CINXE.COM
Least-squares spectral analysis - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Least-squares spectral analysis - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"f88e93fc-874f-47ae-8809-10ea065b9b1c","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Least-squares_spectral_analysis","wgTitle":"Least-squares spectral analysis","wgCurRevisionId":1226400035,"wgRevisionId":1226400035,"wgArticleId":13609399,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Use dmy dates from April 2022","Use American English from April 2022","All Wikipedia articles written in American English","Algorithms","Analysis of variance","Applied mathematics","Applied statistics","Carl Friedrich Gauss","Computational mathematics","Computational science","Data processing","Digital signal processing","Engineering statistics","Frequency", "Frequency-domain analysis","Harmonic analysis","Iterative methods","Least squares","Linear algebra","Mathematical analysis","Mathematical optimization","Mathematical physics","Mathematics of computing","Multivariate statistics","Numerical analysis","Numerical linear algebra","Optimization algorithms and methods","Signal processing","Statistical forecasting","Statistical methods","Statistical signal processing","Stochastic processes","Theoretical computer science","Time series"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Least-squares_spectral_analysis","wgRelevantArticleId":13609399,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{ "pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q10569022","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading", "ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions", "wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Linear_least_squares2.svg/1200px-Linear_least_squares2.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1395"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Linear_least_squares2.svg/800px-Linear_least_squares2.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="930"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Linear_least_squares2.svg/640px-Linear_least_squares2.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="744"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Least-squares spectral analysis - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Least-squares_spectral_analysis"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Least-squares_spectral_analysis&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Least-squares_spectral_analysis"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Least-squares_spectral_analysis rootpage-Least-squares_spectral_analysis skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Least-squares+spectral+analysis" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Least-squares+spectral+analysis" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Least-squares+spectral+analysis" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Least-squares+spectral+analysis" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Historical_background" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Historical_background"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Historical background</span> </div> </a> <ul id="toc-Historical_background-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Development_of_LSSA_and_variants" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Development_of_LSSA_and_variants"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Development of LSSA and variants</span> </div> </a> <button aria-controls="toc-Development_of_LSSA_and_variants-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Development of LSSA and variants subsection</span> </button> <ul id="toc-Development_of_LSSA_and_variants-sublist" class="vector-toc-list"> <li id="toc-The_Vaníček_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_Vaníček_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>The Vaníček method</span> </div> </a> <ul id="toc-The_Vaníček_method-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_Lomb_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_Lomb_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>The Lomb method</span> </div> </a> <ul id="toc-The_Lomb_method-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_generalized_Lomb–Scargle_periodogram" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_generalized_Lomb–Scargle_periodogram"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>The generalized Lomb–Scargle periodogram</span> </div> </a> <ul id="toc-The_generalized_Lomb–Scargle_periodogram-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Korenberg's_"fast_orthogonal_search"_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Korenberg's_"fast_orthogonal_search"_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Korenberg's "fast orthogonal search" method</span> </div> </a> <ul id="toc-Korenberg's_"fast_orthogonal_search"_method-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Palmer's_Chi-squared_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Palmer's_Chi-squared_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Palmer's Chi-squared method</span> </div> </a> <ul id="toc-Palmer's_Chi-squared_method-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Implementation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Implementation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Implementation</span> </div> </a> <ul id="toc-Implementation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Least-squares spectral analysis</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 3 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-3" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">3 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Spektraalanal%C3%BC%C3%BCs_v%C3%A4himruutude_meetodil" title="Spektraalanalüüs vähimruutude meetodil – Estonian" lang="et" hreflang="et" data-title="Spektraalanalüüs vähimruutude meetodil" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Lombs_periodogram" title="Lombs periodogram – Swedish" lang="sv" hreflang="sv" data-title="Lombs periodogram" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%9C%80%E5%B0%8F%E5%B9%B3%E6%96%B9%E9%A0%BB%E8%AD%9C%E5%88%86%E6%9E%90%E6%B3%95" title="最小平方頻譜分析法 – Chinese" lang="zh" hreflang="zh" data-title="最小平方頻譜分析法" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q10569022#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Least-squares_spectral_analysis" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Least-squares_spectral_analysis" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Least-squares_spectral_analysis"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Least-squares_spectral_analysis&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Least-squares_spectral_analysis&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Least-squares_spectral_analysis"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Least-squares_spectral_analysis&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Least-squares_spectral_analysis&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Least-squares_spectral_analysis" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Least-squares_spectral_analysis" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Least-squares_spectral_analysis&oldid=1226400035" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Least-squares_spectral_analysis&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Least-squares_spectral_analysis&id=1226400035&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLeast-squares_spectral_analysis"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLeast-squares_spectral_analysis"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Least-squares_spectral_analysis&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Least-squares_spectral_analysis&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q10569022" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Periodicity computation method</div> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar nomobile nowraplinks hlist"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle"><a href="/wiki/Regression_analysis" title="Regression analysis">Regression analysis</a></th></tr><tr><th class="sidebar-heading"> Models</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Linear_regression" title="Linear regression">Linear regression</a></li> <li><a href="/wiki/Simple_linear_regression" title="Simple linear regression">Simple regression</a></li> <li><a href="/wiki/Polynomial_regression" title="Polynomial regression">Polynomial regression</a></li> <li><a href="/wiki/General_linear_model" title="General linear model">General linear model</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Generalized_linear_model" title="Generalized linear model">Generalized linear model</a></li> <li><a href="/wiki/Vector_generalized_linear_model" title="Vector generalized linear model">Vector generalized linear model</a></li> <li><a href="/wiki/Discrete_choice" title="Discrete choice">Discrete choice</a></li> <li><a href="/wiki/Binomial_regression" title="Binomial regression">Binomial regression</a></li> <li><a href="/wiki/Binary_regression" title="Binary regression">Binary regression</a></li> <li><a href="/wiki/Logistic_regression" title="Logistic regression">Logistic regression</a></li> <li><a href="/wiki/Multinomial_logistic_regression" title="Multinomial logistic regression">Multinomial logistic regression</a></li> <li><a href="/wiki/Mixed_logit" title="Mixed logit">Mixed logit</a></li> <li><a href="/wiki/Probit_model" title="Probit model">Probit</a></li> <li><a href="/wiki/Multinomial_probit" title="Multinomial probit">Multinomial probit</a></li> <li><a href="/wiki/Ordered_logit" title="Ordered logit">Ordered logit</a></li> <li><a href="/wiki/Ordered_probit" class="mw-redirect" title="Ordered probit">Ordered probit</a></li> <li><a href="/wiki/Poisson_regression" title="Poisson regression">Poisson</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Multilevel_model" title="Multilevel model">Multilevel model</a></li> <li><a href="/wiki/Fixed_effects_model" title="Fixed effects model">Fixed effects</a></li> <li><a href="/wiki/Random_effects_model" title="Random effects model">Random effects</a></li> <li><a href="/wiki/Mixed_model" title="Mixed model">Linear mixed-effects model</a></li> <li><a href="/wiki/Nonlinear_mixed-effects_model" title="Nonlinear mixed-effects model">Nonlinear mixed-effects model</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Nonlinear_regression" title="Nonlinear regression">Nonlinear regression</a></li> <li><a href="/wiki/Nonparametric_regression" title="Nonparametric regression">Nonparametric</a></li> <li><a href="/wiki/Semiparametric_regression" title="Semiparametric regression">Semiparametric</a></li> <li><a href="/wiki/Robust_regression" title="Robust regression">Robust</a></li> <li><a href="/wiki/Quantile_regression" title="Quantile regression">Quantile</a></li> <li><a href="/wiki/Isotonic_regression" title="Isotonic regression">Isotonic</a></li> <li><a href="/wiki/Principal_component_regression" title="Principal component regression">Principal components</a></li> <li><a href="/wiki/Least-angle_regression" title="Least-angle regression">Least angle</a></li> <li><a href="/wiki/Local_regression" title="Local regression">Local</a></li> <li><a href="/wiki/Segmented_regression" title="Segmented regression">Segmented</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Errors-in-variables_models" title="Errors-in-variables models">Errors-in-variables</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Estimation</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Least_squares" title="Least squares">Least squares</a></li> <li><a href="/wiki/Linear_least_squares" title="Linear least squares">Linear</a></li> <li><a href="/wiki/Non-linear_least_squares" title="Non-linear least squares">Non-linear</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Ordinary_least_squares" title="Ordinary least squares">Ordinary</a></li> <li><a href="/wiki/Weighted_least_squares" title="Weighted least squares">Weighted</a></li> <li><a href="/wiki/Generalized_least_squares" title="Generalized least squares">Generalized</a></li> <li><a href="/wiki/Generalized_estimating_equation" title="Generalized estimating equation">Generalized estimating equation</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Partial_least_squares_regression" title="Partial least squares regression">Partial</a></li> <li><a href="/wiki/Total_least_squares" title="Total least squares">Total</a></li> <li><a href="/wiki/Non-negative_least_squares" title="Non-negative least squares">Non-negative</a></li> <li><a href="/wiki/Tikhonov_regularization" class="mw-redirect" title="Tikhonov regularization">Ridge regression</a></li> <li><a href="/wiki/Regularized_least_squares" title="Regularized least squares">Regularized</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Least_absolute_deviations" title="Least absolute deviations">Least absolute deviations</a></li> <li><a href="/wiki/Iteratively_reweighted_least_squares" title="Iteratively reweighted least squares">Iteratively reweighted</a></li> <li><a href="/wiki/Bayesian_linear_regression" title="Bayesian linear regression">Bayesian</a></li> <li><a href="/wiki/Bayesian_multivariate_linear_regression" title="Bayesian multivariate linear regression">Bayesian multivariate</a></li> <li><a class="mw-selflink selflink">Least-squares spectral analysis</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Background</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Regression_validation" title="Regression validation">Regression validation</a></li> <li><a href="/wiki/Mean_and_predicted_response" class="mw-redirect" title="Mean and predicted response">Mean and predicted response</a></li> <li><a href="/wiki/Errors_and_residuals" title="Errors and residuals">Errors and residuals</a></li> <li><a href="/wiki/Goodness_of_fit" title="Goodness of fit">Goodness of fit</a></li> <li><a href="/wiki/Studentized_residual" title="Studentized residual">Studentized residual</a></li> <li><a href="/wiki/Gauss%E2%80%93Markov_theorem" title="Gauss–Markov theorem">Gauss–Markov theorem</a></li></ul></td> </tr><tr><td class="sidebar-below"> <ul><li><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Regression_bar" title="Template:Regression bar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Regression_bar" title="Template talk:Regression bar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Regression_bar" title="Special:EditPage/Template:Regression bar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Linear_least_squares2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Linear_least_squares2.svg/275px-Linear_least_squares2.svg.png" decoding="async" width="275" height="320" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Linear_least_squares2.svg/413px-Linear_least_squares2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Linear_least_squares2.svg/550px-Linear_least_squares2.svg.png 2x" data-file-width="154" data-file-height="179" /></a><figcaption>The result of fitting a set of data points with a <a href="/wiki/Quadratic_function" title="Quadratic function">quadratic function</a></figcaption></figure> <p><b>Least-squares spectral analysis</b> (<b>LSSA</b>) is a method of estimating a <a href="/wiki/Spectral_density_estimation#Overview" title="Spectral density estimation">frequency spectrum</a> based on a <a href="/wiki/Least-squares" class="mw-redirect" title="Least-squares">least-squares</a> fit of <a href="/wiki/Sine_wave" title="Sine wave">sinusoids</a> to data samples, similar to <a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-birn_2-0" class="reference"><a href="#cite_note-birn-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems.