CINXE.COM
Search results for: membrane
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: membrane</title> <meta name="description" content="Search results for: membrane"> <meta name="keywords" content="membrane"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="membrane" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="membrane"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1085</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: membrane</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1085</span> Kinetics of Cu(II) Transport through Bulk Liquid Membrane with Different Membrane Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siu%20Hua%20Chang">Siu Hua Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayub%20Md%20Som"> Ayub Md Som</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagannathan%20Krishnan"> Jagannathan Krishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetics of Cu(II) transport through a bulk liquid membrane with different membrane materials was investigated in this work. Three types of membrane materials were used: Fresh cooking oil, waste cooking oil, and kerosene each of which was mixed with di-2-ethylhexylphosphoric acid (carrier) and tributylphosphate (modifier). Kinetic models derived from the kinetic laws of two consecutive irreversible first-order reactions were used to study the facilitated transport of Cu(II) across the source, membrane, and receiving phases of bulk liquid membrane. It was found that the transport kinetics of Cu(II) across the source phase was not affected by different types of membrane materials but decreased considerably when the membrane materials changed from kerosene, waste cooking oil to fresh cooking oil. The rate constants of Cu(II) removal and recovery processes through the bulk liquid membrane were also determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transport%20kinetics" title="transport kinetics">transport kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%28II%29" title=" Cu(II)"> Cu(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20liquid%20membrane" title=" bulk liquid membrane"> bulk liquid membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20cooking%20oil" title=" waste cooking oil "> waste cooking oil </a> </p> <a href="https://publications.waset.org/abstracts/2082/kinetics-of-cuii-transport-through-bulk-liquid-membrane-with-different-membrane-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1084</span> Study of a Developed Model Describing a Vacuum Membrane Distillation Unit Coupled to Solar Energy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Khaled">Fatma Khaled</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaoula%20Hidouri"> Khaoula Hidouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Bechir%20Chaouachi"> Bechir Chaouachi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Desalination using solar energy coupled with membrane techniques such as vacuum membrane distillation (VMD) is considered as an interesting alternative for the production of pure water. During this work, a developed model of a polytetrafluoroethylene (PTFE) hollow fiber membrane module of a VMD unit of seawater was carried out. This simulation leads to establishing a comparison between the effects of two different equations of the vaporization latent heat on the membrane surface temperature and on the unit productivity. Besides, in order to study the effect of putting membrane modules in series on the outlet fluid temperature and on the productivity of the process, a simulation was executed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20membrane%20distillation" title="vacuum membrane distillation">vacuum membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20module" title=" membrane module"> membrane module</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20temperature" title=" membrane temperature"> membrane temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/107225/study-of-a-developed-model-describing-a-vacuum-membrane-distillation-unit-coupled-to-solar-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1083</span> Basic Evaluation for Polyetherimide Membrane Using Spectroscopy Techniques </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Alenezi">Hanan Alenezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane performance depends on the kind of solvent used in preparation. A membrane made by Polyetherimide (PEI) was evaluated for gas separation using X-Ray Diffraction (XRD), Scanning electron microscope (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS). The purity and the thickness are detected to evaluate the membrane in order to optimize PEI membrane preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Energy%20Dispersive%20X-Ray%20Spectroscopy%20%28EDS%29" title="Energy Dispersive X-Ray Spectroscopy (EDS)">Energy Dispersive X-Ray Spectroscopy (EDS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Membrane" title=" Membrane"> Membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Polyetherimide%20PEI" title=" Polyetherimide PEI"> Polyetherimide PEI</a>, <a href="https://publications.waset.org/abstracts/search?q=Scanning%20electron%20microscope%20%28SEM%29" title=" Scanning electron microscope (SEM)"> Scanning electron microscope (SEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Solvent" title=" Solvent"> Solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Ray%20Diffraction%20%28XRD%29" title=" X-Ray Diffraction (XRD)"> X-Ray Diffraction (XRD)</a> </p> <a href="https://publications.waset.org/abstracts/120499/basic-evaluation-for-polyetherimide-membrane-using-spectroscopy-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1082</span> Water Purification By Novel Nanocomposite Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Johal">E. S. Johal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Saini"> M. S. Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Jha"> M. K. Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, 1.1 billion people are at risk due to lack of clean water and about 35 % of people in the developed world die from water related problem. To alleviate these problems water purification technology requires new approaches for effective management and conservation of water resources. Electrospun nanofibres membrane has a potential for water purification due to its high large surface area and good mechanical strength. In the present study PAMAM dendrimers composite nynlon-6 nanofibres membrane was prepared by crosslinking method using Glutaraldehyde. Further, the efficacy of the modified membrane can be renewed by mere exposure of the saturated membrane with the solution having acidic pH. The modified membrane can be used as an effective tool for water purification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendrimer" title="dendrimer">dendrimer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20membrane" title=" nanocomposite membrane"> nanocomposite membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a> </p> <a href="https://publications.waset.org/abstracts/9638/water-purification-by-novel-nanocomposite-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1081</span> Gas Permeation Behavior of Single and Mixed Gas Components Using an Asymmetric Ceramic Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngozi%20Claribelle%20Nwogu">Ngozi Claribelle Nwogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Nasir%20Kajama"> Mohammed Nasir Kajama</a>, <a href="https://publications.waset.org/abstracts/search?q=Godson%20Osueke"> Godson Osueke</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A unique sol–gel dip-coating process to form an asymmetric silica membrane with improved membrane performance and reproducibility has been reported. First, we deposited repeatedly a silica solution on top of a commercial alumina membrane support to improve its structural make up. The coated membrane is further processed under clean room conditions to avoid dust impurity and subsequent drying in an oven for high thermal, chemical and physical stability. The resulting asymmetric membrane exhibits a gradual change in the membrane layer thickness. Compared to a single-layer process using only the membrane support, the dual-layer process improves both flux and selectivity. For the scientifically significant difficulties of natural gas purification, collective CO2, CH4 and H2 gas fluxes and separation factors obtained gave reasonably excellent values. In addition, the membrane selectively separated hydrogen as demonstrated by a high concentration of hydrogen recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20permeation" title="gas permeation">gas permeation</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20membrane" title=" silica membrane"> silica membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20factor" title=" separation factor"> separation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20layer%20thickness" title=" membrane layer thickness"> membrane layer thickness</a> </p> <a href="https://publications.waset.org/abstracts/25963/gas-permeation-behavior-of-single-and-mixed-gas-components-using-an-asymmetric-ceramic-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1080</span> Effect of Fluidized Granular Activated Carbon for the Mitigation of Membrane Fouling in Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jingwei%20Wang">Jingwei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20G.