CINXE.COM
Search results for: blind equalization
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: blind equalization</title> <meta name="description" content="Search results for: blind equalization"> <meta name="keywords" content="blind equalization"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="blind equalization" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="blind equalization"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 340</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: blind equalization</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Exploiting Fast Independent Component Analysis Based Algorithm for Equalization of Impaired Baseband Received Signal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umair">Muhammad Umair</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Qasim%20Gilani"> Syed Qasim Gilani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A technique using Independent Component Analysis (ICA) for blind receiver signal processing is investigated. The problem of the receiver signal processing is viewed as of signal equalization and implementation imperfections compensation. Based on this, a model similar to a general ICA problem is developed for the received signal. Then, the use of ICA technique for blind signal equalization in the time domain is presented. The equalization is regarded as a signal separation problem, since the desired signal is separated from interference terms. This problem is addressed in the paper by over-sampling of the received signal. By using ICA for equalization, besides channel equalization, other transmission imperfections such as Direct current (DC) bias offset, carrier phase and In phase Quadrature phase imbalance will also be corrected. Simulation results for a system using 16-Quadraure Amplitude Modulation(QAM) are presented to show the performance of the proposed scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind%20equalization" title="blind equalization">blind equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20signal%20separation" title=" blind signal separation"> blind signal separation</a>, <a href="https://publications.waset.org/abstracts/search?q=equalization" title=" equalization"> equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20component%20analysis" title=" independent component analysis"> independent component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20impairments" title=" transmission impairments"> transmission impairments</a>, <a href="https://publications.waset.org/abstracts/search?q=QAM%20receiver" title=" QAM receiver"> QAM receiver</a> </p> <a href="https://publications.waset.org/abstracts/94433/exploiting-fast-independent-component-analysis-based-algorithm-for-equalization-of-impaired-baseband-received-signal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Evolution of Multimodulus Algorithm Blind Equalization Based on Recursive Least Square Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sardar%20Ameer%20Akram%20Khan">Sardar Ameer Akram Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahzad%20Amin%20Sheikh"> Shahzad Amin Sheikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blind equalization is an important technique amongst equalization family. Multimodulus algorithms based on blind equalization removes the undesirable effects of ISI and cater ups the phase issues, saving the cost of rotator at the receiver end. In this paper a new algorithm combination of recursive least square and Multimodulus algorithm named as RLSMMA is proposed by providing few assumption, fast convergence and minimum Mean Square Error (MSE) is achieved. The excellence of this technique is shown in the simulations presenting MSE plots and the resulting filter results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind%20equalizations" title="blind equalizations">blind equalizations</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20modulus%20algorithm" title=" constant modulus algorithm"> constant modulus algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-modulus%20algorithm" title=" multi-modulus algorithm"> multi-modulus algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=recursive%20%20least%20square%20algorithm" title=" recursive least square algorithm"> recursive least square algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrature%20amplitude%20modulation%20%28QAM%29" title=" quadrature amplitude modulation (QAM)"> quadrature amplitude modulation (QAM)</a> </p> <a href="https://publications.waset.org/abstracts/24704/evolution-of-multimodulus-algorithm-blind-equalization-based-on-recursive-least-square-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">644</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> An Overview of Adaptive Channel Equalization Techniques and Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navdeep%20Singh%20Randhawa">Navdeep Singh Randhawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless communication system has been proved as the best for any communication. However, there are some undesirable threats of a wireless communication channel on the information transmitted through it, such as attenuation, distortions, delays and phase shifts of the signals arriving at the receiver end which are caused by its band limited and dispersive nature. One of the threat is ISI (Inter Symbol Interference), which has been found as a great obstacle in high speed communication. Thus, there is a need to provide perfect and accurate technique to remove this effect to have an error free communication. Thus, different equalization techniques have been proposed in literature. This paper presents the equalization techniques followed by the concept of adaptive filter equalizer, its algorithms (LMS and RLS) and applications of adaptive equalization technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20equalization" title="channel equalization">channel equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20equalizer" title=" adaptive equalizer"> adaptive equalizer</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20mean%20square" title=" least mean square"> least mean square</a>, <a href="https://publications.waset.org/abstracts/search?q=recursive%20least%20square" title=" recursive least square"> recursive least square</a> </p> <a href="https://publications.waset.org/abstracts/9270/an-overview-of-adaptive-channel-equalization-techniques-and-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> Measuring the Extent of Equalization in Fiscal Transfers in India: An Index-Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ragini%20Trehan">Ragini Trehan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.K.%20Srivastava"> D.K. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the post-planning era, India’s fiscal transfers from the central to state governments are solely determined by the Finance Commissions (FCs). While in some of the well-established federations such as Australia, Canada, and Germany, equalization serves as the guiding principle of fiscal transfers and is constitutionally mandated, in India, it is not explicitly mandated, and FCs attempt to implement it indirectly by a combination of a formula-based share in the divisible pool of central taxes supplemented by a set of grants. In this context, it is important to measure the extent of equalization that is achieved through FC transfers with a view to improving the design of such transfers. This study uses an index-based methodology for measuring the degree of equalization achieved through FC-transfers covering the period from FC12 to the first year of FC15 spanning from 2005-06 to 2020-21. The ‘Index of Equalization’ shows that the extent of equalization has remained low in the range of 30% to 37% for the four Commission periods under review. The highest degree of equalization at 36.7% was witnessed in the FC12 period and the lowest equalization at 29.5% was achieved during the FC15(1) period. The equalizing efficiency of recommended transfers also shows a consistent fall from 11.4% in the FC12 period to 7.5% by the FC15 (1) period. Further, considering progressivity in fiscal transfers as a special case of equalizing transfers, this study shows that the scheme of per capita total transfers when determined using the equalization approach is more progressive and is characterized by minimal deviations as compared to the profile of transfers recommended by recent FCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiscal%20transfers" title="fiscal transfers">fiscal transfers</a>, <a href="https://publications.waset.org/abstracts/search?q=index%20of%20equalization" title=" index of equalization"> index of equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=equalizing%20efficiency" title=" equalizing efficiency"> equalizing efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=fiscal%20capacity" title=" fiscal capacity"> fiscal capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=expenditure%20needs" title=" expenditure needs"> expenditure needs</a>, <a href="https://publications.waset.org/abstracts/search?q=finance%20Commission" title=" finance Commission"> finance Commission</a>, <a href="https://publications.waset.org/abstracts/search?q=tax%20effort" title=" tax effort"> tax effort</a> </p> <a href="https://publications.waset.org/abstracts/176004/measuring-the-extent-of-equalization-in-fiscal-transfers-in-india-an-index-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Overhead Reduction by Channel Estimation Using Linear Interpolation for Single Carrier Frequency Domain Equalization Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Su%20Song">Min-Su Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Haeng-Bok%20Kil"> Haeng-Bok Kil</a>, <a href="https://publications.waset.org/abstracts/search?q=Eui-Rim%20Jeong"> Eui-Rim Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a new method to reduce the overhead by pilots for single carrier frequency domain equalization (SC-FDE) transmission. In the conventional SC-FDE transmission structure, the overhead by transmitting pilot is heavy because the pilot are transmitted at every SC-FDE block. The proposed SC-FDE structure has fewer pilots and many SC-FCE blocks are transmitted between pilots. The channel estimation and equalization is performed at the pilot period and the channels between pilots are estimated through linear interpolation. This reduces the pilot overhead by reducing the pilot transmission compared with the conventional structure, and enables reliable channel estimation and equalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20estimation" title="channel estimation">channel estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20interpolation" title=" linear interpolation"> linear interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=pilot%20overhead" title=" pilot overhead"> pilot overhead</a>, <a href="https://publications.waset.org/abstracts/search?q=SC-FDE" title=" SC-FDE"> SC-FDE</a> </p> <a href="https://publications.waset.org/abstracts/80487/overhead-reduction-by-channel-estimation-using-linear-interpolation-for-single-carrier-frequency-domain-equalization-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> A Goms Model for Blind Users Website Navigation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suraina%20Sulong">Suraina Sulong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Keyboard support is one of the main accessibility requirements for web pages and web applications for blind user. But it is not sufficient that the blind user can perform all actions on the page using the keyboard. In addition, designers of web sites or web applications have to make sure that keyboard users can use their pages with acceptable performance. We present GOMS models for navigation in web pages with specific task given to the blind user to accomplish. These models can be used to construct the user model for accessible website. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GOMS%20analysis" title="GOMS analysis">GOMS analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=usability%20factor" title=" usability factor"> usability factor</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20user" title=" blind user"> blind user</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20computer%20interaction" title=" human computer interaction"> human computer interaction</a> </p> <a href="https://publications.waset.org/abstracts/128408/a-goms-model-for-blind-users-website-navigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Curricular Reforms for Inclusive Education: Equalization of Opportunities for the Physically Challenged Persons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ede%20Jairus%20Adagba">Ede Jairus Adagba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The National Policy on Education has made elaborate and fascinating provisions for the education of the people with Special Needs. This category of people includes the physically challenged, the disadvantaged, the gifted and talented. However, the focus of this paper is people that are physically challenged. The paper reasons that in spite of the commendable provisions, the present curricular and learning conditions are not conducive enough to cater for the interest of the physically challenged persons. As a panacea, some curricular and physical condition reforms are proposed. These are hoped to facilitate access to inclusive education and equalization for opportunities of the physically challenged. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curricular%20reforms" title="curricular reforms">curricular reforms</a>, <a href="https://publications.waset.org/abstracts/search?q=equalization" title=" equalization"> equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusive%20education" title=" inclusive education"> inclusive education</a>, <a href="https://publications.waset.org/abstracts/search?q=physically%20challenged%20persons" title=" physically challenged persons"> physically challenged persons</a> </p> <a href="https://publications.waset.org/abstracts/9318/curricular-reforms-for-inclusive-education-equalization-of-opportunities-for-the-physically-challenged-persons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Interactive Fun Activities for Blind and Sighted Teenagers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haif%20Alharthy">Haif Alharthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Samar%20Altarteer"> Samar Altarteer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blind and sighted teenagers might find it challenging to communicate and have fun interaction with each other. The previous studies emphasize the importance of the interactive communication of the blind with the sighted people in developing the interpersonal and social skills of the blind people . Playing games is one of the effective ways used to engage the blind with the sighted people and help in enhancing their social skills. However, it is difficult to find a fun game that is designed to encourage interaction between blind and sighted teenagers in which the blind can play it independently without help and that the sighted find its design attractive and satisfying. The aim of this paper is to examine how challenging is to have fun interaction between blind and sighted people and offer interactive tabletop game solution in which both of them can independently participate and enjoy. The paper discusses the importance and the impact of the interactive fun communication between blind and sighted people and how to get them involved with each other through games. The paper investigates several approaches to design a universal game. A survey was conducted for blind