CINXE.COM

Search results for: decentralized systems.

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: decentralized systems.</title> <meta name="description" content="Search results for: decentralized systems."> <meta name="keywords" content="decentralized systems."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="decentralized systems." name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="decentralized systems."> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9476</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: decentralized systems.</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9476</span> Decentralized Control of Interconnected Systems with Non-Linear Unknown Interconnections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haci%20Mehmet%20Guzey">Haci Mehmet Guzey</a>, <a href="https://publications.waset.org/abstracts/search?q=Levent%20Acar"> Levent Acar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a novel decentralized controller is developed for linear systems with nonlinear unknown interconnections. A model linear decoupled system is assigned for each system. By using the difference actual and model state dynamics, the problem is formulated as inverse problem. Then, the interconnected dynamics are approximated by using Galerkin’s expansion method for inverse problems. Two different sets of orthogonal basis functions are utilized to approximate the interconnected dynamics. Approximated interconnections are utilized in the controller to cancel the interconnections and decouple the systems. Subsequently, the interconnected systems behave as a collection of decoupled systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decentralized%20control" title="decentralized control">decentralized control</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problems" title=" inverse problems"> inverse problems</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20systems" title=" large scale systems"> large scale systems</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20interconnections" title=" nonlinear interconnections"> nonlinear interconnections</a>, <a href="https://publications.waset.org/abstracts/search?q=basis%20functions" title=" basis functions"> basis functions</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a> </p> <a href="https://publications.waset.org/abstracts/20511/decentralized-control-of-interconnected-systems-with-non-linear-unknown-interconnections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9475</span> Stochastic Control of Decentralized Singularly Perturbed Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20S.%20Alfuhaid">Walid S. Alfuhaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Saud%20A.%20Alghamdi"> Saud A. Alghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20M.%20Watkins"> John M. Watkins</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Edwin%20Sawan"> M. Edwin Sawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decentralized" title="decentralized">decentralized</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=output" title=" output"> output</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20perturb" title=" singular perturb"> singular perturb</a> </p> <a href="https://publications.waset.org/abstracts/45093/stochastic-control-of-decentralized-singularly-perturbed-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9474</span> Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peiming%20Li">Peiming Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=federated%20learning%20system" title="federated learning system">federated learning system</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20chain" title=" block chain"> block chain</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20oracles" title=" decentralized oracles"> decentralized oracles</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20markov%20model" title=" hidden markov model"> hidden markov model</a> </p> <a href="https://publications.waset.org/abstracts/178691/enhancing-robustness-in-federated-learning-through-decentralized-oracle-consensus-and-adaptive-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9473</span> Scalable Blockchain Solutions for NGOs: Enhancing Financial Transactions and Accountability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aarnav%20Singh">Aarnav Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayesh%20Ghatate"> Jayesh Ghatate</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarush%20Pandey"> Tarush Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-Governmental Organizations (NGOs) play a crucial role in addressing societal challenges, relying heavily on financial transactions to fund their impactful initiatives. However, traditional financial systems can be cumbersome and lack transparency, hindering the efficiency and trustworthiness of NGO operations. The Ethereum main-net, while pioneering the decentralized finance landscape, grapples with inherent scalability challenges, restricting its transaction throughput to a range of 15-45 transactions per second (TPS). This limitation poses substantial obstacles for NGOs engaging in swift and dynamic financial transactions critical to their operational efficiency. This research is a comprehensive exploration of the intricacies of these scalability challenges and delves into the design and implementation of a purpose-built blockchain system explicitly crafted to surmount these constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-governmental%20organizations" title="non-governmental organizations">non-governmental organizations</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20system" title=" decentralized system"> decentralized system</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20knowledge%20Ethereum%20virtual%20machine" title=" zero knowledge Ethereum virtual machine"> zero knowledge Ethereum virtual machine</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20application" title=" decentralized application"> decentralized application</a> </p> <a href="https://publications.waset.org/abstracts/179647/scalable-blockchain-solutions-for-ngos-enhancing-financial-transactions-and-accountability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9472</span> Blockchain-Based Decentralized Architecture for Secure Medical Records Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20M.%20Alshahrani">Saeed M. Alshahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research integrated blockchain technology to reform medical records management in healthcare informatics. It was aimed at resolving the limitations of centralized systems by establishing a secure, decentralized, and user-centric platform. The system was architected with a sophisticated three-tiered structure, integrating advanced cryptographic methodologies, consensus algorithms, and the Fast Healthcare Interoperability Resources (HL7 FHIR) standard to ensure data security, transaction validity, and semantic interoperability. The research has profound implications for healthcare delivery, patient care, legal compliance, operational efficiency, and academic advancements in blockchain technology and healthcare IT sectors. The methodology adapted in this research comprises of Preliminary Feasibility Study, Literature Review, Design and Development, Cryptographic Algorithm Integration, Modeling the data and testing the system. The research employed a permissioned blockchain with a Practical Byzantine Fault Tolerance (PBFT) consensus algorithm and Ethereum-based smart contracts. It integrated advanced cryptographic algorithms, role-based access control, multi-factor authentication, and RESTful APIs to ensure security, regulate access, authenticate user identities, and facilitate seamless data exchange between the blockchain and legacy healthcare systems. The research contributed to the development of a secure, interoperable, and decentralized system for managing medical records, addressing the limitations of the centralized systems that were in place. Future work will delve into optimizing