CINXE.COM
Min-max theorem - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Min-max theorem - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"06372e76-2ed5-4bf1-b7e7-b585de84ed4d","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Min-max_theorem","wgTitle":"Min-max theorem","wgCurRevisionId":1254158290,"wgRevisionId":1254158290,"wgArticleId":694952,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Articles needing additional references from November 2011","All articles needing additional references","All articles with unsourced statements","Articles with unsourced statements from April 2014","Articles containing proofs","Operator theory","Spectral theory","Theorems in functional analysis"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName": "Min-max_theorem","wgRelevantArticleId":694952,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q4454958","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile", "model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Min-max theorem - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Min-max_theorem"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Min-max_theorem&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Min-max_theorem"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Min-max_theorem rootpage-Min-max_theorem skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Min-max+theorem" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Min-max+theorem" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Min-max+theorem" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Min-max+theorem" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Matrices" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Matrices</span> </div> </a> <button aria-controls="toc-Matrices-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Matrices subsection</span> </button> <ul id="toc-Matrices-sublist" class="vector-toc-list"> <li id="toc-Min-max_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Min-max_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Min-max theorem</span> </div> </a> <ul id="toc-Min-max_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Counterexample_in_the_non-Hermitian_case" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Counterexample_in_the_non-Hermitian_case"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Counterexample in the non-Hermitian case</span> </div> </a> <ul id="toc-Counterexample_in_the_non-Hermitian_case-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Min-max_principle_for_singular_values" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Min-max_principle_for_singular_values"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Min-max principle for singular values</span> </div> </a> <ul id="toc-Min-max_principle_for_singular_values-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cauchy_interlacing_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cauchy_interlacing_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Cauchy interlacing theorem</span> </div> </a> <ul id="toc-Cauchy_interlacing_theorem-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Compact_operators" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Compact_operators"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Compact operators</span> </div> </a> <ul id="toc-Compact_operators-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Self-adjoint_operators" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Self-adjoint_operators"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Self-adjoint operators</span> </div> </a> <ul id="toc-Self-adjoint_operators-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links_and_citations_to_related_work" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links_and_citations_to_related_work"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>External links and citations to related work</span> </div> </a> <ul id="toc-External_links_and_citations_to_related_work-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Min-max theorem</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 4 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-4" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">4 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Satz_von_Courant-Fischer" title="Satz von Courant-Fischer – German" lang="de" hreflang="de" data-title="Satz von Courant-Fischer" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_min-max_de_Courant-Fischer" title="Théorème min-max de Courant-Fischer – French" lang="fr" hreflang="fr" data-title="Théorème min-max de Courant-Fischer" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9A%D1%83%D1%80%D0%B0%D0%BD%D1%82%D0%B0_%E2%80%94_%D0%A4%D0%B8%D1%88%D0%B5%D1%80%D0%B0" title="Теорема Куранта — Фишера – Russian" lang="ru" hreflang="ru" data-title="Теорема Куранта — Фишера" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9A%D1%83%D1%80%D0%B0%D0%BD%D1%82%D0%B0_%E2%80%94_%D0%A4%D1%96%D1%88%D0%B5%D1%80%D0%B0" title="Теорема Куранта — Фішера – Ukrainian" lang="uk" hreflang="uk" data-title="Теорема Куранта — Фішера" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q4454958#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Min-max_theorem" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Min-max_theorem" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Min-max_theorem"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Min-max_theorem&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Min-max_theorem&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Min-max_theorem"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Min-max_theorem&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Min-max_theorem&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Min-max_theorem" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Min-max_theorem" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Min-max_theorem&oldid=1254158290" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Min-max_theorem&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Min-max_theorem&id=1254158290&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMin-max_theorem"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMin-max_theorem"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Min-max_theorem&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Min-max_theorem&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q4454958" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Minimax_theorem" title="Minimax theorem">Minimax theorem</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">"Variational theorem" redirects here. Not to be confused with <a href="/wiki/Variational_principle" title="Variational principle">variational principle</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Min-max_theorem" title="Special:EditPage/Min-max theorem">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i> <a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&q=%22Min-max+theorem%22">"Min-max theorem"</a> – <a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&q=%22Min-max+theorem%22+-wikipedia&tbs=ar:1">news</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&q=%22Min-max+theorem%22&tbs=bkt:s&tbm=bks">newspapers</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&q=%22Min-max+theorem%22+-wikipedia">books</a> <b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Min-max+theorem%22">scholar</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Min-max+theorem%22&acc=on&wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">November 2011</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>In <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a> and <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a>, the <b>min-max theorem</b>, or <b>variational theorem</b>, or <b>Courant–Fischer–Weyl min-max principle</b>, is a result that gives a variational characterization of <a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">eigenvalues</a> of <a href="/wiki/Compact_operator_on_Hilbert_space" title="Compact operator on Hilbert space">compact</a> Hermitian operators on <a href="/wiki/Hilbert_spaces" class="mw-redirect" title="Hilbert spaces">Hilbert spaces</a>. It can be viewed as the starting point of many results of similar nature. </p><p>This article first discusses the finite-dimensional case and its applications before considering compact operators on infinite-dimensional Hilbert spaces. We will see that for compact operators, the proof of the main theorem uses essentially the same idea from the finite-dimensional argument. </p><p>In the case that the operator is non-Hermitian, the theorem provides an equivalent characterization of the associated <a href="/wiki/Singular_values" class="mw-redirect" title="Singular values">singular values</a>. The min-max theorem can be extended to <a href="/wiki/Self-adjoint_operator" title="Self-adjoint operator">self-adjoint operators</a> that are bounded below. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Matrices">Matrices</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Min-max_theorem&action=edit&section=1" title="Edit section: Matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">A</span> be a <span class="texhtml"><i>n</i> × <i>n</i></span> <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian matrix</a>. As with many other variational results on eigenvalues, one considers the <a href="/wiki/Rayleigh_quotient" title="Rayleigh quotient">Rayleigh–Ritz quotient</a> <span class="texhtml"><i>R<sub>A</sub></i> : <b>C</b><sup><i>n</i></sup> \ {0} → <b>R</b></span> defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{A}(x)={\frac {(Ax,x)}{(x,x)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{A}(x)={\frac {(Ax,x)}{(x,x)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc03b154fba42316af2eef7a166cff58510ceee6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:17.548ex; height:6.509ex;" alt="{\displaystyle R_{A}(x)={\frac {(Ax,x)}{(x,x)}}}"></span></dd></dl> <p>where <span class="texhtml">(⋅, ⋅)</span> denotes the <a href="/wiki/Dot_product" title="Dot product">Euclidean inner product</a> on <span class="texhtml"><b>C</b><sup><i>n</i></sup></span>. Clearly, the Rayleigh quotient of an eigenvector is its associated eigenvalue. Equivalently, the Rayleigh–Ritz quotient can be replaced by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=(Ax,x),\;\|x\|=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thickmathspace" /> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=(Ax,x),\;\|x\|=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b318917f2442042a02bd036f352b8a2a5392e76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.003ex; height:2.843ex;" alt="{\displaystyle f(x)=(Ax,x),\;\|x\|=1.