teenager’s family members to discover what difficulties they face while playing and communicating with their blind family member and to identify the blind’s needs and interests in games. The study reveals that although families like to play tabletop games with their blind member, they find difficulties in finding universal games that is interesting and adequate for both. Also, qualitative interviews were conducted with blind teenager shows the sufficiency in tabletop games that do not require help from another family member to play the game. The results suggested that an effective approach is to develop an interactive tabletop game embedded with audio and tactile techniques. The findings of the pilot study highlighted the necessary information such as tools, visuals, and game concepts that should be considered in developing interactive card game for blind and sighted teenagers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blind" title="Blind">Blind</a>, <a href="https://publications.waset.org/abstracts/search?q=card%20game" title=" card game"> card game</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=play" title=" play"> play</a>, <a href="https://publications.waset.org/abstracts/search?q=tabletop%20game" title=" tabletop game"> tabletop game</a>, <a href="https://publications.waset.org/abstracts/search?q=teenager" title=" teenager"> teenager</a> </p> <a href="https://publications.waset.org/abstracts/90816/interactive-fun-activities-for-blind-and-sighted-teenagers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Comparing Friction Force Between Track and Spline Using graphite, Mos2, PTFE, and Silicon Dry Lubricant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20De%20Maaijer">M. De Maaijer</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenxuan%20Shi"> Wenxuan Shi</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=Dolores%20Pose">Dolores Pose</a>, <a href="https://publications.waset.org/abstracts/search?q=Ditmar"> Ditmar</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Barati"> F. Barati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction has several detrimental effects on Blind performance, Therefore Ziptak company as the leading company in the blind manufacturing sector, start investigating on how to conquer this problem in next generation of blinds. This problem is more sever in extremely sever condition. Although in these condition Ziptrak suggest not to use the blind, working on blind and its associated parts was the priority of Ziptrak company. The purpose of this article is to measure the effects of lubrication process on reducing friction force between spline and track especially at windy conditions Four different lubricants were implicated to measure their efficiency on reducing friction force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=libricant" title="libricant">libricant</a>, <a href="https://publications.waset.org/abstracts/search?q=ziptrak" title=" ziptrak"> ziptrak</a>, <a href="https://publications.waset.org/abstracts/search?q=blind" title=" blind"> blind</a>, <a href="https://publications.waset.org/abstracts/search?q=spline" title=" spline"> spline</a> </p> <a href="https://publications.waset.org/abstracts/163058/comparing-friction-force-between-track-and-spline-using-graphite-mos2-ptfe-and-silicon-dry-lubricant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Teachers’ Perceptions on Communicating with Students Who Are Deaf-Blind in Regular Classes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phillimon%20Mahanya">Phillimon Mahanya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Learners with deaf-blindness use touch to communicate. However, teachers are not well versed with tactile communication technicalities. Lack of technical know-how is compounded with a lack of standardisation of the tactile signs the world over. Thus, this study arose from the need to have efficient and effective tactile sign communication for learners who are deaf-blind. A qualitative approach that adopted a case study design was used. A sample of 22 participants comprising school administrators and teachers was purposively drawn from the institutions that enrolled learners who are deaf-blind. Data generated using semi-structured interviews, non-participant observations and document analysis were thematically analysed. It emerged that administrators and teachers used mammoth and solo touches that are not standardised to communicate with learners who are deaf-blind. It was recommended that there should be a standardised tactile sign manual in Zimbabwe to promote the inclusion of learners who are deaf-blind. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication" title="communication">communication</a>, <a href="https://publications.waset.org/abstracts/search?q=deaf-blind" title=" deaf-blind"> deaf-blind</a>, <a href="https://publications.waset.org/abstracts/search?q=signing" title=" signing"> signing</a>, <a href="https://publications.waset.org/abstracts/search?q=tactile" title=" tactile"> tactile</a> </p> <a href="https://publications.waset.org/abstracts/142698/teachers-perceptions-on-communicating-with-students-who-are-deaf-blind-in-regular-classes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Rehabilitation of the Blind Using Sono-Visualization Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar">Ashwani Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In human beings, eyes play a vital role. A very less research has been done for rehabilitation of blindness for the blind people. This paper discusses the work that helps blind people for recognizing the basic shapes of the objects like circle, square, triangle, horizontal lines, vertical lines, diagonal lines and the wave forms like sinusoidal, square, triangular etc. This is largely achieved by using a digital camera, which is used to capture the visual information present in front of the blind person and a software program, which achieves the image processing operations, and finally the processed image is converted into sound. After the sound generation process, the generated sound is fed to the blind person through headphones for visualizing the imaginary image of the object. For visualizing the imaginary image of the object, it needs to train the blind person. Various training process methods had been applied for recognizing the object. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title="image processing">image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel" title=" pixel"> pixel</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch" title=" pitch"> pitch</a>, <a href="https://publications.waset.org/abstracts/search?q=loudness" title=" loudness"> loudness</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20generation" title=" sound generation"> sound generation</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title=" edge detection"> edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=brightness" title=" brightness"> brightness</a> </p> <a href="https://publications.waset.org/abstracts/14606/rehabilitation-of-the-blind-using-sono-visualization-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Buddha Images in Mudras Representing Days of a Week: Tactile Texture Design for the Blind</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chantana%20Insra">Chantana Insra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research “Buddha Images in Mudras Representing Days of a Week: Tactile Texture Design for the Blind” aims to provide original tactile format to institutions for the blind, as supplementary textbooks, to accumulate Buddhist knowledge, so that it could be extracurricular learning. The research studied on 33 students with both total and partial blindness, the latter with the ability to read Braille’s signs, of elementary 4 – 6, who are pursuing their studies on the second semester