the system further, exploring additional blockchain use cases in healthcare, and expanding the adoption of the system globally, contributing to the evolution of global healthcare practices and policies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=healthcare%20informatics" title="healthcare informatics">healthcare informatics</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20records%20management" title=" medical records management"> medical records management</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20architecture" title=" decentralized architecture"> decentralized architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20security" title=" data security"> data security</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptographic%20algorithms" title=" cryptographic algorithms"> cryptographic algorithms</a> </p> <a href="https://publications.waset.org/abstracts/173815/blockchain-based-decentralized-architecture-for-secure-medical-records-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9471</span> Building a Blockchain-based Internet of Things</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rob%20van%20den%20Dam">Rob van den Dam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today’s Internet of Things (IoT) comprises more than a billion intelligent devices, connected via wired/wireless communications. The expected proliferation of hundreds of billions more places us at the threshold of a transformation sweeping across the communications industry. Yet, we found that the IoT architecture and solutions that currently work for billions of devices won’t necessarily scale to tomorrow’s hundreds of billions of devices because of high cost, lack of privacy, not future-proof, lack of functional value and broken business models. As the IoT scales exponentially, decentralized networks have the potential to reduce infrastructure and maintenance costs to manufacturers. Decentralization also promises increased robustness by removing single points of failure that could exist in traditional centralized networks. By shifting the power in the network from the center to the edges, devices gain greater autonomy and can become points of transactions and economic value creation for owners and users. To validate the underlying technology vision, IBM jointly developed with Samsung Electronics the autonomous decentralized peer-to- peer proof-of-concept (PoC). The primary objective of this PoC was to establish a foundation on which to demonstrate several capabilities that are fundamental to building a decentralized IoT. Though many commercial systems in the future will exist as hybrid centralized-decentralized models, the PoC demonstrated a fully distributed proof. The PoC (a) validated the future vision for decentralized systems to extensively augment today’s centralized solutions, (b) demonstrated foundational IoT tasks without the use of centralized control, (c) proved that empowered devices can engage autonomously in marketplace transactions. The PoC opens the door for the communications and electronics industry to further explore the challenges and opportunities of potential hybrid models that can address the complexity and variety of requirements posed by the internet that continues to scale. Contents: (a) The new approach for an IoT that will be secure and scalable, (b) The three foundational technologies that are key for the future IoT, (c) The related business models and user experiences, (d) How such an IoT will create an 'Economy of Things', (e) The role of users, devices, and industries in the IoT future, (f) The winners in the IoT economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IoT" title="IoT">IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=internet" title=" internet"> internet</a>, <a href="https://publications.waset.org/abstracts/search?q=wired" title=" wired"> wired</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless" title=" wireless"> wireless</a> </p> <a href="https://publications.waset.org/abstracts/34048/building-a-blockchain-based-internet-of-things" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9470</span> A Next-Generation Blockchain-Based Data Platform: Leveraging Decentralized Storage and Layer 2 Scaling for Secure Data Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Harper">Kenneth Harper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid growth of data-driven decision-making across various industries necessitates advanced solutions to ensure data integrity, scalability, and security. This study introduces a decentralized data platform built on blockchain technology to improve data management processes in high-volume environments such as healthcare and financial services. The platform integrates blockchain networks using Cosmos SDK and Polkadot Substrate alongside decentralized storage solutions like IPFS and Filecoin, and coupled with decentralized computing infrastructure built on top of Avalanche. By leveraging advanced consensus mechanisms, we create a scalable, tamper-proof architecture that supports both structured and unstructured data. Key features include secure data ingestion, cryptographic hashing for robust data lineage, and Zero-Knowledge Proof mechanisms that enhance privacy while ensuring compliance with regulatory standards. Additionally, we implement performance optimizations through Layer 2 scaling solutions, including ZK-Rollups, which provide low-latency data access and trustless data verification across a distributed ledger. The findings from this exercise demonstrate significant improvements in data accessibility, reduced operational costs, and enhanced data integrity when tested in real-world scenarios. This platform reference architecture offers a decentralized alternative to traditional centralized data storage models, providing scalability, security, and operational efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmos%20SDK" title=" cosmos SDK"> cosmos SDK</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20data%20platform" title=" decentralized data platform"> decentralized data platform</a>, <a href="https://publications.waset.org/abstracts/search?q=IPFS" title=" IPFS"> IPFS</a>, <a href="https://publications.waset.org/abstracts/search?q=ZK-Rollups" title=" ZK-Rollups"> ZK-Rollups</a> </p> <a href="https://publications.waset.org/abstracts/191924/a-next-generation-blockchain-based-data-platform-leveraging-decentralized-storage-and-layer-2-scaling-for-secure-data-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9469</span> Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Qayumi">Karima Qayumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Norta"> Alex Norta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-oriented%20modeling%20%28AOM%29" title="agent-oriented modeling (AOM)">agent-oriented modeling (AOM)</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20intelligence%20model%20%28BIM%29" title=" business intelligence model (BIM)"> business intelligence model (BIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20data%20mining%20%28DDM%29" title=" distributed data mining (DDM)"> distributed data mining (DDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system%20%28MAS%29" title=" multi-agent system (MAS)"> multi-agent system (MAS)</a> </p> <a href="https://publications.waset.org/abstracts/44164/business-intelligence-mining-of-large-decentralized-multimedia-datasets-with-a-distributed-multi-agent-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9468</span> A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Do-Jin%20Jang">Do-Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Ah%20Kim"> Sung-Ah Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A kinetic fa&ccedil;ade responds to user requirements and environmental conditions. &nbsp;In designing a kinetic fa&ccedil;ade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic fa&ccedil;ade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomimicry" title="biomimicry">biomimicry</a>, <a href="https://publications.waset.org/abstracts/search?q=flocking%20algorithm" title=" flocking