CINXE.COM

Solid State Phenomena Vol. 362 | Scientific.Net

<!DOCTYPE html> <html lang="iv" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="Advanced semiconductor technologies have been making significant advancements through the creation and application of new materials and processes that surpass traditional silicon&#39;s limitations. The wide-bandgap semiconductors such as Silicon Carbide and Gallium Nitride offer unprecedented opportunities for advancements in high-power and high-frequency microelectronic devices. The presented special edition will be useful to engineers and researchers whose activity is related to technologies of semiconductor structures growth for power electronics and microelectronics devices production." /> <link rel="canonical" href="https://www.scientific.net/SSP.362" /> <meta property="og:title" content="Solid State Phenomena Vol. 362 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/SSP.362" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Solid State Phenomena Vol. 362 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=cDLnZ3YA6cfiZP7BySDRmdCXis5ooi759DeeBZ1J5CM" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open&#x2B;Sans&#x2B;Condensed:300,700%7COpen&#x2B;Sans:300i,400,400i,600,600i,700&amp;display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FSSP.362" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FSSP.362" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/open-access-partners">Open Access</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/open-access-partners">Open Access</a> <a href="/DocuCenter">Downloads</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/SSP.368" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 368</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.367" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 367</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.366" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 366</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.365" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 365</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.364" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 364</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.363" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 363</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.362" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 362</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.361" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 361</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.360" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 360</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.359" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 359</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.358" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 358</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.357" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 357</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.356" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 356</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/SSP">Solid State Phenomena</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Solid State Phenomena Vol. 362</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Solid State Phenomena Vol. 362</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-DpoDj8">https://doi.org/10.4028/v-DpoDj8</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/SSP.362/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/SSP.362_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/SSP.362/2">2</a></li><li class="PagedList-skipToNext"><a href="/SSP.362/2" rel="next">></a></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.362.-1">Preface</a> </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.362.1">Polarity Effect on the Heteroepitaxial Growth of B<sub>x</sub>C on 4H-SiC by CVD</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Fran&#xE7;ois Cauwet, Yamina Benamra, Laurent Auvray, J&#xE9;r&#xF4;me Andrieux, Gabriel Ferro </div> </div> <div id="abstractTextBlock603667" class="volume-info volume-info-text volume-info-description"> Abstract: The chemical vapor deposition (CVD) growth of boron carbide (B<sub>x</sub>C) layers on 4H-SiC, 4°off substrates was studied. Depending on the polarity of the substrate, different results were obtained. On Si face, the direct CVD growth at 1600°C under a mixture of BCl<sub>3</sub>+C<sub>3</sub>H<sub>8</sub> systematically led to polycrystalline B<sub>x</sub>C films, whatever the C/B ratio in the gas phase. On the C face, heteroepitaxial growth was obtained for C/B ratios = 12 or higher with a step bunched morphology. If a boridation step (10 min at 1200°C under BCl<sub>3</sub> flow) was used before the CVD growth, then heteroepitaxy was successful on both substrate polarities. To explain these results, a mechanism is proposed which involves the nature of the chemical bonds at the early stage of nucleation. It is suggested that a full B coverage of the SiC surface should favor the nucleation of the B-rich (0001) plane of B<sub>x</sub>C, promoting thus the heteroepitaxial growth along this direction. </div> <div> <a data-readmore="{ block: '#abstractTextBlock603667', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 1 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.362.7">Vertical Current Transport in Monolayer MoS<sub>2</sub> Heterojunctions with 4H-SiC Fabricated by Sulfurization of Ultra-Thin MoO<sub>x</sub> Films</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Salvatore Ethan Panasci, Emanuela Schiliro, Marco Cannas, Simonpietro Agnello, Antal Koos, Miklos Nemeth, B&#xE9;la