of the academic year 2013 at Bangkok School for the Blind. The researcher opted samples specifically, studied data acquired from both documents and fieldworks. Those methods must be related to the blind, tactile format production, and Buddha images in mudras representing days of a week. Afterwards, the formats will be analyzed and designed so that there would be 8 format pictures of Buddha images in mudras representing days of the week. Experts will next evaluate the media and try out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind" title="blind">blind</a>, <a href="https://publications.waset.org/abstracts/search?q=tactile%20texture" title=" tactile texture"> tactile texture</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20Buddha%20images" title=" Thai Buddha images"> Thai Buddha images</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudras" title=" Mudras"> Mudras</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20design" title=" texture design"> texture design</a> </p> <a href="https://publications.waset.org/abstracts/17352/buddha-images-in-mudras-representing-days-of-a-week-tactile-texture-design-for-the-blind" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Signal Restoration Using Neural Network Based Equalizer for Nonlinear channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Zerdoumi">Z. Zerdoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Benatia"> D. Benatia</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Chicouche">D. Chicouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the application of artificial neural network to the problem of nonlinear channel equalization. The difficulties caused by channel distortions such as inter symbol interference (ISI) and nonlinearity can overcome by nonlinear equalizers employing neural networks. It has been shown that multilayer perceptron based equalizer outperform significantly linear equalizers. We present a multilayer perceptron based equalizer with decision feedback (MLP-DFE) trained with the back propagation algorithm. The capacity of the MLP-DFE to deal with nonlinear channels is evaluated. From simulation results it can be noted that the MLP based DFE improves significantly the restored signal quality, the steady state mean square error (MSE), and minimum Bit Error Rate (BER), when comparing with its conventional counterpart. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artificial%20Neural%20Network" title="Artificial Neural Network">Artificial Neural Network</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20restoration" title=" signal restoration"> signal restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=Nonlinear%20Channel%20equalization" title=" Nonlinear Channel equalization"> Nonlinear Channel equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=equalization" title=" equalization "> equalization </a> </p> <a href="https://publications.waset.org/abstracts/24223/signal-restoration-using-neural-network-based-equalizer-for-nonlinear-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> Identification of Author and Reviewer from Single and Double Blind Paper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatinderkumar%20R.%20Saini">Jatinderkumar R. Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikita.%20R.%20Sonthalia"> Nikita. R. Sonthalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Khushbu.%20A.%20Dodiya"> Khushbu. A. Dodiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research leads to development of science and technology and hence to the betterment of humankind. Journals and conferences provide a platform to receive large number of research papers for publications and presentations before the expert and scientific community. In order to assure quality of such papers, they are also sent to reviewers for their comments. In order to maintain good ethical standards, the research papers are sent to reviewers in such a way that they do not know each other’s identity. This technique is called double-blind review process. It is called single-blind review process, if identity of any one party (generally authors) is disclosed to the other. This paper presents the techniques by which identity of author as well as reviewer could be made out even through double-blind review process. It is proposed that the characteristics and techniques presented here will help journals and conferences in assuring intentional or unintentional disclosure of identity revealing information by either party to the other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=author" title="author">author</a>, <a href="https://publications.waset.org/abstracts/search?q=conference" title=" conference"> conference</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20blind%20paper" title=" double blind paper"> double blind paper</a>, <a href="https://publications.waset.org/abstracts/search?q=journal" title=" journal"> journal</a>, <a href="https://publications.waset.org/abstracts/search?q=reviewer" title=" reviewer"> reviewer</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20blind%20paper" title=" single blind paper"> single blind paper</a> </p> <a href="https://publications.waset.org/abstracts/3915/identification-of-author-and-reviewer-from-single-and-double-blind-paper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Siva%20Kumar%20Reddy">B. Siva Kumar Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lakshmi"> B. Lakshmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> WiMAX has adopted an Adaptive Modulation and Coding (AMC) in OFDM to endure higher data rates and error free transmission. AMC schemes employ the Channel State Information (CSI) to efficiently utilize the channel and maximize the throughput and for better spectral efficiency. This CSI has given to the transmitter by the channel estimators. In this paper, LSE (Least Square Error) and MMSE (Minimum Mean square Error) estimators are suggested and BER (Bit Error Rate) performance has been analyzed. Channel equalization is also integrated with with AMC-OFDM system and presented with Constant Modulus Algorithm (CMA) and Least Mean Square (LMS) algorithms with convergence rates analysis. Simulation results proved that increment in modulation scheme size causes to improvement in throughput along with BER value. There is a trade-off among modulation size, throughput, BER value and spectral efficiency. Results also reported the requirement of channel estimation and equalization in high data rate systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMC" title="AMC">AMC</a>, <a href="https://publications.waset.org/abstracts/search?q=CSI" title=" CSI"> CSI</a>, <a href="https://publications.waset.org/abstracts/search?q=CMA" title=" CMA"> CMA</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDMA" title=" OFDMA"> OFDMA</a>, <a href="https://publications.waset.org/abstracts/search?q=WiMAX" title=" WiMAX"> WiMAX</a> </p> <a href="https://publications.waset.org/abstracts/14902/channel-estimationequalization-with-adaptive-modulation-and-coding-over-multipath-faded-channels-for-wimax" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> Digital Recording System Identification Based on Audio File</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michel%20Kulhandjian">Michel Kulhandjian</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitris%20A.