<sup id="cite_ref-pres_3-0" class="reference"><a href="#cite_note-pres-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> Unlike in Fourier analysis, data need not be equally spaced to use LSSA. </p><p>Developed in 1969<sup id="cite_ref-vanicek1_4-0" class="reference"><a href="#cite_note-vanicek1-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> and 1971,<sup id="cite_ref-vanicek2_5-0" class="reference"><a href="#cite_note-vanicek2-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> LSSA is also known as the <b>Vaníček method</b> and the <b>Gauss-Vaniček method</b> after <a href="/wiki/Petr_Van%C3%AD%C4%8Dek" title="Petr Vaníček">Petr Vaníček</a>,<sup id="cite_ref-taha_6-0" class="reference"><a href="#cite_note-taha-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-cise_7-0" class="reference"><a href="#cite_note-cise-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> and as the <b>Lomb method</b><sup id="cite_ref-pres_3-1" class="reference"><a href="#cite_note-pres-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> or the <b>Lomb–Scargle periodogram</b>,<sup id="cite_ref-birn_2-1" class="reference"><a href="#cite_note-birn-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> based on the simplifications first by Nicholas R. Lomb<sup id="cite_ref-lomb_9-0" class="reference"><a href="#cite_note-lomb-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> and then by Jeffrey D. Scargle.<sup id="cite_ref-scar_10-0" class="reference"><a href="#cite_note-scar-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Historical_background">Historical background</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Least-squares_spectral_analysis&action=edit&section=1" title="Edit section: Historical background"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The close connections between <a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a>, the <a href="/wiki/Periodogram" title="Periodogram">periodogram</a>, and the <a href="/wiki/Least-squares" class="mw-redirect" title="Least-squares">least-squares</a> fitting of sinusoids have been known for a long time.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> However, most developments are restricted to complete data sets of equally spaced samples. In 1963, Freek J. M. Barning of <a href="/wiki/Centrum_Wiskunde_%26_Informatica" title="Centrum Wiskunde & Informatica">Mathematisch Centrum</a>, Amsterdam, handled unequally spaced data by similar techniques,<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> including both a periodogram analysis equivalent to what nowadays is called the Lomb method and least-squares fitting of selected frequencies of sinusoids determined from such periodograms — and connected by a procedure known today as the <a href="/wiki/Matching_pursuit" title="Matching pursuit">matching pursuit</a> with post-back fitting<sup id="cite_ref-kmp_13-0" class="reference"><a href="#cite_note-kmp-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> or the orthogonal matching pursuit.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Petr_Van%C3%AD%C4%8Dek" title="Petr Vaníček">Petr Vaníček</a>, a Canadian <a href="/wiki/Geophysics" title="Geophysics">geophysicist</a> and <a href="/wiki/Geodesy" title="Geodesy">geodesist</a> of the <a href="/wiki/University_of_New_Brunswick" title="University of New Brunswick">University of New Brunswick</a>, proposed in 1969 also the matching-pursuit approach for equally and unequally spaced data, which he called "successive spectral analysis" and the result a "least-squares periodogram".<sup id="cite_ref-vanicek1_4-1" class="reference"><a href="#cite_note-vanicek1-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> He generalized this method to account for any systematic components beyond a simple mean, such as a "predicted linear (quadratic, exponential, ...) secular trend of unknown magnitude", and applied it to a variety of samples, in 1971.<sup id="cite_ref-vanicek2_5-1" class="reference"><a href="#cite_note-vanicek2-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>Vaníček's strictly least-squares method was then simplified in 1976 by Nicholas R. Lomb of the <a href="/wiki/University_of_Sydney" title="University of Sydney">University of Sydney</a>, who pointed out its close connection to <a href="/wiki/Periodogram" title="Periodogram">periodogram</a> analysis.<sup id="cite_ref-lomb_9-1" class="reference"><a href="#cite_note-lomb-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> Subsequently, the definition of a periodogram of unequally spaced data was modified and analyzed by Jeffrey D. Scargle of <a href="/wiki/NASA_Ames_Research_Center" class="mw-redirect" title="NASA Ames Research Center">NASA Ames Research Center</a>,<sup id="cite_ref-scar_10-1" class="reference"><a href="#cite_note-scar-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> who showed that, with minor changes, it becomes identical to Lomb's least-squares formula for fitting individual sinusoid frequencies. </p><p>Scargle states that his paper "does not introduce a new detection technique, but instead studies the reliability and efficiency of detection with the most commonly used technique, the periodogram, in the case where the observation times are <a href="/wiki/Unevenly_spaced_time_series" title="Unevenly spaced time series">unevenly spaced</a>," and further points out regarding least-squares fitting of sinusoids compared to periodogram analysis, that his paper "establishes, apparently for the first time, that (with the proposed modifications) these two methods are exactly equivalent."<sup id="cite_ref-scar_10-2" class="reference"><a href="#cite_note-scar-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p><p>Press<sup id="cite_ref-pres_3-2" class="reference"><a href="#cite_note-pres-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> summarizes the development this way: </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>A completely different method of spectral analysis for unevenly sampled data, one that mitigates these difficulties and has some other very desirable properties, was developed by Lomb, based in part on earlier work by Barning and Vanicek, and additionally elaborated by Scargle.</p></blockquote> <p>In 1989, Michael J. Korenberg of <a href="/wiki/Queen%27s_University_at_Kingston" title="Queen's University at Kingston">Queen's University</a> in Kingston, Ontario, developed the "fast orthogonal search" method of more quickly finding a near-optimal decomposition of spectra or other problems,<sup id="cite_ref-k89_15-0" class="reference"><a href="#cite_note-k89-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> similar to the technique that later became known as the orthogonal matching pursuit. </p> <div class="mw-heading mw-heading2"><h2 id="Development_of_LSSA_and_variants">Development of LSSA and variants</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Least-squares_spectral_analysis&action=edit&section=2" title="Edit section: Development of LSSA and variants"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="The_Vaníček_method"><span id="The_Van.C3.AD.C4.8Dek_method"></span>The Vaníček method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Least-squares_spectral_analysis&action=edit&section=3" title="Edit section: The Vaníček method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Linear_least_squares_example2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Linear_least_squares_example2.svg/243px-Linear_least_squares_example2.svg.png" decoding="async" width="243" height="239" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Linear_least_squares_example2.svg/365px-Linear_least_squares_example2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Linear_least_squares_example2.svg/486px-Linear_least_squares_example2.svg.png 2x" data-file-width="279" data-file-height="274" /></a><figcaption>In <a href="/wiki/Linear_regression" title="Linear regression">linear regression</a>, the observations (<span style="color:red"><b>red</b></span>) are assumed to be the result of random deviations (<span style="color:green"><b>green</b></span>) from an underlying relationship (<span style="color:blue;"><b>blue</b></span>) between a dependent variable (<i>y</i>) and an independent variable (<i>x</i>). Then in a normed fitting, such as by the criterion of <a href="/wiki/Least_squares" title="Least squares">least squares</a>, the data points (<span style="color:red"><b>red</b></span>) are represented by the line of normatively best fit (<span style="color:blue;"><b>blue</b></span>), from which there always remain "residuals" (<span style="color:green"><b>green</b></span>).</figcaption></figure> <p>In the Vaníček method, a discrete data set is approximated by a weighted sum of sinusoids of progressively determined frequencies using a standard <a href="/wiki/Linear_regression" title="Linear regression">linear regression</a> or <a href="/wiki/Least-squares" class="mw-redirect" title="Least-squares">least-squares</a> fit.<sup id="cite_ref-UNB85_16-0" class="reference"><a href="#cite_note-UNB85-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> The frequencies are chosen using a method similar to Barning's, but going further in optimizing the choice of each successive new frequency by picking the frequency that minimizes the residual after least-squares fitting (equivalent to the fitting technique now known as <a href="/wiki/Matching_pursuit" title="Matching pursuit">matching pursuit</a> with pre-backfitting<sup id="cite_ref-kmp_13-1" class="reference"><a href="#cite_note-kmp-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup>). The number of sinusoids must be less than or equal to the number of data samples (counting sines and cosines of the same frequency as separate sinusoids). </p><p>A data vector <i>Φ</i> is represented as a weighted sum of sinusoidal basis functions, tabulated in a matrix <b>A</b> by evaluating each function at the sample times, with weight vector <i>x</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi \approx {\textbf {A}}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">A</mtext> </mrow> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi \approx {\textbf {A}}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09569358fb0ccb0f6637d5740fb6707db7ad9c20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.833ex; height:2.509ex;" alt="{\displaystyle \phi \approx {\textbf {A}}x}"></span>,</dd></dl> <p>where the weights vector <i>x</i> is chosen to minimize the sum of squared errors in approximating <i>Φ</i>. The solution for <i>x</i> is closed-form, using standard <a href="/wiki/Linear_regression" title="Linear regression">linear regression</a>:<sup id="cite_ref-craymer_17-0" class="reference"><a href="#cite_note-craymer-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=({\textbf {A}}^{\mathrm {T} }{\textbf {A}})^{-1}{\textbf {A}}^{\mathrm {T} }\phi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">A</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">A</mtext> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">A</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mi>ϕ<!-- ϕ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=({\textbf {A}}^{\mathrm {T} }{\textbf {A}})^{-1}{\textbf {A}}^{\mathrm {T} }\phi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/817f3b8f22f3c290c4d8a1f23455246046311f91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.499ex; height:3.176ex;" alt="{\displaystyle x=({\textbf {A}}^{\mathrm {T} }{\textbf {A}})^{-1}{\textbf {A}}^{\mathrm {T} }\phi .}"></span></dd></dl> <p>Here the matrix A can be based on any set of functions mutually independent (not necessarily orthogonal) when evaluated at the sample times; functions used for spectral analysis are typically sines and cosines evenly distributed over the frequency range of interest. If we choose too many frequencies in a too-narrow frequency range, the functions will be insufficiently independent, the matrix ill-conditioned, and the resulting spectrum meaningless.<sup id="cite_ref-craymer_17-1" class="reference"><a href="#cite_note-craymer-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>When the basis functions in <b>A</b> are orthogonal (that is, not correlated, meaning the columns have zero pair-wise <a href="/wiki/Dot_product" title="Dot product">dot products</a>), the matrix <b>A<sup>T</sup>A</b> is diagonal; when the columns all have the same power (sum of squares of elements), then that matrix is an <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a> times a constant, so the inversion is trivial. The latter is the case when the sample times are equally spaced and sinusoids chosen as sines and cosines equally spaced in pairs on the frequency interval 0 to a half cycle per sample (spaced by 1/N cycles per sample, omitting the sine phases at 0 and maximum frequency where they are identically zero). This case is known as the <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">discrete Fourier transform</a>, slightly rewritten in terms of measurements and coefficients.<sup id="cite_ref-craymer_17-2" class="reference"><a href="#cite_note-craymer-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\textbf {A}}^{\mathrm {T} }\phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">A</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x={\textbf {A}}^{\mathrm {T} }\phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/833b688cc6dca236bcefa761b7f1bf37c73873cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.252ex; height:3.009ex;" alt="{\displaystyle x={\textbf {A}}^{\mathrm {T} }\phi }"></span> — DFT case for <i>N</i> equally spaced samples and frequencies, within a scalar factor.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="The_Lomb_method">The Lomb method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Least-squares_spectral_analysis&action=edit&section=4" title="Edit section: The Lomb method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Periodogram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Periodogram.svg/320px-Periodogram.svg.png" decoding="async" width="320" height="213" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Periodogram.svg/480px-Periodogram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Periodogram.svg/640px-Periodogram.svg.png 2x" data-file-width="540" data-file-height="360" /></a><figcaption>A <a href="/wiki/Power_spectrum" class="mw-redirect" title="Power spectrum">power spectrum</a> (magnitude-squared) of two sinusoidal <a href="/wiki/Basis_functions" class="mw-redirect" title="Basis functions">basis functions</a>, calculated by the <a href="/wiki/Periodogram" title="Periodogram">periodogram</a> method</figcaption></figure> <p>Trying to lower the computational burden of the Vaníček method in 1976 <sup id="cite_ref-lomb_9-2" class="reference"><a href="#cite_note-lomb-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> (no longer an issue), Lomb proposed using the above simplification in general, except for pair-wise correlations between sine and cosine bases of the same frequency, since the correlations between pairs of sinusoids are often small, at least when they are not tightly spaced. This formulation is essentially that of the traditional <a href="/wiki/Periodogram" title="Periodogram">periodogram</a> but adapted for use with unevenly spaced samples. The vector <i>x</i> is a reasonably good estimate of an underlying spectrum, but since we ignore any correlations, <b>A</b><i>x</i> is no longer a good approximation to the signal, and the method is no longer a least-squares method — yet in the literature continues to be referred to as such. </p><p>Rather than just taking dot products of the data with sine and cosine waveforms directly, Scargle modified the standard periodogram formula so to find a time delay <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>τ<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span> first, such that this pair of sinusoids would be mutually orthogonal at sample times <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53942a7888623b7eff84a0e43183e046c9f66d65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.749ex; height:2.676ex;" alt="{\displaystyle t_{j}}"></span> and also adjusted for the potentially unequal powers of these two basis functions, to obtain a better estimate of the power at a frequency.