P&#xE9;cz, Fabrizio Roccaforte, Filippo Giannazzo </div> </div> <div id="abstractTextBlock604748" class="volume-info volume-info-text volume-info-description"> Abstract: In this paper, we report on the growth of highly uniform MoS<sub>2</sub> films, mostly consisting of monolayers, on SiC surfaces with different doping levels (n- SiC epitaxy, ~10<sup>16</sup> cm<sup>-3</sup>, and n<sup>+</sup> SiC substrate, ~10<sup>19</sup> cm<sup>-3</sup>) by sulfurization of a pre-deposited ultra-thin MoO<sub>x</sub> films. MoS<sub>2</sub> layers are lowly strained (~0.12% tensile strain) and highly p-type doped (&lt;N<sub>h</sub>&gt;≈4×10<sup>19</sup> cm<sup>−3</sup>), due to MoO<sub>3</sub> residues still present after the sulfurization process. Nanoscale resolution I-V analyses by conductive atomic force microscopy (C-AFM) show a strongly rectifying behavior for MoS<sub>2</sub> junction with n<sup>-</sup> SiC, whereas the p<sup>+</sup> MoS<sub>2</sub>/n<sup>+</sup> SiC junction exhibits an enhanced reverse current and a negative differential behavior under forward bias. This latter observation, indicating the occurrence of band-to-band-tunneling from the occupied states of n<sup>+</sup> SiC conduction band to the empty states of p<sup>+</sup> MoS<sub>2 </sub>valence band, is a confirmation of the very sharp hetero-interface between the two materials. These results pave the way to the fabrication of ultra-fast switching Esaki diodes on 4H-SiC. </div> <div> <a data-readmore="{ block: '#abstractTextBlock604748', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 7 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.362.13">Estimation of Influence on Carbon Vacancy Regarding 4H-SiC Substrate Grown by HTCVD Method</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Hideyuki Uehigashi, Takeshi Okamoto, Akiyoshi Horiai, Hiroaki Fujibayashi, Takahiro Kanda, Takashi Kanemura, Kazuhiro Tsuruta </div> </div> <div id="abstractTextBlock604722" class="volume-info volume-info-text volume-info-description"> Abstract: In order to increase productivity and reduce the cost of wafers, we have developed a high temperature chemical vapor deposition (HTCVD) method that can realize the high-speed growth of 4H-SiC crystals. Tokuda <i>et al.</i> reported an interesting study in which the carrier lifetime of a substrate grown by HTCVD (HTCVD substrate) was considerably shorter than that of the substrate grown by physical vapor transport (PVT); moreover, bipolar degradation was highly suppressed when the HTCVD substrate was applied to PiN diodes [1]. Herein, we demonstrate that the short carrier lifetime of the HTCVD substrate is mainly attributable to the carbon vacancy (V<sub>C</sub>) and that V<sub>C</sub> particularly diffuses from the HTCVD substrate to the epitaxial layer. </div> <div> <a data-readmore="{ block: '#abstractTextBlock604722', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 13 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.362.19">Resistivity as a Witness of Local Crystal Growth Conditions</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Andrey Soukhojak, Gil Chung </div> </div> <div id="abstractTextBlock604843" class="volume-info volume-info-text volume-info-description"> Abstract: A detailed knowledge of the growth front geometry during physical vapor transport (PVT) growth of SiC single crystals is beneficial to achieve high quality n+ SiC substrates for power device applications. In this report we show how mapping of resistivity in SiC wafers can shed light on local growth conditions, which are very difficult-to-study <i>in situ</i>. We consider both thermodynamic quantities (absolute temperature <i>T</i> and partial pressure <i>p</i><sub>N₂</sub>) and geometric characteristics of the growth surface relevant to growth kinetic parameters, namely atomic terrace width and atomic step velocity. Specifically, we show how an elevation map of the growth surface can be reconstructed from a spatially-resolved measurement of resistivity in a SiC wafer by integrating the spatial derivative of elevation with respect to the basal plane, which is assumed to be related to local resistivity through dependence of non-equilibrium nitrogen incorporation on the atomic step velocity. </div> <div> <a data-readmore="{ block: '#abstractTextBlock604843', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 19 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.362.27">GaN Cap UV Spectroscopy Assessment in AlGaN/GaN HEMT</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Cristiano Calabretta, Nicolo Piluso, Hyon Ju Chauveau, Emmanuel Roy, Cristophe Iatosti, Francesco La Via, Andrea Severino </div> </div> <div id="abstractTextBlock605693" class="volume-info volume-info-text volume-info-description"> Abstract: This work discusses the use of gallium nitride (GaN)-based solid-state devices for high-power, high-frequency, and high-temperature technology. The article presents the results of an investigation into the Al fraction of AlGaN as a function of GaN cap growth time through µ-Raman and µ-Photoluminescence (µ-PL) spectroscopy under λ=325 and 266 nm laser source. The data exhibit that the detected Al fraction decreases as the GaN cap layer size increases, consistently with the surface quantum well effect in the layer stack. The study confirms that the GaN cap layer is acting as a potential well and enables the design of a non-destructive and quantitative assessment of the grown thickness of the GaN cap layer through UV laser spectroscopy. The interpretation of the data also rules out the possibility of thermal migration of Al in the adjacent GaN layers during MOCVD growth. </div> <div> <a data-readmore="{ block: '#abstractTextBlock605693', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 