%20Fane"> Anthony G. Fane</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Wei%20Chew"> Jia Wei Chew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of fluidized Granular Activated Carbon (GAC) as a means of mitigation membrane fouling in membrane bioreactors (MBRs) has received much attention in recent years, especially in anaerobic fluidized bed membrane bioreactors (AFMBRs). It has been affirmed that the unsteady-state tangential shear conferred by GAC fluidization on membrane surface suppressed the extent of membrane fouling with energy consumption much lower than that of bubbling (i.e., air sparging). In a previous work, the hydrodynamics of the fluidized GAC particles were correlated with membrane fouling mitigation effectiveness. Results verified that the momentum transfer from particle to membrane held a key in fouling mitigation. The goal of the current work is to understand the effect of fluidized GAC on membrane critical flux. Membrane critical flux values were measured by a vertical Direct Observation Through the Membrane (DOTM) setup. The polystyrene particles (known as latex particles) with the particle size of 5 µm were used as model foulant thus to give the number of the foulant on the membrane surface. Our results shed light on the positive effect of fluidized GAC enhancing the critical membrane flux by an order-of-magnitude as compared to that of liquid shear alone. Membrane fouling mitigation was benefitted by the increasing of power input. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20fouling%20mitigation" title="membrane fouling mitigation">membrane fouling mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-solid%20fluidization" title=" liquid-solid fluidization"> liquid-solid fluidization</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20flux" title=" critical flux"> critical flux</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20input" title=" energy input"> energy input</a> </p> <a href="https://publications.waset.org/abstracts/75555/effect-of-fluidized-granular-activated-carbon-for-the-mitigation-of-membrane-fouling-in-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1079</span> Micro-Filtration with an Inorganic Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benyamina">Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouldabess"> Ouldabess</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensalah"> Bensalah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to use membrane technique for filtration of a coloring solution. the preparation of the micro-filtration membranes is based on a natural clay powder with a low cost, deposited on macro-porous ceramic supports. The micro-filtration membrane provided a very large permeation flow. Indeed, the filtration effectiveness of membrane was proved by the total discoloration of bromothymol blue solution with initial concentration of 10-3 mg/L after the first minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20inorganic%20membrane" title="the inorganic membrane">the inorganic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-filtration" title=" micro-filtration"> micro-filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=coloring%20solution" title=" coloring solution"> coloring solution</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20clay%20powder" title=" natural clay powder"> natural clay powder</a> </p> <a href="https://publications.waset.org/abstracts/25743/micro-filtration-with-an-inorganic-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1078</span> Experimental Analysis on the Thermal Performance of Vacuum Membrane Distillation Module Using Polyvinylidene Fluoride Hollow Fiber Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong-Jin%20Joo">Hong-Jin Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-Yoel%20Kwak"> Hee-Yoel Kwak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum Membrane Distillation (VMD) uses pressure lower than the atmospheric pressure. The feed seawater is capable of producing more vapor at the same temperature than Direct Contact Membrane Distillation (DCMD), Air Gap Membrane Distillation (AGMD) or Sweep Gas Membrane Distillation (SGMD). It is advantageous because it is operable at a lower temperature than other membrane distillations. However, no commercial product is available that uses the VMD method, as it is still in the study stage. In this study, therefore, thermal performance test according to the feed water conditions was performed prior to both construction of the demonstration plant, which uses VMD module of the capacity of 400m³/d in South Korea, and commercialization of VMD module with hollow fiber membrane. Such study was performed by designing and constructing the VMD module of the capacity of 2 m³/day which utilizes the polyvinylidene fluoride (PVDF) hollow fiber membrane. The results obtained from the VMD module manufactured by ECONITY Co., Ltd in South Korea, showed that the maximum performance ratio (PR) value of 0.904, feed water temperature of 75 ℃, and the flow rate of 8 m3/h. As the temperature of and flow rate of the feed water increased, the PR value of the VMD module also increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20distillation" title="membrane distillation">membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20membrane%20distillation" title=" vacuum membrane distillation"> vacuum membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20fiber%20membrane" title=" hollow fiber membrane"> hollow fiber membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a> </p> <a href="https://publications.waset.org/abstracts/76714/experimental-analysis-on-the-thermal-performance-of-vacuum-membrane-distillation-module-using-polyvinylidene-fluoride-hollow-fiber-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1077</span> Super-Hydrophilic TFC Membrane with High Stability in Oil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Obaid">M. Obaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20A.%20M.%20Barakat"> Nasser A. M. Barakat</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadali%20O.A"> Fadali O.A</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low stability in oil media and the hydrophobicity problems of the ploysulfone electrospun membranes could be overcome in the present study. Synthesis of super-hydrophilic and highly stable in oil polysulfone electrospun nanofiber membrane was achieved by electrospinning of polysulfone solution containing NaOH salt followed by activation of the dried electrospun membrane by deposition of polyamide layer on the surface using m-phenylenediamine and 1,3,5-benzenetricarbonyl chloride. The introduced membrane has super-hydrophilicity characteristic (contact angle=3o), excellent stability in oil media and distinct performance in oil-water separation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-degradability" title=" oil-degradability"> oil-degradability</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a> </p> <a href="https://publications.waset.org/abstracts/17053/super-hydrophilic-tfc-membrane-with-high-stability-in-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1076</span> Single Layer Carbon Nanotubes Array as an Efficient Membrane for Desalination: A Molecular Dynamics Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elisa%20Y.