CINXE.COM
Search results for: metrics
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: metrics</title> <meta name="description" content="Search results for: metrics"> <meta name="keywords" content="metrics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="metrics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="metrics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 610</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: metrics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">610</span> Reasons for Non-Applicability of Software Entropy Metrics for Bug Prediction in Android </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvinder%20Kaur">Arvinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Chopra"> Deepti Chopra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software Entropy Metrics for bug prediction have been validated on various software systems by different researchers. In our previous research, we have validated that Software Entropy Metrics calculated for Mozilla subsystem’s predict the future bugs reasonably well. In this study, the Software Entropy metrics are calculated for a subsystem of Android and it is noticed that these metrics are not suitable for bug prediction. The results are compared with a subsystem of Mozilla and a comparison is made between the two software systems to determine the reasons why Software Entropy metrics are not applicable for Android. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=android" title="android">android</a>, <a href="https://publications.waset.org/abstracts/search?q=bug%20prediction" title=" bug prediction"> bug prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=mining%20software%20repositories" title=" mining software repositories"> mining software repositories</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20entropy" title=" software entropy"> software entropy</a> </p> <a href="https://publications.waset.org/abstracts/49619/reasons-for-non-applicability-of-software-entropy-metrics-for-bug-prediction-in-android" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">609</span> Modeling Metrics for Monitoring Software Project Performance Based on the GQM Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariayee%20Doraisamy">Mariayee Doraisamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Suhaimi%20bin%20Ibrahim"> Suhaimi bin Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Naz%E2%80%99ri%20Mahrin"> Mohd Naz’ri Mahrin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several methods to monitor software projects and the objective for monitoring is to ensure that the software projects are developed and delivered successfully. A performance measurement is a method that is closely associated with monitoring and it can be scrutinized by looking at two important attributes which are efficiency and effectiveness both of which are factors that are important for the success of a software project. Consequently, a successful steering is achieved by monitoring and controlling a software project via the performance measurement criteria and metrics. Hence, this paper is aimed at identifying the performance measurement criteria and the metrics for monitoring the performance of a software project by using the Goal Question Metrics (GQM) approach. The GQM approach is utilized to ensure that the identified metrics are reliable and useful. These identified metrics are useful guidelines for project managers to monitor the performance of their software projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=component" title="component">component</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20project%20performance" title=" software project performance"> software project performance</a>, <a href="https://publications.waset.org/abstracts/search?q=goal%20question%20metrics" title=" goal question metrics"> goal question metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20measurement%20criteria" title=" performance measurement criteria"> performance measurement criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=metrics" title=" metrics"> metrics</a> </p> <a href="https://publications.waset.org/abstracts/11761/modeling-metrics-for-monitoring-software-project-performance-based-on-the-gqm-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">608</span> Routing Metrics and Protocols for Wireless Mesh Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Kalantary">Samira Kalantary</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohre%20Saatzade"> Zohre Saatzade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless Mesh Networks (WMNs) are low-cost access networks built on cooperative routing over a backbone composed of stationary wireless routers. WMNs must deal with the highly unstable wireless medium. Thus, routing metrics and protocols are evolving by designing algorithms that consider link quality to choose the best routes. In this work, we analyse the state of the art in WMN metrics and propose taxonomy for WMN routing protocols. Performance measurements of a wireless mesh network deployed using various routing metrics are presented and corroborate our analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20mesh%20networks" title="wireless mesh networks">wireless mesh networks</a>, <a href="https://publications.waset.org/abstracts/search?q=routing%20protocols" title=" routing protocols"> routing protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=routing%20metrics" title=" routing metrics"> routing metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a> </p> <a href="https://publications.waset.org/abstracts/2240/routing-metrics-and-protocols-for-wireless-mesh-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">607</span> On Projective Invariants of Spherically Symmetric Finsler Spaces in Rn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasrin%20Sadeghzadeh">Nasrin Sadeghzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we study projective invariants of spherically symmetric Finsler metrics in Rn. We find the necessary and sufficient conditions for the metrics to be Douglas and Generalized Douglas-Weyl (GDW) types. Also we show that two classes of GDW and Douglas spherically symmetric Finsler metrics coincide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spherically%20symmetric%20finsler%20metrics%20in%20Rn" title="spherically symmetric finsler metrics in Rn">spherically symmetric finsler metrics in Rn</a>, <a href="https://publications.waset.org/abstracts/search?q=finsler%20metrics" title=" finsler metrics"> finsler metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=douglas%20metric" title=" douglas metric"> douglas metric</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%0D%0ADouglas-Weyl%20%28GDW%29%20metric" title=" generalized Douglas-Weyl (GDW) metric"> generalized Douglas-Weyl (GDW) metric</a> </p> <a href="https://publications.waset.org/abstracts/33315/on-projective-invariants-of-spherically-symmetric-finsler-spaces-in-rn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">606</span> Developing Fault Tolerance Metrics of Web and Mobile Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Mohsin">Ahmad Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Raza%20Naqvi"> Irfan Raza Naqvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Syda%20Fatima%20Usamn"> Syda Fatima Usamn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applications with higher fault tolerance index are considered more reliable and trustworthy to drive quality. In recent years application development has been shifted from traditional desktop and web to native and hybrid application(s) for the web and mobile platforms. With the emergence of Internet of things IOTs, cloud and big data trends, the need for measuring Fault Tolerance for these complex nature applications has increased to evaluate their performance. There is a phenomenal gap between fault tolerance metrics development and measurement. Classic quality metric models focused on metrics for traditional systems ignoring the essence of today’s applications software, hardware & deployment characteristics. In this paper, we have proposed