f42c3b7a1e199">CAS</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Berman%2C%20H.%20M.%2C%20Westbrook%2C%20J.%2C%20Feng%2C%20Z.%2C%20Gilliland%2C%20G.%2C%20Bhat%2C%20T.%20N.%2C%20Weissig%2C%20H.%2C%20Shindyalov%2C%20I.%20N.%20%26%20Bourne%2C%20P.%20E.%20%282000%29.%20Nucleic%20Acids%20Res.%2028%2C%20235%E2%80%93242.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB10"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB10"></a>Bodner, G. M. & Guay, R. B. (1997). <span class="it"><i>Chem. Educ.</i></span> <span class="b"><b>2</b></span>(4), S1430-4171(97)04138-X. <a class="biblink" href="https://scholar.google.com/scholar?q=Bodner%2C%20G.%20M.%20%26%20Guay%2C%20R.%20B.%20%281997%29.%20Chem.%20Educ.%202%284%29%2C%20S1430-4171%2897%2904138-X.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB11"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB11"></a>Brameld, K. A., Kuhn, B., Reuter, D. C. & Stahl, M. (2008). <span class="it"><i>J. Chem. Inf. Model.</i></span> <span class="b"><b>48</b></span>, 1–24. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000252713700001">Web of Science</a> <a class="biblink" href="https://dx.doi.org/10.1021%2Fci7002494">CrossRef</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=pmed&pmid=18183967">PubMed</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BD1cXksV2isA%3D%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=9d26e5dac58bba4a812436f80bef8436">CAS</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Brameld%2C%20K.%20A.%2C%20Kuhn%2C%20B.%2C%20Reuter%2C%20D.%20C.%20%26%20Stahl%2C%20M.%20%282008%29.%20J.%20Chem.%20Inf.%20Model.%2048%2C%201%E2%80%9324.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB12"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB12"></a>Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). <span class="it"><i>Acta Cryst.</i></span> B<span class="b"><b>58</b></span>, 389–397. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000176270700011">Web of Science</a> <a class="biblink" href="https://www.ccdc.cam.ac.uk/services/structure_request?sid=iucr&id=doi:10.1107%2FS0108768102003324">CSD</a> <a class="biblink" href="https://dx.doi.org/10.1107%2FS0108768102003324">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BD38XktVOqu78%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=e6894a2454609f0b08dfd9ebca9c17fa">CAS</a> <a class="biblink" href="https://journals.iucr.org/paper?an0609">IUCr Journals</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Bruno%2C%20I.%20J.%2C%20Cole%2C%20J.%20C.%2C%20Edgington%2C%20P.%20R.%2C%20Kessler%2C%20M.%2C%20Macrae%2C%20C.%20F.%2C%20McCabe%2C%20P.%2C%20Pearson%2C%20J.%20%26%20Taylor%2C%20R.%20%282002%29.%20Acta%20Cryst.%20B58%2C%20389%E2%80%93397.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB13"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB13"></a>Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). <span class="it"><i>J. Chem. Inf. Comput. Sci.</i></span> <span class="b"><b>44</b></span>, 2133–2144. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000225411300028">Web of Science</a> <a class="biblink" href="https://www.ccdc.cam.ac.uk/services/structure_request?sid=iucr&id=doi:10.1021%2Fci049780b">CSD</a> <a class="biblink" href="https://dx.doi.org/10.1021%2Fci049780b">CrossRef</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=pmed&pmid=15554684">PubMed</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BD2cXotlalsr8%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=cb975da34f1409b2f42bde6d4d5834d1">CAS</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Bruno%2C%20I.%20J.%2C%20Cole%2C%20J.%20C.%2C%20Kessler%2C%20M.%2C%20Luo%2C%20J.%2C%20Motherwell%2C%20W.%20D.%20S.%2C%20Purkis%2C%20L.%20H.%2C%20Smith%2C%20B.%20R.%2C%20Taylor%2C%20R.%2C%20Cooper%2C%20R.%20I.%2C%20Harris%2C%20S.%20E.%20%26%20Orpen%2C%20A.%20G.%20%282004%29.%20J.%20Chem.%20Inf.%20Comput.%20Sci.%2044%2C%202133%E2%80%932144.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB14"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB14"></a>Bruno, I. J., Cole, J. C., Lommerse, J. P. M., Rowland, R. S., Taylor, R. & Verdonk, M. L. (1997). <span class="it"><i>J. Comput. Aided Mol. Des.</i></span> <span class="b"><b>11</b></span>, 525–537. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000071973800001">Web of Science</a> <a class="biblink" href="https://www.ccdc.cam.ac.uk/services/structure_request?sid=iucr&id=doi:10.1023%2FA%3A1007934413448">CSD</a> <a class="biblink" href="https://dx.doi.org/10.1023%2FA%3A1007934413448">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DyaK1cXht1Olu7s%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=feee0d41f410892dadb177386122f4d0">CAS</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=pmed&pmid=9491345">PubMed</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Bruno%2C%20I.%20J.%2C%20Cole%2C%20J.%20C.%2C%20Lommerse%2C%20J.%20P.%20M.%2C%20Rowland%2C%20R.%20S.%2C%20Taylor%2C%20R.%20%26%20Verdonk%2C%20M.%20L.%20%281997%29.%20J.%20Comput.%20Aided%20Mol.%20Des.%2011%2C%20525%E2%80%93537.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB15"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB15"></a>Bürgi, H.-B. & Dunitz, J. D. (1986). <span class="it"><i>Acc. Chem. Res.</i></span> <span class="b"><b>16</b></span>, 153–161. <a class="biblink" href="https://scholar.google.com/scholar?q=B%C3%BCrgi%2C%20H.-B.%20%26%20Dunitz%2C%20J.%20D.%20%281986%29.%20Acc.%20Chem.%20Res.%2016%2C%20153%E2%80%93161.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB16"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB16"></a>Bürgi, H.-B. & Dunitz, J. D. (1994). <span class="it"><i>Structure Correlation</i></span>. Weinheim: VCH. <a class="biblink" href="https://scholar.google.com/scholar?q=B%C3%BCrgi%2C%20H.-B.%20%26%20Dunitz%2C%20J.%20D.%20%281994%29.%20Structure%20Correlation.%20Weinheim%3A%20VCH.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB17"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB17"></a>Bürgi, H.