%20M.%20Ang">Elisa Y. M. Ang</a>, <a href="https://publications.waset.org/abstracts/search?q=Teng%20Yong%20Ng"> Teng Yong Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingjie%20Yeo"> Jingjie Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongming%20Lin"> Rongming Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zishun%20Liu"> Zishun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Geethalakshmi"> K. R. Geethalakshmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By stacking carbon nanotubes (CNT) one on top of another, single layer CNT arrays can perform water-salt separation with ultra-high permeability and selectivity. Such outer-wall CNT slit membrane is named as the transverse flow CNT membrane. By adjusting the slit size between neighboring CNTs, the membrane can be configured to sieve out different solutes, right down to the separation of monovalent salt ions from water. Molecular dynamics (MD) simulation results show that the permeability of transverse flow CNT membrane is more than two times that of conventional axial-flow CNT membranes, and orders of magnitude higher than current reverse osmosis membrane. In addition, by carrying out MD simulations with different CNT size, it was observed that the variance in desalination performance with CNT size is small. This insensitivity of the transverse flow CNT membrane’s performance to CNT size is a distinct advantage over axial flow CNT membrane designs. Not only does the membrane operate well under constant pressure desalination operation, but MD simulations further indicate that oscillatory operation can further enhance the membrane’s desalination performance, making it suitable for operation such as electrodialysis reversal. While there are still challenges that need to be overcome, particularly on the physical fabrication of such membrane, it is hope that this versatile membrane design can bring the idea of using low dimensional structures for desalination closer to reality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20desalination" title=" membrane desalination"> membrane desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20flow%20carbon%20nanotube%20membrane" title=" transverse flow carbon nanotube membrane"> transverse flow carbon nanotube membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a> </p> <a href="https://publications.waset.org/abstracts/97386/single-layer-carbon-nanotubes-array-as-an-efficient-membrane-for-desalination-a-molecular-dynamics-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1075</span> Effect of Inclination Angle on Productivity of a Direct Contact Membrane Distillation (Dcmd) Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Alhathal%20Alanezi">Adnan Alhathal Alanezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alanood%20A.%20Alsarayreh"> Alanood A. Alsarayreh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A direct contact membrane distillation (DCMD) system was modeled using various angles for the membrane unit and a Reynolds number range of 500 to 2000 in this numerical analysis. The Navier-Stokes, energy, and species transport equations were used to create a two-dimensional model. The finite volume method was used to solve the governing equations (FVM). The results showed that as the Reynolds number grows up to 1500, the heat transfer coefficient increases for all membrane angles except the 60ᵒ inclination angle. Additionally, increasing the membrane angle to 90ᵒreduces the exit influence while increasing heat transfer. According to these data, a membrane with a 90o inclination angle (also known as a vertical membrane) and a Reynolds number of 2000 might have the smallest temperature differential. Similarly, decreasing the inclination angle of the membrane keeps the temperature difference constant between Reynolds numbers 1000 and 2000; however, between Reynolds numbers 500 and 1000, the temperature difference decreases dramatically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20contact%20membrane%20distillation" title="direct contact membrane distillation">direct contact membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20inclination%20angle" title=" membrane inclination angle"> membrane inclination angle</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=reynolds%20number" title=" reynolds number"> reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/151283/effect-of-inclination-angle-on-productivity-of-a-direct-contact-membrane-distillation-dcmd-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1074</span> Effect of Silver Nanoparticles in Temperature Polarization of Distillation Membranes for Desalination Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lopez%20J.">Lopez J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrvar%20M."> Mehrvar M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Quinones%20E."> Quinones E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Suarez%20A."> Suarez A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Romero%20C."> Romero C.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane Distillation is an emerging technology that uses thermal and membrane steps for the desalination process to get drinking water. In this study, silver nanoparticles (AgNP) were deposited by dip-coating process over Polyvinylidene Fluoride, Fiberglass hydrophilic, and Polytetrafluoroethylene hydrophobic commercial membranes as substrate. Membranes were characterized and used in a Vacuum Membrane Distillation cell under Ultraviolet light with sea salt feed solution. The presence of AgNP increases the absorption of energy on the membrane, which improves the transmembrane flux. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title="silver nanoparticles">silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20distillation" title=" membrane distillation"> membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination%20technologies" title=" desalination technologies"> desalination technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20deliver" title=" heat deliver"> heat deliver</a> </p> <a href="https://publications.waset.org/abstracts/148598/effect-of-silver-nanoparticles-in-temperature-polarization-of-distillation-membranes-for-desalination-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1073</span> Effects of SRT and HRT on Treatment Performance of MBR and Membrane Fouling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Aida%20Isma">M. I. Aida Isma</a>, <a href="https://publications.waset.org/abstracts/search?q=Azni%20Idris"> Azni Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozita%20Omar"> Rozita Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Putri%20Razreena"> A. R. Putri Razreena </a> </p> <p class="card-text"><strong>Abstract:</strong></p> 40L of hollow fiber membrane bioreactor with solids retention times (SRT) of 30, 15 and 4 days were setup for treating synthetic wastewater at hydraulic retention times (HRT) of 12, 8 and 4 hours. The objectives of the study were to investigate the effects of SRT and HRT on membrane fouling. A comparative analysis was carried out for physiochemical quality parameters (turbidity, suspended solids, COD, NH3-N and PO43-). Scanning electron microscopy (SEM), energy diffusive X-ray (EDX) analyzer and particle size distribution (PSD) were used to characterize the membrane fouling properties. The influence of SRT on the quality of effluent, activated sludge quality, and membrane fouling were also correlated. Lower membrane fouling and slower rise in trans-membrane pressure (TMP) were noticed at the longest SRT and HRT of 30d and 12h, respectively. Increasing SRT results in noticeable reduction of dissolved organic matters. The best removal efficiencies of COD, TSS, NH3-N and PO43- were 93%, 98%, 80% and 30% respectively. The high HRT with shorter SRT induced faster fouling rate. The main fouling resistance was cake layer. The most severe membrane fouling was observed at SRT and HRT of 4 and 12, respectively with thickness cake layer of 17 μm as reflected by higher TMP, lower effluent removal and thick sludge cake layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title="membrane bioreactor">membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=SRT" title=" SRT"> SRT</a>, <a href="https://publications.waset.org/abstracts/search?q=HRT" title=" HRT"> HRT</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling" title=" fouling"> fouling</a> </p> <a href="https://publications.waset.org/abstracts/6152/effects-of-srt-and-hrt-on-treatment-performance-of-mbr-and-membrane-fouling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1072</span> Organic Rejection and Membrane Fouling with Inorganic Alumina Membrane for Industrial Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Ahmad">Rizwan Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Soomin%20Chang"> Soomin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Daeun%20Kwon"> Daeun Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeonghwan%20Kim"> Jeonghwan Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interests in an inorganic membrane are growing rapidly for industrial wastewater treatment due to its excellent chemical and thermal stability over polymeric membrane. Nevertheless, understanding of the membrane rejection and fouling rate caused by the deposit of contaminants on membrane surface and within membrane pores through inorganic porous membranes still requires much attention. Microfiltration alumina membranes were developed and applied for the industrial wastewater treatment to investigate rejection efficiency of organic contaminant and membrane fouling at various operational conditions. In this study, organic rejection and membrane fouling were investigated by using the alumina flat-tubular membrane developed for the treatment of industrial wastewaters. The flat-tubular alumina membranes were immersed in a fluidized membrane reactor added with granular activated carbon (GAC) particles. Fluidization was driven by recirculating a bulk industrial wastewater along membrane surface through the reactor. In the absence of GAC particles, for hazardous anionic dye contaminants, functional group characterized by the organic contaminant was found as one of the main factors affecting both membrane rejection and fouling rate. More fouling on the membrane surface led to the existence of dipolar characterizations and this was more pronounced at lower solution pH, thereby improving membrane rejection accordingly. Similar result was observed with a real metal-plating wastewater. Strong correlation was found that higher fouling rate resulted in higher organic rejection efficiency. Hydrophilicity exhibited by alumina membrane improved the organic rejection efficiency of the membrane due to the formation of hydrophilic fouling layer deposited on it. In addition, less surface roughness of alumina membrane resulted in less fouling rate. Regardless of the operational conditions applied in this study, fluidizing the GAC particles along the surface of alumina membrane was very effective to enhance organic removal efficiency higher than 95% and provide an excellent tool to reduce membrane fouling. Less than 0.1 bar as suction pressure was maintained with the alumina membrane at 25 L/m²hr of permeate set-point flux during the whole operational periods without performing any backwashing and chemical enhanced cleaning for the membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20membrane" title="alumina membrane">alumina membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20membrane%20reactor" title=" fluidized membrane reactor"> fluidized membrane reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title=" industrial wastewater"> industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20fouling" title=" membrane fouling"> membrane fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=rejection" title=" rejection"> rejection</a> </p> <a href="https://publications.waset.org/abstracts/102592/organic-rejection-and-membrane-fouling-with-inorganic-alumina-membrane-for-industrial-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1071</span> Hydrogen Permeability of BSCY Proton-Conducting Perovskite Membrane </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Heidari">M. Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Safekordi"> A. Safekordi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zamaniyan"> A. Zamaniyan</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ganji%20Babakhani"> E. Ganji Babakhani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amanipour"> M. Amanipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perovskite-type membrane Ba<sub>0.5</sub>Sr<sub>0.5</sub>Ce<sub>0.9</sub>Y<sub>0.1</sub>O<sub>3-δ</sub> (BSCY) was successfully synthesized by liquid citrate method. The hydrogen permeation and stability of BSCY perovskite-type membranes were studied at high temperatures. The phase structure of the powder was characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to characterize microstructures of the membrane sintered under various conditions. SEM results showed that increasing in sintering temperature, formed dense membrane with clear grains. XRD results for BSCY membrane that sintered in 1150 °C indicated single phase perovskite structure with orthorhombic configuration, and SEM results showed dense structure with clear grain size which is suitable for permeation tests. Partial substitution of Sr with Ba in SCY structure improved the hydrogen permeation flux through the membrane due to the larger ionic radius of Ba<sup>2+</sup>. BSCY membrane shows high hydrogen permeation flux of 1.6 ml/min.cm<sup>2</sup> at 900 °C and partial pressure of 0.6. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20separation" title="hydrogen separation">hydrogen separation</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite" title=" perovskite"> perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20conducting%20membrane." title=" proton conducting membrane."> proton conducting membrane.</a> </p> <a href="https://publications.waset.org/abstracts/54608/hydrogen-permeability-of-bscy-proton-conducting-perovskite-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1070</span> Synthesis and Characterizations of Sulfonated Poly (Ether Ether Ketone) Speek Nanofiber Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Hasbullah">N. Hasbullah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Sekak"> K. A. Sekak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sulfonated poly (ether ether ketone) SPEEK nanofiber membrane were successfully electrospun for Polymer Electrolyte Membrane (PEM) in Proton Exchange Membrane Fuel Cell (PEMFC) and their nanosized properties were investigated. The poly (ether ether ketone) PEEK victrex® grade 90p was sulfonated with concentrated sulfuric acid (95-98% w/w) at room temperature for 60 hours sulfonation times. The degree sulfonation of SPEEK are 70% was determined by H1 NMR and the functional groups of the SPEEK were characterize using FTIR. Then, the SPEEK nanofiber membrane were prepared via electrospinning method using DMAC as a solvent. The SPEEK sample were successfully electrospun using predetermine set up. FESEM show the electrospun fiber mat surface and confirmed the nanostructure membrane cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20electrolyte%20membrane%20%28PEM%29" title="polymer electrolyte membrane (PEM)">polymer electrolyte membrane (PEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29" title=" sulfonated poly (ether ether ketone) (SPEEK)"> sulfonated poly (ether ether ketone) (SPEEK)</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20sulfonation" title=" degree sulfonation"> degree sulfonation</a>, <a href="https://publications.waset.org/abstracts/search?q=Electrospinning" title=" Electrospinning"> Electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanofibers" title=" Nanofibers "> Nanofibers </a> </p> <a href="https://publications.waset.org/abstracts/26841/synthesis-and-characterizations-of-sulfonated-poly-ether-ether-ketone-speek-nanofiber-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1069</span> Preparation of Ceramic Hollow Fiber Membranes for CO2 Capture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Wei%20Huang">Kai-Wei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Lin"> Yi-Feng Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to