CINXE.COM

Search results for: Hydrogen annealing

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Hydrogen annealing</title> <meta name="description" content="Search results for: Hydrogen annealing"> <meta name="keywords" content="Hydrogen annealing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Hydrogen annealing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Hydrogen annealing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1202</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Hydrogen annealing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1172</span> Synthesis and Characterization of Non-Aqueous Electrodeposited ZnSe Thin Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Kumar">S. R. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashikant%20Rajpal"> Shashikant Rajpal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nanocrystalline thin film of ZnSe was successfully electrodeposited on copper substrate using a non-aqueous solution and subsequently annealed in air at 400°C. XRD analysis indicates the polycrystalline deposit of (111) plane in both the cases. The sharpness of the peak increases due to annealing of the film and average grain size increases to 20 nm to 27nm. SEM photograph indicate that grains are uniform and densely distributed over the surface. Due to annealing the average grain size increased by 20%. The EDS spectroscopy shows the ratio of Zn & Se is 1.1 in case of annealed film. AFM analysis indicates the average roughness of the film reduces from 181nm to 165nm due to annealing of the film. The bandgap also decreases from 2.71eV to 2.62eV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=non-aqueous%20medium" title=" non-aqueous medium"> non-aqueous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/22975/synthesis-and-characterization-of-non-aqueous-electrodeposited-znse-thin-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1171</span> Solving the Wireless Mesh Network Design Problem Using Genetic Algorithm and Simulated Annealing Optimization Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moheb%20R.%20Girgis">Moheb R. Girgis</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20M.%20Mahmoud"> Tarek M. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahgat%20A.%20Abdullatif"> Bahgat A. Abdullatif</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Rabie"> Ahmed M. Rabie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesh clients, mesh routers and gateways are components of Wireless Mesh Network (WMN). In WMN, gateways connect to Internet using wireline links and supply Internet access services for users. We usually need multiple gateways, which takes time and costs a lot of money set up, due to the limited wireless channel bit rate. WMN is a highly developed technology that offers to end users a wireless broadband access. It offers a high degree of flexibility contrasted to conventional networks; however, this attribute comes at the expense of a more complex construction. Therefore, a challenge is the planning and optimization of WMNs. In this paper, we concentrate on this challenge using a genetic algorithm and simulated annealing. The genetic algorithm and simulated annealing enable searching for a low-cost WMN configuration with constraints and determine the number of used gateways. Experimental results proved that the performance of the genetic algorithm and simulated annealing in minimizing WMN network costs while satisfying quality of service. The proposed models are presented to significantly outperform the existing solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20mesh%20networks" title="wireless mesh networks">wireless mesh networks</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithms" title=" genetic algorithms"> genetic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=topology%20design" title=" topology design"> topology design</a> </p> <a href="https://publications.waset.org/abstracts/11103/solving-the-wireless-mesh-network-design-problem-using-genetic-algorithm-and-simulated-annealing-optimization-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1170</span> Regulating Hydrogen Energy Evaluation During Aluminium Hydrolysis in Alkaline Solutions Containing Different Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Deyab">Mohamed A. Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20A.%20A.%20El-Shamy"> Omnia A. A. El-Shamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to reveal on the systematic evaluation of hydrogen production by aluminum hydrolysis in alkaline solutions containing different surfactants using hydrogen evolution measurements and supplemented by scan electron microscope (SEM) and energy dispersive X-ray analysis (EDX). It has been demonstrated that when alkaline concentration and solution temperature rise, the rate of H2 generation and, consequently, aluminum hydrolysis also rises. The addition of nonionic and cationic surfactants solution retards the rate of H2 production. The work is a promising option for carbon-free hydrogen production from renewable resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a> </p> <a href="https://publications.waset.org/abstracts/161815/regulating-hydrogen-energy-evaluation-during-aluminium-hydrolysis-in-alkaline-solutions-containing-different-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1169</span> Multi-Objective Simulated Annealing Algorithms for Scheduling Just-In-Time Assembly Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghorbanali%20Mohammadi">Ghorbanali Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New