-B. & Shklover, V. (1994). <span class="it"><i>Structure Correlation</i></span>, Vols. 1 and 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 303–335. Weinheim: VCH. <a class="biblink" href="https://scholar.google.com/scholar?q=B%C3%BCrgi%2C%20H.-B.%20%26%20Shklover%2C%20V.%20%281994%29.%20Structure%20Correlation%2C%20Vols.%201%20and%202%2C%20edited%20by%20H.-B.%20B%C3%BCrgi%20%26%20J.%20D.%20Dunitz%2C%20pp.%20303%E2%80%93335.%20Weinheim%3A%20VCH.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB18"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB18"></a>Burns, G. & Glazer, A. M. (1990). <span class="it"><i>Space Groups for Solid State Scientists</i></span>, 2nd ed. Boston: Academic Press. <a class="biblink" href="https://scholar.google.com/scholar?q=Burns%2C%20G.%20%26%20Glazer%2C%20A.%20M.%20%281990%29.%20Space%20Groups%20for%20Solid%20State%20Scientists%2C%202nd%20ed.%20Boston%3A%20Academic%20Press.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB19"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB19"></a>CambridgeSoft (2009). <span class="it"><i>Chem3D Ultra.</i></span> CambridgeSoft Inc., Cambridge, MA, USA, <a href="https://www.cambridgesoft.com">https://www.cambridgesoft.com</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=CambridgeSoft%20%282009%29.%20Chem3D%20Ultra.%20CambridgeSoft%20Inc.%2C%20Cambridge%2C%20MA%2C%20USA%2C%20http%3A%2F%2Fwww.cambridgesoft.com.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB20"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB20"></a>CCDC (2009). <span class="it"><i>Symposium on the Applications of Small-Molecule Crystal Structure Information in Chemical Education</i></span>. Cambridge Crystallographic Data Centre, Cambridge, UK, <a href="https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/">https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=CCDC%20%282009%29.%20Symposium%20on%20the%20Applications%20of%20Small-Molecule%20Crystal%20Structure%20Information%20in%20Chemical%20Education.%20Cambridge%20Crystallographic%20Data%20Centre%2C%20Cambridge%2C%20UK%2C%20http%3A%2F%2Fwww.ccdc.cam.ac.uk%2Ffree_services%2Fteaching%2FACS%20symposium%2F.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB21"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB21"></a>CCDC (2010<span class="it"><i>a</i></span>). <span class="it"><i>CSD-based Teaching Modules.</i></span> Cambridge Crystallographic Data Centre, Cambridge, UK, <a href="https://www.ccdc.cam.ac.uk/free_services/teaching/modules/">https://www.ccdc.cam.ac.uk/free_services/teaching/modules/</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=CCDC%20%282010a%29.%20CSD-based%20Teaching%20Modules.%20Cambridge%20Crystallographic%20Data%20Centre%2C%20Cambridge%2C%20UK%2C%20http%3A%2F%2Fwww.ccdc.cam.ac.uk%2Ffree_services%2Fteaching%2Fmodules%2F.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB22"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB22"></a>CCDC (2010<span class="it"><i>b</i></span>). <span class="it"><i>WebCite.</i></span> Cambridge Crystallographic Data Centre, Cambridge, UK, <a href="https://www.ccdc.cam.ac.uk/free_services/webcite/">https://www.ccdc.cam.ac.uk/free_services/webcite/</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=CCDC%20%282010b%29.%20WebCite.%20Cambridge%20Crystallographic%20Data%20Centre%2C%20Cambridge%2C%20UK%2C%20http%3A%2F%2Fwww.ccdc.cam.ac.uk%2Ffree_services%2Fwebcite%2F.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB23"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB23"></a>CCDC (2010<span class="it"><i>c</i></span>). <span class="it"><i>Mercury.</i></span> Cambridge Crystallographic Data Centre, Cambridge, UK, <a href="https://www.ccdc.cam.ac.uk/products/mercury/">https://www.ccdc.cam.ac.uk/products/mercury/</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=CCDC%20%282010c%29.%20Mercury.%20Cambridge%20Crystallographic%20Data%20Centre%2C%20Cambridge%2C%20UK%2C%20http%3A%2F%2Fwww.ccdc.cam.ac.uk%2Fproducts%2Fmercury%2F.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB24"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB24"></a>CCDC (2010<span class="it"><i>d</i></span>). <span class="it"><i>CSDSymmetry.</i></span> Cambridge Crystallographic Data Centre, Cambridge, UK, <a href="https://www.ccdc.cam.ac.uk/free_services/csdsymmetry/">https://www.ccdc.cam.ac.uk/free_services/csdsymmetry/</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=CCDC%20%282010d%29.%20CSDSymmetry.%20Cambridge%20Crystallographic%20Data%20Centre%2C%20Cambridge%2C%20UK%2C%20http%3A%2F%2Fwww.ccdc.cam.ac.uk%2Ffree_services%2Fcsdsymmetry%2F.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB25"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB25"></a>Chakrabarti, P. & Dunitz, J. D. (1982). <span class="it"><i>Helv. Chim. Acta</i></span>, <span class="b"><b>65</b></span>, 1555–1562. <a class="biblink" href="https://dx.doi.org/10.1002%2Fhlca.19820650529">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DyaL38Xls1Wqt7c%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=d401b96e1c824805e0eb4062219264e0">CAS</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=A1982PC29000028">Web of Science</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Chakrabarti%2C%20P.%20%26%20Dunitz%2C%20J.%20D.%20%281982%29.%20Helv.%20Chim.%20Acta%2C%2065%2C%201555%E2%80%931562.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB26"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB26"></a>Charton, M. (1970). <span class="it"><i>The Chemistry of Alkenes</i></span>, Vol. II, edited by J. Zabicky, pp. 511–610. London: Interscience. <a class="biblink" href="https://scholar.google.com/scholar?q=Charton%2C%20M.%20%281970%29.%20The%20Chemistry%20of%20Alkenes%2C%20Vol.%20II%2C%20edited%20by%20J.%20Zabicky%2C%20pp.%20511%E2%80%93610.%20London%3A%20Interscience.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB27"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB27"></a>Cieplak, A. S. (1994). <span class="it"><i>Structure Correlation</i></span>, edited by H.