}"></span></dd></dl> <p>For Hermitian matrices <i>A</i>, the range of the continuous function <i>R<sub>A</sub></i>(<i>x</i>), or <i>f</i>(<i>x</i>), is a compact interval [<i>a</i>, <i>b</i>] of the real line. The maximum <i>b</i> and the minimum <i>a</i> are the largest and smallest eigenvalue of <i>A</i>, respectively. The min-max theorem is a refinement of this fact. </p> <div class="mw-heading mw-heading3"><h3 id="Min-max_theorem">Min-max theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Min-max_theorem&action=edit&section=2" title="Edit section: Min-max theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a118c6ad00742b3f5dccd2f0e74b5e369df6fd31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\textstyle A}"></span> be Hermitian on an inner product space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d67b50b7ba03a56fea637093cf80e12807852d19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\textstyle V}"></span> with dimension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc6e1f880981346a604257ebcacdef24c0aca2d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\textstyle n}"></span>, with spectrum ordered in descending order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda _{1}\geq ...\geq \lambda _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>≥<!-- ≥ --></mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>≥<!-- ≥ --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda _{1}\geq ...\geq \lambda _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b6ad4253c70444a9335118d3c4fed137922365f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.992ex; height:2.509ex;" alt="{\textstyle \lambda _{1}\geq ...\geq \lambda _{n}}"></span>. </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle v_{1},...,v_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle v_{1},...,v_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d1cc5ed98dbf25d60b025abbd4d5a232edcd502" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.698ex; height:2.009ex;" alt="{\textstyle v_{1},...,v_{n}}"></span> be the corresponding unit-length orthogonal eigenvectors. </p><p>Reverse the spectrum ordering, so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \xi _{1}=\lambda _{n},...,\xi _{n}=\lambda _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \xi _{1}=\lambda _{n},...,\xi _{n}=\lambda _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efe2f55bf67894684a83c077619105f6a4a102d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.659ex; height:2.509ex;" alt="{\textstyle \xi _{1}=\lambda _{n},...,\xi _{n}=\lambda _{1}}"></span>. </p> <style data-mw-deduplicate="TemplateStyles:r1110004140">.mw-parser-output .math_theorem{margin:1em 2em;padding:0.5em 1em 0.4em;border:1px solid #aaa;overflow:hidden}@media(max-width:500px){.mw-parser-output .math_theorem{margin:1em 0em;padding:0.5em 0.5em 0.4em}}</style><div class="math_theorem" style=""> <p><strong class="theorem-name">(Poincaré’s inequality)</strong><span class="theoreme-tiret"> — </span>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/913ace920108f7552777e36ac0b7ee3f5093a088" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\textstyle M}"></span> be a subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d67b50b7ba03a56fea637093cf80e12807852d19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\textstyle V}"></span> with dimension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5595fc0c47452f8fc2aa6e29c3611f047714b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\textstyle k}"></span>, then there exists unit vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x,y\in M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x,y\in M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/570e6a5fa71bfbec225c39be95f95a34ac84ada7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.802ex; height:2.509ex;" alt="{\textstyle x,y\in M}"></span>, such that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \langle x,Ax\rangle \leq \lambda _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>A</mi> <mi>x</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>≤<!-- ≤ --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \langle x,Ax\rangle \leq \lambda _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c52bf00e26001e47bd7575486d5476fbba844491" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.788ex; height:2.843ex;" alt="{\textstyle \langle x,Ax\rangle \leq \lambda _{k}}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \langle y,Ay\rangle \geq \xi _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>y</mi> <mo>,</mo> <mi>A</mi> <mi>y</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>≥<!-- ≥ --></mo> <msub> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \langle y,Ay\rangle \geq \xi _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e409a6ba7465218cf7453ae89da4be44b5723543" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.103ex; height:2.843ex;" alt="{\textstyle \langle y,Ay\rangle \geq \xi _{k}}"></span>. </p> </div> <style data-mw-deduplicate="TemplateStyles:r1174254338">.mw-parser-output .math_proof{border:thin solid #aaa;margin:1em 2em;padding:0.5em 1em 0.4em}@media(max-width:500px){.mw-parser-output .math_proof{margin:1em 0;padding:0.5em 0.5em 0.4em}}</style><div class="math_proof" style=""><strong>Proof</strong> <p>Part 2 is a corollary, using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle -A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle -A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f49ab44fb42f2fe76da25505e9b1188a57654501" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.551ex; height:2.343ex;" alt="{\textstyle -A}"></span>. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/913ace920108f7552777e36ac0b7ee3f5093a088" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\textstyle M}"></span> is a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5595fc0c47452f8fc2aa6e29c3611f047714b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\textstyle k}"></span> dimensional subspace, so if we pick any list of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n-k+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n-k+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79aa5c1103760c13f146b1d67726ccbdb402d20c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.449ex; height:2.343ex;" alt="{\textstyle n-k+1}"></span> vectors, their span <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle N:=span(v_{k},...v_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>N</mi> <mo>:=</mo> <mi>s</mi> <mi>p</mi> <mi>a</mi> <mi>n</mi> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle N:=span(v_{k},...v_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1ae45962499329a10158ca14c9ca1cc2b46067e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.201ex; height:2.843ex;" alt="{\textstyle N:=span(v_{k},...v_{n})}"></span> must intersect <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/913ace920108f7552777e36ac0b7ee3f5093a088" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\textstyle M}"></span> on at least a single line. </p><p>Take unit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x\in M\cap N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>M</mi> <mo>∩<!-- ∩ --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x\in M\cap N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71d1aa220f751f5e052996b55bfa5ed665079dc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.259ex; height:2.176ex;" alt="{\textstyle x\in M\cap N}"></span>. That’s what we need. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x=\sum _{i=k}^{n}a_{i}v_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x=\sum _{i=k}^{n}a_{i}v_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1b28194bdbc9f3692b0330386834528e34f01c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.161ex; height:3.176ex;" alt="{\textstyle x=\sum _{i=k}^{n}a_{i}v_{i}}"></span>, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x\in N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x\in N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db883c7aefff0bbc4ace7a0c4d29eedffc2bea50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.234ex; height:2.176ex;" alt="{\textstyle x\in N}"></span>.</dd></dl> <dl><dd>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum _{i=k}^{n}|a_{i}|^{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum _{i=k}^{n}|a_{i}|^{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7221f3f77d3c24e1663f0dbd5cd57a6e3cec0d08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.414ex; height:3.509ex;" alt="{\textstyle \sum _{i=k}^{n}|a_{i}|^{2}=1}"></span>, we find <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \langle x,Ax\rangle =\sum _{i=k}^{n}|a_{i}|^{2}\lambda _{i}\leq \lambda _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>A</mi> <mi>x</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \langle x,Ax\rangle =\sum _{i=k}^{n}|a_{i}|^{2}\lambda _{i}\leq \lambda _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a3663e91ff6e1be4e1f490b896de257f3103c55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.195ex; height:3.509ex;" alt="{\textstyle \langle x,Ax\rangle =\sum _{i=k}^{n}|a_{i}|^{2}\lambda _{i}\leq \lambda _{k}}"></span>.</dd></dl> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">min-max theorem</strong><span class="theoreme-tiret"> — </span><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\lambda _{k}&=\max _{\begin{array}{c}{\mathcal {M}}\subset V\\\operatorname {dim} ({\mathcal {M}})=k\end{array}}\min _{\begin{array}{c}x\in {\mathcal {M}}\\\|x\|=1\end{array}}\langle x,Ax\rangle \\&=\min _{\begin{array}{c}{\mathcal {M}}\subset V\\\operatorname {dim} ({\mathcal {M}})=n-k+1\end{array}}\max _{\begin{array}{c}x\in {\mathcal {M}}\\\|x\|=1\end{array}}\langle x,Ax\rangle {\text{. }}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo>⊂<!-- ⊂ --></mo> <mi>V</mi> </mtd> </mtr> <mtr> <mtd> <mi>dim</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> </mtd> </mtr> </mtable> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> </munder> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>A</mi> <mi>x</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo>⊂<!-- ⊂ --></mo> <mi>V</mi> </mtd> </mtr> <mtr> <mtd> <mi>dim</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> </munder> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>A</mi> <mi>x</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>. </mtext> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\lambda _{k}&=\max _{\begin{array}{c}{\mathcal {M}}\subset V\\\operatorname {dim} ({\mathcal {M}})=k\end{array}}\min _{\begin{array}{c}x\in {\mathcal {M}}\\\|x\|=1\end{array}}\langle x,Ax\rangle \\&=\min _{\begin{array}{c}{\mathcal {M}}\subset V\\\operatorname {dim} ({\mathcal {M}})=n-k+1\end{array}}\max _{\begin{array}{c}x\in {\mathcal {M}}\\\|x\|=1\end{array}}\langle x,Ax\rangle {\text{. }}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c68c952fcf12332d74e51d911bd44013bf9be02e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:33.835ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}\lambda _{k}&=\max _{\begin{array}{c}{\mathcal {M}}\subset V\\\operatorname {dim} ({\mathcal {M}})=k\end{array}}\min _{\begin{array}{c}x\in {\mathcal {M}}\\\|x\|=1\end{array}}\langle x,Ax\rangle \\&=\min _{\begin{array}{c}{\mathcal {M}}\subset V\\\operatorname {dim} ({\mathcal {M}})=n-k+1\end{array}}\max _{\begin{array}{c}x\in {\mathcal {M}}\\\|x\|=1\end{array}}\langle x,Ax\rangle {\text{. }}\end{aligned}}}"></span> </p> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1174254338"><div class="math_proof" style=""><strong>Proof</strong> <p>Part 2 is a corollary of part 1, by using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle -A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle -A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f49ab44fb42f2fe76da25505e9b1188a57654501" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.551ex; height:2.343ex;" alt="{\textstyle -A}"></span>. </p><p>By Poincare’s inequality, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6eb33199e6d4634c81ee0683035520ac2c5ed9ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.444ex; height:2.509ex;" alt="{\textstyle \lambda _{k}}"></span> is an upper bound to the right side. </p><p>By setting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\mathcal {M}}=span(v_{1},...v_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo>=</mo> <mi>s</mi> <mi>p</mi> <mi>a</mi> <mi>n</mi> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\mathcal {M}}=span(v_{1},...v_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f522feef04ca9e301d673ff9b5709541a67258ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.117ex; height:2.843ex;" alt="{\textstyle {\mathcal {M}}=span(v_{1},...v_{k})}"></span>, the upper bound is achieved. </p> </div> <div class="mw-heading mw-heading3"><h3 id="Counterexample_in_the_non-Hermitian_case">Counterexample in the non-Hermitian case</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Min-max_theorem&action=edit&section=3" title="Edit section: Counterexample in the non-Hermitian case"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <i>N</i> be the nilpotent matrix </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}0&1\\0&0\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}0&1\\0&0\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c36baae7901efb976700cd8774e2665359d241ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:8.501ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}0&1\\0&0\end{bmatrix}}.