27 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.362.33">SNDM Study of the MOS Interface State Densities on the 3C-SiC / 4H-SiC Stacked Structure</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Hiroyuki Nagasawa, Yasuo Cho, Maho Abe, Takenori Tanno, Michimasa Musya, Masao Sakuraba, Yusuke Sato, Shigeo Sato </div> </div> <div id="abstractTextBlock604931" class="volume-info volume-info-text volume-info-description"> Abstract: The layer structure of 3C-SiC stacked on 4H-SiC is implemented by simultaneous lateral epitaxy (SLE). The SLE, involving spontaneous nucleation of 3C-SiC(111) on the 4H-SiC(0001) surface followed by step-controlled epitaxy, facilitates the creation of a single-domain 3C-SiC layer with an epitaxial relationship to the underlying 4H-SiC, establishing a coherent (111)//(0001) interface aligned in the basal plane. An extremely low state density at an interface between thermally grown SiO<sub>2 </sub>and SLE-grown 3C-SiC layer is revealed by local deep level transient spectroscopy (local-DLTS) based on scanning nonlinear dielectric microscopy (SNDM). </div> <div> <a data-readmore="{ block: '#abstractTextBlock604931', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 33 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.362.41">Development of 200mm SiC Technology - Epitaxial Thickness Uniformity Observation on Different 8 Inch 4H-SiC Substrates</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Ruggero Anzalone, Domenica Raciti, Massimo Arena, Cristiano Calabretta, Nicolo Piluso, Andrea Severino </div> </div> <div id="abstractTextBlock605465" class="volume-info volume-info-text volume-info-description"> Abstract: The enlargement of 4H-SiC seed size from 150 mm (6 inch) to 200 mm (8 inch) is currently underway and 8 inches SiC substrate is now facing the market to switch the actual 6-inch technology to 8-inch technology. The aim of this work is to evaluate the influence on the epitaxial layer (using an epi growth campaign made of 21 consecutive runs) using substrates coming from different vendors (3 different suppliers adopted). The same epitaxial process and same reactor were adopted to grow all the samples. After the growth campaign, a difference of thickness uniformity between the three substrate suppliers was observed while no difference of doping uniformity was detected. </div> <div> <a data-readmore="{ block: '#abstractTextBlock605465', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 41 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.362.47">4H-SiC Crystal Growth Using Recycled SiC Powder Source</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Seung Jun Lee, Chae Young Lee, Jung Woo Choi, Jong Hwi Park, Jung Gyu Kim, Kap Ryeol Ku, Jun Hyuck Na, Won Jae Lee </div> </div> <div id="abstractTextBlock605479" class="volume-info volume-info-text volume-info-description"> Abstract: A new method for reducing the cost and the fabrication time of source material required for SiC crystal growth has been proposed through a heat treatment of recycled powder bulk in this study. The actual crystal growth with using a conventional powder and a recycled powder bulk source has been performed under identical growth condition and then systematically compared in terms of the crystal quality. With applying the recycled powder bulk for SiC crystal growth, similar growth results were obtained as a result grown by conventional high-purity powder source. In terms of crystal defects, slight improvement was observed when high purity recycled powder bulk source was applied. </div> <div> <a data-readmore="{ block: '#abstractTextBlock605479', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 47 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.362.53">High-Quality SiC Crystal Growth by Temperature Gradient Control at Initial Growth Stage</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Chae Young Lee, Seung Jun Lee, Jong Hwi Park, Jung Woo Choi, Jung Gyu Kim, Kap Ryeol Ku, Jun Hyuck Na, Min Kyu Kang, Won Jae Lee </div> </div> <div id="abstractTextBlock605480" class="volume-info volume-info-text volume-info-description"> Abstract: A modified process condition has been proposed for the growth of high-quality 6-inch 4H-SiC single crystal. Temperature gradient (dT[°C] = T<sub>bottom</sub>-T<sub>upper</sub>) was controlled by changing coil position in order to investigate the effect of the temperature gradient on the SiC crystal quality. SiC ingot surface and etch pit density (EPD) of etched SiC wafer were investigated according to different dT conditions at the initial stage of SiC crystal growth. The surface of SiC crystal ingots grown with different dT for 10h were observed by OM and etched SiC wafers were prepared from SiC crystal ingots after main growth step for 100h. Different dT conditions in the initial growth stage resulted in dramatically different surface images and the crystal quality evaluated by EPD. </div> <div> <a data-readmore="{ block: '#abstractTextBlock605480', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 53 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 17 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/SSP.362/2">2</a></li><li class="PagedList-skipToNext"><a href="/SSP.362/2" rel="next">></a></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy &amp; Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/open-access-partners">Open Access Partners</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> &#169; 2025 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=RxM_FbfHCcsoT4U-BoPCKYjCQ67x2cooj7su0mYkWQ4"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=SSP&volumeBegin=362&volumeEnd=362', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10