<sup id="cite_ref-pres_3-3" class="reference"><a href="#cite_note-pres-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-scar_10-3" class="reference"><a href="#cite_note-scar-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> This procedure made his modified periodogram method exactly equivalent to Lomb's method. Time delay <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>τ<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span> by definition equals to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan {2\omega \tau }={\frac {\sum _{j}\sin 2\omega t_{j}}{\sum _{j}\cos 2\omega t_{j}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>ω<!-- ω --></mi> <mi>τ<!-- τ --></mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <mi>sin</mi> <mo>⁡<!-- --></mo> <mn>2</mn> <mi>ω<!-- ω --></mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <mi>cos</mi> <mo>⁡<!-- --></mo> <mn>2</mn> <mi>ω<!-- ω --></mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan {2\omega \tau }={\frac {\sum _{j}\sin 2\omega t_{j}}{\sum _{j}\cos 2\omega t_{j}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ed59fd4ae2d83ea4355ebfa4caeeb11740a4223" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.745ex; height:7.176ex;" alt="{\displaystyle \tan {2\omega \tau }={\frac {\sum _{j}\sin 2\omega t_{j}}{\sum _{j}\cos 2\omega t_{j}}}.}"></span></dd></dl> <p>Then the periodogram at frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> is estimated as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{x}(\omega )={\frac {1}{2}}\left({\frac {\left[\sum _{j}X_{j}\cos \omega (t_{j}-\tau )\right]^{2}}{\sum _{j}\cos ^{2}\omega (t_{j}-\tau )}}+{\frac {\left[\sum _{j}X_{j}\sin \omega (t_{j}-\tau )\right]^{2}}{\sum _{j}\sin ^{2}\omega (t_{j}-\tau )}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow> <mo>[</mo> <mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>τ<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>τ<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow> <mo>[</mo> <mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>τ<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>τ<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{x}(\omega )={\frac {1}{2}}\left({\frac {\left[\sum _{j}X_{j}\cos \omega (t_{j}-\tau )\right]^{2}}{\sum _{j}\cos ^{2}\omega (t_{j}-\tau )}}+{\frac {\left[\sum _{j}X_{j}\sin \omega (t_{j}-\tau )\right]^{2}}{\sum _{j}\sin ^{2}\omega (t_{j}-\tau )}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36fbcce2dc02ce0426d6b6b859ba15cbeba9abc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:65.26ex; height:11.176ex;" alt="{\displaystyle P_{x}(\omega )={\frac {1}{2}}\left({\frac {\left[\sum _{j}X_{j}\cos \omega (t_{j}-\tau )\right]^{2}}{\sum _{j}\cos ^{2}\omega (t_{j}-\tau )}}+{\frac {\left[\sum _{j}X_{j}\sin \omega (t_{j}-\tau )\right]^{2}}{\sum _{j}\sin ^{2}\omega (t_{j}-\tau )}}\right)}"></span>,</dd></dl> <p>which, as Scargle reports, has the same statistical distribution as the periodogram in the evenly sampled case.<sup id="cite_ref-scar_10-4" class="reference"><a href="#cite_note-scar-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p><p>At any individual frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span>, this method gives the same power as does a least-squares fit to sinusoids of that frequency and of the form: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (t)=A\sin \omega t+B\cos \omega t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>A</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>ω<!-- ω --></mi> <mi>t</mi> <mo>+</mo> <mi>B</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>ω<!-- ω --></mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (t)=A\sin \omega t+B\cos \omega t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8da8aaa91be67980127d350db5e5a1bd62e51e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.213ex; height:2.843ex;" alt="{\displaystyle \phi (t)=A\sin \omega t+B\cos \omega t.}"></span><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup></dd></dl> <p>In practice, it is always difficult to judge if a given Lomb peak is significant or not, especially when the nature of the noise is unknown, so for example a false-alarm spectral peak in the Lomb periodogram analysis of noisy periodic signal may result from noise in turbulence data.<sup id="cite_ref-zhou_19-0" class="reference"><a href="#cite_note-zhou-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> Fourier methods can also report false spectral peaks when analyzing patched-up or data edited otherwise.<sup id="cite_ref-cise_7-1" class="reference"><a href="#cite_note-cise-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="The_generalized_Lomb–Scargle_periodogram"><span id="The_generalized_Lomb.E2.80.93Scargle_periodogram"></span>The generalized Lomb–Scargle periodogram</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Least-squares_spectral_analysis&action=edit&section=5" title="Edit section: The generalized Lomb–Scargle periodogram"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The standard Lomb–Scargle periodogram is only valid for a model with a zero mean. Commonly, this is approximated — by subtracting the mean of the data before calculating the periodogram. However, this is an inaccurate assumption when the mean of the model (the fitted sinusoids) is non-zero. The <i>generalized</i> Lomb–Scargle periodogram removes this assumption and explicitly solves for the mean. In this case, the function fitted is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (t)=A\sin \omega t+B\cos \omega t+C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>A</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>ω<!-- ω --></mi> <mi>t</mi> <mo>+</mo> <mi>B</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>ω<!-- ω --></mi> <mi>t</mi> <mo>+</mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (t)=A\sin \omega t+B\cos \omega t+C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a480f7406d77dceaf4ab68fb6cb3b5692999f3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.82ex; height:2.843ex;" alt="{\displaystyle \phi (t)=A\sin \omega t+B\cos \omega t+C.}"></span><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup></dd></dl> <p>The generalized Lomb–Scargle periodogram has also been referred to in the literature as a <i>floating mean periodogram</i>.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Korenberg's_"fast_orthogonal_search"_method"><span id="Korenberg.27s_.22fast_orthogonal_search.22_method"></span>Korenberg's "fast orthogonal search" method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Least-squares_spectral_analysis&action=edit&section=6" title="Edit section: Korenberg's "fast orthogonal search" method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Michael Korenberg of <a href="/wiki/Queen%27s_University_at_Kingston" title="Queen's University at Kingston">Queen's University</a> in <a href="/wiki/Kingston,_Ontario" title="Kingston, Ontario">Kingston, Ontario</a>, developed a method for choosing a sparse set of components from an over-complete set — such as sinusoidal components for spectral analysis — called the fast orthogonal search (FOS). Mathematically, FOS uses a slightly modified <a href="/wiki/Cholesky_decomposition" title="Cholesky decomposition">Cholesky decomposition</a> in a mean-square error reduction (MSER) process, implemented as a <a href="/wiki/Sparse_matrix" title="Sparse matrix">sparse matrix</a> inversion.<sup id="cite_ref-k89_15-1" class="reference"><a href="#cite_note-k89-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> As with the other LSSA methods, FOS avoids the major shortcoming of discrete Fourier analysis, so it can accurately identify embedded periodicities and excel with unequally spaced data. The fast orthogonal search method was also applied to other problems, such as <a href="/wiki/Nonlinear_system_identification" title="Nonlinear system identification">nonlinear system identification</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Palmer's_Chi-squared_method"><span id="Palmer.27s_Chi-squared_method"></span>Palmer's Chi-squared method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Least-squares_spectral_analysis&action=edit&section=7" title="Edit section: Palmer's Chi-squared method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Palmer has developed a method for finding the best-fit function to any chosen number of harmonics, allowing more freedom to find non-sinusoidal harmonic functions.<sup id="cite_ref-fastchi2_23-0" class="reference"><a href="#cite_note-fastchi2-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> His is a fast (<a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">FFT</a>-based) technique for <a href="/wiki/Least-squares_analysis#Weighted_least_squares" class="mw-redirect" title="Least-squares analysis">weighted least-squares analysis</a> on arbitrarily spaced data with non-uniform standard errors. Source code that implements this technique is available.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> Because data are often not sampled at uniformly spaced discrete times, this method "grids" the data by sparsely filling a time series array at the sample times. All intervening grid points receive zero statistical weight, equivalent to having infinite error bars at times between samples. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Least-squares_spectral_analysis&action=edit&section=8" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:PDF_of_the_Beta_distribution.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/PDF_of_the_Beta_distribution.gif/245px-PDF_of_the_Beta_distribution.gif" decoding="async" width="245" height="245" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/7/78/PDF_of_the_Beta_distribution.gif 1.5x" data-file-width="360" data-file-height="360" /></a><figcaption><a href="/wiki/Beta_distribution" title="Beta distribution">Beta distribution</a> for different values of its parameters</figcaption></figure> <p>The most useful feature of LSSA is enabling incomplete records to be <a href="/wiki/Frequency_spectrum" class="mw-redirect" title="Frequency spectrum">spectrally</a> analyzed — without the need to <a href="/wiki/Data_manipulation" class="mw-redirect" title="Data manipulation">manipulate</a> data or to invent otherwise non-existent data. </p><p><a href="/wiki/Magnitude_(mathematics)" title="Magnitude (mathematics)">Magnitudes</a> in the LSSA <a href="/wiki/Frequency_spectrum" class="mw-redirect" title="Frequency spectrum">spectrum</a> depict the contribution of a frequency or period to the <a href="/wiki/Variance" title="Variance">variance</a> of the <a href="/wiki/Time_series" title="Time series">time series</a>.<sup id="cite_ref-vanicek1_4-2" class="reference"><a href="#cite_note-vanicek1-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> Generally, spectral magnitudes thus defined enable the output's straightforward <a href="/wiki/Significance_level" class="mw-redirect" title="Significance level">significance level</a> regime.<sup id="cite_ref-bwmm_25-0" class="reference"><a href="#cite_note-bwmm-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> Alternatively, spectral magnitudes in the Vaníček spectrum can also be expressed in <a href="/wiki/Decibel" title="Decibel">dB</a>.<sup id="cite_ref-pagi_26-0" class="reference"><a href="#cite_note-pagi-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> Note that spectral magnitudes in the Vaníček spectrum follow <a href="/wiki/Beta_distribution" title="Beta distribution">β-distribution</a>.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p><p>Inverse transformation of Vaníček's LSSA is possible, as is most easily seen by writing the forward transform as a matrix; the matrix inverse (when the matrix is not singular) or pseudo-inverse will then be an inverse transformation; the inverse will exactly match the original data if the chosen sinusoids are mutually independent at the sample points and their number is equal to the number of data points.<sup id="cite_ref-craymer_17-3" class="reference"><a href="#cite_note-craymer-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> No such inverse procedure is known for the periodogram method. </p> <div class="mw-heading mw-heading2"><h2 id="Implementation">Implementation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Least-squares_spectral_analysis&action=edit&section=9" title="Edit section: Implementation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The LSSA can be implemented in less than a page of <a href="/wiki/MATLAB" title="MATLAB">MATLAB</a> code.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> In essence:<sup id="cite_ref-UNB85_16-1" class="reference"><a href="#cite_note-UNB85-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <blockquote> <p>"to compute the least-squares spectrum we must compute <i>m</i> spectral values ... which involves performing the least-squares approximation <i>m</i> times, each time to get [the spectral power] for a different frequency" </p> </blockquote> <p>I.e., for each frequency in a desired set of frequencies, <a href="/wiki/Sine" class="mw-redirect" title="Sine">sine</a> and <a href="/wiki/Cosine" class="mw-redirect" title="Cosine">cosine</a> functions are evaluated at the times corresponding to the data samples, and <a href="/wiki/Dot_product" title="Dot product">dot products</a> of the data <a href="/wiki/Coordinate_vector" title="Coordinate vector">vector</a> with the sinusoid vectors are taken and appropriately normalized; following the method known as Lomb/Scargle periodogram, a time shift is calculated for each frequency to orthogonalize the sine and cosine components before the dot product;<sup id="cite_ref-craymer_17-4" class="reference"><a href="#cite_note-craymer-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> finally, a power is computed from those two <a href="/wiki/Amplitude" title="Amplitude">amplitude</a> components. This same process implements a <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">discrete Fourier transform</a> when the data are uniformly spaced in time and the frequencies chosen correspond to integer numbers of cycles over the finite data record. </p><p>This method treats each sinusoidal component independently, or out of context, even though they may not be orthogonal to data points; it is Vaníček's original method. In addition, it is possible to perform a full simultaneous or in-context least-squares fit by solving a matrix equation and partitioning the total data variance between the specified sinusoid frequencies.