%20Pados"> Dimitris A. Pados</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to develop a theoretical framework for reliable digital recording system identification from digital audio files alone, for forensic purposes. A digital recording system consists of a microphone and a digital sound processing card. We view the cascade as a system of unknown transfer function. We expect same manufacturer and model microphone-sound card combinations to have very similar/near identical transfer functions, bar any unique manufacturing defect. Input voice (or other) signals are modeled as non-stationary processes. The technical problem under consideration becomes blind deconvolution with non-stationary inputs as it manifests itself in the specific application of digital audio recording equipment classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind%20system%20identification" title="blind system identification">blind system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=audio%20fingerprinting" title=" audio fingerprinting"> audio fingerprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20deconvolution" title=" blind deconvolution"> blind deconvolution</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20dereverberation" title=" blind dereverberation"> blind dereverberation</a> </p> <a href="https://publications.waset.org/abstracts/75122/digital-recording-system-identification-based-on-audio-file" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> Blind Speech Separation Using SRP-PHAT Localization and Optimal Beamformer in Two-Speaker Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hai%20Quang%20Hong%20Dam">Hai Quang Hong Dam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hai%20Ho"> Hai Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Minh%20Hoang%20Le%20Ngo"> Minh Hoang Le Ngo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the problem of blind speech separation from the speech mixture of two speakers. A voice activity detector employing the Steered Response Power - Phase Transform (SRP-PHAT) is presented for detecting the activity information of speech sources and then the desired speech signals are extracted from the speech mixture by using an optimal beamformer. For evaluation, the algorithm effectiveness, a simulation using real speech recordings had been performed in a double-talk situation where two speakers are active all the time. Evaluations show that the proposed blind speech separation algorithm offers a good interference suppression level whilst maintaining a low distortion level of the desired signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind%20speech%20separation" title="blind speech separation">blind speech separation</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20activity%20detector" title=" voice activity detector"> voice activity detector</a>, <a href="https://publications.waset.org/abstracts/search?q=SRP-PHAT" title=" SRP-PHAT"> SRP-PHAT</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20beamformer" title=" optimal beamformer"> optimal beamformer</a> </p> <a href="https://publications.waset.org/abstracts/53263/blind-speech-separation-using-srp-phat-localization-and-optimal-beamformer-in-two-speaker-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> Study of Adaptive Filtering Algorithms and the Equalization of Radio Mobile Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Elkassimi">Said Elkassimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Safi"> Said Safi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Manaut"> B. Manaut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presented a study of three algorithms, the equalization algorithm to equalize the transmission channel with ZF and MMSE criteria, application of channel Bran A, and adaptive filtering algorithms LMS and RLS to estimate the parameters of the equalizer filter, i.e. move to the channel estimation and therefore reflect the temporal variations of the channel, and reduce the error in the transmitted signal. So far the performance of the algorithm equalizer with ZF and MMSE criteria both in the case without noise, a comparison of performance of the LMS and RLS algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20filtering%20second%20equalizer" title="adaptive filtering second equalizer">adaptive filtering second equalizer</a>, <a href="https://publications.waset.org/abstracts/search?q=LMS" title=" LMS"> LMS</a>, <a href="https://publications.waset.org/abstracts/search?q=RLS%20%20Bran%20A" title=" RLS Bran A"> RLS Bran A</a>, <a href="https://publications.waset.org/abstracts/search?q=Proakis%20%28B%29%20MMSE" title=" Proakis (B) MMSE"> Proakis (B) MMSE</a>, <a href="https://publications.waset.org/abstracts/search?q=ZF" title=" ZF"> ZF</a> </p> <a href="https://publications.waset.org/abstracts/32853/study-of-adaptive-filtering-algorithms-and-the-equalization-of-radio-mobile-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Contrast Enhancement of Color Images with Color Morphing Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javed%20Khan">Javed Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aamir%20Saeed%20Malik"> Aamir Saeed Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidal%20Kamel"> Nidal Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarat%20Chandra%20Dass"> Sarat Chandra Dass</a>, <a href="https://publications.waset.org/abstracts/search?q=Azura%20Mohd%20Affandi"> Azura Mohd Affandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contrast%20enhacement" title="contrast enhacement">contrast enhacement</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20RGB" title=" normalized RGB"> normalized RGB</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20histogram%20equalization" title=" adaptive histogram equalization"> adaptive histogram equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20variance." title=" cumulative variance."> cumulative variance.</a> </p> <a href="https://publications.waset.org/abstracts/42755/contrast-enhancement-of-color-images-with-color-morphing-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> Gas-Liquid Flow Regimes in Vertical Venturi Downstream of Horizontal Blind-Tee</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Alif%20Bin%20Razali">Muhammad Alif Bin Razali</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Gang%20Xie"> Cheng-Gang Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Wai%20Lam%20Loh"> Wai Lam Loh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A venturi device is commonly used as an integral part of a multiphase flowmeter (MPFM) in real-time oil-gas production monitoring. For an accurate determination of individual phase fraction and flowrate, a gas-liquid flow ideally needs to be well mixed in the venturi measurement section. Partial flow mixing is achieved by installing a venturi vertically downstream of the blind-tee pipework that ‘homogenizes’ the incoming horizontal gas-liquid flow. In order to study in-depth the flow-mixing effect of the blind-tee, gas-liquid flows are captured at blind-tee and venturi sections by using a high-speed video camera and a purpose-built transparent test rig, over a wide range of superficial liquid velocities (0.3 to 2.4m/s) and gas volume fractions (10 to 95%). Electrical capacitance sensors are built to measure the instantaneous holdup (of oil-gas flows) at the venturi inlet and throat. Flow regimes and flow (a)symmetry are investigated based on analyzing the statistical features of capacitance sensors’ holdup time-series data and of the high-speed video time-stacked images. The perceived homogenization effect of the blind-tee on the incoming intermittent horizontal flow regimes is found to be relatively small across the tested flow conditions. A horizontal (blind-tee) to vertical (venturi) flow-pattern transition map is proposed based on gas and liquid mass fluxes (weighted by the Baker parameters). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind-tee" title="blind-tee">blind-tee</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization" title=" flow visualization"> flow visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-liquid%20two-phase%20flow" title=" gas-liquid two-phase flow"> gas-liquid two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=MPFM" title=" MPFM"> MPFM</a> </p> <a href="https://publications.waset.org/abstracts/129335/gas-liquid-flow-regimes-in-vertical-venturi-downstream-of-horizontal-blind-tee" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Understanding the Experience of the Visually Impaired towards a Multi-Sensorial Architectural Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20M.