}"></span></dd></dl> <p>Define the Rayleigh quotient <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{N}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{N}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78a7c419196dc54bef6b34b348ace59c051a24ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.594ex; height:2.843ex;" alt="{\displaystyle R_{N}(x)}"></span> exactly as above in the Hermitian case. Then it is easy to see that the only eigenvalue of <i>N</i> is zero, while the maximum value of the Rayleigh quotient is <span class="texhtml"><style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span>. That is, the maximum value of the Rayleigh quotient is larger than the maximum eigenvalue. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Min-max_theorem&action=edit&section=4" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Min-max_principle_for_singular_values">Min-max principle for singular values</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Min-max_theorem&action=edit&section=5" title="Edit section: Min-max principle for singular values"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Singular_value" title="Singular value">singular values</a> {<i>σ<sub>k</sub></i>} of a square matrix <i>M</i> are the square roots of the eigenvalues of <i>M</i>*<i>M</i> (equivalently <i>MM*</i>). An immediate consequence<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="claim is unreferenced and maybe suspicious (April 2014)">citation needed</span></a></i>]</sup> of the first equality in the min-max theorem is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{k}^{\downarrow }=\max _{S:\dim(S)=k}\min _{x\in S,\|x\|=1}(M^{*}Mx,x)^{\frac {1}{2}}=\max _{S:\dim(S)=k}\min _{x\in S,\|x\|=1}\|Mx\|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">↓<!-- ↓ --></mo> </mrow> </msubsup> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> <mo>:</mo> <mi>dim</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>S</mi> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>M</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> <mo>:</mo> <mi>dim</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>S</mi> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>M</mi> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{k}^{\downarrow }=\max _{S:\dim(S)=k}\min _{x\in S,\|x\|=1}(M^{*}Mx,x)^{\frac {1}{2}}=\max _{S:\dim(S)=k}\min _{x\in S,\|x\|=1}\|Mx\|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d42895c98a7513fc5091061debfade994e2591d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:63.693ex; height:5.676ex;" alt="{\displaystyle \sigma _{k}^{\downarrow }=\max _{S:\dim(S)=k}\min _{x\in S,\|x\|=1}(M^{*}Mx,x)^{\frac {1}{2}}=\max _{S:\dim(S)=k}\min _{x\in S,\|x\|=1}\|Mx\|.}"></span></dd></dl> <p>Similarly, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{k}^{\downarrow }=\min _{S:\dim(S)=n-k+1}\max _{x\in S,\|x\|=1}\|Mx\|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">↓<!-- ↓ --></mo> </mrow> </msubsup> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> <mo>:</mo> <mi>dim</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>S</mi> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>M</mi> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{k}^{\downarrow }=\min _{S:\dim(S)=n-k+1}\max _{x\in S,\|x\|=1}\|Mx\|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bef0c507f13beccbf3a0d8dc0f7860a145f66f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:34.369ex; height:5.009ex;" alt="{\displaystyle \sigma _{k}^{\downarrow }=\min _{S:\dim(S)=n-k+1}\max _{x\in S,\|x\|=1}\|Mx\|.}"></span></dd></dl> <p>Here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{k}^{\downarrow }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">↓<!-- ↓ --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{k}^{\downarrow }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a09c2a2ee7f6ce9e88ff7be991b6dc1f32c725c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.416ex; height:3.509ex;" alt="{\displaystyle \sigma _{k}^{\downarrow }}"></span> denotes the <i>k</i><sup>th</sup> entry in the decreasing sequence of the singular values, so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{1}^{\downarrow }\geq \sigma _{2}^{\downarrow }\geq \cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">↓<!-- ↓ --></mo> </mrow> </msubsup> <mo>≥<!-- ≥ --></mo> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">↓<!-- ↓ --></mo> </mrow> </msubsup> <mo>≥<!-- ≥ --></mo> <mo>⋯<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{1}^{\downarrow }\geq \sigma _{2}^{\downarrow }\geq \cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e773352c547e7b24d7d3e0e94650a679abe2afed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.69ex; height:3.509ex;" alt="{\displaystyle \sigma _{1}^{\downarrow }\geq \sigma _{2}^{\downarrow }\geq \cdots }"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Cauchy_interlacing_theorem">Cauchy interlacing theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Min-max_theorem&action=edit&section=6" title="Edit section: Cauchy interlacing theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Poincar%C3%A9_separation_theorem" title="Poincaré separation theorem">Poincaré separation theorem</a></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">A</span> be a symmetric <i>n</i> × <i>n</i> matrix. The <i>m</i> × <i>m</i> matrix <i>B</i>, where <i>m</i> ≤ <i>n</i>, is called a <b><a href="/wiki/Compression_(functional_analysis)" title="Compression (functional analysis)">compression</a></b> of <span class="texhtml mvar" style="font-style:italic;">A</span> if there exists an <a href="/wiki/Projection_(linear_algebra)#Orthogonal_projections" title="Projection (linear algebra)">orthogonal projection</a> <i>P</i> onto a subspace of dimension <i>m</i> such that <i>PAP*</i> = <i>B</i>. The Cauchy interlacing theorem states: </p> <dl><dd><b>Theorem.</b> If the eigenvalues of <span class="texhtml mvar" style="font-style:italic;">A</span> are <span class="texhtml"><i>α</i><sub>1</sub> ≤ ... ≤ <i>α<sub>n</sub></i></span>, and those of <i>B</i> are <span class="texhtml"><i>β</i><sub>1</sub> ≤ ... ≤ <i>β<sub>j</sub></i> ≤ ... ≤ <i>β<sub>m</sub></i></span>, then for all <span class="texhtml"><i>j</i> ≤ <i>m</i></span>, <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{j}\leq \beta _{j}\leq \alpha _{n-m+j}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>m</mi> <mo>+</mo> <mi>j</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{j}\leq \beta _{j}\leq \alpha _{n-m+j}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78356b0fdd006c0b809ee94d2a84092988cef4f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.85ex; height:2.843ex;" alt="{\displaystyle \alpha _{j}\leq \beta _{j}\leq \alpha _{n-m+j}.}"></span></dd></dl></dd></dl> <p>This can be proven using the min-max principle. Let <i>β<sub>i</sub></i> have corresponding eigenvector <i>b<sub>i</sub></i> and <i>S<sub>j</sub></i> be the <i>j</i> dimensional subspace <span class="texhtml"><i>S<sub>j</sub></i> = span{<i>b</i><sub>1</sub>, ..., <i>b<sub>j</sub></i>},</span> then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta _{j}=\max _{x\in S_{j},\|x\|=1}(Bx,x)=\max _{x\in S_{j},\|x\|=1}(PAP^{*}x,x)\geq \min _{S_{j}}\max _{x\in S_{j},\|x\|=1}(A(P^{*}x),P^{*}x)=\alpha _{j}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>B</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">(</mo> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta _{j}=\max _{x\in S_{j},\|x\|=1}(Bx,x)=\max _{x\in S_{j},\|x\|=1}(PAP^{*}x,x)\geq \min _{S_{j}}\max _{x\in S_{j},\|x\|=1}(A(P^{*}x),P^{*}x)=\alpha _{j}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a4e8008676e33225ce803ef4c6df7a77616a7f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:82.567ex; height:4.676ex;" alt="{\displaystyle \beta _{j}=\max _{x\in S_{j},\|x\|=1}(Bx,x)=\max _{x\in S_{j},\|x\|=1}(PAP^{*}x,x)\geq \min _{S_{j}}\max _{x\in S_{j},\|x\|=1}(A(P^{*}x),P^{*}x)=\alpha _{j}.}"></span></dd></dl> <p>According to first part of min-max, <span class="texhtml"><i>α<sub>j</sub></i> ≤ <i>β<sub>j</sub></i>.</span> On the other hand, if we define <span class="texhtml"><i>S</i><sub><i>m</i>−<i>j</i>+1</sub> = span{<i>b<sub>j</sub></i>, ..., <i>b<sub>m</sub></i>},</span> then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta _{j}=\min _{x\in S_{m-j+1},\|x\|=1}(Bx,x)=\min _{x\in S_{m-j+1},\|x\|=1}(PAP^{*}x,x)=\min _{x\in S_{m-j+1},\|x\|=1}(A(P^{*}x),P^{*}x)\leq \alpha _{n-m+j},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>B</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">(</mo> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>m</mi> <mo>+</mo> <mi>j</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta _{j}=\min _{x\in S_{m-j+1},\|x\|=1}(Bx,x)=\min _{x\in S_{m-j+1},\|x\|=1}(PAP^{*}x,x)=\min _{x\in S_{m-j+1},\|x\|=1}(A(P^{*}x),P^{*}x)\leq \alpha _{n-m+j},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/027ace0787270ae0cacb8bbedf95641b79266698" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:95.035ex; height:4.676ex;" alt="{\displaystyle \beta _{j}=\min _{x\in S_{m-j+1},\|x\|=1}(Bx,x)=\min _{x\in S_{m-j+1},\|x\|=1}(PAP^{*}x,x)=\min _{x\in S_{m-j+1},\|x\|=1}(A(P^{*}x),P^{*}x)\leq \alpha _{n-m+j},}"></span></dd></dl> <p>where the last inequality is given by the second part of min-max. </p><p>When <span class="texhtml"><i>n</i> − <i>m</i> = 1</span>, we have <span class="texhtml"><i>α<sub>j</sub></i> ≤ <i>β<sub>j</sub></i> ≤ <i>α</i><sub><i>j</i>+1</sub></span>, hence the name <i>interlacing</i> theorem. </p> <div class="mw-heading mw-heading2"><h2 id="Compact_operators">Compact operators</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Min-max_theorem&action=edit&section=7" title="Edit section: Compact operators"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">A</span> be a <a href="/wiki/Compact_operator_on_Hilbert_space" title="Compact operator on Hilbert space">compact</a>, <a href="/wiki/Hermitian" class="mw-redirect" title="Hermitian">Hermitian</a> operator on a Hilbert space <i>H</i>. Recall that the <a href="/wiki/Spectrum_(functional_analysis)" title="Spectrum (functional analysis)">spectrum</a> of such an operator (the set of eigenvalues) is a set of real numbers whose only possible <a href="/wiki/Cluster_point" class="mw-redirect" title="Cluster point">cluster point</a> is zero. It is thus convenient to list the positive eigenvalues of <span class="texhtml mvar" style="font-style:italic;">A</span> as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdots \leq \lambda _{k}\leq \cdots \leq \lambda _{1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⋯<!