<sup id="cite_ref-craymer_17-5" class="reference"><a href="#cite_note-craymer-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> Such a matrix least-squares solution is natively available in MATLAB as the <a href="/wiki/Backslash" title="Backslash">backslash</a> operator.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p><p>Furthermore, the simultaneous or in-context method, as opposed to the independent or out-of-context version (as well as the periodogram version due to Lomb), cannot fit more components (sines and cosines) than there are data samples, so that:<sup id="cite_ref-craymer_17-6" class="reference"><a href="#cite_note-craymer-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>"...serious repercussions can also arise if the selected frequencies result in some of the Fourier components (trig functions) becoming nearly linearly dependent with each other, thereby producing an ill-conditioned or near singular N. To avoid such ill conditioning it becomes necessary to either select a different set of frequencies to be estimated (e.g., equally spaced frequencies) or simply neglect the correlations in N (i.e., the off-diagonal blocks) and estimate the inverse least squares transform separately for the individual frequencies..."</p></blockquote> <p>Lomb's periodogram method, on the other hand, can use an arbitrarily high number of, or density of, frequency components, as in a standard <a href="/wiki/Periodogram" title="Periodogram">periodogram</a>; that is, the frequency domain can be over-sampled by an arbitrary factor.<sup id="cite_ref-pres_3-4" class="reference"><a href="#cite_note-pres-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> However, as mentioned above, one should keep in mind that Lomb's simplification and diverging from the least squares criterion opened up his technique to grave sources of errors, resulting even in false spectral peaks.<sup id="cite_ref-zhou_19-1" class="reference"><a href="#cite_note-zhou-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p><p>In Fourier analysis, such as the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a> and <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">discrete Fourier transform</a>, the sinusoids fitted to data are all mutually orthogonal, so there is no distinction between the simple out-of-context dot-product-based projection onto basis functions versus an in-context simultaneous least-squares fit; that is, no matrix inversion is required to least-squares partition the variance between orthogonal sinusoids of different frequencies.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> In the past, Fourier's was for many a method of choice thanks to its processing-efficient <a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">fast Fourier transform</a> implementation when complete data records with equally spaced samples are available, and they used the Fourier family of techniques to analyze gapped records as well, which, however, required manipulating and even inventing non-existent data just so to be able to run a Fourier-based algorithm. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Least-squares_spectral_analysis&action=edit&section=10" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Non-uniform_discrete_Fourier_transform" title="Non-uniform discrete Fourier transform">Non-uniform discrete Fourier transform</a></li> <li><a href="/wiki/Orthogonal_functions" title="Orthogonal functions">Orthogonal functions</a></li> <li><a href="/wiki/SigSpec" title="SigSpec">SigSpec</a></li> <li><a href="/wiki/Sinusoidal_model" title="Sinusoidal model">Sinusoidal model</a></li> <li><a href="/wiki/Spectral_density" title="Spectral density">Spectral density</a></li> <li><a href="/wiki/Spectral_density_estimation" title="Spectral density estimation">Spectral density estimation</a>, for competing alternatives</li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Least-squares_spectral_analysis&action=edit&section=11" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFCafer_Ibanoglu2000" class="citation book cs1">Cafer Ibanoglu (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QzGbOiZ3OnkC&q=vanicek+spectral+sinusoids&pg=PA269"><i>Variable Stars As Essential Astrophysical Tools</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7923-6084-2" title="Special:BookSources/0-7923-6084-2"><bdi>0-7923-6084-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Variable+Stars+As+Essential+Astrophysical+Tools&rft.pub=Springer&rft.date=2000&rft.isbn=0-7923-6084-2&rft.au=Cafer+Ibanoglu&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQzGbOiZ3OnkC%26q%3Dvanicek%2Bspectral%2Bsinusoids%26pg%3DPA269&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-birn-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-birn_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-birn_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD._Scott_BirneyDavid_OesperGuillermo_Gonzalez2006" class="citation book cs1">D. Scott Birney; David Oesper; Guillermo Gonzalez (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=cc9L8QWcZWsC&q=Lomb-Scargle-periodogram&pg=RA3-PA263"><i>Observational Astronomy</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-85370-2" title="Special:BookSources/0-521-85370-2"><bdi>0-521-85370-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Observational+Astronomy&rft.pub=Cambridge+University+Press&rft.date=2006&rft.isbn=0-521-85370-2&rft.au=D.+Scott+Birney&rft.au=David+Oesper&rft.au=Guillermo+Gonzalez&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dcc9L8QWcZWsC%26q%3DLomb-Scargle-periodogram%26pg%3DRA3-PA263&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-pres-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-pres_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pres_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-pres_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-pres_3-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-pres_3-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPress2007" class="citation book cs1">Press (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9GhDHTLzFDEC&q=%22spectral+analysis%22+%22vanicek%22+inauthor:press&pg=PA685"><i>Numerical Recipes</i></a> (3rd ed.). Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-88068-8" title="Special:BookSources/978-0-521-88068-8"><bdi>978-0-521-88068-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Numerical+Recipes&rft.edition=3rd&rft.pub=Cambridge+University+Press&rft.date=2007&rft.isbn=978-0-521-88068-8&rft.au=Press&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9GhDHTLzFDEC%26q%3D%2522spectral%2Banalysis%2522%2B%2522vanicek%2522%2Binauthor%3Apress%26pg%3DPA685&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-vanicek1-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-vanicek1_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-vanicek1_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-vanicek1_4-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFP._Vaníček1969" class="citation journal cs1">P. Vaníček (1 August 1969). <a rel="nofollow" class="external text" href="https://articles.adsabs.harvard.edu/pdf/1969Ap%26SS...4..387V.pdf">"Approximate Spectral Analysis by Least-squares Fit"</a> <span class="cs1-format">(PDF)</span>. <i>Astrophysics and Space Science</i>. <b>4</b> (4): 387–391. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1969Ap&SS...4..387V">1969Ap&SS...4..387V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00651344">10.1007/BF00651344</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/5654872875">5654872875</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:124921449">124921449</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astrophysics+and+Space+Science&rft.atitle=Approximate+Spectral+Analysis+by+Least-squares+Fit&rft.volume=4&rft.issue=4&rft.pages=387-391&rft.date=1969-08-01&rft_id=info%3Aoclcnum%2F5654872875&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A124921449%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF00651344&rft_id=info%3Abibcode%2F1969Ap%26SS...4..387V&rft.au=P.+Van%C3%AD%C4%8Dek&rft_id=https%3A%2F%2Farticles.adsabs.harvard.edu%2Fpdf%2F1969Ap%2526SS...4..387V.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-vanicek2-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-vanicek2_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-vanicek2_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFP._Vaníček1971" class="citation journal cs1">P. Vaníček (1 July 1971). <a rel="nofollow" class="external text" href="https://articles.adsabs.harvard.edu/pdf/1971Ap%26SS..12...10V.pdf">"Further development and properties of the spectral analysis by least-squares fit"</a> <span class="cs1-format">(PDF)</span>. <i>Astrophysics and Space Science</i>. <b>12</b> (1): 10–33. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1971Ap&SS..12...10V">1971Ap&SS..12...10V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00656134">10.1007/BF00656134</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:109404359">109404359</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astrophysics+and+Space+Science&rft.atitle=Further+development+and+properties+of+the+spectral+analysis+by+least-squares+fit&rft.volume=12&rft.issue=1&rft.pages=10-33&rft.date=1971-07-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A109404359%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF00656134&rft_id=info%3Abibcode%2F1971Ap%26SS..12...10V&rft.au=P.+Van%C3%AD%C4%8Dek&rft_id=https%3A%2F%2Farticles.adsabs.harvard.edu%2Fpdf%2F1971Ap%2526SS..12...10V.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-taha-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-taha_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._TaylorS._Hamilton1972" class="citation journal cs1">J. Taylor; S. Hamilton (20 March 1972). "Some tests of the Vaníček Method of spectral analysis". <i>Astrophysics and Space Science</i>. <b>17</b> (2): 357–367. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1972Ap&SS..17..357T">1972Ap&SS..17..357T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00642907">10.1007/BF00642907</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123569059">123569059</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astrophysics+and+Space+Science&rft.atitle=Some+tests+of+the+Van%C3%AD%C4%8Dek+Method+of+spectral+analysis&rft.volume=17&rft.issue=2&rft.pages=357-367&rft.date=1972-03-20&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123569059%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF00642907&rft_id=info%3Abibcode%2F1972Ap%26SS..17..357T&rft.au=J.+Taylor&rft.au=S.+Hamilton&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-cise-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-cise_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-cise_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFM._Omerbashich2006" class="citation journal cs1">M. Omerbashich (26 June 2006). "Gauss-Vanicek spectral analysis of the Sepkoski compendium: no new life cycles". <i>Computing in Science & Engineering</i>. <b>8</b> (4): 26–30. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math-ph/0608014">math-ph/0608014</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006CSE.....8d..26O">2006CSE.....8d..26O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FMCSE.2006.68">10.1109/MCSE.2006.68</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Computing+in+Science+%26+Engineering&rft.atitle=Gauss-Vanicek+spectral+analysis+of+the+Sepkoski+compendium%3A+no+new+life+cycles&rft.volume=8&rft.issue=4&rft.pages=26-30&rft.date=2006-06-26&rft_id=info%3Aarxiv%2Fmath-ph%2F0608014&rft_id=info%3Adoi%2F10.1109%2FMCSE.2006.68&rft_id=info%3Abibcode%2F2006CSE.....8d..26O&rft.au=M.+Omerbashich&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHans_P._A._Van_Dongen1999" class="citation journal cs1">Hans P. A. Van Dongen (1999). "Searching for Biological Rhythms: Peak Detection in the Periodogram of Unequally Spaced Data". <i>Journal of Biological Rhythms</i>. <b>14</b> (6): 617–620. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F074873099129000984">10.1177/074873099129000984</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10643760">10643760</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14886901">14886901</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Biological+Rhythms&rft.atitle=Searching+for+Biological+Rhythms%3A+Peak+Detection+in+the+Periodogram+of+Unequally+Spaced+Data&rft.volume=14&rft.issue=6&rft.pages=617-620&rft.date=1999&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14886901%23id-name%3DS2CID&rft_id=info%3Apmid%2F10643760&rft_id=info%3Adoi%2F10.1177%2F074873099129000984&rft.au=Hans+P.+A.+Van+Dongen&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-lomb-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-lomb_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-lomb_9-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-lomb_9-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLomb1976" class="citation journal cs1">Lomb, N. R. (1976). "Least-squares frequency analysis of unequally spaced data". <i>Astrophysics and Space Science</i>. <b>39</b> (2): 447–462. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1976Ap&SS..39..447L">1976Ap&SS..39..447L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00648343">10.1007/BF00648343</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2671466">2671466</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astrophysics+and+Space+Science&rft.atitle=Least-squares+frequency+analysis+of+unequally+spaced+data&rft.volume=39&rft.issue=2&rft.pages=447-462&rft.date=1976&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2671466%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF00648343&rft_id=info%3Abibcode%2F1976Ap%26SS..39..447L&rft.aulast=Lomb&rft.aufirst=N.+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-scar-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-scar_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-scar_10-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-scar_10-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-scar_10-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-scar_10-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScargle,_J._D.1982" class="citation journal cs1">Scargle, J. D. (1982). "Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data". <i>Astrophysical Journal</i>. <b>263</b>: 835. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982ApJ...263..835S">1982ApJ...263..835S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F160554">10.1086/160554</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astrophysical+Journal&rft.atitle=Studies+in+astronomical+time+series+analysis.+II+-+Statistical+aspects+of+spectral+analysis+of+unevenly+spaced+data&rft.volume=263&rft.pages=835&rft.date=1982&rft_id=info%3Adoi%2F10.1086%2F160554&rft_id=info%3Abibcode%2F1982ApJ...263..835S&rft.au=Scargle%2C+J.+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Brunt1931" class="citation book cs1">David Brunt (1931). <i>The Combination of Observations</i> (2nd ed.). Cambridge University Press.