algorithm"> flocking algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20decentralized%20control" title=" autonomous decentralized control"> autonomous decentralized control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a> </p> <a href="https://publications.waset.org/abstracts/71381/a-biomimetic-approach-for-the-multi-objective-optimization-of-kinetic-facade-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9467</span> Blockchain-Based Assignment Management System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amogh%20Katti">Amogh Katti</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sai%20Asritha"> J. Sai Asritha</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nivedh"> D. Nivedh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kalyan%20Srinivas"> M. Kalyan Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Somnath%20Chakravarthi"> B. Somnath Chakravarthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today's modern education system uses Learning Management System (LMS) portals for the scoring and grading of student performances, to maintain student records, and teachers are instructed to accept assignments through online submissions of .pdf,.doc,.ppt, etc. There is a risk of data tampering in the traditional portals; we will apply the Blockchain model instead of this traditional model to avoid data tampering and also provide a decentralized mechanism for overall fairness. Blockchain technology is a better and also recommended model because of the following features: consensus mechanism, decentralized system, cryptographic encryption, smart contracts, Ethereum blockchain. The proposed system ensures data integrity and tamper-proof assignment submission and grading, which will be helpful for both students and also educators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=education%20technology" title="education technology">education technology</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20management%20system" title=" learning management system"> learning management system</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20applications" title=" decentralized applications"> decentralized applications</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a> </p> <a href="https://publications.waset.org/abstracts/176621/blockchain-based-assignment-management-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9466</span> Improved Simultaneous Performance in the Time Domain and in the Frequency Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azeddine%20Ghodbane">Azeddine Ghodbane</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Bensoussan"> David Bensoussan</a>, <a href="https://publications.waset.org/abstracts/search?q=Maher%20Hammami"> Maher Hammami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An innovative approach for controlling unstable and invertible systems has demonstrated superior performance compared to conventional controllers. It has been successfully applied to a levitation system and drone control. Simulations have yielded satisfactory performances when applied to a satellite antenna controller. This design method, based on sensitivity analysis, has also been extended to handle multivariable unstable and invertible systems that exhibit dominant diagonal characteristics at high frequencies, enabling decentralized control. Furthermore, this control method has been expanded to the realm of adaptive control. In this study, we introduce an alternative adaptive architecture that enhances both time and frequency performance, helpfully mitigating the effects of disturbances from the input plant and external disturbances affecting the output. To facilitate superior performance in both the time and frequency domains, we have developed user-friendly interactive design methods using the GeoGebra platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20theory" title="control theory">control theory</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20control" title=" decentralized control"> decentralized control</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20theory" title=" sensitivity theory"> sensitivity theory</a>, <a href="https://publications.waset.org/abstracts/search?q=input-output%20stability%20theory" title=" input-output stability theory"> input-output stability theory</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20multivariable%20feedback%20control%20design" title=" robust multivariable feedback control design"> robust multivariable feedback control design</a> </p> <a href="https://publications.waset.org/abstracts/163118/improved-simultaneous-performance-in-the-time-domain-and-in-the-frequency-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9465</span> Transforming Healthcare Data Privacy: Integrating Blockchain with Zero-Knowledge Proofs and Cryptographic Security</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Harper">Kenneth Harper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blockchain technology presents solutions for managing healthcare data, addressing critical challenges in privacy, integrity, and access. This paper explores how privacy-preserving technologies, such as zero-knowledge proofs (ZKPs) and homomorphic encryption (HE), enhance decentralized healthcare platforms by enabling secure computations and patient data protection. An examination of the mathematical foundations of these methods, their practical applications, and how they meet the evolving demands of healthcare data security is unveiled. Using real-world examples, this research highlights industry-leading implementations and offers a roadmap for future applications in secure, decentralized healthcare ecosystems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20privacy" title=" data privacy"> data privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20data%20management" title=" decentralized data management"> decentralized data management</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20privacy" title=" differential privacy"> differential privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20data%20security" title=" healthcare data security"> healthcare data security</a>, <a href="https://publications.waset.org/abstracts/search?q=homomorphic%20encryption" title=" homomorphic encryption"> homomorphic encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy-preserving%20technologies" title=" privacy-preserving technologies"> privacy-preserving technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20computations" title=" secure computations"> secure computations</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-knowledge%20proofs" title=" zero-knowledge proofs"> zero-knowledge proofs</a> </p> <a href="https://publications.waset.org/abstracts/191929/transforming-healthcare-data-privacy-integrating-blockchain-with-zero-knowledge-proofs-and-cryptographic-security" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9464</span> Providing a Secure, Reliable and Decentralized Document Management Solution Using Blockchain by a Virtual Identity Card</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meet%20Shah">Meet Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Aditya"> Ankita Aditya</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhruv%20Bindra"> Dhruv Bindra</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20Omkar"> V. S. Omkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aashruti%20Seervi"> Aashruti Seervi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today&#39;s world, we need documents everywhere for a smooth workflow in the identification process or any other security aspects. The current system and techniques which are used for identification need one thing, that is &lsquo;proof of existence&rsquo;, which involves valid documents, for example, educational, financial, etc. The main issue with the current identity access management system and digital identification process is that the system is centralized in their network, which makes it inefficient. The paper presents the