-B. Bürgi & J. D. Dunitz, pp. 205–302. Weinheim: VCH. <a class="biblink" href="https://scholar.google.com/scholar?q=Cieplak%2C%20A.%20S.%20%281994%29.%20Structure%20Correlation%2C%20edited%20by%20H.-B.%20B%C3%BCrgi%20%26%20J.%C2%A0D.%20Dunitz%2C%20pp.%20205%E2%80%93302.%20Weinheim%3A%20VCH.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB28"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB28"></a>Clayden, J., Greeves, N., Warren, S. & Wothers, P. (2000). <span class="it"><i>Organic Chemistry</i></span>. Oxford University Press. <a class="biblink" href="https://scholar.google.com/scholar?q=Clayden%2C%20J.%2C%20Greeves%2C%20N.%2C%20Warren%2C%20S.%20%26%20Wothers%2C%20P.%20%282000%29.%20Organic%20Chemistry.%20Oxford%20University%20Press.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB29"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB29"></a>Cotton, F. A. & Wilkinson, G. (1980). <span class="it"><i>Advanced Inorganic Chemistry</i></span>, 4th ed. New York: John Wiley. <a class="biblink" href="https://scholar.google.com/scholar?q=Cotton%2C%20F.%20A.%20%26%20Wilkinson%2C%20G.%20%281980%29.%20Advanced%20Inorganic%20Chemistry%2C%204th%20ed.%20New%20York%3A%20John%20Wiley.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB30"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB30"></a>Crabtree, R. H. & Lavin, M. (1986). <span class="it"><i>Inorg. Chem.</i></span> <span class="b"><b>25</b></span>, 805–812. <a class="biblink" href="https://dx.doi.org/10.1021%2Fic00226a016">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DyaL28Xht12qt74%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=f4578589aeb961acae3d6cee5b9c15b3">CAS</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=A1986A586600016">Web of Science</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Crabtree%2C%20R.%20H.%20%26%20Lavin%2C%20M.%20%281986%29.%20Inorg.%20Chem.%2025%2C%20805%E2%80%93812.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB31"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB31"></a>DeHaan, R. L. (2005). <span class="it"><i>J. Sci. Educ. Technol.</i></span><span class="b"><b> 14</b></span>, 253–269. <a class="biblink" href="https://dx.doi.org/10.1007%2Fs10956-005-4425-3">CrossRef</a> <a class="biblink" href="https://scholar.google.com/scholar?q=DeHaan%2C%20R.%20L.%20%282005%29.%20J.%20Sci.%20Educ.%20Technol.%2014%2C%20253%E2%80%93269.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB32"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB32"></a>Duax, W. L. (1988). <span class="it"><i>J. Chem. Educ.</i></span> <span class="b"><b>65</b></span>, 502–507. <a class="biblink" href="https://dx.doi.org/10.1021%2Fed065p502">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DyaL1cXkvFWqs70%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=565ef8d5c2753cdcb7d8bf3829d2ad7b">CAS</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Duax%2C%20W.%20L.%20%281988%29.%20J.%20Chem.%20Educ.%2065%2C%20502%E2%80%93507.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB33"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB33"></a>Eliel, E. H. & Wilen, S. H. (1994). <span class="it"><i>Stereochemistry of Organic Compounds.</i></span> New York: Wiley-Interscience. <a class="biblink" href="https://scholar.google.com/scholar?q=Eliel%2C%20E.%20H.%20%26%20Wilen%2C%20S.%20H.%20%281994%29.%20Stereochemistry%20of%20Organic%20Compounds.%20New%20York%3A%20Wiley-Interscience.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB35"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB35"></a>Hahn, T. (2005). Editor. <span class="it"><i>International Tables for Crystallography, Brief Teaching Edition of Volume A: Space-Group Symmetry</i></span>, 5th ed. Heidelberg: Springer. <a class="biblink" href="https://scholar.google.com/scholar?q=Hahn%2C%20T.%20%282005%29.%20Editor.%20International%20Tables%20for%20Crystallography%2C%20Brief%20Teaching%20Edition%20of%20Volume%20A%3A%20Space-Group%20Symmetry%2C%205th%20ed.%20Heidelberg%3A%20Springer.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB36"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB36"></a>Handelsman, J., Ebert-May, D., Beichner, R., Burns, P., Chang, A., DeHaan, R., Gentile, J., Lauffer, S., Stewart, J., Tilghman, S. M. & Wood, W. B. (2004). <span class="it"><i>Science</i></span>, <span class="b"><b>304</b></span>, 521–522. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000220975100025">Web of Science</a> <a class="biblink" href="https://dx.doi.org/10.1126%2Fscience.1096022">CrossRef</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=pmed&pmid=15105480">PubMed</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BD2cXjsVGmsrc%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=168838170bd6875a13bb0be185b9486e">CAS</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Handelsman%2C%20J.%2C%20Ebert-May%2C%20D.%2C%20Beichner%2C%20R.%2C%20Burns%2C%20P.%2C%20Chang%2C%20A.%2C%20DeHaan%2C%20R.%2C%20Gentile%2C%20J.%2C%20Lauffer%2C%20S.%2C%20Stewart%2C%20J.%2C%20Tilghman%2C%20S.%20M.%20%26%20Wood%2C%20W.%20B.%20%282004%29.%20Science%2C%20304%2C%20521%E2%80%93522.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB37"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB37"></a>Hanson, R. (2009<span class="it"><i>a</i></span>). <span class="it"><i>Teaching Molecular Structure Using Jmol</i></span>, <a href="https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/">https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=Hanson%2C%20R.%20%282009a%29.%20Teaching%20Molecular%20Structure%20Using%20Jmol%2C%20http%3A%2F%2Fwww.ccdc.cam.ac.uk%2Ffree_services%2Fteaching%2FACS%20symposium%2F.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB38"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB38"></a>Hanson, R. (2009<span class="it"><i>b</i></span>). <span class="it"><i>Jmol Crystal Symmetry Explorer</i></span>, <a href="https://chemapps.stolaf.edu/jmol/docs/examples-11/jcse/explore.htm">https://chemapps.stolaf.edu/jmol/docs/examples-11/jcse/explore.htm</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=Hanson%2C%20R.