simple metrics to measure fault tolerance considering general requirements for Web and Mobile Applications. We have aligned factors – subfactors, using GQM for metrics development considering the nature of mobile we apps. Systematic Mathematical formulation is done to measure metrics quantitatively. Three web mobile applications are selected to measure Fault Tolerance factors using formulated metrics. Applications are then analysed on the basis of results from observations in a controlled environment on different mobile devices. Quantitative results are presented depicting Fault tolerance in respective applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=web%20and%20mobile%20applications" title="web and mobile applications">web and mobile applications</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerance%20metric" title=" fault tolerance metric"> fault tolerance metric</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20metrics" title=" quality metrics"> quality metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=GQM%20based%20metrics" title=" GQM based metrics"> GQM based metrics</a> </p> <a href="https://publications.waset.org/abstracts/46344/developing-fault-tolerance-metrics-of-web-and-mobile-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">605</span> Cross Project Software Fault Prediction at Design Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Singh">Pradeep Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrish%20Verma"> Shrish Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20metrics" title="software metrics">software metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20prediction" title=" fault prediction"> fault prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20project" title=" cross project"> cross project</a>, <a href="https://publications.waset.org/abstracts/search?q=within%20project." title=" within project. "> within project. </a> </p> <a href="https://publications.waset.org/abstracts/27206/cross-project-software-fault-prediction-at-design-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">604</span> A New Categorization of Image Quality Metrics Based on a Model of Human Quality Perception</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Grazia%20Albanesi">Maria Grazia Albanesi</a>, <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Amadeo"> Riccardo Amadeo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a new model of the human image quality assessment process: the aim is to highlight the foundations of the image quality metrics proposed in literature, by identifying the cognitive/physiological or mathematical principles of their development and the relation with the actual human quality assessment process. The model allows to create a novel categorization of objective and subjective image quality metrics. Our work includes an overview of the most used or effective objective metrics in literature, and, for each of them, we underline its main characteristics, with reference to the rationale of the proposed model and categorization. From the results of this operation, we underline a problem that affects all the presented metrics: the fact that many aspects of human biases are not taken in account at all. We then propose a possible methodology to address this issue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eye-tracking" title="eye-tracking">eye-tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20quality%20assessment%20metric" title=" image quality assessment metric"> image quality assessment metric</a>, <a href="https://publications.waset.org/abstracts/search?q=MOS" title=" MOS"> MOS</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20user%20experience" title=" quality of user experience"> quality of user experience</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20perception" title=" visual perception"> visual perception</a> </p> <a href="https://publications.waset.org/abstracts/8906/a-new-categorization-of-image-quality-metrics-based-on-a-model-of-human-quality-perception" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">603</span> A Comparative Assessment of Daylighting Metrics Assessing the Daylighting Performance of Three Shading Devices under Four Different Orientations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Boubekri">Mohamed Boubekri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaewook%20Lee"> Jaewook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The assessment of the daylighting performance of a design solution is a complex task due to the changing nature of daylight. A few quantitative metrics are available to designers to assess such a performance, among them are the mean hourly illuminance (MHI), the daylight factor (DF), the daylight autonomy (DA) and the useful daylight illuminance (UDI). Each of these metrics has criteria and limitations that affect the outcome of the evaluation. When to use one metric instead of another depends largely on the design goals to be achieved. Using Design Iterate Validate Adapt (DIVA) daylighting simulation program we set out to examine the performance behavior of these four metrics with the changing dimensions of three shading devices: a horizontal overhang, a horizontal louver system, and a vertical louver system, and compare their performance behavior as the orientation of the window changes. The context is a classroom of a prototypical elementary school in South Korea. Our results indicate that not all four metrics behave similarly as we vary the size of each shading device and as orientations changes. The UDI is the metric that leads to outcome most different than the other three metrics. Our conclusion is that not all daylighting metrics lead to the same conclusions and that it is important to use the metric that corresponds to the specific goals and objectives of the daylighting solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylight%20factor" title="daylight factor">daylight factor</a>, <a href="https://publications.waset.org/abstracts/search?q=hourly%20daylight%20illuminance" title=" hourly daylight illuminance"> hourly daylight illuminance</a>, <a href="https://publications.waset.org/abstracts/search?q=daylight%20autonomy" title=" daylight autonomy"> daylight autonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=useful%20daylight%20illuminance" title=" useful daylight illuminance"> useful daylight illuminance</a> </p> <a href="https://publications.waset.org/abstracts/70527/a-comparative-assessment-of-daylighting-metrics-assessing-the-daylighting-performance-of-three-shading-devices-under-four-different-orientations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">602</span> Evaluation Metrics for Machine Learning Techniques: A Comprehensive Review and Comparative Analysis of Performance Measurement Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed-Ali%20Sadegh-Zadeh">Seyed-Ali Sadegh-Zadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaveh%20Kavianpour"> Kaveh Kavianpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Atashbar"> Hamed Atashbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Heidari"> Elham Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Shiry%20Ghidary"> Saeed Shiry Ghidary</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20M.