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Combination+of+Observations&rft.edition=2nd&rft.pub=Cambridge+University+Press&rft.date=1931&rft.au=David+Brunt&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarning,_F._J._M.1963" class="citation journal cs1">Barning, F. J. M. (1963). "The numerical analysis of the light-curve of 12 Lacertae". <i>Bulletin of the Astronomical Institutes of the Netherlands</i>. <b>17</b>: 22. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1963BAN....17...22B">1963BAN....17...22B</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+Astronomical+Institutes+of+the+Netherlands&rft.atitle=The+numerical+analysis+of+the+light-curve+of+12+Lacertae&rft.volume=17&rft.pages=22&rft.date=1963&rft_id=info%3Abibcode%2F1963BAN....17...22B&rft.au=Barning%2C+F.+J.+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-kmp-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-kmp_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-kmp_13-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPascal_VincentYoshua_Bengio2002" class="citation journal cs1">Pascal Vincent; Yoshua Bengio (2002). <a rel="nofollow" class="external text" href="http://www.iro.umontreal.ca/~vincentp/Publications/kmp_mlj.pdf">"Kernel Matching Pursuit"</a> <span class="cs1-format">(PDF)</span>. <i>Machine Learning</i>. <b>48</b>: 165–187. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1013955821559">10.1023/A:1013955821559</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Machine+Learning&rft.atitle=Kernel+Matching+Pursuit&rft.volume=48&rft.pages=165-187&rft.date=2002&rft_id=info%3Adoi%2F10.1023%2FA%3A1013955821559&rft.au=Pascal+Vincent&rft.au=Yoshua+Bengio&rft_id=http%3A%2F%2Fwww.iro.umontreal.ca%2F~vincentp%2FPublications%2Fkmp_mlj.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition," in <i>Proc. 27th Asilomar Conference on Signals, Systems and Computers,</i> A. Singh, ed., Los Alamitos, CA, USA, IEEE Computer Society Press, 1993</span> </li> <li id="cite_note-k89-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-k89_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-k89_15-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKorenberg,_M._J.1989" class="citation journal cs1">Korenberg, M. J. (1989). "A robust orthogonal algorithm for system identification and time-series analysis". <i>Biological Cybernetics</i>. <b>60</b> (4): 267–276. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00204124">10.1007/BF00204124</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/2706281">2706281</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11712196">11712196</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Biological+Cybernetics&rft.atitle=A+robust+orthogonal+algorithm+for+system+identification+and+time-series+analysis&rft.volume=60&rft.issue=4&rft.pages=267-276&rft.date=1989&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11712196%23id-name%3DS2CID&rft_id=info%3Apmid%2F2706281&rft_id=info%3Adoi%2F10.1007%2FBF00204124&rft.au=Korenberg%2C+M.+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-UNB85-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-UNB85_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-UNB85_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Wells, D.E., P. Vaníček, S. Pagiatakis, 1985. Least-squares spectral analysis revisited. Department of Surveying Engineering Technical Report 84, University of New Brunswick, Fredericton, 68 pages, Available at <a rel="nofollow" class="external autonumber" href="http://www2.unb.ca/gge/Pubs/TR84.pdf">[1]</a>.</span> </li> <li id="cite_note-craymer-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-craymer_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-craymer_17-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-craymer_17-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-craymer_17-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-craymer_17-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-craymer_17-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-craymer_17-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text">Craymer, M.R., <a rel="nofollow" class="external text" href="https://tspace.library.utoronto.ca/handle/1807/12263"><i>The Least Squares Spectrum, Its Inverse Transform and Autocorrelation Function: Theory and Some Applications in Geodesy</i></a>, Ph.D. Dissertation, University of Toronto, Canada (1998).</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliam_J._EmeryRichard_E._Thomson2001" class="citation book cs1">William J. Emery; Richard E. Thomson (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=gYc4fp_ixmwC&q=vanicek+least-squares+spectral-analysis+lomb&pg=PA458"><i>Data Analysis Methods in Physical Oceanography</i></a>. Elsevier. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-444-50756-6" title="Special:BookSources/0-444-50756-6"><bdi>0-444-50756-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Data+Analysis+Methods+in+Physical+Oceanography&rft.pub=Elsevier&rft.date=2001&rft.isbn=0-444-50756-6&rft.au=William+J.+Emery&rft.au=Richard+E.+Thomson&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DgYc4fp_ixmwC%26q%3Dvanicek%2Bleast-squares%2Bspectral-analysis%2Blomb%26pg%3DPA458&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-zhou-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-zhou_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-zhou_19-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhou,_W.-X.Sornette,_D.2001" class="citation journal cs1">Zhou, W.-X.; Sornette, D. (October 2001). "Statistical significance of periodicity and log-periodicity with heavy-tailed correlated noise". <i>International Journal of Modern Physics C</i>. <b>13</b> (2): 137–169. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cond-mat/0110445">cond-mat/0110445</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002IJMPC..13..137Z">2002IJMPC..13..137Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0129183102003024">10.1142/S0129183102003024</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8256563">8256563</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Modern+Physics+C&rft.atitle=Statistical+significance+of+periodicity+and+log-periodicity+with+heavy-tailed+correlated+noise&rft.volume=13&rft.issue=2&rft.pages=137-169&rft.date=2001-10&rft_id=info%3Aarxiv%2Fcond-mat%2F0110445&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8256563%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2FS0129183102003024&rft_id=info%3Abibcode%2F2002IJMPC..13..137Z&rft.au=Zhou%2C+W.-X.&rft.au=Sornette%2C+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFM._ZechmeisterM._Kürster2009" class="citation journal cs1">M. Zechmeister; M. Kürster (March 2009). "The generalised Lomb–Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms". <i>Astronomy & Astrophysics</i>. <b>496</b> (2): 577–584. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0901.2573">0901.2573</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009A&A...496..577Z">2009A&A...496..577Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%3A200811296">10.1051/0004-6361:200811296</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10408194">10408194</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=The+generalised+Lomb%E2%80%93Scargle+periodogram.+A+new+formalism+for+the+floating-mean+and+Keplerian+periodograms&rft.volume=496&rft.issue=2&rft.pages=577-584&rft.date=2009-03&rft_id=info%3Aarxiv%2F0901.2573&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10408194%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1051%2F0004-6361%3A200811296&rft_id=info%3Abibcode%2F2009A%26A...496..577Z&rft.au=M.+Zechmeister&rft.au=M.+K%C3%BCrster&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndrew_CummingGeoffrey_W._MarcyR._Paul_Butler1999" class="citation journal cs1">Andrew Cumming; Geoffrey W. Marcy; R. Paul Butler (December 1999). "The Lick Planet Search: Detectability and Mass Thresholds". <i>The Astrophysical Journal</i>. <b>526</b> (2): 890–915. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/9906466">astro-ph/9906466</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999ApJ...526..890C">1999ApJ...526..890C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F308020">10.1086/308020</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12560512">12560512</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=The+Lick+Planet+Search%3A+Detectability+and+Mass+Thresholds&rft.volume=526&rft.issue=2&rft.pages=890-915&rft.date=1999-12&rft_id=info%3Aarxiv%2Fastro-ph%2F9906466&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12560512%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1086%2F308020&rft_id=info%3Abibcode%2F1999ApJ...526..890C&rft.au=Andrew+Cumming&rft.au=Geoffrey+W.+Marcy&rft.au=R.+Paul+Butler&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKorenberg,_Michael_J.BrenanHunter1997" class="citation journal cs1">Korenberg, Michael J.; Brenan, Colin J. H.; Hunter, Ian W. (1997). "Raman Spectral Estimation via Fast Orthogonal Search". <i>The Analyst</i>. <b>122</b> (9): 879–882. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997Ana...122..879K">1997Ana...122..879K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2Fa700902j">10.1039/a700902j</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Analyst&rft.atitle=Raman+Spectral+Estimation+via+Fast+Orthogonal+Search&rft.volume=122&rft.issue=9&rft.pages=879-882&rft.date=1997&rft_id=info%3Adoi%2F10.1039%2Fa700902j&rft_id=info%3Abibcode%2F1997Ana...122..879K&rft.au=Korenberg%2C+Michael+J.&rft.au=Brenan%2C+Colin+J.+H.&rft.au=Hunter%2C+Ian+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-fastchi2-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-fastchi2_23-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPalmer2009" class="citation journal cs1">Palmer, David M. (2009). "A Fast Chi-squared Technique For Period Search of Irregularly Sampled Data". <i>The Astrophysical Journal</i>. <b>695</b> (1): 496–502. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0901.1913">0901.1913</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009ApJ...695..496P">2009ApJ...695..496P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0004-637X%2F695%2F1%2F496">10.1088/0004-637X/695/1/496</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5991300">5991300</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=A+Fast+Chi-squared+Technique+For+Period+Search+of+Irregularly+Sampled+Data&rft.volume=695&rft.issue=1&rft.pages=496-502&rft.date=2009&rft_id=info%3Aarxiv%2F0901.1913&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5991300%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0004-637X%2F695%2F1%2F496&rft_id=info%3Abibcode%2F2009ApJ...695..496P&rft.aulast=Palmer&rft.aufirst=David+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://public.lanl.gov/palmer/fastchi.html">"David Palmer: The Fast Chi-squared Period Search"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=David+Palmer%3A+The+Fast+Chi-squared+Period+Search&rft_id=http%3A%2F%2Fpublic.lanl.gov%2Fpalmer%2Ffastchi.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-bwmm-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-bwmm_25-0">^</a></b></span> <span class="reference-text">Beard, A.G., Williams, P.J.S., Mitchell, N.J. & Muller, H.G. A special climatology of planetary waves and tidal variability, J Atm. Solar-Ter. Phys. 63 (09), p.801–811 (2001).</span> </li> <li id="cite_note-pagi-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-pagi_26-0">^</a></b></span> <span class="reference-text">Pagiatakis, S. Stochastic significance of peaks in the least-squares spectrum, J of Geodesy 73, p.67-78 (1999).</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text">Steeves, R.R. A statistical test for significance of peaks in the least squares spectrum, Collected Papers of the Geodetic Survey, Department of Energy, Mines and Resources, Surveys and Mapping, Ottawa, Canada, p.149-166 (1981)</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichard_A._MullerGordon_J._MacDonald2000" class="citation book cs1"><a href="/wiki/Richard_A._Muller" title="Richard A. Muller">Richard A. Muller</a>; Gordon J. MacDonald (2000). <i>Ice Ages and Astronomical Causes: Data, spectral analysis and mechanisms</i> (1st ed.). Springer Berlin Heidelberg. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000iaac.book.....M">2000iaac.book.....M</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-43779-6" title="Special:BookSources/978-3-540-43779-6"><bdi>978-3-540-43779-6</bdi></a>. <a href="/wiki/OL_(identifier)" class="mw-redirect" title="OL (identifier)">OL</a> <a rel="nofollow" class="external text" href="https://openlibrary.org/books/OL20645181M">20645181M</a>. <a href="/wiki/WDQ_(identifier)" class="mw-redirect" title="WDQ (identifier)">Wikidata</a> <a href="https://www.wikidata.org/wiki/Q111312009" class="extiw" title="d:Q111312009">Q111312009</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Ice+Ages+and+Astronomical+Causes%3A+Data%2C+spectral+analysis+and+mechanisms&rft.edition=1st&rft.pub=Springer+Berlin+Heidelberg&rft.date=2000&rft_id=https%3A%2F%2Fopenlibrary.org%2Fbooks%2FOL20645181M%23id-name%3DOL&rft_id=info%3Abibcode%2F2000iaac.book.....M&rft.isbn=978-3-540-43779-6&rft.au=Richard+A.+Muller&rft.au=Gordon+J.+MacDonald&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTimothy_A._DavisKermit_Sigmon2005" class="citation book cs1">Timothy A. Davis; Kermit Sigmon (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=MXWypqcHECkC&q=matlab+least-squares+backslash&pg=PA12"><i>MATLAB Primer</i></a>. CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-58488-523-8" title="Special:BookSources/1-58488-523-8"><bdi>1-58488-523-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=MATLAB+Primer&rft.pub=CRC+Press&rft.date=2005&rft.isbn=1-58488-523-8&rft.au=Timothy+A.+Davis&rft.au=Kermit+Sigmon&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DMXWypqcHECkC%26q%3Dmatlab%2Bleast-squares%2Bbackslash%26pg%3DPA12&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDarrell_Williamson1999" class="citation book cs1">Darrell Williamson (1999). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JCKAirWQdqkC&q=fourier-transform+orthogonal+least-squares&pg=PA314"><i>Discrete-Time Signal Processing: An Algebraic Approach</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-85233-161-5" title="Special:BookSources/1-85233-161-5"><bdi>1-85233-161-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Discrete-Time+Signal+Processing%3A+An+Algebraic+Approach&rft.pub=Springer&rft.date=1999&rft.isbn=1-85233-161-5&rft.au=Darrell+Williamson&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJCKAirWQdqkC%26q%3Dfourier-transform%2Borthogonal%2Bleast-squares%26pg%3DPA314&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALeast-squares+spectral+analysis" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Least-squares_spectral_analysis&action=edit&section=12" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20220818070617id_/http://www2.unb.ca/gge/Research/GRL/LSSA/sourceCode.html">LSSA package freeware download</a>, FORTRAN, Vaníček's least-squares spectral analysis method, from the <a href="/wiki/University_of_New_Brunswick" title="University of New Brunswick">University of New Brunswick</a>.