system which resolves all these cited issues. It is based on &lsquo;blockchain&rsquo; technology, which is a &#39;decentralized system&#39;. It allows transactions in a decentralized and immutable manner. The primary notion of the model is to &lsquo;have everything with nothing&rsquo;. It involves inter-linking required documents of a person with a single identity card so that a person can go anywhere without having the required documents with him/her. The person just needs to be physically present at a place wherein documents are necessary, and using a fingerprint impression and an iris scan print, the rest of the verification will progress. Furthermore, some technical overheads and advancements are listed. This paper also aims to layout its far-vision scenario of blockchain and its impact on future trends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20system" title=" decentralized system"> decentralized system</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint%20impression" title=" fingerprint impression"> fingerprint impression</a>, <a href="https://publications.waset.org/abstracts/search?q=identity%20management" title=" identity management"> identity management</a>, <a href="https://publications.waset.org/abstracts/search?q=iris%20scan" title=" iris scan"> iris scan</a> </p> <a href="https://publications.waset.org/abstracts/118996/providing-a-secure-reliable-and-decentralized-document-management-solution-using-blockchain-by-a-virtual-identity-card" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9463</span> Rotor Concepts for the Counter Flow Heat Recovery Fan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Speer">Christoph Speer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Decentralized ventilation systems should combine a small and economical design with high aerodynamic and thermal efficiency. The Counter Flow Heat Recovery Fan (CHRF) provides the ability to meet these requirements by using only one cross flow fan with a large number of blades to generate both airflows and which simultaneously acts as a regenerative counter flow heat exchanger. The successful development of the first laboratory prototype has shown the potential of this ventilation system. Occurring condensate on the surfaces of the fan blades during the cold and dry season can be recovered through the characteristic mode of operation. Hence the CHRF provides the possibility to avoid the need for frost protection and condensate drain. Through the implementation of system-specific solutions for flow balancing and summer bypass the required functionality is assured. The scalability of the CHRF concept allows the use in renovation as well as in new buildings from single-room devices through to systems for office buildings. High aerodynamic and thermal efficiency and the lower number of required mechatronic components should enable a reduction in investment as well as operating costs. The rotor is the key component of the system, the requirements and possible implementation variants are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CHRF" title="CHRF">CHRF</a>, <a href="https://publications.waset.org/abstracts/search?q=counter%20flow%20heat%20recovery%20fan" title=" counter flow heat recovery fan"> counter flow heat recovery fan</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20ventilation%20system" title=" decentralized ventilation system"> decentralized ventilation system</a>, <a href="https://publications.waset.org/abstracts/search?q=renovation" title=" renovation"> renovation</a> </p> <a href="https://publications.waset.org/abstracts/31420/rotor-concepts-for-the-counter-flow-heat-recovery-fan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9462</span> Scope, Relevance and Sustainability of Decentralized Renewable Energy Systems in Developing Economies: Imperatives from Indian Case Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harshit%20Vallecha">Harshit Vallecha</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabha%20Bhola"> Prabha Bhola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> &lsquo;Energy for all&rsquo;, is a global issue of concern for the past many years. Despite the number of technological advancements and innovations, significant numbers of people are living without access to electricity around the world. India, an emerging economy, tops the list of nations having the maximum number of residents living off the grid, thus raising global attention in past few years to provide clean and sustainable energy access solutions to all of its residents. It is evident from developed economies that centralized planning and electrification alone is not sufficient for meeting energy security. Implementation of off-grid and consumer-driven energy models like Decentralized Renewable Energy (DRE) systems have played a significant role in meeting the national energy demand in developed nations. Cases of DRE systems have been reported in developing countries like India for the past few years. This paper attempts to profile the status of DRE projects in the Indian context with their scope and relevance to ensure universal electrification. Diversified cases of DRE projects, particularly solar, biomass and micro hydro are identified in different Indian states. Critical factors affecting the sustainability of DRE projects are extracted with their interlinkages in the context of developers, beneficiaries and promoters involved in such projects. Socio-techno-economic indicators are identified through similar cases in the context of DRE projects. Exploratory factor analysis is performed to evaluate the critical sustainability factors followed by regression analysis to establish the relationship between the dependent and independent factors. The generated EFA-Regression model provides a basis to develop the sustainability and replicability framework for broader coverage of DRE projects in developing nations in order to attain the goal of universal electrification with least carbon emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20generation" title=" decentralized generation"> decentralized generation</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20access" title=" electricity access"> electricity access</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/107721/scope-relevance-and-sustainability-of-decentralized-renewable-energy-systems-in-developing-economies-imperatives-from-indian-case-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9461</span> Decentralized Data Marketplace Framework Using Blockchain-Based Smart Contract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meshari%20Aljohani">Meshari Aljohani</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Olariu"> Stephan Olariu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Mukkamala"> Ravi Mukkamala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data is essential for enhancing the quality of life. Its value creates chances for users to profit from data sales and purchases. Users in data marketplaces, however, must share and trade data in a secure and trusted environment while maintaining their privacy. The first main contribution of this paper is to identify enabling technologies and challenges facing the development of decentralized data marketplaces. The second main contribution is to propose a decentralized data marketplace framework based on blockchain technology. The proposed framework enables sellers and buyers to transact with more confidence. Using a security deposit, the system implements a unique approach for enforcing honesty in data exchange among anonymous individuals. Before the transaction is considered complete, the system has a time frame. As a result, users can submit disputes to the arbitrators which will review them and respond with their decision. Use cases are presented to demonstrate how these technologies help data marketplaces handle issues and challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=data" title=" data"> data</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20marketplace" title=" data