%20Hajiyavand"> Amir M. Hajiyavand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaluation metrics play a critical role in assessing the performance of machine learning models. In this review paper, we provide a comprehensive overview of performance measurement approaches for machine learning models. For each category, we discuss the most widely used metrics, including their mathematical formulations and interpretation. Additionally, we provide a comparative analysis of performance measurement approaches for metric combinations. Our review paper aims to provide researchers and practitioners with a better understanding of performance measurement approaches and to aid in the selection of appropriate evaluation metrics for their specific applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaluation%20metrics" title="evaluation metrics">evaluation metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20measurement" title=" performance measurement"> performance measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20learning" title=" supervised learning"> supervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=unsupervised%20learning" title=" unsupervised learning"> unsupervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20learning" title=" reinforcement learning"> reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20robustness%20and%20stability" title=" model robustness and stability"> model robustness and stability</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a> </p> <a href="https://publications.waset.org/abstracts/184552/evaluation-metrics-for-machine-learning-techniques-a-comprehensive-review-and-comparative-analysis-of-performance-measurement-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">601</span> Determining the Most Efficient Test Available in Software Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qasim%20Zafar">Qasim Zafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Anderson"> Matthew Anderson</a>, <a href="https://publications.waset.org/abstracts/search?q=Esteban%20Garcia"> Esteban Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Drager"> Steven Drager</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software failures can present an enormous detriment to people's lives and cost millions of dollars to repair when they are unexpectedly encountered in the wild. Despite a significant portion of the software development lifecycle and resources are dedicated to testing, software failures are a relatively frequent occurrence. Nevertheless, the evaluation of testing effectiveness remains at the forefront of ensuring high-quality software and software metrics play a critical role in providing valuable insights into quantifiable objectives to assess the level of assurance and confidence in the system. As the selection of appropriate metrics can be an arduous process, the goal of this paper is to shed light on the significance of software metrics by examining a range of testing techniques and metrics as well as identifying key areas for improvement. Additionally, through this investigation, readers will gain a deeper understanding of how metrics can help to drive informed decision-making on delivering high-quality software and facilitate continuous improvement in testing practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20testing" title="software testing">software testing</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20metrics" title=" software metrics"> software metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20effectiveness" title=" testing effectiveness"> testing effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20box%20testing" title=" black box testing"> black box testing</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20testing" title=" random testing"> random testing</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20random%20testing" title=" adaptive random testing"> adaptive random testing</a>, <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20testing" title=" combinatorial testing"> combinatorial testing</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzz%20testing" title=" fuzz testing"> fuzz testing</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalence%20partition" title=" equivalence partition"> equivalence partition</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20value%20analysis" title=" boundary value analysis"> boundary value analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20box%20testing" title=" white box testing"> white box testing</a> </p> <a href="https://publications.waset.org/abstracts/169666/determining-the-most-efficient-test-available-in-software-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">600</span> Evaluating the Performance of Existing Full-Reference Quality Metrics on High Dynamic Range (HDR) Video Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Azimi">Maryam Azimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Banitalebi-Dehkordi"> Amin Banitalebi-Dehkordi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanyuan%20Dong"> Yuanyuan Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20T.%20Pourazad"> Mahsa T. Pourazad</a>, <a href="https://publications.waset.org/abstracts/search?q=Panos%20Nasiopoulos"> Panos Nasiopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While there exists a wide variety of Low Dynamic Range (LDR) quality metrics, only a limited number of metrics are designed specifically for the High Dynamic Range (HDR) content. With the introduction of HDR video compression standardization effort by international standardization bodies, the need for an efficient video quality metric for HDR applications has become more pronounced. The objective of this study is to compare the performance of the existing full-reference LDR and HDR video quality metrics on HDR content and identify the most effective one for HDR applications. To this end, a new HDR video data set is created, which consists of representative indoor and outdoor video sequences with different brightness, motion levels and different representing types of distortions. The quality of each distorted video in this data set is evaluated both subjectively and objectively. The correlation between the subjective and objective results confirm that VIF quality metric outperforms all to their tested metrics in the presence of the tested types of distortions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HDR" title="HDR">HDR</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20range" title=" dynamic range"> dynamic range</a>, <a href="https://publications.waset.org/abstracts/search?q=LDR" title=" LDR"> LDR</a>, <a href="https://publications.waset.org/abstracts/search?q=subjective%20evaluation" title=" subjective evaluation"> subjective evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20compression" title=" video compression"> video compression</a>, <a href="https://publications.waset.org/abstracts/search?q=HEVC" title=" HEVC"> HEVC</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20quality%20metrics" title=" video quality metrics"> video quality metrics</a> </p> <a href="https://publications.waset.org/abstracts/18171/evaluating-the-performance-of-existing-full-reference-quality-metrics-on-high-dynamic-range-hdr-video-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">599</span> Evaluation of Video Quality Metrics and Performance Comparison on Contents Taken from Most Commonly Used Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Dhabal%20Deo">Pratik Dhabal Deo</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20P."> Manoj P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing number of social media users, the amount of video content available has also significantly increased. Currently, the number of smartphone users is at its peak, and many are increasingly using their smartphones as their main photography and recording devices. There have been a lot of developments in the field of Video Quality Assessment (VQA) and metrics like VMAF, SSIM etc. are said to be some of the best performing metrics, but the evaluation of these metrics is dominantly done on professionally taken video contents using professional tools, lighting conditions etc. No study particularly pinpointing the performance of the metrics on the contents taken by users on very commonly available devices has been done. Datasets that contain a huge number of videos from different high-end devices make it difficult to analyze the performance of the metrics on the content from most used devices even if they contain contents taken in poor lighting conditions using lower-end devices. These devices face a lot of distortions due to various factors since the spectrum of contents recorded on these devices is huge. In this paper, we have presented an analysis of the objective VQA metrics on contents taken only from most used devices and their performance on them, focusing on full-reference metrics. To carry out this research, we created a custom dataset containing a total of 