%20%282009b%29.%20Jmol%20Crystal%20Symmetry%20Explorer%2C%20http%3A%2F%2Fchemapps.stolaf.edu%2Fjmol%2Fdocs%2Fexamples-11%2Fjcse%2Fexplore.htm.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB39"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB39"></a>Hoffmann, R. (1982). <span class="it"><i>Angew. Chem. Int. Ed. Engl.</i></span> <span class="b"><b>21</b></span>, 711–800. <a class="biblink" href="https://dx.doi.org/10.1002%2Fanie.198207113">CrossRef</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=A1982PQ46300001">Web of Science</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Hoffmann%2C%20R.%20%281982%29.%20Angew.%20Chem.%20Int.%20Ed.%20Engl.%2021%2C%20711%E2%80%93800.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB40"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB40"></a>Housecroft, C. E. & Sharpe, A. R. (2005). <span class="it"><i>Inorganic Chemistry</i></span>, 2nd ed. Harlow: Pearson Education Limited. <a class="biblink" href="https://scholar.google.com/scholar?q=Housecroft%2C%20C.%20E.%20%26%20Sharpe%2C%20A.%20R.%20%282005%29.%20Inorganic%20Chemistry%2C%202nd%20ed.%20Harlow%3A%20Pearson%20Education%20Limited.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB41"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB41"></a><span class="it"><i>Jmol</i></span> (2010). <a href="https://www.jmol.org/">https://www.jmol.org/</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=Jmol%20%282010%29.%20http%3A%2F%2Fwww.jmol.org%2F.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB42"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB42"></a>Johnston, D. (2009<span class="it"><i>a</i></span>). <span class="it"><i>Using the Cambridge Structural Database to Explore Concepts of Symmetry</i></span>, <a href="https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/">https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=Johnston%2C%20D.%20%282009a%29.%20Using%20the%20Cambridge%20Structural%20Database%20to%20Explore%20Concepts%20of%20Symmetry%2C%20http%3A%2F%2Fwww.ccdc.cam.ac.uk%2Ffree_services%2Fteaching%2FACS%20symposium%2F.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB43"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB43"></a>Johnston, D. (2009<span class="it"><i>b</i></span>). <span class="it"><i>Symmetry Resources at Otterbein College</i></span>, <a href="https://symmetry.otterbein.edu">https://symmetry.otterbein.edu</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=Johnston%2C%20D.%20%282009b%29.%20Symmetry%20Resources%20at%20Otterbein%20College%2C%20http%3A%2F%2Fsymmetry.otterbein.edu.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB44"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB44"></a>Jorgensen, W. F. & Salem, L. (1973). <span class="it"><i>The Organic Chemist's Book of Orbitals.</i></span> New York: Academic Press. <a class="biblink" href="https://scholar.google.com/scholar?q=Jorgensen%2C%20W.%20F.%20%26%20Salem%2C%20L.%20%281973%29.%20The%20Organic%20Chemist%27s%20Book%20of%20Orbitals.%20New%20York%3A%20Academic%20Press.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB45"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB45"></a>Kepert, D. L. (1972). <span class="it"><i>Inorg. Chem.</i></span> <span class="b"><b>11</b></span>, 1561–1567. <a class="biblink" href="https://dx.doi.org/10.1021%2Fic50113a022">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DyaE38Xks1Ogsbk%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=8f76b192f4b1c50d91f4e917ea2c7bde">CAS</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=A1972M884800022">Web of Science</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Kepert%2C%20D.%20L.%20%281972%29.%20Inorg.%20Chem.%2011%2C%201561%E2%80%931567.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB46"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB46"></a>Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). <span class="it"><i>J. Appl. Cryst.</i></span> <span class="b"><b>39</b></span>, 453–457. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000237461400019">Web of Science</a> <a class="biblink" href="https://www.ccdc.cam.ac.uk/services/structure_request?sid=iucr&id=doi:10.1107%2FS002188980600731X">CSD</a> <a class="biblink" href="https://dx.doi.org/10.1107%2FS002188980600731X">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BD28Xkslehsbk%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=c004888f547a4305e75ebbb96faa71e3">CAS</a> <a class="biblink" href="https://journals.iucr.org/paper?ks5091">IUCr Journals</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Macrae%2C%20C.%20F.%2C%20Edgington%2C%20P.%20R.%2C%20McCabe%2C%20P.%2C%20Pidcock%2C%20E.%2C%20Shields%2C%20G.%20P.%2C%20Taylor%2C%20R.%2C%20Towler%2C%20M.%20%26%20van%20de%20Streek%2C%20J.%20%282006%29.%20J.%20Appl.%20Cryst.%2039%2C%20453%E2%80%93457.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB47"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB47"></a>McKie, D. & McKie, D. (1986). <span class="it"><i>Essentials of Crystallography.</i></span> Boston: Blackwell Scientific. <a class="biblink" href="https://scholar.google.com/scholar?q=McKie%2C%20D.%20%26%20McKie%2C%20D.%20%281986%29.%20Essentials%20of%20Crystallography.%20Boston%3A%20Blackwell%20Scientific.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB48"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB48"></a>Murray-Rust, P. & Glusker, J. P. (1984). <span class="it"><i>J. Am. Chem. Soc.</i></span> <span class="b"><b>106</b></span>, 1018–1025. <a class="biblink" href="https://dx.doi.org/10.1021%2Fja00316a034">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DyaL2cXosFWltA%3D%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=5f9ff422e64fef4d90737af4031e1bcb">CAS</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=A1984SE19900034">Web of Science</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Murray-Rust%2C%20P.