%20Oteifa">Sarah M. Oteifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Lobna%20A.%20Sherif"> Lobna A. Sherif</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20M.%20Mostafa"> Yasser M. Mostafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visually impaired people, in their daily lives, face struggles and spatial barriers because the built environment is often designed with an extreme focus on the visual element, causing what is called architectural visual bias or ocularcentrism. The aim of the study is to holistically understand the world of the visually impaired as an attempt to extract the qualities of space that accommodate their needs, and to show the importance of multi-sensory, holistic designs for the blind. Within the framework of existential phenomenology, common themes are reached through "intersubjectivity": experience descriptions by blind people and blind architects, observation of how blind children learn to perceive their surrounding environment, and a personal lived blind-folded experience are analyzed. The extracted themes show how visually impaired people filter out and prioritize tactile (active, passive and dynamic touch), acoustic and olfactory spatial qualities respectively, and how this happened during the personal lived blind folded experience. The themes clarify that haptic and aural inclusive designs are essential to create environments suitable for the visually impaired to empower them towards an independent, safe and efficient life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architecture" title="architecture">architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20ocularcentrism" title=" architectural ocularcentrism"> architectural ocularcentrism</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-sensory%20design" title=" multi-sensory design"> multi-sensory design</a>, <a href="https://publications.waset.org/abstracts/search?q=visually%20impaired" title=" visually impaired"> visually impaired</a> </p> <a href="https://publications.waset.org/abstracts/72324/understanding-the-experience-of-the-visually-impaired-towards-a-multi-sensorial-architectural-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> The Implementation of Special Grammar Circle (Spegraci) as the Media Innovation for Blind People to Learn English Tenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aji%20Budi%20Rinekso">Aji Budi Rinekso</a>, <a href="https://publications.waset.org/abstracts/search?q=Revika%20Niza%20Artiyana"> Revika Niza Artiyana</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Widayanti"> Lisa Widayanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> English is one of the international languages in the world. People use this language to communicate with each other in the international forums, international events or international organizations. As same as other languages, English has a rule which is called grammar. Grammar is the part of english which has a role as the language systems. In grammar, there are tenses which provide a time period system for past, present and future. Sometimes it is difficult for some English learner to remember all of the tenses completely. Especially for those with special needs or exceptional children with vision restrictiveness. The aims of this research are 1) To know the design of Special Grammar Circle (Spegraci) as the media for blind people to learn english grammar. 2) To know the work of Special Gramar Circle (Spegraci) as the media for blind people to learn english grammar. 3) To know the function of this device in increasing tenses ability for blind people. The method of this research is Research and Development which consists of several testing and revision of this device. The implementation of Special Grammar Circle (Spegraci) is to make blind people easily to learn the tenses. This device is easy to use. Users only roll this device and find out the tense formula and match to the name of the formula in braille. In addition, this device also enables to be used by normal people because normal written texts are also provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind%20people" title="blind people">blind people</a>, <a href="https://publications.waset.org/abstracts/search?q=media%20innovation" title=" media innovation"> media innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=spegraci" title=" spegraci"> spegraci</a>, <a href="https://publications.waset.org/abstracts/search?q=tenses" title=" tenses"> tenses</a> </p> <a href="https://publications.waset.org/abstracts/38099/the-implementation-of-special-grammar-circle-spegraci-as-the-media-innovation-for-blind-people-to-learn-english-tenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Source Separation for Global Multispectral Satellite Images Indexing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Bouzid">Aymen Bouzid</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihen%20Ben%20Smida"> Jihen Ben Smida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose to prove the importance of the application of blind source separation methods on remote sensing data in order to index multispectral images. The proposed method starts with Gabor Filtering and the application of a Blind Source Separation to get a more effective representation of the information contained on the observation images. After that, a feature vector is extracted from each image in order to index them. Experimental results show the superior performance of this approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind%20source%20separation" title="blind source separation">blind source separation</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20based%20image%20retrieval" title=" content based image retrieval"> content based image retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction%20multispectral" title=" feature extraction multispectral"> feature extraction multispectral</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20images" title=" satellite images"> satellite images</a> </p> <a href="https://publications.waset.org/abstracts/28585/source-separation-for-global-multispectral-satellite-images-indexing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> Arbitrarily Shaped Blur Kernel Estimation for Single Image Blind Deblurring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aftab%20Khan">Aftab Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashfaq%20Khan"> Ashfaq Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research paper focuses on an interesting challenge faced in Blind Image Deblurring (BID). It relates to the estimation of arbitrarily shaped or non-parametric Point Spread Functions (PSFs) of motion blur caused by camera handshake. These PSFs exhibit much more complex shapes than their parametric counterparts and deblurring in this case requires intricate ways to estimate the blur and effectively remove it. This research work introduces a novel blind deblurring scheme visualized for deblurring images corrupted by arbitrarily shaped PSFs. It is based on Genetic Algorithm (GA) and utilises the Blind/Reference-less Image Spatial QUality Evaluator (BRISQUE) measure as the fitness function for arbitrarily shaped PSF estimation. The proposed BID scheme has been compared with other single image motion deblurring schemes as benchmark. Validation has been carried out on various blurred images. Results of both benchmark and real images are presented. Non-reference image quality measures were used to quantify the deblurring results. For benchmark images, the proposed BID scheme using BRISQUE converges in close vicinity of the original blurring functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind%20deconvolution" title="blind deconvolution">blind deconvolution</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20image%20deblurring" title=" blind image deblurring"> blind image deblurring</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20restoration" title=" image restoration"> image restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20quality%20measures" title=" image quality measures"> image quality measures</a> </p> <a href="https://publications.waset.org/abstracts/37142/arbitrarily-shaped-blur-kernel-estimation-for-single-image-blind-deblurring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> A Study of the Tactile Codification on the Philippine Banknote: Redesigning for the Blind</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ace%20Mari%20S.