have chemical resistance, high heat resistance and mechanical strength of ceramic hollow fiber membrane into a membrane contactor, and the combustion process is applied (Post-combustion capture) of the carbon dioxide absorption device. In this paper, we would investigate the effect of the ceramic membrane hydrophobicity to the flux of the carbon dioxide adsorption. To improve the applicability of the ceramic film. We use the dry-wet spinning method with the high temperature sintering process for preparing a ceramic hollow fiber membranes to increase the filling density per unit volume of the membrane. The PESf/Al2O3 ratio of 1:5 was prepared ceramic hollow fibers membrane precursors and investigate the relationship of the different sintering temperature to the membrane pore size and porosity. It can be found that the membrane via the sintering temperature of 1400 °C prepared with the highest porosity of 70%, while the membrane via the sintering temperature of 1600 °C prepared although has a minimum porosity of about 54%, but also has the smallest average pore size of about 0.2 μm. The hydrophilic ceramic hollow fiber membranes which after high-temperature sintering were changed into hydrophobic successfully via the 0.02M FAS modifier. The hydrophobic ceramic hollow fiber membranes with different sintering temperature, the membrane which was prepared via 1400 °C sintering has the highest carbon dioxide adsorption about 4.2 × 10-4 (mole/m2s). The membrane prepared via 1500 °C sintering has the carbon dioxide adsorption about 3.8 × 10-3 (mole/m2s),and the membrane prepared via 1600 °C sintering has the lowest carbon dioxide adsorption about 2.68 × 10-3 (mole/m2s).All of them have reusability and in long time operation, the membrane which was prepared via 1600 °C sintering has the smallest pores and also could operate for three days. After the test, the 1600 °C sintering ceramic hollow fiber membrane was most suitable for the factory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20capture" title="carbon dioxide capture">carbon dioxide capture</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20contactor" title=" membrane contactor"> membrane contactor</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title=" ceramic membrane"> ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20hollow%20fiber%20membrane" title=" ceramic hollow fiber membrane"> ceramic hollow fiber membrane</a> </p> <a href="https://publications.waset.org/abstracts/21521/preparation-of-ceramic-hollow-fiber-membranes-for-co2-capture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1068</span> Next Generation Membrane for Water Desalination: Facile Fabrication of Patterned Graphene Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Kyung%20Choi">Jae-Kyung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon-Yong%20Kwon"> Soon-Yong Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Duk%20Yun"> Hyung Duk Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Sang%20Chung"> Hyun-Sang Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Seongho%20Seo"> Seongho Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kukjin%20Bae"> Kukjin Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, there were several attempts to utilize a graphene layer as a water desalination membrane. In order to use a graphene layer as a water desalination membrane, fabrication of crack-free suspension of graphene on a porous membrane, having hydrophobic surface, and generation of a uniform holes on a graphene are very important. In here, we showed a simple chemical vapor deposition (CVD) method to create a patterned graphene membrane on a patterned platinum film. After CVD growth process of patterned graphene layer/patterned Pt on SiO2 substrates, the patterned graphene layer can be successfully transferred onto arbitrary substrates via thermal-assisted transfer method. In this result, the transferred patterned graphene membrane has so hydrophobic surface which will certainly impact on the naturally and speed pass way for fresh water. In addition to this, we observed that overlapping of patterned graphene membranes reported previously by our group may generate different size of holes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition%20%28CVD%29" title="chemical vapor deposition (CVD)">chemical vapor deposition (CVD)</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20surface" title=" hydrophobic surface"> hydrophobic surface</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20desalination" title=" membrane desalination"> membrane desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20graphene" title=" porous graphene"> porous graphene</a> </p> <a href="https://publications.waset.org/abstracts/57970/next-generation-membrane-for-water-desalination-facile-fabrication-of-patterned-graphene-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1067</span> Preparation and Characterization of the TiO₂ Photocatalytic Membrane for the Degradation of Reactive Orange 16 Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shruti%20Sakarkar">Shruti Sakarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jega%20Jegatheesan"> Jega Jegatheesan</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasan%20Madapusi"> Srinivasan Madapusi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photocatalytic membranes have shown great potential for the removal of an organic and inorganic pollutant from wastewater as it combines the degradation and antibacterial properties from photocatalysis and physical separation by the membrane in a single unit. Incorporation of the semiconductor in membrane structure results in enhancing the performance and the properties of the membrane. In this study porous ultrafiltration polyvinylidene fluoride (PVDF) membranes with entrapped TiO₂ nanoparticle were prepared by phase inversion method and further used for the degradation of reactive orange 16 (RO16). Prepared photocatalytic membranes were characterized by the scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), contact angle, and atomic force microscope (AFM). The addition of TiO₂ nanopartparticles improves the strength and thermal stability of the membrane. In particular hydrophilicity and permeability increases with the increase of TiO₂ nanoparticles into the membrane. The photocatalytic membrane achieves 80-85% degrdation of RO16. The impact of different parameters such as pH, concentration of photocatalyst, dye concentration and effect of H₂O₂ were analysed. The best conditions for dye degradation were an initial dye concentration of 50 mg/L, with a membrane containing TiO₂ loading of 2wt%. It was observed that in the presence of H₂O₂, degradation increases with increasing H₂O₂ concentration and reached up to 95-98%. The high quality permeates obtained from the photocatalytic membrane can be reused. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20membrane" title="photocatalytic membrane">photocatalytic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/103807/preparation-and-characterization-of-the-tio2-photocatalytic-membrane-for-the-degradation-of-reactive-orange-16-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1066</span> Synthesis and Performance of Polyamide Forward Osmosis Membrane for Natural Organic Matter (NOM) Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Abu%20Seman">M. N. Abu Seman</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Kei"> L. M. Kei</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Yusoff"> M. A. Yusoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forward Osmosis (FO) polyamide thin-film composite membranes have been prepared by inter facial polymerization using commercial UF polyethersulfone as membrane support. Different inter facial polymerization times (10s, 30s and 60s) in the organic solution containing trimesoyl chloride (TMC) at constant m-phenylenediamine (MPD) concentration (2% w/v) were studied. The synthesized polyamide membranes then tested for treatment of natural organic matter (NOM) and compared to commercial Cellulose TriAcetate (CTA) membrane. It was found that membrane prepared with higher reaction time (30 s and 60 s) exhibited better membrane performance (flux and humic acid removal) over commercial CTA membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20triacetate" title="cellulose triacetate">cellulose triacetate</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20osmosis" title=" forward osmosis"> forward osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=humic%20acid" title=" humic acid"> humic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=polyamide" title=" polyamide"> polyamide</a> </p> <a href="https://publications.waset.org/abstracts/19074/synthesis-and-performance-of-polyamide-forward-osmosis-membrane-for-natural-organic-matter-nom-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1065</span> Ultrathin Tin-Silicalite 1 Zeolite Membrane in Ester Solvent Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kun%20Liang%20Ang">Kun Liang Ang</a>, <a href="https://publications.waset.org/abstracts/search?q=Eng%20Toon%20Saw"> Eng Toon Saw</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20He"> Wei He</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuecheng%20Dong"> Xuecheng Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeram%20%20Ramakrishna"> Seeram Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ester solvents are widely used in pharmaceutical, printing and flavor industry due to their good miscibility, low toxicity, and high volatility. Through pervaporation, these ester solvents can be recovered from industrial wastewater. While metal-doped silicalite 1 zeolite membranes are commonly used in organic solvent recovery in the pervaporation process, these ceramic membranes suffer from low membrane permeation flux, mainly due to the high thickness of the metal-doped zeolite membrane. Herein, a simple method of fabricating an ultrathin tin-silicalite 1 membrane supported on alumina tube is reported. This ultrathin membrane is able to achieve high permeation flux and separation factor for an ester in a diluted aqueous solution. Nanosized tin-Silicalite 1 seeds which are smaller than 500nm has been formed through hydrothermal synthesis. The sn-Silicalite 1 seeds were then seeded onto alumina tube through dip coating, and the tin-Silicalite 1 membrane was then formed by hydrothermal synthesis in an autoclave through secondary growth method. Multiple membrane synthesis factors such as seed size, ceramic substrate surface pore size selection, and secondary growth conditions were studied for their effects on zeolite membrane growth. The microstructure, morphology and the membrane thickness of tin-Silicalite 1 zeolite membrane were examined. The membrane separation performance and stability will also be reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pervaporation" title=" pervaporation"> pervaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20recovery" title=" solvent recovery"> solvent recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=Sn-MFI%20zeolite" title=" Sn-MFI zeolite"> Sn-MFI zeolite</a> </p> <a href="https://publications.waset.org/abstracts/97044/ultrathin-tin-silicalite-1-zeolite-membrane-in-ester-solvent-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1064</span> Advances in Membrane Technologies for Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deniz%20Sahin">Deniz Sahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study provides a literature review of the special issue on wastewater treatment technologies, especially membrane technologies. Currently, wastewater is a serious and increasing worldwide problem with an adverse effect on the environment and living organisms. For this reason, many technologies have been developed to treat wastewater before discharging it to water bodies. We have been discussed membrane technologies to remove contaminants from wastewater such as heavy metals, dyes, pesticides, etc., which represent the main pollutants in wastewater. All the properties of these technologies including performance, economics, simplicity, and operability are also compared with other wastewater treatment technologies. The conventional water treatment technologies have the disadvantages of low separation efficiency, high energy consumption, and strict operating temperature. To overcome these difficulties, membrane technologies have been developed and used in wastewater treatment. Membrane technology uses a selectively permeable membrane to remove suspended and dissolved solids from water. This membrane is a very thin film of synthetic organic or inorganic materials, that can allow a very selective separation between a mixture and its components. Examples of membrane technologies include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), gas separation, etc. Most of these technologies have been used extensively for the treatment of heavy metal wastewater. For instance, wastewater that contains Cu²⁺, Cd²⁺, Pb²⁺, Zn²⁺ was treated by ultrafiltration technology. It was shown that complete removal of metal ions could be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20pollution" title="industrial pollution">industrial pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20technologies" title=" membrane technologies"> membrane technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions" title=" metal ions"> metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/97532/advances-in-membrane-technologies-for-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1063</span> Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaibir%20Sharma">Jaibir Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20JaeWung"> Lee JaeWung</a>, <a href="https://publications.waset.org/abstracts/search?q=Merugu%20Srinivas"> Merugu Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Navab%20Singh"> Navab Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents thermal annealing dewetting technique for the preparation of porous metal membrane for thin film encapsulation application. Thermal annealing dewetting experimental results reveal that pore size in porous metal membrane depend upon i.e. 1. The substrate on which metal is deposited for formation of porous metal cap membrane, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for porous metal membrane formation. Silver (Ag) was used as a metal for preparation of porous metal membrane by annealing the film at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for thin film encapsulation application, the porous silver film prepared on amorphous silicon (a-Si) was release using XeF2. Finally, guide line and structures are suggested to use this porous membrane for thin film encapsulation (TFE) application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dewetting" title="dewetting">dewetting</a>, <a href="https://publications.waset.org/abstracts/search?q=themal%20annealing" title=" themal annealing"> themal annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=metal" title=" metal"> metal</a>, <a href="https://publications.waset.org/abstracts/search?q=melting%20point" title=" melting point"> melting point</a>, <a href="https://publications.waset.org/abstracts/search?q=porous" title=" porous"> porous</a> </p> <a href="https://publications.waset.org/abstracts/31602/preparation-of-porous-metal-membrane-by-thermal-annealing-for-thin-film-encapsulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1062</span> Interaction of Glycolipid S-TGA-1 with Bacteriorhodopsin and Its Functional Role </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masataka%20Inada">Masataka Inada</a>, <a href="https://publications.waset.org/abstracts/search?q=Masanao%20Kinoshita"> Masanao Kinoshita</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuaki%20Matsumori"> Nobuaki Matsumori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been demonstrated that lipid molecules in biological membranes are responsible for the functionalization and structuration of membrane proteins. However, it is still unclear how the interaction of lipid molecules with membrane proteins is correlated with the function of the membrane proteins. Here we first developed an evaluation method for the interaction between membrane proteins and lipid molecules via surface plasmon resonance (SPR) analysis. Bacteriorhodopsin (bR), which was obtained by the culture of halobacteria, was used as a membrane protein. We prepared SPR sensor chips covered with self-assembled monolayer containing mercaptocarboxylic acids, and