%20%26%20Glusker%2C%20J.%20P.%20%281984%29.%20J.%20Am.%20Chem.%20Soc.%20106%2C%201018%E2%80%931025.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB49"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB49"></a><span class="it"><i>OpenAstexViewer</i></span> (2010). <a href="https://openastexviewer.net/">https://openastexviewer.net/</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=OpenAstexViewer%20%282010%29.%20http%3A%2F%2Fopenastexviewer.net%2F.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB50"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB50"></a>Orpen, A. G. (2002). <span class="it"><i>Acta Cryst.</i></span> B<span class="b"><b>58</b></span>, 398–406. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000176270700012">Web of Science</a> <a class="biblink" href="https://dx.doi.org/10.1107%2FS0108768102002446">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BD38XktVOqu7w%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=b6e101a35c39665c1e543da4b967abbc">CAS</a> <a class="biblink" href="https://journals.iucr.org/paper?an0603">IUCr Journals</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Orpen%2C%20A.%20G.%20%282002%29.%20Acta%20Cryst.%20B58%2C%20398%E2%80%93406.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB51"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB51"></a>Orpen, G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). <span class="it"><i>J. Chem. Soc. Dalton Trans.</i></span> pp. S1–83. <a class="biblink" href="https://dx.doi.org/10.1039%2Fdt98900000s1">CrossRef</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=A1989CG28900020">Web of Science</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Orpen%2C%20G.%2C%20Brammer%2C%20L.%2C%20Allen%2C%20F.%20H.%2C%20Kennard%2C%20O.%2C%20Watson%2C%20D.%20G.%20%26%20Taylor%2C%20R.%20%281989%29.%20J.%20Chem.%20Soc.%20Dalton%20Trans.%20pp.%20S1%E2%80%9383.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB52"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB52"></a>Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2003). <span class="it"><i>Acta Cryst.</i></span> B<span class="b"><b>59</b></span>, 634–640. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000185534100011">Web of Science</a> <a class="biblink" href="https://www.ccdc.cam.ac.uk/services/structure_request?sid=iucr&id=doi:10.1107%2FS0108768103012278">CSD</a> <a class="biblink" href="https://dx.doi.org/10.1107%2FS0108768103012278">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BD3sXosVGntro%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=3ddd21e5a924abfd832eb72e5672aa7b">CAS</a> <a class="biblink" href="https://journals.iucr.org/paper?bk0132">IUCr Journals</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Pidcock%2C%20E.%2C%20Motherwell%2C%20W.%20D.%20S.%20%26%20Cole%2C%20J.%20C.%20%282003%29.%20Acta%20Cryst.%20B59%2C%20634%E2%80%93640.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB53"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB53"></a>Prince, M. (2004). <span class="it"><i>J. Eng. Educ.</i></span> <span class="b"><b>89</b></span>, 1–9. <a class="biblink" href="https://scholar.google.com/scholar?q=Prince%2C%20M.%20%282004%29.%20J.%20Eng.%20Educ.%2089%2C%201%E2%80%939.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB54"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB54"></a>Rosenfield, R. E., Parthasarathy, R. & Dunitz, J. D. (1977). <span class="it"><i>J. Am. Chem. Soc.</i></span> <span class="b"><b>99</b></span>, 4860–4862. <a class="biblink" href="https://dx.doi.org/10.1021%2Fja00456a072">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DyaE2sXltFOnur0%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=c7211f08c1d24a1cf36d2a6f4ea4f452">CAS</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=A1977DL95500072">Web of Science</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Rosenfield%2C%20R.%20E.%2C%20Parthasarathy%2C%20R.%20%26%20Dunitz%2C%20J.%20D.%20%281977%29.%20J.%20Am.%20Chem.%20Soc.%2099%2C%204860%E2%80%934862.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB55"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB55"></a>Schweizer, B. & Dunitz, J. D. (1982). <span class="it"><i>Helv. Chim. Acta</i></span>, <span class="b"><b>65</b></span>, 1547–1552. <a class="biblink" href="https://dx.doi.org/10.1002%2Fhlca.19820650528">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DyaL38Xls1Wqt7Y%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=258cefdbdc823407fd5a0690c47097de">CAS</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=A1982PC29000027">Web of Science</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Schweizer%2C%20B.%20%26%20Dunitz%2C%20J.%20D.%20%281982%29.%20Helv.%20Chim.%20Acta%2C%2065%2C%201547%E2%80%931552.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB56"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB56"></a>Streek, J. van de (2006). <span class="it"><i>Acta Cryst.</i></span> B<span class="b"><b>62</b></span>, 567–579. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000238996600006">Web of Science</a> <a class="biblink" href="https://dx.doi.org/10.1107%2FS0108768106019677">CrossRef</a> <a class="biblink" href="https://journals.iucr.org/paper?ry5004">IUCr Journals</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Streek%2C%20J.%20van%20de%20%282006%29.%20Acta%20Cryst.%20B62%2C%20567%E2%80%93579.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB57"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB57"></a>Taylor, R. (2002). <span class="it"><i>Acta Cryst.</i></span> D<span class="b"><b>58</b></span>, 879–888. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000176271000001">Web of Science</a> <a class="biblink" href="https://dx.doi.org/10.1107%2FS090744490200358X">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BD38XktVKhtLo%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=7b3ad22bfecae5a72dac63dbd5ae0531">CAS</a> <a class="biblink" href="https://journals.iucr.org/paper?an0606">IUCr Journals</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Taylor%2C%20R.