-- ⋯ --></mo> <mo>≤<!-- ≤ --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>≤<!-- ≤ --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdots \leq \lambda _{k}\leq \cdots \leq \lambda _{1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/640d8f6357fa9ed73afe94fb51a33a31ca2b5c4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.242ex; height:2.509ex;" alt="{\displaystyle \cdots \leq \lambda _{k}\leq \cdots \leq \lambda _{1},}"></span></dd></dl> <p>where entries are repeated with <a href="/wiki/Multiplicity_(mathematics)" title="Multiplicity (mathematics)">multiplicity</a>, as in the matrix case. (To emphasize that the sequence is decreasing, we may write <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{k}=\lambda _{k}^{\downarrow }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">↓<!-- ↓ --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{k}=\lambda _{k}^{\downarrow }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/446271bc68bd6604d48e39951c19bb70e9c47d46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.986ex; height:3.509ex;" alt="{\displaystyle \lambda _{k}=\lambda _{k}^{\downarrow }}"></span>.) When <i>H</i> is infinite-dimensional, the above sequence of eigenvalues is necessarily infinite. We now apply the same reasoning as in the matrix case. Letting <i>S<sub>k</sub></i> ⊂ <i>H</i> be a <i>k</i> dimensional subspace, we can obtain the following theorem. </p> <dl><dd><b>Theorem (Min-Max).</b> Let <span class="texhtml mvar" style="font-style:italic;">A</span> be a compact, self-adjoint operator on a Hilbert space <span class="texhtml mvar" style="font-style:italic;">H</span>, whose positive eigenvalues are listed in decreasing order <span class="texhtml">... ≤ <i>λ<sub>k</sub></i> ≤ ... ≤ <i>λ</i><sub>1</sub></span>. Then: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\max _{S_{k}}\min _{x\in S_{k},\|x\|=1}(Ax,x)&=\lambda _{k}^{\downarrow },\\\min _{S_{k-1}}\max _{x\in S_{k-1}^{\perp },\|x\|=1}(Ax,x)&=\lambda _{k}^{\downarrow }.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">↓<!-- ↓ --></mo> </mrow> </msubsup> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msubsup> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">↓<!-- ↓ --></mo> </mrow> </msubsup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\max _{S_{k}}\min _{x\in S_{k},\|x\|=1}(Ax,x)&=\lambda _{k}^{\downarrow },\\\min _{S_{k-1}}\max _{x\in S_{k-1}^{\perp },\|x\|=1}(Ax,x)&=\lambda _{k}^{\downarrow }.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9984269e829e8bbb243ab2469e531979b655276" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:29.2ex; height:10.843ex;" alt="{\displaystyle {\begin{aligned}\max _{S_{k}}\min _{x\in S_{k},\|x\|=1}(Ax,x)&=\lambda _{k}^{\downarrow },\\\min _{S_{k-1}}\max _{x\in S_{k-1}^{\perp },\|x\|=1}(Ax,x)&=\lambda _{k}^{\downarrow }.\end{aligned}}}"></span></dd></dl></dd></dl> <p>A similar pair of equalities hold for negative eigenvalues. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1174254338"><div class="math_proof" style=""><strong>Proof</strong> <p>Let <i>S' </i> be the closure of the linear span <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S'=\operatorname {span} \{u_{k},u_{k+1},\ldots \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>span</mi> <mo>⁡<!-- --></mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S'=\operatorname {span} \{u_{k},u_{k+1},\ldots \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/844c11407db842ec6a507919101b6196ff6dd95a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.022ex; height:3.009ex;" alt="{\displaystyle S'=\operatorname {span} \{u_{k},u_{k+1},\ldots \}}"></span>. The subspace <i>S' </i> has codimension <i>k</i> − 1. By the same dimension count argument as in the matrix case, <i>S' </i> ∩ <i>S<sub>k</sub></i> has positive dimension. So there exists <i>x</i> ∈ <i>S' </i> ∩ <i>S<sub>k</sub></i> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|x\|=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|x\|=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3060a9705882ba484bebd7ece4b538bbee5bbe6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.916ex; height:2.843ex;" alt="{\displaystyle \|x\|=1}"></span>. Since it is an element of <i>S' </i>, such an <i>x</i> necessarily satisfy </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (Ax,x)\leq \lambda _{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (Ax,x)\leq \lambda _{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9628b1a0ae315028a25b926f75811a54d8de600e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.435ex; height:2.843ex;" alt="{\displaystyle (Ax,x)\leq \lambda _{k}.}"></span></dd></dl> <p>Therefore, for all <i>S<sub>k</sub></i> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \inf _{x\in S_{k},\|x\|=1}(Ax,x)\leq \lambda _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">inf</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \inf _{x\in S_{k},\|x\|=1}(Ax,x)\leq \lambda _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/367c482b0fe083457e0e53c5985dff090dd520f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.834ex; height:4.509ex;" alt="{\displaystyle \inf _{x\in S_{k},\|x\|=1}(Ax,x)\leq \lambda _{k}}"></span></dd></dl> <p>But <span class="texhtml mvar" style="font-style:italic;">A</span> is compact, therefore the function <i>f</i>(<i>x</i>) = (<i>Ax</i>, <i>x</i>) is weakly continuous. Furthermore, any bounded set in <i>H</i> is weakly compact. This lets us replace the infimum by minimum: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \min _{x\in S_{k},\|x\|=1}(Ax,x)\leq \lambda _{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \min _{x\in S_{k},\|x\|=1}(Ax,x)\leq \lambda _{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/886c2a905efd3971591f223acbe9e6dfd928fb37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.481ex; height:4.509ex;" alt="{\displaystyle \min _{x\in S_{k},\|x\|=1}(Ax,x)\leq \lambda _{k}.}"></span></dd></dl> <p>So </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sup _{S_{k}}\min _{x\in S_{k},\|x\|=1}(Ax,x)\leq \lambda _{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sup _{S_{k}}\min _{x\in S_{k},\|x\|=1}(Ax,x)\leq \lambda _{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4b89d7a89656852c1adafab50e3443bb129f86f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:26.369ex; height:4.843ex;" alt="{\displaystyle \sup _{S_{k}}\min _{x\in S_{k},\|x\|=1}(Ax,x)\leq \lambda _{k}.}"></span></dd></dl> <p>Because equality is achieved when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{k}=\operatorname {span} \{u_{1},\ldots ,u_{k}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>span</mi> <mo>⁡<!-- --></mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{k}=\operatorname {span} \{u_{1},\ldots ,u_{k}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95ec4eaa25ae5892c4b29b577ddfff925fcb8648" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.581ex; height:2.843ex;" alt="{\displaystyle S_{k}=\operatorname {span} \{u_{1},\ldots ,u_{k}\}}"></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \max _{S_{k}}\min _{x\in S_{k},\|x\|=1}(Ax,x)=\lambda _{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \max _{S_{k}}\min _{x\in S_{k},\|x\|=1}(Ax,x)=\lambda _{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f7ff8bee95d3b0f192d352787eb725ad11deabd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.194ex; height:4.509ex;" alt="{\displaystyle \max _{S_{k}}\min _{x\in S_{k},\|x\|=1}(Ax,x)=\lambda _{k}.}"></span></dd></dl> <p>This is the first part of min-max theorem for compact self-adjoint operators. </p><p>Analogously, consider now a <span class="texhtml">(<i>k</i> − 1)</span>-dimensional subspace <i>S</i><sub><i>k</i>−1</sub>, whose the orthogonal complement is denoted by <i>S</i><sub><i>k</i>−1</sub><sup>⊥</sup>. If <i>S' </i> = span{<i>u</i><sub>1</sub>...<i>u<sub>k</sub></i>}, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S'\cap S_{k-1}^{\perp }\neq {0}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mo>′</mo> </msup> <mo>∩<!-- ∩ --></mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msubsup> <mo>≠<!-- ≠ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S'\cap S_{k-1}^{\perp }\neq {0}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d66579808d5b37960c0ec68abcc5e6b0908dda40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:14.311ex; height:3.343ex;" alt="{\displaystyle S'\cap S_{k-1}^{\perp }\neq {0}.}"></span></dd></dl> <p>So </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists x\in S_{k-1}^{\perp }\,\|x\|=1,(Ax,x)\geq \lambda _{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msubsup> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists x\in S_{k-1}^{\perp }\,\|x\|=1,(Ax,x)\geq \lambda _{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c081176eb335c2b66eb8a0b44ee64491d47c2351" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:32.849ex; height:3.343ex;" alt="{\displaystyle \exists x\in S_{k-1}^{\perp }\,\|x\|=1,(Ax,x)\geq \lambda _{k}.}"></span></dd></dl> <p>This implies </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \max _{x\in S_{k-1}^{\perp },\|x\|=1}(Ax,x)\geq \lambda _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msubsup> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \max _{x\in S_{k-1}^{\perp },\|x\|=1}(Ax,x)\geq \lambda _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47c6463b9cb5ec458b08d2d14a30bc4c0972939d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:23.539ex; height:5.176ex;" alt="{\displaystyle \max _{x\in S_{k-1}^{\perp },\|x\|=1}(Ax,x)\geq \lambda _{k}}"></span></dd></dl> <p>where the compactness of <i>A</i> was applied. Index the above by the collection of <i>k-1</i>-dimensional subspaces gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \inf _{S_{k-1}}\max _{x\in S_{k-1}^{\perp },\|x\|=1}(Ax,x)\geq \lambda _{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">inf</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msubsup> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \inf _{S_{k-1}}\max _{x\in S_{k-1}^{\perp },\|x\|=1}(Ax,x)\geq \lambda _{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6a1068bd3d7d3d960335f08b30aa275983800e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.146ex; height:5.176ex;" alt="{\displaystyle \inf _{S_{k-1}}\max _{x\in S_{k-1}^{\perp },\|x\|=1}(Ax,x)\geq \lambda _{k}.