immobilized bR onto them. Then, we evaluated the interactions with various lipids that have different structures. As a result, the halobacterium-specific glycolipid S-TGA-1 was found to have much higher affinity with bRs than other lipids. This is probably due to not only hydrophobic and electrostatic interactions but also hydrogen bonds with sugar moieties in the glycolipid. Next, we analyzed the roles of the lipid in the structuration and functionalization of bR. CD analysis showed that S-TGA-1 could promote trimerization of bR monomers more efficiently than any other lipids. Flash photolysis further indicated that bR trimers formed by S-TGA-1 reproduced the photocyclic activity of bR in purple membrane, halobacterium-membrane. These results suggest that S-TGA-1 promotes trimerization of bR through strong interactions and consequently fulfills the bR’s function efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20protein" title="membrane protein">membrane protein</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteriorhodopsin" title=" bacteriorhodopsin"> bacteriorhodopsin</a>, <a href="https://publications.waset.org/abstracts/search?q=glycolipid" title=" glycolipid"> glycolipid</a> </p> <a href="https://publications.waset.org/abstracts/72463/interaction-of-glycolipid-s-tga-1-with-bacteriorhodopsin-and-its-functional-role" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1061</span> A New Design of Vacuum Membrane Distillation Module for Water Desalination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Alhathal%20Alanezi">Adnan Alhathal Alanezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of vacuum membrane distillation (VMD) process for water desalination was investigated utilizing a new design membrane module using two commercial polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) flat sheet hydrophobic membranes. The membrane module's design demonstrated its suitability for achieving a high heat transfer coefficient of the order of 103 (W/m2K) and a high Reynolds number (Re). The heat and mass transport coefficients within the membrane module were measured using VMD experiments. The permeate flux has been examined in relation to process parameters such as feed temperature, feed flow rate, vacuum degree, and feed concentration. Because the feed temperature, feed flow rate, and vacuum degree all play a role in improving the performance of the VMD process, optimizing all of these parameters is the best method to achieve a high permeate flux. In VMD desalination, the PTFE membrane outperformed the PVDF membrane. When compared to previous studies, the obtained water flux is relatively high, reaching 43.8 and 52.6 (kg/m2h) for PVDF and PTFE, respectively. For both membranes, the salt rejection of NaCl was greater than 99%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalination" title="desalination">desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20membrane%20distillation" title=" vacuum membrane distillation"> vacuum membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=PTFE%20and%20PVDF" title=" PTFE and PVDF"> PTFE and PVDF</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20membranes" title=" hydrophobic membranes"> hydrophobic membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=O-ring%20membrane%20module" title=" O-ring membrane module"> O-ring membrane module</a> </p> <a href="https://publications.waset.org/abstracts/178814/a-new-design-of-vacuum-membrane-distillation-module-for-water-desalination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1060</span> Separation Performance of CO₂ by Mixed Matrix Membrane Comprising Carbide-Derived Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musa%20Najimu">Musa Najimu</a>, <a href="https://publications.waset.org/abstracts/search?q=Isam%20Aljundi"> Isam Aljundi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the development of mixed matrix membrane (MMM) containing carbide-derived carbon (CDC) for the separation of CO₂ was investigated. MMM with four different loadings (0.1 to 2 wt%) were prepared by the dry/wet phase inversion technique. Prior to this, the formula of the control polysulfone (PSF) membrane was optimized in terms of the PSF concentration in a mixture of NMP/THF solvents and ethanol. Prepared samples were characterized and tested for CO₂ and CH₄ gas permeation. The optimization of the control PSF membrane revealed that 30 wt% PSF is the critical polymer concentration in the formulation. Characterization results unveiled reinforcement of thermal stability and improved polarity imparted by CDC in the MMM, in addition to uniform dispersion of filler up to 1 wt% loading. Furthermore, the incorporation of CDC in PSF membrane formulation enhanced both the CO₂ permeance and ideal selectivity over the control membrane. A CDC loading of 0.5 wt% resulted in the highest CO₂ permeance of 5.5 GPU corresponding to 120% increase in permeance while a CDC loading of 1 wt% resulted in the highest selectivity (CO₂ /CH₄) of 27 corresponding to 29% increase in selectivity. Studies of operating temperature effect showed that an optimum operating temperature for M1.0 membrane is 20 ⁰C. In addition, the feed pressure studies showed that high pressure feeds will favor high performance of the membrane and a good CO₂ /CH₄ separation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbide%20derived%20carbon" title="carbide derived carbon">carbide derived carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20matrix%20membrane" title=" mixed matrix membrane"> mixed matrix membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20separation" title=" CO₂ separation"> CO₂ separation</a>, <a href="https://publications.waset.org/abstracts/search?q=polysulfone" title=" polysulfone"> polysulfone</a> </p> <a href="https://publications.waset.org/abstracts/90131/separation-performance-of-co2-by-mixed-matrix-membrane-comprising-carbide-derived-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1059</span> Multi-Layer Silica Alumina Membrane Performance for Flue Gas Separation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngozi%20Nwogu">Ngozi Nwogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Kajama"> Mohammed Kajama</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Anyanwu"> Emmanuel Anyanwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the objective to create technologically advanced materials to be scientifically applicable, multi-layer silica alumina membranes were molecularly fabricated by continuous surface coating silica layers containing hybrid material onto a ceramic porous substrate for flue gas separation applications. The multi-layer silica alumina membrane was prepared by dip coating technique before further drying in an oven at elevated temperature. The effects of substrate physical appearance, coating quantity, the cross-linking agent, a number of coatings and testing conditions on the gas separation performance of the membrane have been investigated. Scanning electron microscope was used to investigate the development of coating thickness. The membrane shows impressive perm selectivity especially for CO2 and N2 binary mixture representing a stimulated flue gas stream <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20separation" title="gas separation">gas separation</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20membrane" title=" silica membrane"> silica membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20factor" title=" separation factor"> separation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20layer%20thickness" title=" membrane layer thickness"> membrane layer thickness</a> </p> <a href="https://publications.waset.org/abstracts/29152/multi-layer-silica-alumina-membrane-performance-for-flue-gas-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1058</span> Solid-Liquid-Polymer Mixed Matrix Membrane Using Liquid Additive Adsorbed on Activated Carbon Dispersed in Polymeric Membrane for CO2/CH4 Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Chultheera">P. Chultheera</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Rirksomboon"> T. Rirksomboon</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kulprathipanja"> S. Kulprathipanja</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Liu"> C. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Chinsirikul"> W. Chinsirikul</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kerddonfag"> N. Kerddonfag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas separation by selective transport through polymeric membranes is one of the rapid growing branches of membrane technology. However, the tradeoff between the permeability and selectivity is one of the critical challenges encountered by pure polymer membranes, which in turn limits their large-scale application. To enhance gas separation performances, mixed matrix membranes (MMMs) have been developed. In this study, MMMs were prepared by a solution-coating method and tested for CO<sub>2</sub>/CH<sub>4</sub> separation through permeability and selectivity using a membrane testing unit at room temperature and a pressure of 100 psig. The fabricated MMMs were composed of silicone rubber dispersed with the activated carbon individually absorbed with polyethylene glycol (PEG) as a liquid additive. PEG emulsified silicone rubber MMMs showed superior gas separation on cellulose acetate membrane with both high permeability and selectivity compared with silicone rubber membrane and alone support membrane. However, the MMMs performed limited stability resulting from the undesirable PEG leakage. To stabilize the MMMs, PEG was then incorporated into activated carbon by adsorption. It was found that the incorporation of solid and liquid was effective to improve the separation performance of MMMs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed%20matrix%20membrane" title="mixed matrix membrane">mixed matrix membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%2FCH%E2%82%84%20separation" title=" CO₂/CH₄ separation"> CO₂/CH₄ separation</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a> </p> <a href="https://publications.waset.org/abstracts/66253/solid-liquid-polymer-mixed-matrix-membrane-using-liquid-additive-adsorbed-on-activated-carbon-dispersed-in-polymeric-membrane-for-co2ch4-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1057</span> Ultrathin NaA Zeolite Membrane in Solvent Recovery: Preparation and Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eng%20Toon%20Saw">Eng Toon Saw</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Liang%20Ang"> Kun Liang Ang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20He"> Wei He</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuecheng%20Dong"> Xuecheng Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeram%20Ramakrishna"> Seeram Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solvent recovery process is receiving utmost attention in recent year due to the scarcity of natural resource and consciousness of circular economy in chemical and pharmaceutical manufacturing process. Solvent dehydration process is one of the important process to recover and to purify the solvent for reuse. Due to the complexity of solvent waste or wastewater effluent produced in pharmaceutical industry resulting the wastewater treatment process become complicated, thus an alternative solution is to recover the valuable solvent in solvent waste. To treat solvent waste and to upgrade solvent purity, membrane pervaporation process is shown to be a promising technology due to the energy intensive and low footprint advantages. Ceramic membrane is adopted as solvent dehydration membrane owing to the chemical and thermal stability properties as compared to polymeric membrane. NaA zeolite membrane is generally used as solvent dehydration process because of its narrow and distinct pore size and high hydrophilicity. NaA zeolite membrane has been mainly applied in alcohol dehydration in fermentation process. At this stage, the membrane performance exhibits high separation factor with low flux using tubular ceramic membrane. Thus, defect free and ultrathin NaA membrane should be developed to increase water flux. Herein, we report a simple preparation protocol to prepare ultrathin NaA zeolite membrane supported on tubular ceramic membrane by controlling the seed size synthesis, seeding methods and conditions, ceramic substrate surface pore size selection and secondary growth conditions. The microstructure and morphology of NaA zeolite membrane will be examined and reported. Moreover, the membrane separation performance and stability will also be reported in isopropanol dehydration, ketone dehydration and ester dehydration particularly for the application in pharmaceutical industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=NaA%20zeolite" title=" NaA zeolite"> NaA zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20industry" title=" pharmaceutical industry"> pharmaceutical industry</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20recovery" title=" solvent recovery"> solvent recovery</a> </p> <a href="https://publications.waset.org/abstracts/96273/ultrathin-naa-zeolite-membrane-in-solvent-recovery-preparation-and-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1056</span> Preparation and Removal Properties of Hollow Fiber Membranes for Drinking Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung%20Moon%20Woo">Seung Moon Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Youn%20Suk%20Chung"> Youn Suk Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Yong%20Nam"> Sang Yong Nam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present time, we need advanced water treatment technology for separation of virus and bacteria in effluent which occur epidemic and waterborne diseases. Water purification system is mainly divided into two categorizations like reverse osmosis (RO) and ultrafiltration (UF). Membrane used in these systems requires higher durability because of operating in harsh condition. Of these, the membrane using in UF system has many advantages like higher efficiency and lower energy consume for water treatment compared with RO system. In many kinds of membrane, hollow fiber type membrane is possible to make easily and to get optimized property by control of various spinning conditions such as temperature of coagulation bath, concentration of polymer, addition of additive, air gap and internal coagulation. In this study, polysulfone hollow fiber membrane was successfully prepared by phase inversion method for separation of virus and bacteria. When we prepare the hollow fiber membrane, we controlled various factors such as the polymer concentration, air gap and internal coagulation to investigate effect to membrane property. Morphology of surface and cross section of membrane were measured by field emission scanning electron microscope (FE-SEM). Water flux of membrane was measured using test modules. Mean pore diameter of membrane was calculated using rejection of polystyrene (PS) latex beads for separation of virus and bacteria. Flux and mean flow pore diameter of prepared membrane show 1.5 LPM, 0.03 μm at 1.0 kgf/cm2. The bacteria and virus removal performance of prepared UF membranes were over 6 logs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hollow%20fiber%20membrane" title="hollow fiber membrane">hollow fiber membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title=" drinking water"> drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration" title=" ultrafiltration"> ultrafiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a> </p> <a href="https://publications.waset.org/abstracts/55533/preparation-and-removal-properties-of-hollow-fiber-membranes-for-drinking-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=membrane&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=membrane&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=membrane&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=membrane&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=membrane&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=membrane&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=membrane&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=membrane&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=membrane&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=membrane&page=36">36</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=membrane&page=37">37</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=membrane&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>