marketplace"> data marketplace</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20contract" title=" smart contract"> smart contract</a>, <a href="https://publications.waset.org/abstracts/search?q=reputation%20system" title=" reputation system"> reputation system</a> </p> <a href="https://publications.waset.org/abstracts/149122/decentralized-data-marketplace-framework-using-blockchain-based-smart-contract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9460</span> Characteristics of Domestic Sewage in Small Urban Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shohreh%20Azizi">Shohreh Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Memory%20Tekere"> Memory Tekere</a>, <a href="https://publications.waset.org/abstracts/search?q=Wag%20Nel"> Wag Nel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An evaluation of the characteristics of wastewater generated from small communities was carried out in relation to decentralized approach for domestic sewage treatment plant and design of biological nutrient removal system. The study included the survey of the waste from various individual communities such as a hotel, a residential complex, an office premise, and an educational institute. The results indicate that the concentration of organic pollutant in wastewater from the residential complex is higher than the waste from all the other communities with COD 664 mg/l, BOD 370.2 mg/l and TSS 248.8 mg/l. And the waste water from office premise indicates low organic load with COD428 mg/l, BOD 232mg/l and TSS 157mg/l. The wastewater from residential complex was studied under activated sludge process to evaluate this technology for decentralized wastewater treatment. The Activated sludge process was operated at different 12to 4 hrs hydraulic retention times and the optimum 6 hrs HRT was selected, therefore the average reduction of COD (85.92%) and BOD (91.28 %) was achieved. The issue of sludge recycling, maintenance of biomass concentration and high HRT reactor (10 L) volume are making the system non-practical for smaller communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20communities" title=" small communities"> small communities</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge%20process" title=" activated sludge process"> activated sludge process</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20system" title=" decentralized system"> decentralized system</a> </p> <a href="https://publications.waset.org/abstracts/41627/characteristics-of-domestic-sewage-in-small-urban-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9459</span> Optimization of Line Loss Minimization Using Distributed Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sambath">S. Sambath</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Palanivel"> P. Palanivel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research conducted in the last few decades has proven that an inclusion of Distributed Genaration (DG) into distribution systems considerably lowers the level of power losses and the power quality improved. Moreover, the choice of DG is even more attractive since it provides not only benefits in power loss minimisation, but also a wide range of other advantages including environment, economic, power qualities and technical issues. This paper is an intent to quantify and analyse the impact of distributed generation (DG) in Tamil Nadu, India to examine what the benefits of decentralized generation would be for meeting rural loads. We used load flow analysis to simulate and quantify the loss reduction and power quality enhancement by having decentralized generation available line conditions for actual rural feeders in Tamil Nadu, India. Reactive and voltage profile was considered. This helps utilities to better plan their system in rural areas to meet dispersed loads, while optimizing the renewable and decentralised generation sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title="distributed generation">distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20system" title=" distribution system"> distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20flow%20analysis" title=" load flow analysis"> load flow analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20location" title=" optimal location"> optimal location</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a> </p> <a href="https://publications.waset.org/abstracts/4401/optimization-of-line-loss-minimization-using-distributed-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9458</span> Cybersecurity Assessment of Decentralized Autonomous Organizations in Smart Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claire%20Biasco">Claire Biasco</a>, <a href="https://publications.waset.org/abstracts/search?q=Thaier%20Hayajneh"> Thaier Hayajneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A smart city is the integration of digital technologies in urban environments to enhance the quality of life. Smart cities capture real-time information from devices, sensors, and network data to analyze and improve city functions such as traffic analysis, public safety, and environmental impacts. Current smart cities face controversy due to their reliance on real-time data tracking and surveillance. Internet of Things (IoT) devices and blockchain technology are converging to reshape smart city infrastructure away from its centralized model. Connecting IoT data to blockchain applications would create a peer-to-peer, decentralized model. Furthermore, blockchain technology powers the ability for IoT device data to shift from the ownership and control of centralized entities to individuals or communities with Decentralized Autonomous Organizations (DAOs). In the context of smart cities, DAOs can govern cyber-physical systems to have a greater influence over how urban services are being provided. This paper will explore how the core components of a smart city now apply to DAOs. We will also analyze different definitions of DAOs to determine their most important aspects in relation to smart cities. Both categorizations will provide a solid foundation to conduct a cybersecurity assessment of DAOs in smart cities. It will identify the benefits and risks of adopting DAOs as they currently operate. The paper will then provide several mitigation methods to combat cybersecurity risks of DAO integrations. Finally, we will give several insights into what challenges will be faced by DAO and blockchain spaces in the coming years before achieving a higher level of maturity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title=" smart city"> smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=DAO" title=" DAO"> DAO</a> </p> <a href="https://publications.waset.org/abstracts/165582/cybersecurity-assessment-of-decentralized-autonomous-organizations-in-smart-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9457</span> Decentralized Wastewater Treatment in Coastal Touristic Areas Using Standardized Modular Biological Filtration (SMBF)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreas%20R%C3%BCdiger">Andreas Rüdiger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The selection of appropriate wastewater treatment technology for decentralized coastal tourist areas is an important engineering challenge. The local situation in coastal tourist cities and villages is characterized by important daily and seasonal fluctuations in hydraulic flow and pollution, high annual temperature variations, scarcity of building area and high housing density. At the same time, coastal zones have to meet stringent effluent limits all over the year and need simple and easy technologies to operate. This article presents the innovative technology of standardized modular aerated up-flow biofiltration SMBF as an adapted solution for decentralized wastewater treatment in sensitive touristic coastal areas. As modular technology with several biofiltration units, the system is able to treat low and high loads with low energy consumption and low demands for operators. The article focuses on the climatic and tourist situation