</li> <li><a rel="nofollow" class="external text" href="https://geodesy.noaa.gov/gps-toolbox/LSWAVE.htm">LSWAVE package freeware download</a>, MATLAB, includes the Vaníček's least-squares spectral analysis method, from the <a href="/wiki/U.S._National_Geodetic_Survey" title="U.S. National Geodetic Survey">U.S. National Geodetic Survey</a>.</li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Major_topics_in_mathematical_analysis" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Analysis-footer" title="Template:Analysis-footer"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Analysis-footer" title="Template talk:Analysis-footer"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Analysis-footer" title="Special:EditPage/Template:Analysis-footer"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Major_topics_in_mathematical_analysis" style="font-size:114%;margin:0 4em">Major topics in <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><b><a href="/wiki/Calculus" title="Calculus">Calculus</a></b>: <a href="/wiki/Integral" title="Integral">Integration</a></li> <li><a href="/wiki/Derivative" title="Derivative">Differentiation</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Differential equations</a> <ul><li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial</a></li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">stochastic</a></li></ul></li> <li><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Fundamental theorem of calculus</a></li> <li><a href="/wiki/Calculus_of_variations" title="Calculus of variations">Calculus of variations</a></li> <li><a href="/wiki/Vector_calculus" title="Vector calculus">Vector calculus</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li> <li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix calculus</a></li> <li><a href="/wiki/Lists_of_integrals" title="Lists of integrals">Lists of integrals</a></li> <li><a href="/wiki/Table_of_derivatives" class="mw-redirect" title="Table of derivatives">Table of derivatives</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li> <li><a href="/wiki/Complex_analysis" title="Complex analysis">Complex analysis</a></li> <li><a href="/wiki/Hypercomplex_analysis" title="Hypercomplex analysis">Hypercomplex analysis</a> (<a href="/wiki/Quaternionic_analysis" title="Quaternionic analysis">quaternionic analysis</a>)</li> <li><a href="/wiki/Functional_analysis" title="Functional analysis">Functional analysis</a></li> <li><a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a></li> <li><a class="mw-selflink selflink">Least-squares spectral analysis</a></li> <li><a href="/wiki/Harmonic_analysis" title="Harmonic analysis">Harmonic analysis</a></li> <li><a href="/wiki/P-adic_analysis" title="P-adic analysis">P-adic analysis</a> (<a href="/wiki/P-adic_number" title="P-adic number">P-adic numbers</a>)</li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure theory</a></li> <li><a href="/wiki/Representation_theory" title="Representation theory">Representation theory</a></li></ul> <ul><li><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">Functions</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuous function</a></li> <li><a href="/wiki/Special_functions" title="Special functions">Special functions</a></li> <li><a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">Limit</a></li> <li><a href="/wiki/Series_(mathematics)" title="Series (mathematics)">Series</a></li> <li><a href="/wiki/Infinity" title="Infinity">Infinity</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><b><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></b></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Statistics" style="padding:3px"><table class="nowraplinks hlist mw-collapsible uncollapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Statistics" title="Template:Statistics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Statistics" title="Template talk:Statistics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Statistics" title="Special:EditPage/Template:Statistics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Statistics" style="font-size:114%;margin:0 4em"><a href="/wiki/Statistics" title="Statistics">Statistics</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/Outline_of_statistics" title="Outline of statistics">Outline</a></li> <li><a href="/wiki/List_of_statistics_articles" title="List of statistics articles">Index</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Descriptive_statistics" style="font-size:114%;margin:0 4em"><a href="/wiki/Descriptive_statistics" title="Descriptive statistics">Descriptive statistics</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Continuous_probability_distribution" class="mw-redirect" title="Continuous probability distribution">Continuous data</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Central_tendency" title="Central tendency">Center</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mean" title="Mean">Mean</a> <ul><li><a href="/wiki/Arithmetic_mean" title="Arithmetic mean">Arithmetic</a></li> <li><a href="/wiki/Arithmetic%E2%80%93geometric_mean" title="Arithmetic–geometric mean">Arithmetic-Geometric</a></li> <li><a href="/wiki/Contraharmonic_mean" title="Contraharmonic mean">Contraharmonic</a></li> <li><a href="/wiki/Cubic_mean" title="Cubic mean">Cubic</a></li> <li><a href="/wiki/Generalized_mean" title="Generalized mean">Generalized/power</a></li> <li><a href="/wiki/Geometric_mean" title="Geometric mean">Geometric</a></li> <li><a href="/wiki/Harmonic_mean" title="Harmonic mean">Harmonic</a></li> <li><a href="/wiki/Heronian_mean" title="Heronian mean">Heronian</a></li> <li><a href="/wiki/Heinz_mean" title="Heinz mean">Heinz</a></li> <li><a href="/wiki/Lehmer_mean" title="Lehmer mean">Lehmer</a></li></ul></li> <li><a href="/wiki/Median" title="Median">Median</a></li> <li><a href="/wiki/Mode_(statistics)" title="Mode (statistics)">Mode</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Statistical_dispersion" title="Statistical dispersion">Dispersion</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Average_absolute_deviation" title="Average absolute deviation">Average absolute deviation</a></li> <li><a href="/wiki/Coefficient_of_variation" title="Coefficient of variation">Coefficient of variation</a></li> <li><a href="/wiki/Interquartile_range" title="Interquartile range">Interquartile range</a></li> <li><a href="/wiki/Percentile" title="Percentile">Percentile</a></li> <li><a href="/wiki/Range_(statistics)" title="Range (statistics)">Range</a></li> <li><a href="/wiki/Standard_deviation" title="Standard deviation">Standard deviation</a></li> <li><a href="/wiki/Variance#Sample_variance" title="Variance">Variance</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Shape_of_the_distribution" class="mw-redirect" title="Shape of the distribution">Shape</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Central_limit_theorem" title="Central limit theorem">Central limit theorem</a></li> <li><a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">Moments</a> <ul><li><a href="/wiki/Kurtosis" title="Kurtosis">Kurtosis</a></li> <li><a href="/wiki/L-moment" title="L-moment">L-moments</a></li> <li><a href="/wiki/Skewness" title="Skewness">Skewness</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Count_data" title="Count data">Count data</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Index_of_dispersion" title="Index of dispersion">Index of dispersion</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em">Summary tables</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Contingency_table" title="Contingency table">Contingency table</a></li> <li><a href="/wiki/Frequency_distribution" class="mw-redirect" title="Frequency distribution">Frequency distribution</a></li> <li><a href="/wiki/Grouped_data" title="Grouped data">Grouped data</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">Dependence</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Partial_correlation" title="Partial correlation">Partial correlation</a></li> <li><a href="/wiki/Pearson_correlation_coefficient" title="Pearson correlation coefficient">Pearson product-moment correlation</a></li> <li><a href="/wiki/Rank_correlation" title="Rank correlation">Rank correlation</a> <ul><li><a href="/wiki/Kendall_rank_correlation_coefficient" title="Kendall rank correlation coefficient">Kendall's τ</a></li> <li><a href="/wiki/Spearman%27s_rank_correlation_coefficient" title="Spearman's rank correlation coefficient">Spearman's ρ</a></li></ul></li> <li><a href="/wiki/Scatter_plot" title="Scatter plot">Scatter plot</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Statistical_graphics" title="Statistical graphics">Graphics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bar_chart" title="Bar chart">Bar chart</a></li> <li><a href="/wiki/Biplot" title="Biplot">Biplot</a></li> <li><a href="/wiki/Box_plot" title="Box plot">Box plot</a></li> <li><a href="/wiki/Control_chart" title="Control chart">Control chart</a></li> <li><a href="/wiki/Correlogram" title="Correlogram">Correlogram</a></li> <li><a href="/wiki/Fan_chart_(statistics)" title="Fan chart (statistics)">Fan chart</a></li> <li><a href="/wiki/Forest_plot" title="Forest plot">Forest plot</a></li> <li><a href="/wiki/Histogram" title="Histogram">Histogram</a></li> <li><a href="/wiki/Pie_chart" title="Pie chart">Pie chart</a></li> <li><a href="/wiki/Q%E2%80%93Q_plot" title="Q–Q plot">Q–Q plot</a></li> <li><a href="/wiki/Radar_chart" title="Radar chart">Radar chart</a></li> <li><a href="/wiki/Run_chart" title="Run chart">Run chart</a></li> <li><a href="/wiki/Scatter_plot" title="Scatter plot">Scatter plot</a></li> <li><a href="/wiki/Stem-and-leaf_display" title="Stem-and-leaf display">Stem-and-leaf display</a></li> <li><a href="/wiki/Violin_plot" title="Violin plot">Violin plot</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Data_collection" style="font-size:114%;margin:0 4em"><a href="/wiki/Data_collection" title="Data collection">Data collection</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Design_of_experiments" title="Design of experiments">Study design</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Effect_size" title="Effect size">Effect size</a></li> <li><a href="/wiki/Missing_data" title="Missing data">Missing data</a></li> <li><a href="/wiki/Optimal_design" class="mw-redirect" title="Optimal design">Optimal design</a></li> <li><a href="/wiki/Statistical_population" title="Statistical population">Population</a></li> <li><a href="/wiki/Replication_(statistics)" title="Replication (statistics)">Replication</a></li> <li><a href="/wiki/Sample_size_determination" title="Sample size determination">Sample size determination</a></li> <li><a href="/wiki/Statistic" title="Statistic">Statistic</a></li> <li><a href="/wiki/Statistical_power" class="mw-redirect" title="Statistical power">Statistical power</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Survey_methodology" title="Survey methodology">Survey methodology</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sampling_(statistics)" title="Sampling (statistics)">Sampling</a> <ul><li><a href="/wiki/Cluster_sampling" title="Cluster sampling">Cluster</a></li> <li><a href="/wiki/Stratified_sampling" title="Stratified sampling">Stratified</a></li></ul></li> <li><a href="/wiki/Opinion_poll" title="Opinion poll">Opinion poll</a></li> <li><a href="/wiki/Questionnaire" title="Questionnaire">Questionnaire</a></li> <li><a href="/wiki/Standard_error" title="Standard error">Standard error</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Experiment" title="Experiment">Controlled experiments</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Blocking_(statistics)" title="Blocking (statistics)">Blocking</a></li> <li><a href="/wiki/Factorial_experiment" title="Factorial experiment">Factorial experiment</a></li> <li><a href="/wiki/Interaction_(statistics)" title="Interaction (statistics)">Interaction</a></li> <li><a href="/wiki/Random_assignment" title="Random assignment">Random assignment</a></li> <li><a href="/wiki/Randomized_controlled_trial" title="Randomized controlled trial">Randomized controlled trial</a></li> <li><a href="/wiki/Randomized_experiment" title="Randomized experiment">Randomized experiment</a></li> <li><a href="/wiki/Scientific_control" title="Scientific control">Scientific control</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em">Adaptive designs</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adaptive_clinical_trial" class="mw-redirect" title="Adaptive clinical trial">Adaptive clinical trial</a></li> <li><a href="/wiki/Stochastic_approximation" title="Stochastic approximation">Stochastic approximation</a></li> <li><a href="/wiki/Up-and-Down_Designs" class="mw-redirect" title="Up-and-Down Designs">Up-and-down designs</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Observational_study" title="Observational study">Observational studies</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cohort_study" title="Cohort study">Cohort study</a></li> <li><a href="/wiki/Cross-sectional_study" title="Cross-sectional study">Cross-sectional study</a></li> <li><a href="/wiki/Natural_experiment" title="Natural experiment">Natural experiment</a></li> <li><a href="/wiki/Quasi-experiment" title="Quasi-experiment">Quasi-experiment</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Statistical_inference" style="font-size:114%;margin:0 4em"><a href="/wiki/Statistical_inference" title="Statistical inference">Statistical inference</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Statistical_theory" title="Statistical theory">Statistical theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Population_(statistics)" class="mw-redirect" title="Population (statistics)">Population</a></li> <li><a href="/wiki/Statistic" title="Statistic">Statistic</a></li> <li><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distribution</a></li> <li><a href="/wiki/Sampling_distribution" title="Sampling distribution">Sampling distribution</a> <ul><li><a href="/wiki/Order_statistic" title="Order statistic">Order statistic</a></li></ul></li> <li><a href="/wiki/Empirical_distribution_function" title="Empirical distribution function">Empirical distribution</a> <ul><li><a href="/wiki/Density_estimation" title="Density estimation">Density estimation</a></li></ul></li> <li><a href="/wiki/Statistical_model" title="Statistical model">Statistical model</a> <ul><li><a href="/wiki/Model_specification" class="mw-redirect" title="Model specification">Model specification</a></li> <li><a href="/wiki/Lp_space" title="Lp space">L<sup><i>p</i></sup> space</a></li></ul></li> <li><a href="/wiki/Statistical_parameter" title="Statistical parameter">Parameter</a> <ul><li><a href="/wiki/Location_parameter" title="Location parameter">location</a></li> <li><a href="/wiki/Scale_parameter" title="Scale parameter">scale</a></li> <li><a href="/wiki/Shape_parameter" title="Shape parameter">shape</a></li></ul></li> <li><a href="/wiki/Parametric_statistics" title="Parametric statistics">Parametric family</a> <ul><li><a href="/wiki/Likelihood_function" title="Likelihood function">Likelihood</a> <a href="/wiki/Monotone_likelihood_ratio" title="Monotone likelihood ratio"><span style="font-size:85%;">(monotone)</span></a></li> <li><a href="/wiki/Location%E2%80%93scale_family" title="Location–scale family">Location–scale family</a></li> <li><a href="/wiki/Exponential_family" title="Exponential family">Exponential family</a></li></ul></li> <li><a href="/wiki/Completeness_(statistics)" title="Completeness (statistics)">Completeness</a></li> <li><a href="/wiki/Sufficient_statistic" title="Sufficient statistic">Sufficiency</a></li> <li><a href="/wiki/Plug-in_principle" class="mw-redirect" title="Plug-in principle">Statistical functional</a> <ul><li><a href="/wiki/Bootstrapping_(statistics)" title="Bootstrapping (statistics)">Bootstrap</a></li> <li><a href="/wiki/U-statistic" title="U-statistic">U</a></li> <li><a href="/wiki/V-statistic" title="V-statistic">V</a></li></ul></li> <li><a href="/wiki/Optimal_decision" title="Optimal decision">Optimal decision</a> <ul><li><a href="/wiki/Loss_function" title="Loss function">loss function</a></li></ul></li> <li><a href="/wiki/Efficiency_(statistics)" title="Efficiency (statistics)">Efficiency</a></li> <li><a href="/wiki/Statistical_distance" title="Statistical distance">Statistical distance</a> <ul><li><a href="/wiki/Divergence_(statistics)" title="Divergence (statistics)">divergence</a></li></ul></li> <li><a href="/wiki/Asymptotic_theory_(statistics)" title="Asymptotic theory (statistics)">Asymptotics</a></li> <li><a href="/wiki/Robust_statistics" title="Robust statistics">Robustness</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Frequentist_inference" title="Frequentist inference">Frequentist inference</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Point_estimation" title="Point estimation">Point estimation</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Estimating_equations" title="Estimating equations">Estimating equations</a> <ul><li><a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">Maximum likelihood</a></li> <li><a href="/wiki/Method_of_moments_(statistics)" title="Method of moments (statistics)">Method of moments</a></li> <li><a href="/wiki/M-estimator" title="M-estimator">M-estimator</a></li> <li><a href="/wiki/Minimum_distance_estimation" class="mw-redirect" title="Minimum distance estimation">Minimum distance</a></li></ul></li> <li><a href="/wiki/Bias_of_an_estimator" title="Bias of an estimator">Unbiased estimators</a> <ul><li><a href="/wiki/Minimum-variance_unbiased_estimator" title="Minimum-variance unbiased estimator">Mean-unbiased minimum-variance</a> <ul><li><a href="/wiki/Rao%E2%80%93Blackwell_theorem" title="Rao–Blackwell theorem">Rao–Blackwellization</a></li> <li><a href="/wiki/Lehmann%E2%80%93Scheff%C3%A9_theorem" title="Lehmann–Scheffé theorem">Lehmann–Scheffé theorem</a></li></ul></li> <li><a href="/wiki/Median-unbiased_estimator" class="mw-redirect" title="Median-unbiased estimator">Median unbiased</a></li></ul></li> <li><a href="/wiki/Plug-in_principle" class="mw-redirect" title="Plug-in principle">Plug-in</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Interval_estimation" title="Interval estimation">Interval estimation</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Confidence_interval" title="Confidence interval">Confidence interval</a></li> <li><a href="/wiki/Pivotal_quantity" title="Pivotal quantity">Pivot</a></li> <li><a href="/wiki/Likelihood_interval" class="mw-redirect" title="Likelihood interval">Likelihood interval</a></li> <li><a href="/wiki/Prediction_interval" title="Prediction interval">Prediction interval</a></li> <li><a href="/wiki/Tolerance_interval" title="Tolerance interval">Tolerance interval</a></li> <li><a href="/wiki/Resampling_(statistics)" title="Resampling (statistics)">Resampling</a> <ul><li><a href="/wiki/Bootstrapping_(statistics)" title="Bootstrapping (statistics)">Bootstrap</a></li> <li><a href="/wiki/Jackknife_resampling" title="Jackknife resampling">Jackknife</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Statistical_hypothesis_testing" class="mw-redirect" title="Statistical hypothesis testing">Testing hypotheses</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/One-_and_two-tailed_tests" title="One- and two-tailed tests">1- & 2-tails</a></li> <li><a href="/wiki/Power_(statistics)" title="Power (statistics)">Power</a> <ul><li><a href="/wiki/Uniformly_most_powerful_test" title="Uniformly most powerful test">Uniformly most powerful test</a></li></ul></li> <li><a href="/wiki/Permutation_test" title="Permutation test">Permutation test</a> <ul><li><a href="/wiki/Randomization_test" class="mw-redirect" title="Randomization test">Randomization test</a></li></ul></li> <li><a href="/wiki/Multiple_comparisons" class="mw-redirect" title="Multiple comparisons">Multiple comparisons</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Parametric_statistics" title="Parametric statistics">Parametric tests</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Likelihood-ratio_test" title="Likelihood-ratio test">Likelihood-ratio</a></li> <li><a href="/wiki/Score_test" title="Score test">Score/Lagrange multiplier</a></li> <li><a href="/wiki/Wald_test" title="Wald test">Wald</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/List_of_statistical_tests" title="List of statistical tests">Specific tests</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Z-test" title="Z-test"><i>Z</i>-test <span style="font-size:85%;">(normal)</span></a></li> <li><a href="/wiki/Student%27s_t-test" title="Student's t-test">Student's <i>t</i>-test</a></li> <li><a href="/wiki/F-test" title="F-test"><i>F</i>-test</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Goodness_of_fit" title="Goodness of fit">Goodness of fit</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chi-squared_test" title="Chi-squared test">Chi-squared</a></li> <li><a href="/wiki/G-test" title="G-test"><i>G</i>-test</a></li> <li><a href="/wiki/Kolmogorov%E2%80%93Smirnov_test" title="Kolmogorov–Smirnov test">Kolmogorov–Smirnov</a></li> <li><a href="/wiki/Anderson%E2%80%93Darling_test" title="Anderson–Darling test">Anderson–Darling</a></li> <li><a href="/wiki/Lilliefors_test" title="Lilliefors test">Lilliefors</a></li> <li><a href="/wiki/Jarque%E2%80%93Bera_test" title="Jarque–Bera test">Jarque–Bera</a></li> <li><a href="/wiki/Shapiro%E2%80%93Wilk_test" title="Shapiro–Wilk test">Normality <span style="font-size:85%;">(Shapiro–Wilk)</span></a></li> <li><a href="/wiki/Likelihood-ratio_test" title="Likelihood-ratio test">Likelihood-ratio test</a></li> <li><a href="/wiki/Model_selection" title="Model selection">Model selection</a> <ul><li><a href="/wiki/Cross-validation_(statistics)" title="Cross-validation (statistics)">Cross validation</a></li> <li><a href="/wiki/Akaike_information_criterion" title="Akaike information criterion">AIC</a></li> <li><a href="/wiki/Bayesian_information_criterion" title="Bayesian information criterion">BIC</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Rank_statistics" class="mw-redirect" title="Rank statistics">Rank statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sign_test" title="Sign test">Sign</a> <ul><li><a href="/wiki/Sample_median" class="mw-redirect" title="Sample median">Sample median</a></li></ul></li> <li><a href="/wiki/Wilcoxon_signed-rank_test" title="Wilcoxon signed-rank test">Signed rank <span style="font-size:85%;">(Wilcoxon)</span></a> <ul><li><a href="/wiki/Hodges%E2%80%93Lehmann_estimator" title="Hodges–Lehmann estimator">Hodges–Lehmann estimator</a></li></ul></li> <li><a href="/wiki/Mann%E2%80%93Whitney_U_test" title="Mann–Whitney U test">Rank sum <span style="font-size:85%;">(Mann–Whitney)</span></a></li> <li><a href="/wiki/Nonparametric_statistics" title="Nonparametric statistics">Nonparametric</a> <a href="/wiki/Analysis_of_variance" title="Analysis of variance">anova</a> <ul><li><a href="/wiki/Kruskal%E2%80%93Wallis_test" title="Kruskal–Wallis test">1-way <span style="font-size:85%;">(Kruskal–Wallis)</span></a></li> <li><a href="/wiki/Friedman_test" title="Friedman test">2-way <span style="font-size:85%;">(Friedman)</span></a></li> <li><a href="/wiki/Jonckheere%27s_trend_test" title="Jonckheere's trend test">Ordered alternative <span style="font-size:85%;">(Jonckheere–Terpstra)</span></a></li></ul></li> <li><a href="/wiki/Van_der_Waerden_test" title="Van der Waerden test">Van der Waerden test</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian inference</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bayesian_probability" title="Bayesian probability">Bayesian probability</a> <ul><li><a href="/wiki/Prior_probability" title="Prior probability">prior</a></li> <li><a href="/wiki/Posterior_probability" title="Posterior probability">posterior</a></li></ul></li> <li><a href="/wiki/Credible_interval" title="Credible interval">Credible interval</a></li> <li><a href="/wiki/Bayes_factor" title="Bayes factor">Bayes factor</a></li> <li><a href="/wiki/Bayes_estimator" title="Bayes estimator">Bayesian estimator</a> <ul><li><a href="/wiki/Maximum_a_posteriori_estimation" title="Maximum a posteriori estimation">Maximum posterior estimator</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="CorrelationRegression_analysis" style="font-size:114%;margin:0 4em"><div class="hlist"><ul><li><a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">Correlation</a></li><li><a href="/wiki/Regression_analysis" title="Regression analysis">Regression analysis</a></li></ul></div></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">Correlation</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pearson_product-moment_correlation_coefficient" class="mw-redirect" title="Pearson product-moment correlation coefficient">Pearson product-moment</a></li> <li><a href="/wiki/Partial_correlation" title="Partial correlation">Partial correlation</a></li> <li><a href="/wiki/Confounding" title="Confounding">Confounding variable</a></li> <li><a href="/wiki/Coefficient_of_determination" title="Coefficient of determination">Coefficient of determination</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Regression_analysis" title="Regression analysis">Regression analysis</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Errors_and_residuals" title="Errors and residuals">Errors and residuals</a></li> <li><a href="/wiki/Regression_validation" title="Regression validation">Regression validation</a></li> <li><a href="/wiki/Mixed_model" title="Mixed model">Mixed effects models</a></li> <li><a href="/wiki/Simultaneous_equations_model" title="Simultaneous equations model">Simultaneous equations models</a></li> <li><a href="/wiki/Multivariate_adaptive_regression_splines" class="mw-redirect" title="Multivariate adaptive regression splines">Multivariate adaptive regression splines (MARS)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Linear_regression" title="Linear regression">Linear regression</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Simple_linear_regression" title="Simple linear regression">Simple linear regression</a></li> <li><a href="/wiki/Ordinary_least_squares" title="Ordinary least squares">Ordinary least squares</a></li> <li><a href="/wiki/General_linear_model" title="General linear model">General linear model</a></li> <li><a href="/wiki/Bayesian_linear_regression" title="Bayesian linear regression">Bayesian regression</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em">Non-standard predictors</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nonlinear_regression" title="Nonlinear regression">Nonlinear regression</a></li> <li><a href="/wiki/Nonparametric_regression" title="Nonparametric regression">Nonparametric</a></li> <li><a href="/wiki/Semiparametric_regression" title="Semiparametric regression">Semiparametric</a></li> <li><a href="/wiki/Isotonic_regression" title="Isotonic regression">Isotonic</a></li> <li><a href="/wiki/Robust_regression" title="Robust regression">Robust</a></li> <li><a href="/wiki/Heteroscedasticity" class="mw-redirect" title="Heteroscedasticity">Heteroscedasticity</a></li> <li><a href="/wiki/Homoscedasticity" class="mw-redirect" title="Homoscedasticity">Homoscedasticity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Generalized_linear_model" title="Generalized linear model">Generalized linear model</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Exponential_family" title="Exponential family">Exponential families</a></li> <li><a href="/wiki/Logistic_regression" title="Logistic regression">Logistic <span style="font-size:85%;">(Bernoulli)</span></a> / <a href="/wiki/Binomial_regression" title="Binomial regression">Binomial</a> / <a href="/wiki/Poisson_regression" title="Poisson regression">Poisson regressions</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Partition_of_sums_of_squares" title="Partition of sums of squares">Partition of variance</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Analysis_of_variance" title="Analysis of variance">Analysis of variance (ANOVA, anova)</a></li> <li><a href="/wiki/Analysis_of_covariance" title="Analysis of covariance">Analysis of covariance</a></li> <li><a href="/wiki/Multivariate_analysis_of_variance" title="Multivariate analysis of variance">Multivariate ANOVA</a></li> <li><a href="/wiki/Degrees_of_freedom_(statistics)" title="Degrees of freedom (statistics)">Degrees of freedom</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible uncollapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Categorical_/_Multivariate_/_Time-series_/_Survival_analysis" style="font-size:114%;margin:0 4em"><a href="/wiki/Categorical_variable" title="Categorical variable">Categorical</a> / <a href="/wiki/Multivariate_statistics" title="Multivariate statistics">Multivariate</a> / <a href="/wiki/Time_series" title="Time series">Time-series</a> / <a href="/wiki/Survival_analysis" title="Survival analysis">Survival analysis</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Categorical_variable" title="Categorical variable">Categorical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cohen%27s_kappa" title="Cohen's kappa">Cohen's kappa</a></li> <li><a href="/wiki/Contingency_table" title="Contingency table">Contingency table</a></li> <li><a href="/wiki/Graphical_model" title="Graphical model">Graphical model</a></li> <li><a href="/wiki/Poisson_regression" title="Poisson regression">Log-linear model</a></li> <li><a href="/wiki/McNemar%27s_test" title="McNemar's test">McNemar's test</a></li> <li><a href="/wiki/Cochran%E2%80%93Mantel%E2%80%93Haenszel_statistics" title="Cochran–Mantel–Haenszel statistics">Cochran–Mantel–Haenszel statistics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Multivariate_statistics" title="Multivariate statistics">Multivariate</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/General_linear_model" title="General linear model">Regression</a></li> <li><a href="/wiki/Multivariate_analysis_of_variance" title="Multivariate analysis of variance">Manova</a></li> <li><a href="/wiki/Principal_component_analysis" title="Principal component analysis">Principal components</a></li> <li><a href="/wiki/Canonical_correlation" title="Canonical correlation">Canonical correlation</a></li> <li><a href="/wiki/Linear_discriminant_analysis" title="Linear discriminant analysis">Discriminant analysis</a></li> <li><a href="/wiki/Cluster_analysis" title="Cluster analysis">Cluster analysis</a></li> <li><a href="/wiki/Statistical_classification" title="Statistical classification">Classification</a></li> <li><a href="/wiki/Structural_equation_modeling" title="Structural equation modeling">Structural equation model</a> <ul><li><a href="/wiki/Factor_analysis" title="Factor analysis">Factor analysis</a></li></ul></li> <li><a href="/wiki/Multivariate_distribution" class="mw-redirect" title="Multivariate distribution">Multivariate distributions</a> <ul><li><a href="/wiki/Elliptical_distribution" title="Elliptical