90 videos that have been taken from three most commonly used devices, and android smartphone, an IOS smartphone and a DSLR. On the videos taken on each of these devices, the six most common types of distortions that users face have been applied on addition to already existing H.264 compression based on four reference videos. These six applied distortions have three levels of degradation each. A total of the five most popular VQA metrics have been evaluated on this dataset and the highest values and the lowest values of each of the metrics on the distortions have been recorded. Finally, it is found that blur is the artifact on which most of the metrics didn’t perform well. Thus, in order to understand the results better the amount of blur in the data set has been calculated and an additional evaluation of the metrics was done using HEVC codec, which is the next version of H.264 compression, on the camera that proved to be the sharpest among the devices. The results have shown that as the resolution increases, the performance of the metrics tends to become more accurate and the best performing metric among them is VQM with very few inconsistencies and inaccurate results when the compression applied is H.264, but when the compression is applied is HEVC, SSIM and VMAF have performed significantly better. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distortion" title="distortion">distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=metrics" title=" metrics"> metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution" title=" resolution"> resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20quality%20assessment" title=" video quality assessment"> video quality assessment</a> </p> <a href="https://publications.waset.org/abstracts/145939/evaluation-of-video-quality-metrics-and-performance-comparison-on-contents-taken-from-most-commonly-used-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">598</span> Software Component Identification from Its Object-Oriented Code: Graph Metrics Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manel%20Brichni">Manel Brichni</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhak-Djamel%20Seriai"> Abdelhak-Djamel Seriai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Systems are increasingly complex. To reduce their complexity, an abstract view of the system can simplify its development. To overcome this problem, we propose a method to decompose systems into subsystems while reducing their coupling. These subsystems represent components. Consisting of an existing object-oriented systems, the main idea of our approach is based on modelling as graphs all entities of an oriented object source code. Such modelling is easy to handle, so we can apply restructuring algorithms based on graph metrics. The particularity of our approach consists in integrating in addition to standard metrics, such as coupling and cohesion, some graph metrics giving more precision during the components identication. To treat this problem, we relied on the ROMANTIC approach that proposed a component-based software architecture recovery from an object oriented system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20reengineering" title="software reengineering">software reengineering</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20component%0D%0Aand%20interfaces" title=" software component and interfaces"> software component and interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=metrics" title=" metrics"> metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=graphs" title=" graphs"> graphs</a> </p> <a href="https://publications.waset.org/abstracts/13322/software-component-identification-from-its-object-oriented-code-graph-metrics-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">597</span> Map Matching Performance under Various Similarity Metrics for Heterogeneous Robot Teams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Akay">M. C. Akay</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aybakan"> A. Aybakan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Temeltas"> H. Temeltas </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerial and ground robots have various advantages of usage in different missions. Aerial robots can move quickly and get a different sight of view of the area, but those vehicles cannot carry heavy payloads. On the other hand, unmanned ground vehicles (UGVs) are slow moving vehicles, since those can carry heavier payloads than unmanned aerial vehicles (UAVs). In this context, we investigate the performances of various Similarity Metrics to provide a common map for Heterogeneous Robot Team (HRT) in complex environments. Within the usage of Lidar Odometry and Octree Mapping technique, the local 3D maps of the environment are gathered. In order to obtain a common map for HRT, informative theoretic similarity metrics are exploited. All types of these similarity metrics gave adequate as allowable simulation time and accurate results that can be used in different types of applications. For the heterogeneous multi robot team, those methods can be used to match different types of maps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20maps" title="common maps">common maps</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20robot%20team" title=" heterogeneous robot team"> heterogeneous robot team</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20matching" title=" map matching"> map matching</a>, <a href="https://publications.waset.org/abstracts/search?q=informative%20theoretic%20similarity%20metrics" title=" informative theoretic similarity metrics"> informative theoretic similarity metrics</a> </p> <a href="https://publications.waset.org/abstracts/99098/map-matching-performance-under-various-similarity-metrics-for-heterogeneous-robot-teams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">596</span> Exploration of Various Metrics for Partitioning of Cellular Automata Units for Efficient Reconfiguration of Field Programmable Gate Arrays (FPGAs)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Tabatt">Peter Tabatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Siemers"> Christian Siemers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using FPGA devices to improve the behavior of time-critical parts of embedded systems is a proven concept for years. With reconfigurable FPGA devices, the logical blocks can be partitioned and grouped into static and dynamic parts. The dynamic parts can be reloaded 'on demand' at runtime. This work uses cellular automata, which are constructed through compilation from (partially restricted) ANSI-C sources, to determine the suitability of various metrics for optimal partitioning. Significant metrics, in this case, are for example the area on the FPGA device for the partition, the pass count for loop constructs and communication characteristics to other partitions. With successful partitioning, it is possible to use smaller FPGA devices for the same requirements as with not reconfigurable FPGA devices or – vice versa – to use the same FPGAs for larger programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20FPGA" title="reconfigurable FPGA">reconfigurable FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20automata" title=" cellular automata"> cellular automata</a>, <a href="https://publications.waset.org/abstracts/search?q=partitioning" title=" partitioning"> partitioning</a>, <a href="https://publications.waset.org/abstracts/search?q=metrics" title=" metrics"> metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computing" title=" parallel computing"> parallel computing</a> </p> <a href="https://publications.waset.org/abstracts/56244/exploration-of-various-metrics-for-partitioning-of-cellular-automata-units-for-efficient-reconfiguration-of-field-programmable-gate-arrays-fpgas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">595</span> Back to Basics: Redefining Quality Measurement for Hybrid Software Development Organizations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satya%20Pradhan">Satya Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Venky%20Nanniyur"> Venky