in Croatia. Full-scale plants in Eastern Europe and Croatia have presented as well as dimensioning parameters and outlet concentrations. Energy consumption as a function of load is demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title="wastewater treatment">wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=biofiltration" title=" biofiltration"> biofiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=touristic%20areas" title=" touristic areas"> touristic areas</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a> </p> <a href="https://publications.waset.org/abstracts/166151/decentralized-wastewater-treatment-in-coastal-touristic-areas-using-standardized-modular-biological-filtration-smbf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9456</span> Integrated Wastewater Reuse Project of the Faculty of Sciences AinChock, Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nihad%20Chakri">Nihad Chakri</a>, <a href="https://publications.waset.org/abstracts/search?q=Btissam%20El%20Amrani"> Btissam El Amrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Faouzi%20Berrada"> Faouzi Berrada</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouad%20Amraoui"> Fouad Amraoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Morocco, water scarcity requires the exploitation of non-conventional resources. Rural areas are under-equipped with sanitation infrastructure, unlike urban areas. Decentralized and low-cost solutions could improve the quality of life of the population and the environment. In this context, the Faculty of Sciences Ain Chock "FSAC" has undertaken an integrated project to treat part of its wastewater using a decentralized compact system. The project will propose alternative solutions that are inexpensive and adapted to the context of peri-urban and rural areas in order to treat the wastewater generated and use it for irrigation, watering, and cleaning. For this purpose, several tests were carried out in the laboratory in order to develop a liquid waste treatment system optimized for local conditions. Based on the results obtained at the laboratory scale of the different proposed scenarios, we designed and implemented a prototype of a mini wastewater treatment plant for the Faculty. In this article, we will outline the steps of dimensioning, construction, and monitoring of the mini-station in our Faculty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20filter" title=" vertical filter"> vertical filter</a>, <a href="https://publications.waset.org/abstracts/search?q=MBBR%20process" title=" MBBR process"> MBBR process</a>, <a href="https://publications.waset.org/abstracts/search?q=sizing" title=" sizing"> sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20pilot" title=" decentralized pilot"> decentralized pilot</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/160485/integrated-wastewater-reuse-project-of-the-faculty-of-sciences-ainchock-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9455</span> Improving Decision-Making in Multi-Project Environments within Organizational Information Systems Using Blockchain Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hossein%20Iranmanesh">Seyed Hossein Iranmanesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Nouri"> Hassan Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Reza%20Iranmanesh"> Seyed Reza Iranmanesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the dynamic and complex landscape of today’s business, organizations often face challenges in impactful decision-making across multi-project settings. To efficiently allocate resources, coordinate tasks, and optimize project outcomes, establishing robust decision-making processes is essential. Furthermore, the increasing importance of information systems and their integration within organizational workflows introduces an additional layer of complexity. This research proposes the use of blockchain technology as a suitable solution to enhance decision-making in multi-project environments, particularly within the realm of information systems. The conceptual framework in this study comprises four independent variables and one dependent variable. The identified independent variables for the targeted research include: Blockchain Layer in Integrated Systems, Quality of Generated Information ,User Satisfaction with Integrated Systems and Utilization of Integrated Systems. The project’s performance, considered as the dependent variable and moderated by organizational policies and procedures, reflects the impact of blockchain technology adoption on organizational effectiveness1. The results highlight the significant influence of blockchain implementation on organizational performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-project%20environments" title="multi-project environments">multi-project environments</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20support%20systems" title=" decision support systems"> decision support systems</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20systems" title=" information systems"> information systems</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain%20technology" title=" blockchain technology"> blockchain technology</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20systems." title=" decentralized systems."> decentralized systems.</a> </p> <a href="https://publications.waset.org/abstracts/185327/improving-decision-making-in-multi-project-environments-within-organizational-information-systems-using-blockchain-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9454</span> An Overview of Technology Availability to Support Remote Decentralized Clinical Trials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simone%20Huber">Simone Huber</a>, <a href="https://publications.waset.org/abstracts/search?q=Bianca%20Schnalzer"> Bianca Schnalzer</a>, <a href="https://publications.waset.org/abstracts/search?q=Baptiste%20Alcalde"> Baptiste Alcalde</a>, <a href="https://publications.waset.org/abstracts/search?q=Sten%20Hanke"> Sten Hanke</a>, <a href="https://publications.waset.org/abstracts/search?q=Lampros%20Mpaltadoros"> Lampros Mpaltadoros</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanos%20G.%20Stavropoulos"> Thanos G. Stavropoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Spiros%20Nikolopoulos"> Spiros Nikolopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Kompatsiaris"> Ioannis Kompatsiaris</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20P%C3%A9rez-%20Breva"> Lina Pérez- Breva</a>, <a href="https://publications.waset.org/abstracts/search?q=Vallivana%20Rodrigo-Casares"> Vallivana Rodrigo-Casares</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Fons-Mart%C3%ADnez"> Jaime Fons-Martínez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeroen%20de%20Bruin"> Jeroen de Bruin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing new medicine and health solutions and improving patient health currently rely on the successful execution of clinical trials, which generate relevant safety and efficacy data. For their success, recruitment and retention of participants are some of the most challenging aspects of protocol adherence. Main barriers include: i) lack of awareness of clinical trials; ii) long distance from the clinical site; iii) the burden on participants, including the duration and number of clinical visits and iv) high dropout rate. Most of these aspects could be addressed with a new paradigm, namely the Remote Decentralized Clinical Trials (RDCTs). Furthermore, the COVID-19 pandemic has highlighted additional advantages and challenges for RDCTs in practice, allowing participants to join trials from home and not depend on site visits, etc. Nevertheless, RDCTs should follow the process and the quality assurance of conventional clinical trials, which involve several processes. For each part of the trial, the Building Blocks, existing software and technologies were assessed through a systematic search. The technology needed to perform RDCTs is widely available and validated but is yet segmented and developed