}"></span></dd></dl> <p>Pick <i>S</i><sub><i>k</i>−1</sub> = span{<i>u</i><sub>1</sub>, ..., <i>u</i><sub><i>k</i>−1</sub>} and we deduce </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \min _{S_{k-1}}\max _{x\in S_{k-1}^{\perp },\|x\|=1}(Ax,x)=\lambda _{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> </munder> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msubsup> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \min _{S_{k-1}}\max _{x\in S_{k-1}^{\perp },\|x\|=1}(Ax,x)=\lambda _{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79315b7388ada12790863ee735cd97d00d6dc05e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.448ex; height:5.176ex;" alt="{\displaystyle \min _{S_{k-1}}\max _{x\in S_{k-1}^{\perp },\|x\|=1}(Ax,x)=\lambda _{k}.}"></span></dd></dl> </div> <div class="mw-heading mw-heading2"><h2 id="Self-adjoint_operators">Self-adjoint operators</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Min-max_theorem&action=edit&section=8" title="Edit section: Self-adjoint operators"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The min-max theorem also applies to (possibly unbounded) self-adjoint operators.<sup id="cite_ref-teschl_1-0" class="reference"><a href="#cite_note-teschl-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-lieb-loss_2-0" class="reference"><a href="#cite_note-lieb-loss-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Recall the <a href="/wiki/Essential_spectrum" title="Essential spectrum">essential spectrum</a> is the spectrum without isolated eigenvalues of finite multiplicity. Sometimes we have some eigenvalues below the essential spectrum, and we would like to approximate the eigenvalues and eigenfunctions. </p> <dl><dd><b>Theorem (Min-Max).</b> Let <i>A</i> be self-adjoint, and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{1}\leq E_{2}\leq E_{3}\leq \cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <mo>⋯<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{1}\leq E_{2}\leq E_{3}\leq \cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2864b61cefbde1634de8c6d7c4d11fbb8006eb57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.327ex; height:2.509ex;" alt="{\displaystyle E_{1}\leq E_{2}\leq E_{3}\leq \cdots }"></span> be the eigenvalues of <i>A</i> below the essential spectrum. Then</dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{n}=\min _{\psi _{1},\ldots ,\psi _{n}}\max\{\langle \psi ,A\psi \rangle :\psi \in \operatorname {span} (\psi _{1},\ldots ,\psi _{n}),\,\|\psi \|=1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </munder> <mo movablelimits="true" form="prefix">max</mo> <mo fence="false" stretchy="false">{</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>ψ<!-- ψ --></mi> <mo>,</mo> <mi>A</mi> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>:</mo> <mi>ψ<!-- ψ --></mi> <mo>∈<!-- ∈ --></mo> <mi>span</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{n}=\min _{\psi _{1},\ldots ,\psi _{n}}\max\{\langle \psi ,A\psi \rangle :\psi \in \operatorname {span} (\psi _{1},\ldots ,\psi _{n}),\,\|\psi \|=1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5560be57176a3dba6f7cd29a5b48fbef6d706d85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:60.221ex; height:4.509ex;" alt="{\displaystyle E_{n}=\min _{\psi _{1},\ldots ,\psi _{n}}\max\{\langle \psi ,A\psi \rangle :\psi \in \operatorname {span} (\psi _{1},\ldots ,\psi _{n}),\,\|\psi \|=1\}}"></span>. </p><p>If we only have <i>N</i> eigenvalues and hence run out of eigenvalues, then we let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{n}:=\inf \sigma _{ess}(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>:=</mo> <mo movablelimits="true" form="prefix">inf</mo> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{n}:=\inf \sigma _{ess}(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a64fbd25262dcc70fa473bf28dfebd9fb11b3971" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.138ex; height:2.843ex;" alt="{\displaystyle E_{n}:=\inf \sigma _{ess}(A)}"></span> (the bottom of the essential spectrum) for <i>n>N</i>, and the above statement holds after replacing min-max with inf-sup. </p> <dl><dd><b>Theorem (Max-Min).</b> Let <i>A</i> be self-adjoint, and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{1}\leq E_{2}\leq E_{3}\leq \cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <mo>⋯<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{1}\leq E_{2}\leq E_{3}\leq \cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2864b61cefbde1634de8c6d7c4d11fbb8006eb57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.327ex; height:2.509ex;" alt="{\displaystyle E_{1}\leq E_{2}\leq E_{3}\leq \cdots }"></span> be the eigenvalues of <i>A</i> below the essential spectrum. Then</dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{n}=\max _{\psi _{1},\ldots ,\psi _{n-1}}\min\{\langle \psi ,A\psi \rangle :\psi \perp \psi _{1},\ldots ,\psi _{n-1},\,\|\psi \|=1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> </munder> <mo movablelimits="true" form="prefix">min</mo> <mo fence="false" stretchy="false">{</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>ψ<!-- ψ --></mi> <mo>,</mo> <mi>A</mi> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>:</mo> <mi>ψ<!-- ψ --></mi> <mo>⊥<!-- ⊥ --></mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{n}=\max _{\psi _{1},\ldots ,\psi _{n-1}}\min\{\langle \psi ,A\psi \rangle :\psi \perp \psi _{1},\ldots ,\psi _{n-1},\,\|\psi \|=1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea963223fb913d0ccab636adc169b7dcb15d405a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:57.361ex; height:4.509ex;" alt="{\displaystyle E_{n}=\max _{\psi _{1},\ldots ,\psi _{n-1}}\min\{\langle \psi ,A\psi \rangle :\psi \perp \psi _{1},\ldots ,\psi _{n-1},\,\|\psi \|=1\}}"></span>. </p><p>If we only have <i>N</i> eigenvalues and hence run out of eigenvalues, then we let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{n}:=\inf \sigma _{ess}(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>:=</mo> <mo movablelimits="true" form="prefix">inf</mo> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{n}:=\inf \sigma _{ess}(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a64fbd25262dcc70fa473bf28dfebd9fb11b3971" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.138ex; height:2.843ex;" alt="{\displaystyle E_{n}:=\inf \sigma _{ess}(A)}"></span> (the bottom of the essential spectrum) for <i>n > N</i>, and the above statement holds after replacing max-min with sup-inf. </p><p>The proofs<sup id="cite_ref-teschl_1-1" class="reference"><a href="#cite_note-teschl-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-lieb-loss_2-1" class="reference"><a href="#cite_note-lieb-loss-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> use the following results about self-adjoint operators: </p> <dl><dd><b>Theorem.</b> Let <i>A</i> be self-adjoint. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A-E)\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>−<!-- − --></mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A-E)\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1904595179cf05029aa960dfca224614e59bb53a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.429ex; height:2.843ex;" alt="{\displaystyle (A-E)\geq 0}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e204f8902c406c25b165a1db51773b7710ec38af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.294ex; height:2.176ex;" alt="{\displaystyle E\in \mathbb {R} }"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma (A)\subseteq [E,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>σ<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>⊆<!-- ⊆ --></mo> <mo stretchy="false">[</mo> <mi>E</mi> <mo>,</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma (A)\subseteq [E,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dae98326028146b5d2240ca75a4daa2b65d20d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.665ex; height:2.843ex;" alt="{\displaystyle \sigma (A)\subseteq [E,\infty )}"></span>.<sup id="cite_ref-teschl_1-2" class="reference"><a href="#cite_note-teschl-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 77">: 77 </span></sup></dd></dl> <dl><dd><b>Theorem.</b> If <i>A</i> is self-adjoint, then</dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \inf \sigma (A)=\inf _{\psi \in {\mathfrak {D}}(A),\|\psi \|=1}\langle \psi ,A\psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">inf</mo> <mi>σ<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">inf</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ψ<!-- ψ --></mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>ψ<!-- ψ --></mi> <mo>,</mo> <mi>A</mi> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \inf \sigma (A)=\inf _{\psi \in {\mathfrak {D}}(A),\|\psi \|=1}\langle \psi ,A\psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9e7a965d3341f41d93d91d08b589cfca3e45ece" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.949ex; height:4.509ex;" alt="{\displaystyle \inf \sigma (A)=\inf _{\psi \in {\mathfrak {D}}(A),\|\psi \|=1}\langle \psi ,A\psi \rangle }"></span> </p><p>and </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sup \sigma (A)=\sup _{\psi \in {\mathfrak {D}}(A),\|\psi \|=1}\langle \psi ,A\psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">sup</mo> <mi>σ<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ψ<!-- ψ --></mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">D</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>ψ<!-- ψ --></mi> <mo>,</mo> <mi>A</mi> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sup \sigma (A)=\sup _{\psi \in {\mathfrak {D}}(A),\|\psi \|=1}\langle \psi ,A\psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ed5124e87c47cc7cf76eb3741a40d8a039080d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.799ex; height:5.009ex;" alt="{\displaystyle \sup \sigma (A)=\sup _{\psi \in {\mathfrak {D}}(A),\|\psi \|=1}\langle \psi ,A\psi \rangle }"></span>.<sup id="cite_ref-teschl_1-3" class="reference"><a href="#cite_note-teschl-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 77">: 77 </span></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Min-max_theorem&action=edit&section=9" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Courant_minimax_principle" title="Courant minimax principle">Courant minimax principle</a></li> <li><a href="/wiki/Max%E2%80%93min_inequality" title="Max–min inequality">Max–min inequality</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Min-max_theorem&action=edit&section=10" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-teschl-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-teschl_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-teschl_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-teschl_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-teschl_1-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">G. Teschl, Mathematical Methods in Quantum Mechanics (GSM 99) <a rel="nofollow" class="external free" href="https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/schroe.pdf">https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/schroe.pdf</a></span> </li> <li id="cite_note-lieb-loss-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-lieb-loss_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-lieb-loss_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFLiebLoss2001" class="citation book cs1">Lieb; Loss (2001). <i>Analysis</i>. GSM. Vol. 14 (2nd ed.). Providence: American Mathematical Society. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8218-2783-9" title="Special:BookSources/0-8218-2783-9"><bdi>0-8218-2783-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Analysis&rft.place=Providence&rft.series=GSM&rft.edition=2nd&rft.pub=American+Mathematical+Society&rft.date=2001&rft.isbn=0-8218-2783-9&rft.au=Lieb&rft.au=Loss&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMin-max+theorem" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links_and_citations_to_related_work">External links and citations to related work</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Min-max_theorem&action=edit&section=11" title="Edit section: External links and citations to related work"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFisk2005" class="citation arxiv cs1">Fisk, Steve (2005). "A very short proof of Cauchy's interlace theorem for eigenvalues of Hermitian matrices". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0502408">math/0502408</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=A+very+short+proof+of+Cauchy%27s+interlace+theorem+for+eigenvalues+of+Hermitian+matrices&rft.date=2005&rft_id=info%3Aarxiv%2Fmath%2F0502408&rft.aulast=Fisk&rft.aufirst=Steve&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMin-max+theorem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHwang2004" class="citation journal cs1">Hwang, Suk-Geun (2004). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/4145217">"Cauchy's Interlace Theorem for Eigenvalues of Hermitian Matrices"</a>. <i>The American Mathematical Monthly</i>. <b>111</b> (2): 157–159. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F4145217">10.2307/4145217</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/4145217">4145217</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+American+Mathematical+Monthly&rft.atitle=Cauchy%27s+Interlace+Theorem+for+Eigenvalues+of+Hermitian+Matrices&rft.volume=111&rft.issue=2&rft.pages=157-159&rft.date=2004&rft_id=info%3Adoi%2F10.2307%2F4145217&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F4145217%23id-name%3DJSTOR&rft.aulast=Hwang&rft.aufirst=Suk-Geun&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F4145217&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMin-max+theorem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKline2020" class="citation journal cs1">Kline, Jeffery (2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.laa.2019.12.004">"Bordered Hermitian matrices and sums of the Möbius function"</a>. <i>Linear Algebra and Its Applications</i>. <b>588</b>: 224–237. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.laa.2019.12.004">10.1016/j.laa.2019.12.004</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Linear+Algebra+and+Its+Applications&rft.atitle=Bordered+Hermitian+matrices+and+sums+of+the+M%C3%B6bius+function&rft.volume=588&rft.pages=224-237&rft.date=2020&rft_id=info%3Adoi%2F10.1016%2Fj.laa.2019.12.004&rft.aulast=Kline&rft.aufirst=Jeffery&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.laa.2019.12.004&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMin-max+theorem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReedSimon1978" class="citation book cs1">Reed, Michael; Simon, Barry (1978). <a rel="nofollow" class="external text" href="https://www.elsevier.com/books/iv-analysis-of-operators/reed/978-0-08-057045-7"><i>Methods of Modern Mathematical Physics IV: Analysis of Operators</i></a>. Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-08-057045-7" title="Special:BookSources/978-0-08-057045-7"><bdi>978-0-08-057045-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Methods+of+Modern+Mathematical+Physics+IV%3A+Analysis+of+Operators&rft.pub=Academic+Press&rft.date=1978&rft.isbn=978-0-08-057045-7&rft.aulast=Reed&rft.aufirst=Michael&rft.au=Simon%2C+Barry&rft_id=https%3A%2F%2Fwww.elsevier.com%2Fbooks%2Fiv-analysis-of-operators%2Freed%2F978-0-08-057045-7&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMin-max+theorem" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Functional_analysis_(topics_–_glossary)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Functional_analysis" title="Template:Functional analysis"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Functional_analysis" title="Template talk:Functional analysis"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Functional_analysis" title="Special:EditPage/Template:Functional analysis"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Functional_analysis_(topics_–_glossary)" style="font-size:114%;margin:0 4em"><a href="/wiki/Functional_analysis" title="Functional analysis">Functional analysis</a> (<a href="/wiki/List_of_functional_analysis_topics" title="List of functional analysis topics">topics</a> – <a href="/wiki/Glossary_of_functional_analysis" title="Glossary of functional analysis">glossary</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Spaces</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach</a></li> <li><a href="/wiki/Besov_space" title="Besov space">Besov</a></li> <li><a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet</a></li> <li><a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert</a></li> <li><a href="/wiki/H%C3%B6lder_space" class="mw-redirect" title="Hölder space">Hölder</a></li> <li><a href="/wiki/Nuclear_space" title="Nuclear space">Nuclear</a></li> <li><a href="/wiki/Orlicz_space" title="Orlicz space">Orlicz</a></li> <li><a href="/wiki/Schwartz_space" title="Schwartz space">Schwartz</a></li> <li><a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev</a></li> <li><a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Properties</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Barrelled_space" title="Barrelled space">Barrelled</a></li> <li><a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">Complete</a></li> <li><a href="/wiki/Dual_space" title="Dual space">Dual</a> (<a href="/wiki/Dual_space#Algebraic_dual_space" title="Dual space">Algebraic</a>/<a href="/wiki/Dual_space#Continuous_dual_space" title="Dual space">Topological</a>)</li> <li><a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">Locally convex</a></li> <li><a href="/wiki/Reflexive_space" title="Reflexive space">Reflexive</a></li> <li><a href="/wiki/Separable_space" title="Separable space">Separable</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_functional_analysis" title="Category:Theorems in functional analysis">Theorems</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach</a></li> <li><a href="/wiki/Riesz_representation_theorem" title="Riesz representation theorem">Riesz representation</a></li> <li><a href="/wiki/Closed_graph_theorem_(functional_analysis)" title="Closed graph theorem (functional analysis)">Closed graph</a></li> <li><a href="/wiki/Uniform_boundedness_principle" title="Uniform boundedness principle">Uniform boundedness principle</a></li> <li><a href="/wiki/Kakutani_fixed-point_theorem#Infinite-dimensional_generalizations" title="Kakutani fixed-point theorem">Kakutani fixed-point</a></li> <li><a href="/wiki/Krein%E2%80%93Milman_theorem" title="Krein–Milman theorem">Krein–Milman</a></li> <li><a class="mw-selflink selflink">Min–max</a></li> <li><a href="/wiki/Gelfand%E2%80%93Naimark_theorem" title="Gelfand–Naimark theorem">Gelfand–Naimark</a></li> <li><a href="/wiki/Banach%E2%80%93Alaoglu_theorem" title="Banach–Alaoglu theorem">Banach–Alaoglu</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Operators</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjoint_operator" class="mw-redirect" title="Adjoint operator">Adjoint</a></li> <li><a href="/wiki/Bounded_operator" title="Bounded operator">Bounded</a></li> <li><a href="/wiki/Compact_operator" title="Compact operator">Compact</a></li> <li><a href="/wiki/Hilbert%E2%80%93Schmidt_operator" title="Hilbert–Schmidt operator">Hilbert–Schmidt</a></li> <li><a href="/wiki/Normal_operator" title="Normal operator">Normal</a></li> <li><a href="/wiki/Nuclear_operator" title="Nuclear operator">Nuclear</a></li> <li><a href="/wiki/Trace_class" title="Trace class">Trace class</a></li> <li><a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">Transpose</a></li> <li><a href="/wiki/Unbounded_operator" title="Unbounded operator">Unbounded</a></li> <li><a href="/wiki/Unitary_operator" title="Unitary operator">Unitary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Algebras</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_algebra" title="Banach algebra">Banach algebra</a></li> <li><a href="/wiki/C*-algebra" title="C*-algebra">C*-algebra</a></li> <li><a href="/wiki/Spectrum_of_a_C*-algebra" title="Spectrum of a C*-algebra">Spectrum of a C*-algebra</a></li> <li><a href="/wiki/Operator_algebra" title="Operator algebra">Operator algebra</a></li> <li><a href="/wiki/Group_algebra_of_a_locally_compact_group" title="Group algebra of a locally compact group">Group algebra of a locally compact group</a></li> <li><a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">Von Neumann algebra</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Open problems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Invariant_subspace_problem" title="Invariant subspace problem">Invariant subspace problem</a></li> <li><a href="/wiki/Mahler%27s_conjecture" class="mw-redirect" title="Mahler's conjecture">Mahler's conjecture</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hardy_space" title="Hardy space">Hardy space</a></li> <li><a href="/wiki/Spectral_theory_of_ordinary_differential_equations" title="Spectral theory of ordinary differential equations">Spectral theory of ordinary differential equations</a></li> <li><a href="/wiki/Heat_kernel" title="Heat kernel">Heat kernel</a></li> <li><a href="/wiki/Index_theorem" class="mw-redirect" title="Index theorem">Index theorem</a></li> <li><a href="/wiki/Calculus_of_variations" title="Calculus of variations">Calculus of variations</a></li> <li><a href="/wiki/Functional_calculus" title="Functional calculus">Functional calculus</a></li> <li><a href="/wiki/Integral_operator" title="Integral operator">Integral operator</a></li> <li><a href="/wiki/Jones_polynomial" title="Jones polynomial">Jones polynomial</a></li> <li><a href="/wiki/Topological_quantum_field_theory" title="Topological quantum field theory">Topological quantum field theory</a></li> <li><a href="/wiki/Noncommutative_geometry" title="Noncommutative geometry">Noncommutative geometry</a></li> <li><a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a></li> <li><a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">Distribution</a> (or <a href="/wiki/Generalized_function" title="Generalized function">Generalized functions</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Advanced topics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Approximation_property" title="Approximation property">Approximation property</a></li> <li><a href="/wiki/Balanced_set" title="Balanced set">Balanced set</a></li> <li><a href="/wiki/Choquet_theory" title="Choquet theory">Choquet theory</a></li> <li><a href="/wiki/Weak_topology" title="Weak topology">Weak topology</a></li> <li><a href="/wiki/Banach%E2%80%93Mazur_distance" class="mw-redirect" title="Banach–Mazur distance">Banach–Mazur distance</a></li> <li><a href="/wiki/Tomita%E2%80%93Takesaki_theory" title="Tomita–Takesaki theory">Tomita–Takesaki