%20%282002%29.%20Acta%20Cryst.%20D58%2C%20879%E2%80%93888.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB58"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB58"></a>Taylor, R. & Kennard, O. (1982). <span class="it"><i>J. Am. Chem. Soc.</i></span> <span class="b"><b>104</b></span>, 5063–5070. <a class="biblink" href="https://www.ccdc.cam.ac.uk/services/structure_request?sid=iucr&id=doi:10.1021%2Fja00383a012">CSD</a> <a class="biblink" href="https://dx.doi.org/10.1021%2Fja00383a012">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DyaL38Xlt1Kqs7c%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=8d5ff43e0ac08f12fa8fd871436bd02e">CAS</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=A1982PH54900012">Web of Science</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Taylor%2C%20R.%20%26%20Kennard%2C%20O.%20%281982%29.%20J.%20Am.%20Chem.%20Soc.%20104%2C%205063%E2%80%935070.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB59"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB59"></a>Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). <span class="it"><i>J. Appl. Cryst.</i></span> <span class="b"><b>43</b></span>, 362–366. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000275432600023">Web of Science</a> <a class="biblink" href="https://dx.doi.org/10.1107%2FS0021889810000452">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BC3cXjt1GitrY%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=4e6d28da0ffccaef15ea6795179ccee2">CAS</a> <a class="biblink" href="https://journals.iucr.org/paper?kk5057">IUCr Journals</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Thomas%2C%20I.%20R.%2C%20Bruno%2C%20I.%20J.%2C%20Cole%2C%20J.%20C.%2C%20Macrae%2C%20C.%20F.%2C%20Pidcock%2C%20E.%20%26%20Wood%2C%20P.%20A.%20%282010%29.%20J.%20Appl.%20Cryst.%2043%2C%20362%E2%80%93366.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB60"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB60"></a>USNC/IUCr/ACA (2006). <span class="it"><i>Crystallography Education Policies for the Physical and Life Sciences: Sustaining the Science of Molecular Structure in the 21st Century</i></span>, <a href="https://sites.nationalacademies.org/pga/biso/IUCr/index.htm#meetings">https://sites.nationalacademies.org/pga/biso/IUCr/index.htm#meetings</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=USNC%2FIUCr%2FACA%20%282006%29.%20Crystallography%20Education%20Policies%20for%20the%20Physical%20and%20Life%20Sciences%3A%20Sustaining%20the%20Science%20of%20Molecular%20Structure%20in%20the%2021st%20Century%2C%20http%3A%2F%2Fsites.nationalacademies.org%2Fpga%2Fbiso%2FIUCr%2Findex.htm%23meetings.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB61"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB61"></a>Wackerly, J. W., Janowicz, P. A., Ritchey, J. A., Caruso, M. M., Elliot, E. L. & Moore, J. S. (2009). <span class="it"><i>J. Chem. Educ.</i></span> <span class="b"><b>86</b></span>, 460–464. <a class="biblink" href="https://dx.doi.org/10.1021%2Fed086p460">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BD1MXivFGisr0%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=641e82315c2b0238b3f6cda8973b4f1d">CAS</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Wackerly%2C%20J.%20W.%2C%20Janowicz%2C%20P.%20A.%2C%20Ritchey%2C%20J.%20A.%2C%20Caruso%2C%20M.%20M.%2C%20Elliot%2C%20E.%20L.%20%26%20Moore%2C%20J.%20S.%20%282009%29.%20J.%20Chem.%20Educ.%2086%2C%20460%E2%80%93464.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB62"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB62"></a>Walsh, A. D. (1949). <span class="it"><i>Trans. Faraday Soc.</i></span> <span class="b"><b>45</b></span>, 179–190. <a class="biblink" href="https://dx.doi.org/10.1039%2Ftf9494500179">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DyaH1MXivFCisQ%3D%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=ae336766dced4f02f331d806b13ad793">CAS</a> <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=A1949UY79900008">Web of Science</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Walsh%2C%20A.%20D.%20%281949%29.%20Trans.%20Faraday%20Soc.%2045%2C%20179%E2%80%93190.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB63"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB63"></a><span class="it"><i>WebCSD</i></span> (2010). <a href="https://webcsd.ccdc.cam.ac.uk/teaching_database_demo.php/">https://webcsd.ccdc.cam.ac.uk/teaching_database_demo.php/</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=WebCSD%20%282010%29.%20http%3A%2F%2Fwebcsd.ccdc.cam.ac.uk%2Fteaching_database_demo.php%2F.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB64"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB64"></a>Wheeler, K. A. (2009). <span class="it"><i>Conceptualizing Reaction Mechanisms using Crystallographic Data</i></span>, <a href="https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/">https://www.ccdc.cam.ac.uk/free_services/teaching/ACS symposium/</a>. <a class="biblink" href="https://scholar.google.com/scholar?q=Wheeler%2C%20K.%20A.%20%282009%29.%20Conceptualizing%20Reaction%20Mechanisms%20using%20Crystallographic%20Data%2C%20http%3A%2F%2Fwww.ccdc.cam.ac.uk%2Ffree_services%2Fteaching%2FACS%20symposium%2F.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB65"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB65"></a>Williamson, V. M. & Jose, T. J. (2008). <span class="it"><i>J. Chem. Educ.</i></span> <span class="b"><b>85</b></span>, 718–723. <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BD1cXksFWisbY%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=00dac316daddaf72cd987c69d8dc5682">CAS</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Williamson%2C%20V.%20M.%20%26%20Jose%2C%20T.%20J.%20%282008%29.%20J.%20Chem.%20Educ.%2085%2C%20718%E2%80%93723.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB66"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB66"></a>Wu, H. K. & Shah, P. (2004). <span class="it"><i>Sci. Educ. Res. Pract.