Nanniyur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the software industry transitions from a license-based model to a subscription-based Software-as-a-Service (SaaS) model, many software development groups are using a hybrid development model that incorporates Agile and Waterfall methodologies in different parts of the organization. The traditional metrics used for measuring software quality in Waterfall or Agile paradigms do not apply to this new hybrid methodology. In addition, to respond to higher quality demands from customers and to gain a competitive advantage in the market, many companies are starting to prioritize quality as a strategic differentiator. As a result, quality metrics are included in the decision-making activities all the way up to the executive level, including board of director reviews. This paper presents key challenges associated with measuring software quality in organizations using the hybrid development model. We introduce a framework called Prevention-Inspection-Evaluation-Removal (PIER) to provide a comprehensive metric definition for hybrid organizations. The framework includes quality measurements, quality enforcement, and quality decision points at different organizational levels and project milestones. The metrics framework defined in this paper is being used for all Cisco systems products used in customer premises. We present several field metrics for one product portfolio (enterprise networking) to show the effectiveness of the proposed measurement system. As the results show, this metrics framework has significantly improved in-process defect management as well as field quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20management%20system" title="quality management system">quality management system</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20metrics%20framework" title=" quality metrics framework"> quality metrics framework</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20metrics" title=" quality metrics"> quality metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=agile" title=" agile"> agile</a>, <a href="https://publications.waset.org/abstracts/search?q=waterfall" title=" waterfall"> waterfall</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20development%20system" title=" hybrid development system"> hybrid development system</a> </p> <a href="https://publications.waset.org/abstracts/110606/back-to-basics-redefining-quality-measurement-for-hybrid-software-development-organizations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">594</span> Quantifying Spatiotemporal Patterns of Past and Future Urbanization Trends in El Paso, Texas and Their Impact on Electricity Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanne%20Moyer">Joanne Moyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> El Paso, Texas is a southwest border city that has experienced continuous growth within the last 15-years. Understanding the urban growth trends and patterns using data from the National Land Cover Database (NLCD) and landscape metrics, provides a quantitative description of growth. Past urban growth provided a basis to predict 2031 future land-use for El Paso using the CA-Markov model. As a consequence of growth, an increase in demand of resources follows. Using panel data analysis, an understanding of the relation between landscape metrics and electricity consumption is further analyzed. The studies’ findings indicate that past growth focused within three districts within the City of El Paso. The landscape metrics suggest as the city has grown, fragmentation has decreased. Alternatively, the landscape metrics for the projected 2031 land-use indicates possible fragmentation within one of these districts. Panel data suggests electricity consumption and mean patch area landscape metric are positively correlated. The study provides local decision makers to make informed decisions for policies and urban planning to ensure a future sustainable community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landscape%20metrics" title="landscape metrics">landscape metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=CA-Markov" title=" CA-Markov"> CA-Markov</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Paso" title=" El Paso"> El Paso</a>, <a href="https://publications.waset.org/abstracts/search?q=Texas" title=" Texas"> Texas</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20data" title=" panel data"> panel data</a> </p> <a href="https://publications.waset.org/abstracts/128976/quantifying-spatiotemporal-patterns-of-past-and-future-urbanization-trends-in-el-paso-texas-and-their-impact-on-electricity-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">593</span> A Multimodal Approach to Improve the Performance of Biometric System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chander%20Kant">Chander Kant</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar"> Arun Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biometric systems automatically recognize an individual based on his/her physiological and behavioral characteristics. There are also some traits like weight, age, height etc. that may not provide reliable user recognition because of there common and temporary nature. These traits are called soft bio metric traits. Although soft bio metric traits are lack of permanence to uniquely and reliably identify an individual, yet they provide some beneficial evidence about the user identity and may improve the system performance. Here in this paper, we have proposed an approach for integrating the soft bio metrics with fingerprint and face to improve the performance of personal authentication system. In our approach we have proposed a combined architecture of three different sensors to elevate the system performance. The approach includes, soft bio metrics, fingerprint and face traits. We have also proven the efficiency of proposed system regarding FAR (False Acceptance Ratio) and total response time, with the help of MUBI (Multimodal Bio metrics Integration) software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FAR" title="FAR">FAR</a>, <a href="https://publications.waset.org/abstracts/search?q=minutiae%20point" title=" minutiae point"> minutiae point</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20bio%20metrics" title=" multimodal bio metrics"> multimodal bio metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20bio%20metric" title=" primary bio metric"> primary bio metric</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20bio%20metric" title=" soft bio metric"> soft bio metric</a> </p> <a href="https://publications.waset.org/abstracts/12625/a-multimodal-approach-to-improve-the-performance-of-biometric-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">592</span> Framework to Quantify Customer Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anant%20Sharma">Anant Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwin%20Rajan"> Ashwin Rajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Customer experience is measured today based on defining a set of metrics and KPIs, setting up thresholds and defining triggers across those thresholds. While this is an effective way of measuring against a Key Performance Indicator ( referred to as KPI in the rest of the paper ), this approach cannot capture the various nuances that make up the overall customer experience. Customers consume a product or service at various levels, which is not reflected in metrics like Customer Satisfaction or Net Promoter Score, but also across other measurements like recurring revenue, frequency of service usage, e-learning and depth of usage. Here we explore an alternative method of measuring customer experience by flipping the traditional views. Rather than rolling customers up to a metric, we roll up metrics to hierarchies and then measure customer experience. This method allows any team to quantify customer experience across multiple touchpoints in a customer’s journey. We make use of various data sources which contain information for metrics like CXSAT, NPS, Renewals, and depths of service usage collected across a customer lifecycle. This