theory</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Functional_analysis" title="Category:Functional analysis">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Analysis_in_topological_vector_spaces" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Analysis_in_topological_vector_spaces" title="Template:Analysis in topological vector spaces"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Analysis_in_topological_vector_spaces" title="Template talk:Analysis in topological vector spaces"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Analysis_in_topological_vector_spaces" title="Special:EditPage/Template:Analysis in topological vector spaces"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Analysis_in_topological_vector_spaces" style="font-size:114%;margin:0 4em"><a href="/wiki/Mathematical_analysis" title="Mathematical analysis">Analysis</a> in <a href="/wiki/Topological_vector_space" title="Topological vector space">topological vector spaces</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_Wiener_space" title="Abstract Wiener space">Abstract Wiener space</a> <ul><li><a href="/wiki/Classical_Wiener_space" title="Classical Wiener space">Classical Wiener space</a></li></ul></li> <li><a href="/wiki/Bochner_space" title="Bochner space">Bochner space</a></li> <li><a href="/wiki/Convex_series" title="Convex series">Convex series</a></li> <li><a href="/wiki/Cylinder_set_measure" title="Cylinder set measure">Cylinder set measure</a></li> <li><a href="/wiki/Infinite-dimensional_vector_function" title="Infinite-dimensional vector function">Infinite-dimensional vector function</a></li> <li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix calculus</a></li> <li><a href="/wiki/Vector_calculus" title="Vector calculus">Vector calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Derivative" title="Derivative">Derivatives</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Differentiable_vector%E2%80%93valued_functions_from_Euclidean_space" title="Differentiable vector–valued functions from Euclidean space">Differentiable vector–valued functions from Euclidean space</a></li> <li><a href="/wiki/Differentiation_in_Fr%C3%A9chet_spaces" title="Differentiation in Fréchet spaces">Differentiation in Fréchet spaces</a></li> <li><a href="/wiki/Fr%C3%A9chet_derivative" title="Fréchet derivative">Fréchet derivative</a> <ul><li><a href="/wiki/Total_derivative" title="Total derivative">Total</a></li></ul></li> <li><a href="/wiki/Functional_derivative" title="Functional derivative">Functional derivative</a></li> <li><a href="/wiki/Gateaux_derivative" title="Gateaux derivative">Gateaux derivative</a> <ul><li><a href="/wiki/Directional_derivative" title="Directional derivative">Directional</a></li></ul></li> <li><a href="/wiki/Generalizations_of_the_derivative" title="Generalizations of the derivative">Generalizations of the derivative</a></li> <li><a href="/wiki/Hadamard_derivative" title="Hadamard derivative">Hadamard derivative</a></li> <li><a href="/wiki/Infinite-dimensional_holomorphy" title="Infinite-dimensional holomorphy">Holomorphic</a></li> <li><a href="/wiki/Quasi-derivative" title="Quasi-derivative">Quasi-derivative</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Measurability</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Besov_measure" title="Besov measure">Besov measure</a></li> <li><a href="/wiki/Cylinder_set_measure" title="Cylinder set measure">Cylinder set measure</a> <ul><li><a href="/wiki/Canonical_Gaussian_cylinder_set_measure" class="mw-redirect" title="Canonical Gaussian cylinder set measure">Canonical Gaussian</a></li> <li><a href="/wiki/Classical_Wiener_measure" class="mw-redirect" title="Classical Wiener measure">Classical Wiener measure</a></li></ul></li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure</a> like <a href="/wiki/Set_function" title="Set function">set functions</a> <ul><li><a href="/wiki/Gaussian_measure#Infinite-dimensional_spaces" title="Gaussian measure">infinite-dimensional Gaussian measure</a></li> <li><a href="/wiki/Projection-valued_measure" title="Projection-valued measure">Projection-valued</a></li> <li><a href="/wiki/Vector_measure" title="Vector measure">Vector</a></li></ul></li> <li><a href="/wiki/Bochner_measurable_function" title="Bochner measurable function">Bochner</a> / <a href="/wiki/Weakly_measurable_function" title="Weakly measurable function">Weakly</a> / <a href="/wiki/Strongly_measurable_function" title="Strongly measurable function">Strongly</a> <a href="/wiki/Measurable_function" title="Measurable function">measurable function</a></li> <li><a href="/wiki/Radonifying_function" title="Radonifying function">Radonifying function</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Integral" title="Integral">Integrals</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bochner_integral" title="Bochner integral">Bochner</a></li> <li><a href="/wiki/Direct_integral" title="Direct integral">Direct integral</a></li> <li><a href="/wiki/Dunford_integral" class="mw-redirect" title="Dunford integral">Dunford</a></li> <li><a href="/wiki/Pettis_integral" title="Pettis integral">Gelfand–Pettis/Weak</a></li> <li><a href="/wiki/Regulated_integral" title="Regulated integral">Regulated</a></li> <li><a href="/wiki/Paley%E2%80%93Wiener_integral" title="Paley–Wiener integral">Paley–Wiener</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Results</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cameron%E2%80%93Martin_theorem" title="Cameron–Martin theorem">Cameron–Martin theorem</a></li> <li><a href="/wiki/Inverse_function_theorem" title="Inverse function theorem">Inverse function theorem</a> <ul><li><a href="/wiki/Nash%E2%80%93Moser_theorem" title="Nash–Moser theorem">Nash–Moser theorem</a></li></ul></li> <li><a href="/wiki/Feldman%E2%80%93H%C3%A1jek_theorem" title="Feldman–Hájek theorem">Feldman–Hájek theorem</a></li> <li><a href="/wiki/Infinite-dimensional_Lebesgue_measure" title="Infinite-dimensional Lebesgue measure">No infinite-dimensional Lebesgue measure</a></li> <li><a href="/wiki/Sazonov%27s_theorem" title="Sazonov's theorem">Sazonov's theorem</a></li> <li><a href="/wiki/Structure_theorem_for_Gaussian_measures" title="Structure theorem for Gaussian measures">Structure theorem for Gaussian measures</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Crinkled_arc" title="Crinkled arc">Crinkled arc</a></li> <li><a href="/wiki/Covariance_operator" title="Covariance operator">Covariance operator</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Functional_calculus" title="Functional calculus">Functional calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Borel_functional_calculus" title="Borel functional calculus">Borel functional calculus</a></li> <li><a href="/wiki/Continuous_functional_calculus" title="Continuous functional calculus">Continuous functional calculus</a></li> <li><a href="/wiki/Holomorphic_functional_calculus" title="Holomorphic functional calculus">Holomorphic functional calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_manifold" title="Banach manifold">Banach manifold</a> (<a href="/wiki/Banach_bundle" title="Banach bundle">bundle</a>)</li> <li><a href="/wiki/Convenient_vector_space" title="Convenient vector space">Convenient vector space</a></li> <li><a href="/wiki/Choquet_theory" title="Choquet theory">Choquet theory</a></li> <li><a href="/wiki/Fr%C3%A9chet_manifold" title="Fréchet manifold">Fréchet manifold</a></li> <li><a href="/wiki/Hilbert_manifold" title="Hilbert manifold">Hilbert manifold</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Spectral_theory_and_*-algebras" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Spectral_theory" title="Template:Spectral theory"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Spectral_theory" title="Template talk:Spectral theory"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Spectral_theory" title="Special:EditPage/Template:Spectral theory"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Spectral_theory_and_*-algebras" style="font-size:114%;margin:0 4em"><a href="/wiki/Spectral_theory" title="Spectral theory">Spectral theory</a> and <a href="/wiki/*-algebra" title="*-algebra"><sup>*</sup>-algebras</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/*-algebra" title="*-algebra">Involution/*-algebra</a></li> <li><a href="/wiki/Banach_algebra" title="Banach algebra">Banach algebra</a></li> <li><a href="/wiki/Banach_*-algebra" class="mw-redirect" title="Banach *-algebra">B*-algebra</a></li> <li><a href="/wiki/C*-algebra" title="C*-algebra">C*-algebra</a></li> <li><a href="/wiki/Noncommutative_topology" title="Noncommutative topology">Noncommutative topology</a></li> <li><a href="/wiki/Projection-valued_measure" title="Projection-valued measure">Projection-valued measure</a></li> <li><a href="/wiki/Spectrum_(functional_analysis)" title="Spectrum (functional analysis)">Spectrum</a></li> <li><a href="/wiki/Spectrum_of_a_C*-algebra" title="Spectrum of a C*-algebra">Spectrum of a C*-algebra</a></li> <li><a href="/wiki/Spectral_radius" title="Spectral radius">Spectral radius</a></li> <li><a href="/wiki/Operator_space" title="Operator space">Operator space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Main results</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gelfand%E2%80%93Mazur_theorem" title="Gelfand–Mazur theorem">Gelfand–Mazur theorem</a></li> <li><a href="/wiki/Gelfand%E2%80%93Naimark_theorem" title="Gelfand–Naimark theorem">Gelfand–Naimark theorem</a></li> <li><a href="/wiki/Gelfand_representation" title="Gelfand representation">Gelfand representation</a></li> <li><a href="/wiki/Polar_decomposition" title="Polar decomposition">Polar decomposition</a></li> <li><a href="/wiki/Singular_value_decomposition" title="Singular value decomposition">Singular value decomposition</a></li> <li><a href="/wiki/Spectral_theorem" title="Spectral theorem">Spectral theorem</a></li> <li><a href="/wiki/Spectral_theory_of_normal_C*-algebras" title="Spectral theory of normal C*-algebras">Spectral theory of normal C*-algebras</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Special Elements/Operators</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Isospectral" title="Isospectral">Isospectral</a></li> <li><a href="/wiki/Normal_element" title="Normal element">Normal</a> <a href="/wiki/Normal_operator" title="Normal operator">operator</a></li> <li><a href="/wiki/Self-adjoint" title="Self-adjoint">Hermitian/Self-adjoint</a> <a href="/wiki/Self-adjoint_operator" title="Self-adjoint operator">operator</a></li> <li><a href="/wiki/Unitary_element" title="Unitary element">Unitary</a> <a href="/wiki/Unitary_operator" title="Unitary operator">operator</a></li> <li><a href="/wiki/Unit_(ring_theory)" title="Unit (ring theory)">Unit</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Spectrum_(functional_analysis)" title="Spectrum (functional analysis)">Spectrum</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Krein%E2%80%93Rutman_theorem" title="Krein–Rutman theorem">Krein–Rutman theorem</a></li> <li><a href="/wiki/Normal_eigenvalue" title="Normal eigenvalue">Normal eigenvalue</a></li> <li><a href="/wiki/Spectrum_of_a_C*-algebra" title="Spectrum of a C*-algebra">Spectrum of a C*-algebra</a></li> <li><a href="/wiki/Spectral_radius" title="Spectral radius">Spectral radius</a></li> <li><a