in silos, as different software solutions address different parts of the trial and at various levels. The current paper is analyzing the availability of technology to perform RDCTs, identifying gaps and providing an overview of Basic Building Blocks and functionalities that need to be covered to support the described processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architectures%20and%20frameworks%20for%20health%20informatics%20systems" title="architectures and frameworks for health informatics systems">architectures and frameworks for health informatics systems</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20trials" title=" clinical trials"> clinical trials</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20and%20communications%20technology" title=" information and communications technology"> information and communications technology</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20decentralized%20clinical%20trials" title=" remote decentralized clinical trials"> remote decentralized clinical trials</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20availability" title=" technology availability"> technology availability</a> </p> <a href="https://publications.waset.org/abstracts/140144/an-overview-of-technology-availability-to-support-remote-decentralized-clinical-trials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9453</span> Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghasemi">S. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Khorasani"> K. Khorasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=component" title="component">component</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20flight%20of%20satellites" title=" formation flight of satellites"> formation flight of satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title=" extended Kalman filter"> extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20isolation" title=" fault detection and isolation"> fault detection and isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=actuator%20fault" title=" actuator fault"> actuator fault</a> </p> <a href="https://publications.waset.org/abstracts/26418/fault-detection-and-isolation-in-attitude-control-subsystem-of-spacecraft-formation-flying-using-extended-kalman-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9452</span> Together - A Decentralized Application Connects Ideas and Investors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandragiri%20Nagadeep">Chandragiri Nagadeep</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20V.%20S.%20Durga"> M. V. V. S. Durga</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadu%20Mahikshith"> Sadu Mahikshith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Future generation is depended on new ideas and innovations that develops the country economical growth and technology standards so, Startups plays an important role in satisfying above goals. Startups includes support which is given by investing into it by investors but, single digit investors can’t keep supporting one startup and lot of security problems occurs while transferring large funds to startup’s bank account. Targeting security and most supportive funding, TogEther solves these issues by providing a platform where “Crowd Funding” is available in a decentralized way such that funding is done with digital currency called cryptocurrency where transactions are done in a secured way using “Block Chain Technology”. Not only Funding but also Ideas along with their documents can be presented and hosted with help of IPFS (Inter Planetary File System). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=ethereum" title=" ethereum"> ethereum</a>, <a href="https://publications.waset.org/abstracts/search?q=web3" title=" web3"> web3</a>, <a href="https://publications.waset.org/abstracts/search?q=reactjs" title=" reactjs"> reactjs</a>, <a href="https://publications.waset.org/abstracts/search?q=interplanetary%20file%20system" title=" interplanetary file system"> interplanetary file system</a>, <a href="https://publications.waset.org/abstracts/search?q=funding" title=" funding"> funding</a> </p> <a href="https://publications.waset.org/abstracts/140392/together-a-decentralized-application-connects-ideas-and-investors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9451</span> Management of Interdependence in Manufacturing Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atour%20Taghipour">Atour Taghipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the real world each manufacturing company is an independent business unit. These business units are linked to each other through upstream and downstream linkages. The management of these linkages is called coordination which, could be considered as a difficult engineering task. The degree of difficulty of coordination depends on the type and the nature of information exchanged between partners as well as the structure of relationship from mutual to the network structure. The literature of manufacturing systems comprises a wide range of varieties of methods and approaches of coordination. In fact, two main streams of research can be distinguished: central coordination versus decentralized coordination. In the centralized systems a high degree of information exchanges is required. The high degree of information exchanges sometimes leads to difficulties when independent members do not want to share information. In order to address these difficulties, decentralized approaches of coordination of operations planning decisions based on some minimal information sharing have been proposed in many academic disciplines. This paper first proposes a framework of analysis in order to analyze the proposed approaches in the literature, based on this framework which includes the similarities between approaches we categorize the existing approaches. This classification can be used as a research map for future researches. The result of our paper highlights several opportunities for future research. First, it is proposed to develop more dynamic and stochastic mechanisms of planning coordination of manufacturing units. Second, in order to exploit the complementarities of approaches proposed by diverse science discipline, we propose to integrate the techniques of coordination. Finally, based on our approach we proposed to develop coordination standards to guaranty both the complementarity of these approaches as well as the freedom of companies to adopt any planning tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=network%20coordination" title="network coordination">network coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=operations%20planning" title=" operations planning"> operations planning</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/28987/management-of-interdependence-in-manufacturing-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9450</span> Secure E-Voting Using Blockchain Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barkha%20Ramteke">Barkha Ramteke</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonali%20Ridhorkar"> Sonali Ridhorkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An election is an important event in all countries. Traditional voting has several drawbacks, including the expense of time and effort required for tallying and counting results, the cost of papers, arrangements, and everything else required to complete a voting process. Many countries are now considering online e-voting systems, but the traditional e-voting systems suffer a lack of trust. It is not known if a vote is counted correctly, tampered or not. A lack of transparency means that the voter has no assurance that his or her vote will be counted as they voted in elections. Electronic voting systems are increasingly using blockchain technology as an underlying storage mechanism to make the voting process more transparent and assure data immutability as blockchain technology grows in popularity. The transparent feature, on the other hand, may reveal critical information about applicants because all system users have the