%20Simbajon">Ace Mari S. Simbajon</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhaella%20J.%20Yba%C3%B1ez"> Rhaella J. Ybañez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mae%20G.%20Nadela"> Mae G. Nadela</a>, <a href="https://publications.waset.org/abstracts/search?q=Cherry%20E.%20Sagun"> Cherry E. Sagun</a>, <a href="https://publications.waset.org/abstracts/search?q=Nera%20Mae%20A.%20Puyo"> Nera Mae A. Puyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study determined the usability of the Philippine banknotes. An experimental design was used in the study involving twenty (n=20) randomly selected blind participants. The three aspects of usability were measured: effectiveness, efficiency, and satisfaction. It was found out that the effectiveness rate of the current Philippine Banknotes ranges from 20 percent to 35 percent which means it is not effective basing from Cauro’s threshold of average effectiveness rate which is 78 percent. Its efficiency rate is ranging from 18.06 to 26.22 seconds per denomination. The average satisfaction rate is 1.45 which means the blind are very dissatisfied. These results were used as a guide in making the proposed tactile codification using embossed dots or embossed lines. A round of simulation was conducted with the blind to assess the usability of the two proposals. Results were then statistically treated using t-test. Results show statistically significant difference between the usability of the current banknotes versus the proposed designs. Moreover, it was found out that the use of embossed dots is more effective, more efficient, and more satisfying than the embossed lines with an effectiveness rate ranging from 90 percent to 100 percent, efficiency rate ranging from 6.73 seconds to 12.99 seconds, and satisfaction rate of 3.4 which means the blind are very satisfied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind" title="blind">blind</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippine%20banknotes" title=" Philippine banknotes"> Philippine banknotes</a>, <a href="https://publications.waset.org/abstracts/search?q=tactile%20codification" title=" tactile codification"> tactile codification</a>, <a href="https://publications.waset.org/abstracts/search?q=usability" title=" usability"> usability</a> </p> <a href="https://publications.waset.org/abstracts/71453/a-study-of-the-tactile-codification-on-the-philippine-banknote-redesigning-for-the-blind" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> A Way of Converting Color Images to Gray Scale Ones for the Color-Blind: Applying to the part of the Tokyo Subway Map</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katsuhiro%20Narikiyo">Katsuhiro Narikiyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shota%20Hashikawa"> Shota Hashikawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a way of removing noises and reducing the number of colors contained in a JPEG image. Main purpose of this project is to convert color images to monochrome images for the color-blind. We treat the crispy color images like the Tokyo subway map. Each color in the image has an important information. But for the color blinds, similar colors cannot be distinguished. If we can convert those colors to different gray values, they can distinguish them. Therefore we try to convert color images to monochrome images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color-blind" title="color-blind">color-blind</a>, <a href="https://publications.waset.org/abstracts/search?q=JPEG" title=" JPEG"> JPEG</a>, <a href="https://publications.waset.org/abstracts/search?q=monochrome%20image" title=" monochrome image"> monochrome image</a>, <a href="https://publications.waset.org/abstracts/search?q=denoise" title=" denoise"> denoise</a> </p> <a href="https://publications.waset.org/abstracts/2968/a-way-of-converting-color-images-to-gray-scale-ones-for-the-color-blind-applying-to-the-part-of-the-tokyo-subway-map" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> Identification and Classification of Entrepreneurial Opportunities in Blinds’ Tourism Industry in Khuzestan Province of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kharazi">Ali Kharazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassanali%20Aghajani"> Hassanali Aghajani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesami%20Azizi"> Hesami Azizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tourism entrepreneurship is a growing field that has the potential to create new opportunities for sustainable development. The purpose of this study is to identify and classify the entrepreneurial opportunities in the blind tourism industry in Khuzestan Province of Iran that can be created through the operation of blinds’ tours. This study used a mixed methods approach. The qualitative data was collected through semi-structured interviews with 15 tourist guides and tourism activists, while the quantitative data was collected through a questionnaire survey of 40 blind people who had participated in blinds’ tours. The findings of this study suggest that there are a number of entrepreneurial opportunities in the blind tourism industry in Khuzestan Province, including (1) developing and providing accessible tourism services, such as tours, accommodations, restaurants, and transportation, (2) creating and marketing blind-friendly tourism products and experiences (3) training and educating tourism professionals on how to provide accessible and inclusive tourism services. This study contributes to the theoretical understanding of tourism entrepreneurship by providing insights into the entrepreneurial opportunities in the blind tourism industry. The findings of this study can be used to develop policies and programs that support the development of the blind tourism industry. The qualitative data were analyzed using content analysis. The quantitative data were analyzed using descriptive statistics and inferential statistics. This study examines the entrepreneurial opportunities within the blind tourism industry in Khuzestan Province, Iran. In addition, Khuzestan province has made relatively good development in the field of blinds’ tourism. Blind tourists have become loyal customers of blinds’ tours, which has increased their self-confidence and social participation. Tourist guides and centers of tourism services are interested in participating in blinds’ tours more than before, and even other parts outside the tourism field have encouraged sponsorship. Education had a great impact on the quality of tourism services, especially for the blind. It has played a significant role in improving the quality of tourism services for the blind. However, the quality and quantity of infrastructure should be increased in different sectors of tourism services to foster future growth. These opportunities can be used to create new businesses and jobs and to promote sustainable development in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entrepreneurship" title="entrepreneurship">entrepreneurship</a>, <a href="https://publications.waset.org/abstracts/search?q=tourism" title=" tourism"> tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=blind" title=" blind"> blind</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=Khuzestan" title=" Khuzestan"> Khuzestan</a> </p> <a href="https://publications.waset.org/abstracts/179051/identification-and-classification-of-entrepreneurial-opportunities-in-blinds-tourism-industry-in-khuzestan-province-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> Equalization Algorithm for the Optical OFDM System Based on the Fractional Fourier Transform </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Cherifi">A. Cherifi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouazza"> B. Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Dahmane"> A. O. Dahmane</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Yagoubi"> B. Yagoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transmission over Optical channels will introduce inter-symbol interference (ISI) as well as inter-channel (or inter-carrier) interference (ICI). To decrease the effects of ICI, this paper proposes equalizer for the Optical OFDM system based on the fractional Fourier transform (FrFFT). In this FrFT-OFDM system, traditional Fourier transform is replaced by fractional Fourier transform to modulate and demodulate the data symbols. The equalizer proposed consists of sampling the received signal in the different time per time symbol. Theoretical analysis and numerical simulation are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OFDM" title="OFDM">OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=%28FrFT%29%20fractional%20fourier%20transform" title=" (FrFT) fractional fourier transform"> (FrFT) fractional fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20OFDM" title=" optical OFDM"> optical OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=equalization%20algorithm" title=" equalization algorithm"> equalization algorithm</a> </p> <a href="https://publications.waset.org/abstracts/23848/equalization-algorithm-for-the-optical-ofdm-system-based-on-the-fractional-fourier-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Blind Super-Resolution Reconstruction Based on PSF Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20A.%20Omer">Osama A. Omer</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20Hamed"> Amal Hamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Successful blind image Super-Resolution algorithms require the exact estimation of the Point Spread Function (PSF). In the absence of any prior information about the imagery system and the true image; this estimation is normally done by trial and error experimentation until an acceptable restored image quality is obtained. Multi-frame blind Super-Resolution algorithms often have disadvantages of slow convergence and sensitiveness to complex noises. This paper presents a Super-Resolution image reconstruction algorithm based on estimation of the PSF that yields the optimum restored image quality. The estimation of PSF is performed by the knife-edge method and it is implemented by measuring spreading of the edges in the reproduced HR image itself during the reconstruction process. The proposed image reconstruction approach is using L1 norm minimization and robust regularization based on a bilateral prior to deal with different data and noise models. A series of experiment results show that the proposed method can outperform other previous work robustly and efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind" title="blind">blind</a>, <a href="https://publications.waset.org/abstracts/search?q=PSF" title=" PSF"> PSF</a>, <a href="https://publications.waset.org/abstracts/search?q=super-resolution" title=" super-resolution"> super-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=knife-edge" title=" knife-edge"> knife-edge</a>, <a href="https://publications.waset.org/abstracts/search?q=blurring" title=" blurring"> blurring</a>, <a href="https://publications.waset.org/abstracts/search?q=bilateral" title=" bilateral"> bilateral</a>, <a href="https://publications.waset.org/abstracts/search?q=L1%20norm" title=" L1 norm"> L1 norm</a> </p> <a href="https://publications.waset.org/abstracts/1385/blind-super-resolution-reconstruction-based-on-psf-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> Removing Barriers in Assessment and Feedback for Blind Students in Open Distance Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sindile%20Ngubane-Mokiwa">Sindile Ngubane-Mokiwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses two questions: (1) what barriers do the blind students face with assessment and feedback in open distance learning contexts? And (2) How can these barriers be removed? The paper focuses on the distance education through which most students with disabilities elevate their chances of accessing higher education. Lack of genuine inclusion is also evident in the challenges the blind students face during the assessment. These barriers are experienced at both formative and summative stages. The insights in this paper emanate from a case study that was carried out through qualitative approaches. The data was collected through in-depth interview, life stories, and telephonic interviews. The paper provides a review of local, continental and international views on how best assessment barriers can be removed. A group of five blind students, comprising of two honours students, two master's students and one doctoral student participated in this study. The data analysis was done through thematic analysis. The findings revealed that (a) feedback to the assignment is often inaccessible; (b) the software used is incompatible; (c) learning and assessment are designed in exclusionary approaches; (d) assessment facilities are not conducive; and (e) lack of proactive innovative assessment strategies. The article concludes by recommending ways in which barriers to assessment can be removed. These include addressing inclusive assessment and feedback strategies in professional development initiatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment%20design" title="assessment design">assessment design</a>, <a href="https://publications.waset.org/abstracts/search?q=barriers" title=" barriers"> barriers</a>, <a href="https://publications.waset.org/abstracts/search?q=disabilities" title=" disabilities"> disabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20students" title=" blind students"> blind students</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback" title=" feedback"> feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20design%20for%20learning" title=" universal design for learning"> universal design for learning</a> </p> <a href="https://publications.waset.org/abstracts/67210/removing-barriers-in-assessment-and-feedback-for-blind-students-in-open-distance-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blind%20equalization&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blind%20equalization&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blind%20equalization&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blind%20equalization&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blind%20equalization&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blind%20equalization&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blind%20equalization&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blind%20equalization&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blind%20equalization&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blind%20equalization&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blind%20equalization&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blind%20equalization&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>