href="/wiki/Spectral_asymmetry" title="Spectral asymmetry">Spectral asymmetry</a></li> <li><a href="/wiki/Spectral_gap" title="Spectral gap">Spectral gap</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Decomposition</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Decomposition_of_spectrum_(functional_analysis)" title="Decomposition of spectrum (functional analysis)">Decomposition of a spectrum</a> <ul><li><a href="/wiki/Continuous_spectrum_(functional_analysis)" class="mw-redirect" title="Continuous spectrum (functional analysis)">Continuous</a></li> <li><a href="/wiki/Point_spectrum" class="mw-redirect" title="Point spectrum">Point</a></li> <li><a href="/wiki/Spectrum_(functional_analysis)#Residual_spectrum" title="Spectrum (functional analysis)">Residual</a></li></ul></li> <li><a href="/wiki/Spectrum_(functional_analysis)#Approximate_point_spectrum" title="Spectrum (functional analysis)">Approximate point</a></li> <li><a href="/wiki/Spectrum_(functional_analysis)#Compression_spectrum" title="Spectrum (functional analysis)">Compression</a></li> <li><a href="/wiki/Direct_integral" title="Direct integral">Direct integral</a></li> <li><a href="/wiki/Discrete_spectrum_(mathematics)" title="Discrete spectrum (mathematics)">Discrete</a></li> <li><a href="/wiki/Spectral_abscissa" title="Spectral abscissa">Spectral abscissa</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Spectral Theorem</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Borel_functional_calculus" title="Borel functional calculus">Borel functional calculus</a></li> <li><a class="mw-selflink selflink">Min-max theorem</a></li> <li><a href="/wiki/Positive_operator-valued_measure" class="mw-redirect" title="Positive operator-valued measure">Positive operator-valued measure</a></li> <li><a href="/wiki/Projection-valued_measure" title="Projection-valued measure">Projection-valued measure</a></li> <li><a href="/wiki/Riesz_projector" title="Riesz projector">Riesz projector</a></li> <li><a href="/wiki/Rigged_Hilbert_space" title="Rigged Hilbert space">Rigged Hilbert space</a></li> <li><a href="/wiki/Spectral_theorem" title="Spectral theorem">Spectral theorem</a></li> <li><a href="/wiki/Spectral_theory_of_compact_operators" title="Spectral theory of compact operators">Spectral theory of compact operators</a></li> <li><a href="/wiki/Spectral_theory_of_normal_C*-algebras" title="Spectral theory of normal C*-algebras">Spectral theory of normal C*-algebras</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Special algebras</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amenable_Banach_algebra" title="Amenable Banach algebra">Amenable Banach algebra</a></li> <li>With an <a href="/wiki/Approximate_identity" title="Approximate identity">Approximate identity</a></li> <li><a href="/wiki/Banach_function_algebra" title="Banach function algebra">Banach function algebra</a></li> <li><a href="/wiki/Disk_algebra" title="Disk algebra">Disk algebra</a></li> <li><a href="/wiki/Nuclear_C*-algebra" title="Nuclear C*-algebra">Nuclear C*-algebra</a></li> <li><a href="/wiki/Uniform_algebra" title="Uniform algebra">Uniform algebra</a></li> <li><a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">Von Neumann algebra</a> <ul><li><a href="/wiki/Tomita%E2%80%93Takesaki_theory" title="Tomita–Takesaki theory">Tomita–Takesaki theory</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Finite-Dimensional</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alon%E2%80%93Boppana_bound" title="Alon–Boppana bound">Alon–Boppana bound</a></li> <li><a href="/wiki/Bauer%E2%80%93Fike_theorem" title="Bauer–Fike theorem">Bauer–Fike theorem</a></li> <li><a href="/wiki/Numerical_range" title="Numerical range">Numerical range</a></li> <li><a href="/wiki/Schur%E2%80%93Horn_theorem" title="Schur–Horn theorem">Schur–Horn theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Generalizations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dirac_spectrum" title="Dirac spectrum">Dirac spectrum</a></li> <li><a href="/wiki/Essential_spectrum" title="Essential spectrum">Essential spectrum</a></li> <li><a href="/wiki/Pseudospectrum" title="Pseudospectrum">Pseudospectrum</a></li> <li><a href="/wiki/Structure_space" class="mw-redirect" title="Structure space">Structure space</a> (<a href="/wiki/Shilov_boundary" title="Shilov boundary">Shilov boundary</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Miscellaneous</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_index_group" class="mw-redirect" title="Abstract index group">Abstract index group</a></li> <li><a href="/wiki/Banach_algebra_cohomology" title="Banach algebra cohomology">Banach algebra cohomology</a></li> <li><a href="/wiki/Cohen%E2%80%93Hewitt_factorization_theorem" title="Cohen–Hewitt factorization theorem">Cohen–Hewitt factorization theorem</a></li> <li><a href="/wiki/Extensions_of_symmetric_operators" title="Extensions of symmetric operators">Extensions of symmetric operators</a></li> <li><a href="/wiki/Fredholm_theory" title="Fredholm theory">Fredholm theory</a></li> <li><a href="/wiki/Limiting_absorption_principle" title="Limiting absorption principle">Limiting absorption principle</a></li> <li><a href="/wiki/Schr%C3%B6der%E2%80%93Bernstein_theorems_for_operator_algebras" title="Schröder–Bernstein theorems for operator algebras">Schröder–Bernstein theorems for operator algebras</a></li> <li><a href="/wiki/Sherman%E2%80%93Takeda_theorem" title="Sherman–Takeda theorem">Sherman–Takeda theorem</a></li> <li><a href="/wiki/Unbounded_operator" title="Unbounded operator">Unbounded operator</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Examples</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Wiener_algebra" title="Wiener algebra">Wiener algebra</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost_Mathieu_operator" title="Almost Mathieu operator">Almost Mathieu operator</a></li> <li><a href="/wiki/Corona_theorem" title="Corona theorem">Corona theorem</a></li> <li><a href="/wiki/Hearing_the_shape_of_a_drum" title="Hearing the shape of a drum">Hearing the shape of a drum</a> (<a href="/wiki/Dirichlet_eigenvalue" title="Dirichlet eigenvalue">Dirichlet eigenvalue</a>)</li> <li><a href="/wiki/Heat_kernel" title="Heat kernel">Heat kernel</a></li> <li><a href="/wiki/Kuznetsov_trace_formula" title="Kuznetsov trace formula">Kuznetsov trace formula</a></li> <li><a href="/wiki/Lax_pair" title="Lax pair">Lax pair</a></li> <li><a href="/wiki/Proto-value_function" title="Proto-value function">Proto-value function</a></li> <li><a href="/wiki/Ramanujan_graph" title="Ramanujan graph">Ramanujan graph</a></li> <li><a href="/wiki/Rayleigh%E2%80%93Faber%E2%80%93Krahn_inequality" title="Rayleigh–Faber–Krahn inequality">Rayleigh–Faber–Krahn inequality</a></li> <li><a href="/wiki/Spectral_geometry" title="Spectral geometry">Spectral geometry</a></li> <li><a href="/wiki/Spectral_method" title="Spectral method">Spectral method</a></li> <li><a href="/wiki/Spectral_theory_of_ordinary_differential_equations" title="Spectral theory of ordinary differential equations">Spectral theory of ordinary differential equations</a></li> <li><a href="/wiki/Sturm%E2%80%93Liouville_theory" title="Sturm–Liouville theory">Sturm–Liouville theory</a></li> <li><a href="/wiki/Superstrong_approximation" title="Superstrong approximation">Superstrong approximation</a></li> <li><a href="/wiki/Transfer_operator" title="Transfer operator">Transfer operator</a></li> <li><a href="/wiki/Transform_theory" title="Transform theory">Transform theory</a></li> <li><a href="/wiki/Weyl_law" title="Weyl law">Weyl law</a></li> <li><a href="/wiki/Wiener%E2%80%93Khinchin_theorem" title="Wiener–Khinchin theorem">Wiener–Khinchin theorem</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐zcwrk Cached time: 20241122145827 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.517 seconds Real time usage: 0.782 seconds Preprocessor visited node count: 2756/1000000 Post‐expand include size: 87704/2097152 bytes Template argument size: 9327/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 46708/5000000 bytes Lua time usage: 0.261/10.000 seconds Lua memory usage: 7166441/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 540.488 1 -total 24.05% 130.002 4 Template:Navbox 22.29% 120.465 1 Template:Functional_analysis 17.14% 92.647 1 Template:Reflist 15.70% 84.855 1 Template:Short_description 15.28% 82.594 2 Template:Cite_book 11.78% 63.679 1 Template:More_citations_needed 10.83% 58.512 1 Template:Ambox 9.35% 50.527 2 Template:Pagetype 6.11% 33.050 2 Template:Rp --> <!-- Saved in parser cache with key enwiki:pcache:idhash:694952-0!canonical and timestamp 20241122145827 and revision id 1254158290. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Min-max_theorem&oldid=1254158290">https://en.wikipedia.org/w/index.php?title=Min-max_theorem&oldid=1254158290</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Operator_theory" title="Category:Operator theory">Operator theory</a></li><li><a href="/wiki/Category:Spectral_theory" title="Category:Spectral theory">Spectral theory</a></li><li><a href="/wiki/Category:Theorems_in_functional_analysis" title="Category:Theorems in functional analysis">Theorems in functional analysis</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_November_2011" title="Category:Articles needing additional references from November 2011">Articles needing additional references from November 2011</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_April_2014" title="Category:Articles with unsourced statements from April 2014">Articles with unsourced statements from April 2014</a></li><li><a href="/wiki/Category:Articles_containing_proofs" title="Category:Articles containing proofs">Articles containing proofs</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 29 October 2024, at 17:50<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Min-max_theorem&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-g2dn4","wgBackendResponseTime":136,"wgPageParseReport":{"limitreport":{"cputime":"0.517","walltime":"0.782","ppvisitednodes":{"value":2756,"limit":1000000},"postexpandincludesize":{"value":87704,"limit":2097152},"templateargumentsize":{"value":9327,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":46708,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 540.488 1 -total"," 24.05% 130.002 4 Template:Navbox"," 22.29% 120.465 1 Template:Functional_analysis"," 17.14% 92.647 1 Template:Reflist"," 15.70% 84.855 1 Template:Short_description"," 15.28% 82.594 2 Template:Cite_book"," 11.78% 63.679 1 Template:More_citations_needed"," 10.83% 58.512 1 Template:Ambox"," 9.35% 50.527 2 Template:Pagetype"," 6.11% 33.050 2 Template:Rp"]},"scribunto":{"limitreport-timeusage":{"value":"0.261","limit":"10.000"},"limitreport-memusage":{"value":7166441,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-zcwrk","timestamp":"20241122145827","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Min-max theorem","url":"https:\/\/en.wikipedia.org\/wiki\/Min-max_theorem","sameAs":"http:\/\/www.wikidata.org\/entity\/Q4454958","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q4454958","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-05-31T23:09:28Z","dateModified":"2024-10-29T17:50:52Z","headline":"variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces"}</script> </body> </html>