data can be mined systematically to get linkages between different data points like geographies, business groups, products and time. Additional views can be generated by blending synthetic contexts into the data to show trends and top/bottom types of reports. We have created a framework that allows us to measure customer experience using the above logic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytics" title="analytics">analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=customers%20experience" title=" customers experience"> customers experience</a>, <a href="https://publications.waset.org/abstracts/search?q=BI" title=" BI"> BI</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20operations" title=" business operations"> business operations</a>, <a href="https://publications.waset.org/abstracts/search?q=KPIs" title=" KPIs"> KPIs</a>, <a href="https://publications.waset.org/abstracts/search?q=metrics" title=" metrics"> metrics</a> </p> <a href="https://publications.waset.org/abstracts/152386/framework-to-quantify-customer-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">591</span> Achieving Success in NPD Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankush%20Agrawal">Ankush Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Bhuiyan"> Nadia Bhuiyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The new product development (NPD) literature emphasizes the importance of introducing new products on the market for continuing business success. New products are responsible for employment, economic growth, technological progress, and high standards of living. Therefore, the study of NPD and the processes through which they emerge is important. The goal of our research is to propose a framework of critical success factors, metrics, and tools and techniques for implementing metrics for each stage of the new product development (NPD) process. An extensive literature review was undertaken to investigate decades of studies on NPD success and how it can be achieved. These studies were scanned for common factors for firms that enjoyed success of new products on the market. The paper summarizes NPD success factors, suggests metrics that should be used to measure these factors, and proposes tools and techniques to make use of these metrics. This was done for each stage of the NPD process, and brought together in a framework that the authors propose should be followed for complex NPD projects. While many studies have been conducted on critical success factors for NPD, these studies tend to be fragmented and focus on one or a few phases of the NPD process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20product%20development" title="new product development">new product development</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20success%20factors" title=" critical success factors"> critical success factors</a>, <a href="https://publications.waset.org/abstracts/search?q=framework" title=" framework"> framework</a> </p> <a href="https://publications.waset.org/abstracts/5802/achieving-success-in-npd-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">590</span> The Influence of Audio on Perceived Quality of Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silvio%20Ricardo%20Rodrigues%20Sanches">Silvio Ricardo Rodrigues Sanches</a>, <a href="https://publications.waset.org/abstracts/search?q=Bianca%20Cogo%20Barbosa"> Bianca Cogo Barbosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20Regina%20Brum"> Beatriz Regina Brum</a>, <a href="https://publications.waset.org/abstracts/search?q=Cl%C3%A9ber%20Gimenez%20Corr%C3%AAa"> Cléber Gimenez Corrêa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To evaluate the quality of a segmentation algorithm, the authors use subjective or objective metrics. Although subjective metrics are more accurate than objective ones, objective metrics do not require user feedback to test an algorithm. Objective metrics require subjective experiments only during their development. Subjective experiments typically display to users some videos (generated from frames with segmentation errors) that simulate the environment of an application domain. This user feedback is crucial information for metric definition. In the subjective experiments applied to develop some state-of-the-art metrics used to test segmentation algorithms, the videos displayed during the experiments did not contain audio. Audio is an essential component in applications such as videoconference and augmented reality. If the audio influences the user’s perception, using only videos without audio in subjective experiments can compromise the efficiency of an objective metric generated using data from these experiments. This work aims to identify if the audio influences the user’s perception of segmentation quality in background substitution applications with audio. The proposed approach used a subjective method based on formal video quality assessment methods. The results showed that audio influences the quality of segmentation perceived by a user. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=background%20substitution" title="background substitution">background substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=influence%20of%20audio" title=" influence of audio"> influence of audio</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation%20evaluation" title=" segmentation evaluation"> segmentation evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation%20quality" title=" segmentation quality"> segmentation quality</a> </p> <a href="https://publications.waset.org/abstracts/148456/the-influence-of-audio-on-perceived-quality-of-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">589</span> From Responses of Macroinvertebrate Metrics to the Definition of Reference Thresholds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houny%C3%A8m%C3%A8%20Romuald">Hounyèmè Romuald</a>, <a href="https://publications.waset.org/abstracts/search?q=Mama%20Daouda"> Mama Daouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Argillier%20Christine"> Argillier Christine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study focused on the use of benthic macrofauna to define the reference state of an anthropized lagoon (Nokoué-Benin) from the responses of relevant metrics to proxies. The approach used is a combination of a joint species distribution model and Bayesian networks. The joint species distribution model was used to select the relevant metrics and generate posterior probabilities that were then converted into posterior response probabilities for each of the quality classes (pressure levels), which will constitute the conditional probability tables allowing the establishment of the probabilistic graph representing the different causal relationships between metrics and pressure proxies. For the definition of the reference thresholds, the predicted responses for low-pressure levels were read via probability density diagrams. Observations collected during high and low water periods spanning 03 consecutive years (2004-2006), sampling 33 macroinvertebrate taxa present at all seasons and sampling points, and measurements of 14 environmental parameters were used as application data. The study demonstrated reliable inferences, selection of 07 relevant metrics and definition of quality thresholds for each environmental parameter. The relevance of the metrics as well as the reference thresholds for ecological assessment despite the small sample size, suggests the potential for wider applicability of the approach for aquatic ecosystem monitoring and assessment programs in developing countries generally characterized by a lack of monitoring data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20proxies" title="pressure proxies">pressure proxies</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian%20inference" title=" bayesian inference"> bayesian inference</a>, <a href="https://publications.waset.org/abstracts/search?q=bioindicators" title=" bioindicators"> bioindicators</a>, <a href="https://publications.waset.org/abstracts/search?q=acadjas" title=" acadjas"> acadjas</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20traits" title=" functional traits"> functional traits</a> </p> <a href="https://publications.waset.org/abstracts/159732/from-responses-of-macroinvertebrate-metrics-to-the-definition-of-reference-thresholds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">588</span> Using Equipment Telemetry Data for Condition-Based maintenance decisions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Q.