</i></span> <span class="b"><b>8</b></span>, 61–72. <a class="biblink" href="https://scholar.google.com/scholar?q=Wu%2C%20H.%20K.%20%26%20Shah%2C%20P.%20%282004%29.%20Sci.%20Educ.%20Res.%20Pract.%208%2C%2061%E2%80%9372.">Google Scholar</a><br /> </span> <span class="font_size_3 bb"><a href="#sourceBB67"><img alt="First citation" class="bibarrow" src="../../../../../../logos/arrows/j_uparr.gif" title="First citation" /></a><a class="bbanchor" id="BB67"></a>Yao, J. W., Cole, J. C., Pidcock, E., Allen, F. H., Howard, J. A. K. & Motherwell, W. D. S. (2002). <span class="it"><i>Acta Cryst.</i></span> B<span class="b"><b>58</b></span>, 640–646. <a class="biblink" href="//scripts.iucr.org/cgi-bin/cr.cgi?rm=isi&ut=000177124200010">Web of Science</a> <a class="biblink" href="https://dx.doi.org/10.1107%2FS0108768102006675">CrossRef</a> <a class="biblink" href="https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=iucr&version=1.0&coi=1:CAS:528:DC%2BD38Xls1CltLc%3D&pissn=unknown_on_link_creation&pyear=unknown_on_link_creation&md5=809aab5073a0cde3d6bc56ade28bdcfa">CAS</a> <a class="biblink" href="https://journals.iucr.org/paper?bk0113">IUCr Journals</a> <a class="biblink" href="https://scholar.google.com/scholar?q=Yao%2C%20J.%20W.%2C%20Cole%2C%20J.%20C.%2C%20Pidcock%2C%20E.%2C%20Allen%2C%20F.%20H.%2C%20Howard%2C%20J.%20A.%20K.%20%26%20Motherwell%2C%20W.%20D.%20S.%20%282002%29.%20Acta%20Cryst.%20B58%2C%20640%E2%80%93646.">Google Scholar</a><br /> </span></p> </div> <div class="oainfo"> <p> This is an open-access article distributed under the terms of the <a href="https://creativecommons.org/licenses/by/2.0/uk/legalcode">Creative Commons Attribution (CC-BY) Licence</a>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. </p></div><div class="jinfo_header jinfo_header_article"> <div class="jh_catchline"> <div class="jh_left"> <div class="jicon_j"><table class="layout" style=""><tr><td><a href="/j"><img alt="Journal logo" class="jicon" src="//journals.iucr.org/logos/jicons/j_96x112.png" /></a></td><td><span class="jicon_logotitle">JOURNAL OF<br />APPLIED<br />CRYSTALLOGRAPHY</span></td></tr></table></div><!-- end div jicon_ --> <div class="clear"></div> <div class="jh_issn">ISSN: 1600-5767</div><!-- end div jh_issn --><div class="clear"></div> </div> <div class="jh_right"> <div class="jh_issueinfo"><span class="jh_volume" style=""><a href="/j/services/archive.html" style=""><span style="">Volume 43</span></a></span><span class="jh_biblspace" style="">|</span> <span class="jh_part"><a href="../index.html">Part 5</a></span><span class="jh_biblspace" style="">|</span> <span class="jh_monthandyear"><a href="../index.html"><span style="">October 2010</span></a></span><span class="jh_biblspace" style="">|</span> <span class="jh_pages">Pages 1208-1223</span><br /></div><!-- end div jh_issueinfo --><div class="clear"></div> <div class="jh_doi"> <span class="doi_catchline"><a href="https://dx.doi.org/10.1107/S0021889810024155">doi:10.1107/S0021889810024155</a></span> </div><div class="clear"></div> <div class="jh_openaccesslogo" style="float: right;"><div class="openaccesslogo"><div class="oalogotext" style="" title="This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.">Open <img alt="Open Access" class="oalogo" src="/logos/open.png" /> access</div></div> </div> <div class="clear"></div> </div><div class="clear"></div> </div><!-- end div jh_catchline --> </div> <div class="clear"></div> </div> </div> </div> </div><!-- End div layout_cjo_singlecolumn --> <div class="clear"></div> </div> <div id="journalsocialmedia"><table class="socialj" summary="social media"><tbody><tr><td class="socialtitle">Follow J. Appl. Cryst.</td><td class="socialimg"><table class="button_sgl_table" summary="formatting"><tbody><tr><td class="noextraspace"><a href="https://www.iucr.org/people/wdc/ealert"><img alt="Sign up for e-alerts" src="/logos/mail_24.png" title="Sign up for e-alerts" /></a></td></tr></tbody></table></td><td class="slink"><a href="https://www.iucr.org/people/wdc/ealert" title="Sign up for e-alerts">E-alerts</a></td><td class="socialimg"><table class="button_sgl_table" summary="formatting"><tbody><tr><td class="noextraspace"><a href="https://twitter.com/#!/JApplCryst" target="_blank"><img alt="Follow J. Appl. Cryst. on Twitter" src="/logos/twitter_24.png" title="Follow J. Appl. Cryst. on Twitter" /></a></td></tr></tbody></table></td><td class="slink"><a href="https://twitter.com/#!/JApplCryst" target="_blank" title="Follow J. Appl. Cryst. on Twitter">Twitter</a></td><td class="socialimg"><table class="button_sgl_table" summary="formatting"><tbody><tr><td class="noextraspace"><a href="https://www.facebook.com/iucr.org" target="_blank"><img alt="Follow us on facebook" src="/logos/facebook_24.png" title="Follow us on facebook" /></a></td></tr></tbody></table></td><td class="slink"><a href="https://www.facebook.com/iucr.org" target="_blank" title="Follow us on facebook">Facebook</a></td><td class="socialimg"><table class="button_sgl_table" summary="formatting"><tbody><tr><td class="noextraspace"><a href="https://journals.iucr.org/services/rss.html"><img alt="Sign up for RSS feeds" src="/logos/rss_24.png" title="Sign up for RSS feeds" /></a></td></tr></tbody></table></td><td class="slink"><a href="https://journals.iucr.org/services/rss.html" title="Sign up for RSS feeds">RSS</a></td></tr></tbody></table></div><!