distribution">Elliptical distributions</a> <ul><li><a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">Normal</a></li></ul></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Time_series" title="Time series">Time-series</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Decomposition_of_time_series" title="Decomposition of time series">Decomposition</a></li> <li><a href="/wiki/Trend_estimation" class="mw-redirect" title="Trend estimation">Trend</a></li> <li><a href="/wiki/Stationary_process" title="Stationary process">Stationarity</a></li> <li><a href="/wiki/Seasonal_adjustment" title="Seasonal adjustment">Seasonal adjustment</a></li> <li><a href="/wiki/Exponential_smoothing" title="Exponential smoothing">Exponential smoothing</a></li> <li><a href="/wiki/Cointegration" title="Cointegration">Cointegration</a></li> <li><a href="/wiki/Structural_break" title="Structural break">Structural break</a></li> <li><a href="/wiki/Granger_causality" title="Granger causality">Granger causality</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Specific tests</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dickey%E2%80%93Fuller_test" title="Dickey–Fuller test">Dickey–Fuller</a></li> <li><a href="/wiki/Johansen_test" title="Johansen test">Johansen</a></li> <li><a href="/wiki/Ljung%E2%80%93Box_test" title="Ljung–Box test">Q-statistic <span style="font-size:85%;">(Ljung–Box)</span></a></li> <li><a href="/wiki/Durbin%E2%80%93Watson_statistic" title="Durbin–Watson statistic">Durbin–Watson</a></li> <li><a href="/wiki/Breusch%E2%80%93Godfrey_test" title="Breusch–Godfrey test">Breusch–Godfrey</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Time_domain" title="Time domain">Time domain</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Autocorrelation" title="Autocorrelation">Autocorrelation (ACF)</a> <ul><li><a href="/wiki/Partial_autocorrelation_function" title="Partial autocorrelation function">partial (PACF)</a></li></ul></li> <li><a href="/wiki/Cross-correlation" title="Cross-correlation">Cross-correlation (XCF)</a></li> <li><a href="/wiki/Autoregressive%E2%80%93moving-average_model" class="mw-redirect" title="Autoregressive–moving-average model">ARMA model</a></li> <li><a href="/wiki/Box%E2%80%93Jenkins_method" title="Box–Jenkins method">ARIMA model <span style="font-size:85%;">(Box–Jenkins)</span></a></li> <li><a href="/wiki/Autoregressive_conditional_heteroskedasticity" title="Autoregressive conditional heteroskedasticity">Autoregressive conditional heteroskedasticity (ARCH)</a></li> <li><a href="/wiki/Vector_autoregression" title="Vector autoregression">Vector autoregression (VAR)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Frequency_domain" title="Frequency domain">Frequency domain</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Spectral_density_estimation" title="Spectral density estimation">Spectral density estimation</a></li> <li><a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a></li> <li><a class="mw-selflink selflink">Least-squares spectral analysis</a></li> <li><a href="/wiki/Wavelet" title="Wavelet">Wavelet</a></li> <li><a href="/wiki/Whittle_likelihood" title="Whittle likelihood">Whittle likelihood</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Survival_analysis" title="Survival analysis">Survival</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Survival_function" title="Survival function">Survival function</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kaplan%E2%80%93Meier_estimator" title="Kaplan–Meier estimator">Kaplan–Meier estimator (product limit)</a></li> <li><a href="/wiki/Proportional_hazards_model" title="Proportional hazards model">Proportional hazards models</a></li> <li><a href="/wiki/Accelerated_failure_time_model" title="Accelerated failure time model">Accelerated failure time (AFT) model</a></li> <li><a href="/wiki/First-hitting-time_model" title="First-hitting-time model">First hitting time</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Failure_rate" title="Failure rate">Hazard function</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nelson%E2%80%93Aalen_estimator" title="Nelson–Aalen estimator">Nelson–Aalen estimator</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Test</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Log-rank_test" class="mw-redirect" title="Log-rank test">Log-rank test</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Applications" style="font-size:114%;margin:0 4em"><a href="/wiki/List_of_fields_of_application_of_statistics" title="List of fields of application of statistics">Applications</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Biostatistics" title="Biostatistics">Biostatistics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bioinformatics" title="Bioinformatics">Bioinformatics</a></li> <li><a href="/wiki/Clinical_trial" title="Clinical trial">Clinical trials</a> / <a href="/wiki/Clinical_study_design" title="Clinical study design">studies</a></li> <li><a href="/wiki/Epidemiology" title="Epidemiology">Epidemiology</a></li> <li><a href="/wiki/Medical_statistics" title="Medical statistics">Medical statistics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Engineering_statistics" title="Engineering statistics">Engineering statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chemometrics" title="Chemometrics">Chemometrics</a></li> <li><a href="/wiki/Methods_engineering" title="Methods engineering">Methods engineering</a></li> <li><a href="/wiki/Probabilistic_design" title="Probabilistic design">Probabilistic design</a></li> <li><a href="/wiki/Statistical_process_control" title="Statistical process control">Process</a> / <a href="/wiki/Quality_control" title="Quality control">quality control</a></li> <li><a href="/wiki/Reliability_engineering" title="Reliability engineering">Reliability</a></li> <li><a href="/wiki/System_identification" title="System identification">System identification</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Social_statistics" title="Social statistics">Social statistics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Actuarial_science" title="Actuarial science">Actuarial science</a></li> <li><a href="/wiki/Census" title="Census">Census</a></li> <li><a href="/wiki/Crime_statistics" title="Crime statistics">Crime statistics</a></li> <li><a href="/wiki/Demographic_statistics" title="Demographic statistics">Demography</a></li> <li><a href="/wiki/Econometrics" title="Econometrics">Econometrics</a></li> <li><a href="/wiki/Jurimetrics" title="Jurimetrics">Jurimetrics</a></li> <li><a href="/wiki/National_accounts" title="National accounts">National accounts</a></li> <li><a href="/wiki/Official_statistics" title="Official statistics">Official statistics</a></li> <li><a href="/wiki/Population_statistics" class="mw-redirect" title="Population statistics">Population statistics</a></li> <li><a href="/wiki/Psychometrics" title="Psychometrics">Psychometrics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Spatial_analysis" title="Spatial analysis">Spatial statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cartography" title="Cartography">Cartography</a></li> <li><a href="/wiki/Environmental_statistics" title="Environmental statistics">Environmental statistics</a></li> <li><a href="/wiki/Geographic_information_system" title="Geographic information system">Geographic information system</a></li> <li><a href="/wiki/Geostatistics" title="Geostatistics">Geostatistics</a></li> <li><a href="/wiki/Kriging" title="Kriging">Kriging</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><b><a href="/wiki/Category:Statistics" title="Category:Statistics">Category</a></b></li> <li><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span><b><a href="https://commons.wikimedia.org/wiki/Category:Statistics" class="extiw" title="commons:Category:Statistics">Commons</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="WikiProject"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/16px-People_icon.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/24px-People_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/32px-People_icon.svg.png 2x" data-file-width="100" data-file-height="100" /></span></span> <b><a href="/wiki/Wikipedia:WikiProject_Statistics" title="Wikipedia:WikiProject Statistics">WikiProject</a></b></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.eqiad.main‐6696b4cc84‐6kb9j Cached time: 20241122151353 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.573 seconds Real time usage: 0.794 seconds Preprocessor visited node count: 2862/1000000 Post‐expand include size: 215638/2097152 bytes Template argument size: 2350/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 5/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 126819/5000000 bytes Lua time usage: 0.323/10.000 seconds Lua memory usage: 7393340/52428800 bytes Number of Wikibase entities loaded: 2/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 569.013 1 -total 44.13% 251.083 1 Template:Reflist 16.57% 94.295 1 Template:Regression_bar 16.11% 91.696 1 Template:Sidebar 16.03% 91.229 7 Template:Cite_book 11.64% 66.261 15 Template:Cite_journal 11.06% 62.937 1 Template:Short_description 10.75% 61.196 12 Template:Navbox 10.49% 59.687 1 Template:Cite_Q 10.31% 58.673 1 Template:Statistics --> <!-- Saved in parser cache with key enwiki:pcache:idhash:13609399-0!canonical and timestamp 20241122151353 and revision id 1226400035. Rendering was triggered because: unknown --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Least-squares_spectral_analysis&oldid=1226400035">https://en.wikipedia.org/w/index.php?title=Least-squares_spectral_analysis&oldid=1226400035</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Algorithms" title="Category:Algorithms">Algorithms</a></li><li><a href="/wiki/Category:Analysis_of_variance" title="Category:Analysis of variance">Analysis of variance</a></li><li><a href="/wiki/Category:Applied_mathematics" title="Category:Applied mathematics">Applied mathematics</a></li><li><a href="/wiki/Category:Applied_statistics" title="Category:Applied statistics">Applied statistics</a></li><li><a href="/wiki/Category:Carl_Friedrich_Gauss" title="Category:Carl Friedrich Gauss">Carl Friedrich Gauss</a></li><li><a href="/wiki/Category:Computational_mathematics" title="Category:Computational mathematics">Computational mathematics</a></li><li><a href="/wiki/Category:Computational_science" title="Category:Computational science">Computational science</a></li><li><a href="/wiki/Category:Data_processing" title="Category:Data processing">Data processing</a></li><li><a href="/wiki/Category:Digital_signal_processing" title="Category:Digital signal processing">Digital signal processing</a></li><li><a href="/wiki/Category:Engineering_statistics" title="Category:Engineering statistics">Engineering statistics</a></li><li><a href="/wiki/Category:Frequency" title="Category:Frequency">Frequency</a></li><li><a href="/wiki/Category:Frequency-domain_analysis" title="Category:Frequency-domain analysis">Frequency-domain analysis</a></li><li><a href="/wiki/Category:Harmonic_analysis" title="Category:Harmonic analysis">Harmonic analysis</a></li><li><a href="/wiki/Category:Iterative_methods" title="Category:Iterative methods">Iterative methods</a></li><li><a href="/wiki/Category:Least_squares" title="Category:Least squares">Least squares</a></li><li><a href="/wiki/Category:Linear_algebra" title="Category:Linear algebra">Linear algebra</a></li><li><a href="/wiki/Category:Mathematical_analysis" title="Category:Mathematical analysis">Mathematical analysis</a></li><li><a href="/wiki/Category:Mathematical_optimization" title="Category:Mathematical optimization">Mathematical optimization</a></li><li><a href="/wiki/Category:Mathematical_physics" title="Category:Mathematical physics">Mathematical physics</a></li><li><a href="/wiki/Category:Mathematics_of_computing" title="Category:Mathematics of computing">Mathematics of computing</a></li><li><a href="/wiki/Category:Multivariate_statistics" title="Category:Multivariate statistics">Multivariate statistics</a></li><li><a href="/wiki/Category:Numerical_analysis" title="Category:Numerical analysis">Numerical analysis</a></li><li><a href="/wiki/Category:Numerical_linear_algebra" title="Category:Numerical linear algebra">Numerical linear algebra</a></li><li><a href="/wiki/Category:Optimization_algorithms_and_methods" title="Category:Optimization algorithms and methods">Optimization algorithms and methods</a></li><li><a href="/wiki/Category:Signal_processing" title="Category:Signal processing">Signal processing</a></li><li><a href="/wiki/Category:Statistical_forecasting" title="Category:Statistical forecasting">Statistical forecasting</a></li><li><a href="/wiki/Category:Statistical_methods" title="Category:Statistical methods">Statistical methods</a></li><li><a href="/wiki/Category:Statistical_signal_processing" title="Category:Statistical signal processing">Statistical signal processing</a></li><li><a href="/wiki/Category:Stochastic_processes" title="Category:Stochastic processes">Stochastic processes</a></li><li><a href="/wiki/Category:Theoretical_computer_science" title="Category:Theoretical computer science">Theoretical computer science</a></li><li><a href="/wiki/Category:Time_series" title="Category:Time series">Time series</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_April_2022" title="Category:Use dmy dates from April 2022">Use dmy dates from April 2022</a></li><li><a href="/wiki/Category:Use_American_English_from_April_2022" title="Category:Use American English from April 2022">Use American English from April 2022</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 30 May 2024, at 11:45<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Least-squares_spectral_analysis&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-8cmsp","wgBackendResponseTime":179,"wgPageParseReport":{"limitreport":{"cputime":"0.573","walltime":"0.794","ppvisitednodes":{"value":2862,"limit":1000000},"postexpandincludesize":{"value":215638,"limit":2097152},"templateargumentsize":{"value":2350,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":126819,"limit":5000000},"entityaccesscount":{"value":2,"limit":400},"timingprofile":["100.00% 569.013 1 -total"," 44.13% 251.083 1 Template:Reflist"," 16.57% 94.295 1 Template:Regression_bar"," 16.11% 91.696 1 Template:Sidebar"," 16.03% 91.229 7 Template:Cite_book"," 11.64% 66.261 15 Template:Cite_journal"," 11.06% 62.937 1 Template:Short_description"," 10.75% 61.196 12 Template:Navbox"," 10.49% 59.687 1 Template:Cite_Q"," 10.31% 58.673 1 Template:Statistics"]},"scribunto":{"limitreport-timeusage":{"value":"0.323","limit":"10.000"},"limitreport-memusage":{"value":7393340,"limit":52428800},"limitreport-logs":"table#1 {\n}\n1 1 Richard A. Muller\n2 2 Gordon J. MacDonald\ntable#1 {\n}\n"},"cachereport":{"origin":"mw-api-ext.eqiad.main-6696b4cc84-6kb9j","timestamp":"20241122151353","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Least-squares spectral analysis","url":"https:\/\/en.wikipedia.org\/wiki\/Least-squares_spectral_analysis","sameAs":"http:\/\/www.wikidata.org\/entity\/Q10569022","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q10569022","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2007-10-07T02:27:35Z","dateModified":"2024-05-30T11:45:03Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/e\/e3\/Linear_least_squares2.svg","headline":"frequency-domain analysis method"}</script> </body> </html>