%20Todd">John Q. Todd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20based%20maintenance" title="condition based maintenance">condition based maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=equipment%20data" title=" equipment data"> equipment data</a>, <a href="https://publications.waset.org/abstracts/search?q=metrics" title=" metrics"> metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=alerts" title=" alerts"> alerts</a> </p> <a href="https://publications.waset.org/abstracts/143915/using-equipment-telemetry-data-for-condition-based-maintenance-decisions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">587</span> Evaluating Classification with Efficacy Metrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guofan%20Shao">Guofan Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Tang"> Lina Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Zhang"> Hao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy%20assessment" title="accuracy assessment">accuracy assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=efficacy" title=" efficacy"> efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/142555/evaluating-classification-with-efficacy-metrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">586</span> Bottleneck Modeling in Information Technology Service Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhinay%20Puvvala">Abhinay Puvvala</a>, <a href="https://publications.waset.org/abstracts/search?q=Veerendra%20Kumar%20Rai"> Veerendra Kumar Rai </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A bottleneck situation arises when the outflow is lesser than the inflow in a pipe-like setup. A more practical interpretation of bottlenecks emphasizes on the realization of Service Level Objectives (SLOs) at given workloads. Our approach detects two key aspects of bottlenecks – when and where. To identify ‘when’ we continuously poll on certain key metrics such as resource utilization, processing time, request backlog and throughput at a system level. Further, when the slope of the expected sojourn time at a workload is greater than ‘K’ times the slope of expected sojourn time at the previous step of the workload while the workload is being gradually increased in discrete steps, a bottleneck situation arises. ‘K’ defines the threshold condition and is computed based on the system’s service level objectives. The second aspect of our approach is to identify the location of the bottleneck. In multi-tier systems with a complex network of layers, it is a challenging problem to locate bottleneck that affects the overall system performance. We stage the system by varying workload incrementally to draw a correlation between load increase and system performance to the point where Service Level Objectives are violated. During the staging process, multiple metrics are monitored at hardware and application levels. The correlations are drawn between metrics and the overall system performance. These correlations along with the Service Level Objectives are used to arrive at the threshold conditions for each of these metrics. Subsequently, the same method used to identify when a bottleneck occurs is used on metrics data with threshold conditions to locate bottlenecks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottleneck" title="bottleneck">bottleneck</a>, <a href="https://publications.waset.org/abstracts/search?q=workload" title=" workload"> workload</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20level%20objectives%20%28SLOs%29" title=" service level objectives (SLOs)"> service level objectives (SLOs)</a>, <a href="https://publications.waset.org/abstracts/search?q=throughput" title=" throughput"> throughput</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20performance" title=" system performance"> system performance</a> </p> <a href="https://publications.waset.org/abstracts/65310/bottleneck-modeling-in-information-technology-service-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">585</span> Towards the Use of Software Product Metrics as an Indicator for Measuring Mobile Applications Power Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ching%20Kin%20Keong">Ching Kin Keong</a>, <a href="https://publications.waset.org/abstracts/search?q=Koh%20Tieng%20Wei"> Koh Tieng Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Azim%20Abd.%20Ghani"> Abdul Azim Abd. Ghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaironi%20Yatim%20Sharif"> Khaironi Yatim Sharif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maintaining factory default battery endurance rate over time in supporting huge amount of running applications on energy-restricted mobile devices has created a new challenge for mobile applications developer. While delivering customers’ unlimited expectations, developers are barely aware of efficient use of energy from the application itself. Thus developers need a set of valid energy consumption indicators in assisting them to develop energy saving applications. In this paper, we present a few software product metrics that can be used as an indicator to measure energy consumption of Android-based mobile applications in the early of design stage. In particular, Trepn Profiler (Power profiling tool for Qualcomm processor) has used to collect the data of mobile application power consumption, and then analyzed for the 23 software metrics in this preliminary study. The results show that McCabe cyclomatic complexity, number of parameters, nested block depth, number of methods, weighted methods per class, number of classes, total lines of code and method lines have direct relationship with power consumption of mobile application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20endurance" title="battery endurance">battery endurance</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20metrics" title=" software metrics"> software metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20application" title=" mobile application"> mobile application</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20consumption" title=" power consumption"> power consumption</a> </p> <a href="https://publications.waset.org/abstracts/39322/towards-the-use-of-software-product-metrics-as-an-indicator-for-measuring-mobile-applications-power-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">584</span> Assessing the Effects of Land Use Spatial Structure on Urban Heat Island Using New Launched Remote Sensing in Shenzhen, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai%20Liua">Kai Liua</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongbo%20Sua"> Hongbo Sua</a>, <a href="https://publications.waset.org/abstracts/search?q=Weimin%20Wangb"> Weimin Wangb</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Liangb"> Hong Liangb </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban heat island (UHI) has attracted attention around the world since they profoundly affect human life and climatological. Better understanding the effects of landscape pattern on UHI is crucial for improving the ecological security and sustainability of cities. This study aims to investigate how landscape composition and configuration would affect UHI in Shenzhen, China, based on the analysis of land surface temperature (LST) in relation landscape metrics, mainly with the aid of three new satellite sensors launched by China. HJ-1B satellite system was utilized to estimate surface temperature and comprehensively explore the urban thermal spatial pattern. The landscape metrics of the high spatial resolution remote sensing satellites (GF-1 and ZY-3) were compared and analyzed to validate the performance of the new launched satellite sensors. Results show that the mean LST is correlated with main landscape