same entitlement to their data. Furthermore, because of blockchain's pseudo-anonymity, voters' privacy will be revealed, and third parties involved in the voting process, such as registration institutions, will be able to tamper with data. To overcome these difficulties, we apply Ethereum smart contracts into blockchain-based voting systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=AMV%20chain" title=" AMV chain"> AMV chain</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20voting" title=" electronic voting"> electronic voting</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized" title=" decentralized"> decentralized</a> </p> <a href="https://publications.waset.org/abstracts/145724/secure-e-voting-using-blockchain-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9449</span> Mobile Assembly of Electric Vehicles: Decentralized, Low-Invest and Flexible </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achim%20Kampker">Achim Kampker</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20Kreiskoether"> Kai Kreiskoether</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Wagner"> Johannes Wagner</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Fluchs"> Sarah Fluchs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing speed of innovation in related industries requires the automotive industry to adapt and increase release frequencies of new vehicle derivatives which implies a significant reduction of investments per vehicle and ramp-up times. Emerging markets in various parts of the world augment the currently dominating established main automotive markets. Local content requirements such as import tariffs on final products impede the accessibility of these micro markets, which is why in the future market exploitation will not be driven by pure sales activities anymore but rather by setting up local assembly units. The aim of this paper is to provide an overview of the concept of decentralized assembly and to discuss and critically assess some currently researched and crucial approaches in production technology. In order to determine the scope in which complementary mobile assembly can be profitable for manufacturers, a general cost model is set up and each cost driver is assessed with respect to varying levels of decentralization. One main result of the paper is that the presented approaches offer huge cost-saving potentials and are thus critical for future production strategies. Nevertheless, they still need to be further exploited in order for decentralized assembly to be profitable for companies. The optimal level of decentralization must, however, be specifically determined in each case and cannot be defined in general. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20assembly" title="automotive assembly">automotive assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=e-mobility" title=" e-mobility"> e-mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20technology" title=" production technology"> production technology</a>, <a href="https://publications.waset.org/abstracts/search?q=release%20capability" title=" release capability"> release capability</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20series%20assembly" title=" small series assembly"> small series assembly</a> </p> <a href="https://publications.waset.org/abstracts/56019/mobile-assembly-of-electric-vehicles-decentralized-low-invest-and-flexible" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9448</span> Real-Time Online Tracking Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denis%20Obrul">Denis Obrul</a>, <a href="https://publications.waset.org/abstracts/search?q=Borut%20%C5%BDalik"> Borut Žalik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present an extendable online real-time tracking platform that can be used to track a wide variety of location-aware devices. These can range from GPS devices mounted inside a vehicle, closed and secure systems such as Teltonika and to mobile phones running multiple platforms. Special consideration is given to decentralized approach, security and flexibility. A number of different use cases are presented as a proof of concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=real-time" title="real-time">real-time</a>, <a href="https://publications.waset.org/abstracts/search?q=online" title=" online"> online</a>, <a href="https://publications.waset.org/abstracts/search?q=gps" title=" gps"> gps</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20application" title=" web application"> web application</a> </p> <a href="https://publications.waset.org/abstracts/17532/real-time-online-tracking-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9447</span> Supply Chain Coordination under Carbon Trading Mechanism in Case of Conflict</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuqiang%20Wang">Fuqiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Liu"> Jun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liyan%20Cai"> Liyan Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the coordination of the conflicting two-stage low carbon supply chain consisting of upstream and downstream manufacturers. The conflict means that the upstream manufacturer takes action for carbon emissions reduction under carbon trading mechanism while the downstream manufacturer’s production cost rises. It assumes for the Stackelberg game that the upstream manufacturer plays as a leader and the downstream manufacturer does as a follower. Four kinds of the situation of decentralized decision making, centralized decision-making, the production cost sharing contract and the carbon emissions reduction revenue sharing contract under decentralized decision making are considered. The backward induction approach is adopted to solve the game. The results show that the more intense the conflict is, the lower the efficiency of carbon emissions reduction and the higher the retail price is. The optimal investment of the decentralized supply chain under the two contracts is unchanged and still lower than that of the centralized supply chain. Both the production cost sharing contract and the carbon emissions reduction revenue sharing contract cannot coordinate the supply chain, because that the sharing cost or carbon emissions reduction sharing revenue will transfer through the wholesale price mechanism. As a result, it requires more complicated contract forms to coordinate such a supply chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cap-and-trade%20mechanism" title="cap-and-trade mechanism">cap-and-trade mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions%20reduction" title=" carbon emissions reduction"> carbon emissions reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=conflict" title=" conflict"> conflict</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20coordination" title=" supply chain coordination"> supply chain coordination</a> </p> <a href="https://publications.waset.org/abstracts/54877/supply-chain-coordination-under-carbon-trading-mechanism-in-case-of-conflict" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=decentralized%20systems.&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=decentralized%20systems.&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=decentralized%20systems.&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=decentralized%20systems.&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=decentralized%20systems.&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=decentralized%20systems.&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=decentralized%20systems.&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=decentralized%20systems.&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=decentralized%20systems.&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=decentralized%20systems.&amp;page=315">315</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=decentralized%20systems.&amp;page=316">316</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=decentralized%20systems.&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10