-- end div journalsocialmedia --> <hr /> <div id="footersearch"> <form accept-charset="utf-8" action="//scripts.iucr.org/cgi-bin/full_search" method="post"> <div id="fs_search"> <table class="center" id="fs_tfooter" summary="search formatting"> <tbody> <tr> <td class="inputWrap" colspan="2" id="fs_tdwords"> <label for="fs_words">Search IUCr Journals</label> <input id="fs_words" name="words" title="Search IUCr Journals" type="text" /> </td> <td class="inputWrap" colspan="2" id="fs_tddoi"> <label for="fs_doi">doi</label><input id="fs_doi" name="doi" title="doi" type="text" /> </td> <td id="fs_tdgo" rowspan="2"> <input id="fs_go" name="Action" type="submit" value="GO" /><br /> <a class="link" href="//scripts.iucr.org/cgi-bin/full_search" id="fs_advs" title="advanced search">Advanced search</a> </td> </tr> <tr> <td class="inputWrap" id="fs_tdauthor"> <label for="fs_authorsearch">Author</label> <input id="fs_authorsearch" name="authorsearch" size="15" title="author" type="text" /> </td> <td id="fs_tdjournalList"> <select class="toright" id="fs_journalList" name="journalList" onchange="$(this).css('color','#000');$(this).children().css('color','#666');" size="1"><option selected="selected" value="">All journals</option> <option value="m">IUCrJ</option> <option value="x">IUCrData</option> <option value="q">Acta Cryst</option> <option value="a">Acta Cryst A</option> <option value="b">Acta Cryst B</option> <option value="c">Acta Cryst C</option> <option value="d">Acta Cryst D</option> <option value="e">Acta Cryst E</option> <option value="f">Acta Cryst F</option> <option value="j">J Appl Cryst</option> <option value="s">J Synchrotron Rad</option> </select> </td> <td class="inputWrap" id="fs_tdvolume"> <label for="fs_volumeselect">volume</label><input id="fs_volumeselect" name="volumeselect" size="6" title="volume" type="text" /> </td> <td class="inputWrap" id="fs_tdpage"> <label for="fs_fpageselect">page</label><input id="fs_fpageselect" name="fpageselect" size="4" title="page" type="text" /> </td> </tr> </tbody> </table> </div> </form> </div><!-- end div footersearch --> <div class="" id="footer"> <div class="center" id="ft_linkbar"> Copyright © <a href="https://www.iucr.org/" title="International Union of Crystallography">International Union of Crystallography</a><br /> <a href="/" title="Home">Home</a> <a href="/services/contactus.html" title="Contact us">Contact us</a> <a href="/services/siteindex.html" title="Site index">Site index</a> <a href="https://www.iucr.org/" title="About us">About us</a> <a href="/services/organizations.html" title="Partners and site credits">Partners and site credits</a> <a href="/services/help.html" title="Help">Help</a> <a href="/services/termsofuse.html" title="Terms of use">Terms of use</a> </div> <div class="center" id="ft_whoarewe"> The IUCr is a scientific union serving the interests of crystallographers and other scientists employing crystallographic methods. </div> </div><!-- end div footer --> </div><!-- end div article --></div><!-- end div jpage_* --> <script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js" type="text/javascript"></script> <script src="//ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/jquery-ui.min.js" type="text/javascript"></script> <script src="/javascript/jquery.dotdotdot.min.js" type="text/javascript"></script> <script src="/javascript/jquery/jquery.validate.js" type="text/javascript"></script> <script type="text/javascript"> $(document).ready(function(){ $("button").click(function(){ $(".mathmode").toggle(); }); }); </script> <script src="/javascript/inputmask-1.1.js" type="text/javascript"></script> <script src="/javascript/iucrscripts.js" type="text/javascript"></script> <script type="text/javascript"> <!-- $(document).ready(function(){ if ($("#latest").get(0)) { myAjax("late", "j", "#latest"); myAjax("read", "j", "#latest"); myAjax("cited", "j", "#latest"); myAjax("high", "j", "#latest");}; if ($("#iucrmessages").get(0)) { myAjax("mess", "j", "#iucrmessages");} if ($("#iucrmeetings").get(0)) { myAjax("meet", "j", "#iucrmeetings");} if ($("#highlights").get(0)) { myAjax("hl", "j", "#highlights");} }); var addthis_config = { ui_click: true, ui_cobrand: "IUCr" } --> </script> <script src="/javascript/jquery/tabber-minimized.js" type="text/javascript"></script> <script src="//s7.addthis.com/js/250/addthis_widget.js#username=xa-4c1f58342aca04f0" type="text/javascript"></script> <script type="text/javascript"> <!-- $(function() { var dlh = document.location.href; var patterns = [/journals.working/, /vm01.iucr.org/, /platon.iucr.org/, /journals.test/, /infoweb.css/, /publcif.css/]; var checklist; var checkattr; checklist = document.getElementsByTagName("A"); checkattr = "href"; jwcheck(checklist,checkattr); checklist = document.getElementsByTagName("IMG"); checkattr = "src"; jwcheck(checklist,checkattr); checklist = document.getElementsByTagName("LINK"); checkattr = "href"; jwcheck(checklist,checkattr); function jwcheck() { for (i=0;i<checklist.length;i++) { var str = checklist[i].getAttribute(checkattr); if (/crossmark.crossref/.test(str)) { continue; } for (j=0;j<patterns.length;j++) { // console.log(patterns[j]); var mypattern = patterns[j]; if (mypattern.test(str)) { console.log("Inappropriate hard-coded URL: " + mypattern + ' in ' + checklist[i].tagName + '/' + checkattr + ':' + str); var bodyElement = document.getElementsByTagName("body")[0]; if ((/journals.working/.test(dlh)) || (/journals.test/.test(dlh))) { if (document.URL.match("journals.test.iucr.org/doc/")) {} else { bodyElement.setAttribute("bgcolor","#FFFF66"); } } else { if (document.URL.match("journals.test.iucr.org/doc/")) {} else { bodyElement.setAttribute("bgcolor","#EEEEEE"); } } } } } } }); --> </script> <script src="/javascript/jquery/jquery.cookie.js" type="text/javascript"></script> <script src="/javascript/reference.js" type="text/javascript"></script> <script src="//journals.iucr.org/javascript/subwindow.js" type="text/javascript"></script> <script src="/javascript/contents.js" type="text/javascript"></script> <script src="/javascript/menus.js" type="text/javascript"></script> <script src="//publcif.iucr.org/widgets/cifmol/cifmol_min.js" type="text/javascript"></script> <script src="//publcif.iucr.org/widgets/pageels/sup_cif.js" type="text/javascript"></script> <!-- old GA callout2 --> <!-- The 'IUCRSCR...' comment after this is important and must appear in EVERY page that includes page_javascript_tt.js --> <!-- IUCRSCRIPTEND --> </body> <!-- Source TT template: "/journals/www/j/issues/2010/05/02/kk5063/kk5063bdy_insert.tt" --> </html>