metrics involving class-based metrics and landscape-based metrics, suggesting that the landscape composition and the spatial configuration both influence UHI. These relationships also reveal that urban green has a significant effect in mitigating UHI in Shenzhen due to its homogeneous spatial distribution and large spatial extent. Overall, our study not only confirm the applicability and effectiveness of the HJ-1B, GF-1 and ZY-3 satellite system for studying UHI but also reveal the impacts of the urban spatial structure on UHI, which is meaningful for the planning and management of the urban environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20heat%20island" title="urban heat island">urban heat island</a>, <a href="https://publications.waset.org/abstracts/search?q=Shenzhen" title=" Shenzhen"> Shenzhen</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20remote%20sensing%20sensor" title=" new remote sensing sensor"> new remote sensing sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing%20satellites" title=" remote sensing satellites"> remote sensing satellites</a> </p> <a href="https://publications.waset.org/abstracts/15982/assessing-the-effects-of-land-use-spatial-structure-on-urban-heat-island-using-new-launched-remote-sensing-in-shenzhen-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">583</span> Using Multi-Arm Bandits to Optimize Game Play Metrics and Effective Game Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kenny%20Raharjo">Kenny Raharjo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramon%20Lawrence"> Ramon Lawrence</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Game designers have the challenging task of building games that engage players to spend their time and money on the game. There are an infinite number of game variations and design choices, and it is hard to systematically determine game design choices that will have positive experiences for players. In this work, we demonstrate how multi-arm bandits can be used to automatically explore game design variations to achieve improved player metrics. The advantage of multi-arm bandits is that they allow for continuous experimentation and variation, intrinsically converge to the best solution, and require no special infrastructure to use beyond allowing minor game variations to be deployed to users for evaluation. A user study confirms that applying multi-arm bandits was successful in determining the preferred game variation with highest play time metrics and can be a useful technique in a game designer's toolkit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=game%20design" title="game design">game design</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-arm%20bandit" title=" multi-arm bandit"> multi-arm bandit</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20exploration%20and%20data%20mining" title=" design exploration and data mining"> design exploration and data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=player%20metric%20optimization%20and%20analytics" title=" player metric optimization and analytics"> player metric optimization and analytics</a> </p> <a href="https://publications.waset.org/abstracts/56494/using-multi-arm-bandits-to-optimize-game-play-metrics-and-effective-game-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">582</span> Code Refactoring Using Slice-Based Cohesion Metrics and AOP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jagannath%20Singh">Jagannath Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Durga%20Prasad%20Mohapatra"> Durga Prasad Mohapatra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software refactoring is very essential for maintaining the software quality. It is an usual practice that we first design the software and then go for coding. But after coding is completed, if the requirement changes slightly or our expected output is not achieved, then we change the codes. For each small code change, we cannot change the design. In course of time, due to these small changes made to the code, the software design decays. Software refactoring is used to restructure the code in order to improve the design and quality of the software. In this paper, we propose an approach for performing code refactoring. We use slice-based cohesion metrics to identify the target methods which requires refactoring. After identifying the target methods, we use program slicing to divide the target method into two parts. Finally, we have used the concepts of Aspects to adjust the code structure so that the external behaviour of the original module does not change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20refactoring" title="software refactoring">software refactoring</a>, <a href="https://publications.waset.org/abstracts/search?q=program%20slicing" title=" program slicing"> program slicing</a>, <a href="https://publications.waset.org/abstracts/search?q=AOP" title=" AOP"> AOP</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesion%20metrics" title=" cohesion metrics"> cohesion metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=code%20restructure" title=" code restructure"> code restructure</a>, <a href="https://publications.waset.org/abstracts/search?q=AspectJ" title=" AspectJ"> AspectJ</a> </p> <a href="https://publications.waset.org/abstracts/10366/code-refactoring-using-slice-based-cohesion-metrics-and-aop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">581</span> Metric Suite for Schema Evolution of a Relational Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ravichandra">S. Ravichandra</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20L.%20N.%20Somayajulu"> D. V. L. N. Somayajulu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Requirement of stakeholders for adding more details to the database is the main cause of the schema evolution in the relational database. Further, this schema evolution causes the instability to the database. Hence, it is aimed to define a metric suite for schema evolution of a relational database. The metric suite will calculate the metrics based on the features of the database, analyse the queries on the database and measures the coupling, cohesion and component dependencies of the schema for existing and evolved versions of the database. This metric suite will also provide an indicator for the problems related to the stability and usability of the evolved database. The degree of change in the schema of a database is presented in the forms of graphs that acts as an indicator and also provides the relations between various parameters (metrics) related to the database architecture. The acquired information is used to defend and improve the stability of database architecture. The challenges arise in incorporating these metrics with varying parameters for formulating a suitable metric suite are discussed. To validate the proposed metric suite, an experimentation has been performed on publicly available datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cohesion" title="cohesion">cohesion</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=metric%20suite" title=" metric suite"> metric suite</a>, <a href="https://publications.waset.org/abstracts/search?q=schema%20evolution" title=" schema evolution"> schema evolution</a> </p> <a href="https://publications.waset.org/abstracts/54754/metric-suite-for-schema-evolution-of-a-relational-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metrics&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metrics&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metrics&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metrics&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metrics&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metrics&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metrics&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metrics&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metrics&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metrics&page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metrics&page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metrics&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>