approaches to sequencing mixed-model manufacturing systems are present. These approaches have attracted considerable attention due to their potential to deal with difficult optimization problems. This paper presents Multi-Objective Simulated Annealing Algorithms (MOSAA) approaches to the Just-In-Time (JIT) sequencing problem where workload-smoothing (WL) and the number of set-ups (St) are to be optimized simultaneously. Mixed-model assembly lines are types of production lines where varieties of product models similar in product characteristics are assembled. Moreover, this type of problem is NP-hard. Two annealing methods are proposed to solve the multi-objective problem and find an efficient frontier of all design configurations. The performances of the two methods are tested on several problems from the literature. Experimentation demonstrates the relative desirable performance of the presented methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scheduling" title="scheduling">scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=just-in-time" title=" just-in-time"> just-in-time</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-model%20assembly%20line" title=" mixed-model assembly line"> mixed-model assembly line</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing" title=" sequencing"> sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a> </p> <a href="https://publications.waset.org/abstracts/152223/multi-objective-simulated-annealing-algorithms-for-scheduling-just-in-time-assembly-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1168</span> Green Hydrogen: Exploring Economic Viability and Alluring Business Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sakthivel">S. Sakthivel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the global economy is based on the hydrocarbon economy, which is referencing the global hydrocarbon industry. Problems of using these fossil fuels (like oil, NG, coal) are emitting greenhouse gases (GHGs) and price fluctuation, supply/distribution, etc. These challenges can be overcome by using clean energy as hydrogen. The hydrogen economy is the use of hydrogen as a low carbon fuel, particularly for hydrogen vehicles, alternative industrial feedstock, power generation, and energy storage, etc. Engineering consulting firms have a significant role in this ambition and green hydrogen value chain (i.e., integration of renewables, production, storage, and distribution to end-users). Typically, the cost of green hydrogen is a function of the price of electricity needed, the cost of the electrolyser, and the operating cost to run the system. This article focuses on economic viability and explores the alluring business scenarios globally. Break-even analysis was carried out for green hydrogen production and in order to evaluate and compare the impact of the electricity price on the production costs of green hydrogen and relate it to fossil fuel-based brown/grey/blue hydrogen costs. It indicates that the cost of green hydrogen production will fall drastically due to the declining costs of renewable electricity prices and along with the improvement and scaling up of electrolyser manufacturing. For instance, in a scenario where electricity prices are below US$ 40/MWh, green hydrogen cost is expected to reach cost competitiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20hydrogen" title="green hydrogen">green hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=break-even%20analysis" title=" break-even analysis"> break-even analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=renewables" title=" renewables"> renewables</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolyzer" title=" electrolyzer"> electrolyzer</a> </p> <a href="https://publications.waset.org/abstracts/131861/green-hydrogen-exploring-economic-viability-and-alluring-business-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1167</span> Hybridized Simulated Annealing with Chemical Reaction Optimization for Solving to Sequence Alignment Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Linan">Ernesto Linan</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Cruz"> Linda Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucero%20Becerra"> Lucero Becerra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new hybridized algorithm based on Chemical Reaction Optimization and Simulated Annealing is proposed to solve the alignment sequence Problem. The Chemical Reaction Optimization is a population-based meta-heuristic algorithm based on the principles of a chemical reaction. Simulated Annealing is applied to solve a large number of combinatorial optimization problems of general-purpose. In this paper, we propose hybridization between Chemical Reaction Optimization algorithm and Simulated Annealing in order to solve the Sequence Alignment Problem. An initial population of molecules is defined at beginning of the proposed algorithm, where each molecule represents a sequence alignment problem. In order to simulate inter-molecule collisions, the process of Chemical Reaction is placed inside the Metropolis Cycle at certain values of temperature. Inside this cycle, change of molecules is done due to collisions; some molecules are accepted by applying Boltzmann probability. The results with the hybrid scheme are better than the results obtained separately. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction%20optimization" title="chemical reaction optimization">chemical reaction optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20alignment%20problem" title=" sequence alignment problem"> sequence alignment problem</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing%20algorithm" title=" simulated annealing algorithm"> simulated annealing algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristics" title=" metaheuristics"> metaheuristics</a> </p> <a href="https://publications.waset.org/abstracts/136324/hybridized-simulated-annealing-with-chemical-reaction-optimization-for-solving-to-sequence-alignment-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1166</span> The Effect of Immobilization Conditions on Hydrogen Production from Palm Oil Mill Effluent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Zularisam">A. W. Zularisam</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhveer%20Singh"> Lakhveer Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mimi%20Sakinah%20Abdul%20Munaim"> Mimi Sakinah Abdul Munaim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the optimization of hydrogen production using polyethylene glycol (PEG) immobilized sludge was investigated in batch tests. Palm oil mill effluent (POME) is used as a substrate that can act as a carbon source. Experiment focus on the effect of some important affecting factors on fermentative hydrogen production. Results showed that immobilized sludge demonstrated the maximum hydrogen production rate of 340 mL/L-POME/h under follow optimal condition: amount of biomass 10 mg VSS/ g bead, PEG concentration 10%, and cell age 24 h or 40 h. More importantly, immobilized sludge not only enhanced hydrogen production but can also tolerate the harsh environment and produce hydrogen at the wide ranges of pH. The present results indicate the potential of PEG-immobilized sludge for large-scale operations as well; these factors play an important role in stable and continuous hydrogen production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioydrogen" title="bioydrogen">bioydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20glycol" title=" polyethylene glycol"> polyethylene glycol</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20fermentation" title=" dark fermentation "> dark fermentation </a> </p> <a href="https://publications.waset.org/abstracts/39206/the-effect-of-immobilization-conditions-on-hydrogen-production-from-palm-oil-mill-effluent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1165</span> Study on Pressurized Reforming System for the Application of Hydrogen Permeable Membrane Applying to Proton Exchange Membrane Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwangho%20Lee">Kwangho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Joongmyeon%20Bae"> Joongmyeon Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel cells are spotlighted in the world for being highly efficient and environmentally friendly. A hydrogen fuel for a fuel cell is obtained from a number of sources. Most of fuel cell for APU(Auxiliary power unit) system using diesel fuel as a hydrogen source. Diesel fuel has many advantages, such as high hydrogen storage density, easy to transport and also well-infra structure. However, conventional diesel reforming system for PEMFC(Proton exchange membrane fuel cell) requires a large volume and complex CO removal system for the lower the CO level to less than 10ppm. In addition, the PROX(Preferential Oxidation) reaction cooling load is needed because of the strong exothermic reaction. However, the hydrogen separation membrane that we propose can be eliminated many disadvantages, because the volume is small and permeates only pure hydrogen. In this study, we were conducted to the pressurized diesel reforming and water-gas shift reaction experiment for the hydrogen permeable membrane application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=reforming" title=" reforming"> reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=ATR" title=" ATR"> ATR</a>, <a href="https://publications.waset.org/abstracts/search?q=WGS" title=" WGS"> WGS</a>, <a href="https://publications.waset.org/abstracts/search?q=PROX" title=" PROX"> PROX</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a> </p> <a href="https://publications.waset.org/abstracts/57559/study-on-pressurized-reforming-system-for-the-application-of-hydrogen-permeable-membrane-applying-to-proton-exchange-membrane-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1164</span> The Effect of Hydrogen on Performance and Emissions of a Methanol Si-Engine at Part Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Bin%20Aamir">Junaid Bin Aamir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%20Fanhua"> Ma Fanhua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methanol and hydrogen are the most suitable alternative fuel resources for the existing and future internal combustion engines. This paper experimentally examined the effects of hydrogen addition on the performance and emission characteristics of a spark-ignition engine fueled with methanol at part load conditions. The experiments were carried out for various engine speeds and loads. Hydrogen-rich syngas was used to enhance the performance of the test engine. It was formed by catalytic dissociation of methanol itself, and volumetric hydrogen fraction in syngas was about 67%. A certain amount of syngas dissociated from methanol was injected into the intake manifold in each engine cycle, and the low heating value (LHV) of hydrogen-rich syngas used was 4% of methanol in each cycle. Both the fuels were injected separately using port fuel injectors. The results showed that brake thermal efficiency of the engine was enhanced by 3-5% with hydrogen addition, while brake specific fuel consumption and exhaust gas temperature were reduced. There was a significant reduction (90-95%) in THC and (35-50%) in CO emissions at the exhaust. NOx emissions from hydrogen blended methanol increased slightly (10-15%), but they can be reduced by using lean fuel-air mixture to keep the cylinder temperature low. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuel" title=" alternative fuel"> alternative fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engines" title=" spark ignition engines"> spark ignition engines</a> </p> <a href="https://publications.waset.org/abstracts/123060/the-effect-of-hydrogen-on-performance-and-emissions-of-a-methanol-si-engine-at-part-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1163</span> Photocatalytic Conversion of Water/Methanol Mixture into Hydrogen Using Cerium/Iron Oxides Based Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20A.%20Aboutaleb">Wael A. Aboutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20A.%20El%20Naggar"> Ahmed M. A. El Naggar</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20M.%20Gobara"> Heba M. Gobara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work reports the photocatalytic production of hydrogen from water-methanol mixture using three different 15% ceria/iron oxide catalysts. The catalysts were prepared by physical mixing, precipitation, and ultrasonication methods and labeled as catalysts A-C. The structural and texture properties of the obtained catalysts were confirmed by X-ray diffraction (XRD), BET-surface area analysis and transmission electron microscopy (TEM). The photocatalytic activity of the three catalysts towards hydrogen generation was then tested. Promising hydrogen productivity was obtained by the three catalysts however different gases compositions were obtained by each type of catalyst. Specifically, catalyst A had produced hydrogen mixed with CO₂ while the composite structure (catalyst B) had generated only pure H₂. In the case of catalyst C, syngas made of H₂ and CO was revealed, as a novel product, for the first time, in such process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title=" water splitting"> water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysts" title=" photocatalysts"> photocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20energy" title=" clean energy "> clean energy </a> </p> <a href="https://publications.waset.org/abstracts/82416/photocatalytic-conversion-of-watermethanol-mixture-into-hydrogen-using-ceriumiron-oxides-based-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1162</span> Effect of Rapid Thermal Annealing on the Optical Properties of InAs Quantum Dots Grown on (100) and (311)B GaAs Substrates by Molecular Beam Epitaxy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Almunyif">Amjad Almunyif</a>, <a href="https://publications.waset.org/abstracts/search?q=Amra%20Alhassni"> Amra Alhassni</a>, <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Alhassan"> Sultan Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Al%20Huwayz"> Maryam Al Huwayz</a>, <a href="https://publications.waset.org/abstracts/search?q=Saud%20Alotaibi"> Saud Alotaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulaziz%20Almalki"> Abdulaziz Almalki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Henini"> Mohamed Henini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of rapid thermal annealing (RTA) on the optical properties of InAs quantum dots (QDs) grown at an As overpressure of 2x 10⁻⁶ Torr by molecular beam epitaxy (MBE) on (100) and (311)B GaAs substrates was investigated using photoluminescence (PL) technique. PL results showed that for the as-grown samples, the QDs grown on the high index plane (311)B have lower PL intensity and lower full width at half maximum (FWHM) than those grown on the conventional (100) plane. The latter demonstrates that the (311)B QDs have better size uniformity than (100) QDs. Compared with as-grown samples, a blue-shift was observed for all samples with increasing annealing temperature from 600°C to 700°C. For (100) samples, a narrowing of the FWHM was observed with increasing annealing temperature from 600°C to 700°C. However, in (311)B samples, the FWHM showed a different behaviour; it slightly increased when the samples were annealed at 600°C and then decreased when the annealing temperature increased to 700°C. As expected, the PL peak intensity for all samples increased when the laser excitation power increased. The PL peak energy temperature dependence showed a strong redshift when the temperature was increased from 10 K to 120 K. The PL peak energy exhibited an abnormal S-shape behaviour as a function of temperature for all samples. Most samples exhibited a significant enhancement in their activation energies when annealed at 600°C and 700°C, suggesting that annealing annihilated defects created during sample growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RTA" title="RTA">RTA</a>, <a href="https://publications.waset.org/abstracts/search?q=QDs" title=" QDs"> QDs</a>, <a href="https://publications.waset.org/abstracts/search?q=InAs" title=" InAs"> InAs</a>, <a href="https://publications.waset.org/abstracts/search?q=MBE" title=" MBE"> MBE</a> </p> <a href="https://publications.waset.org/abstracts/141819/effect-of-rapid-thermal-annealing-on-the-optical-properties-of-inas-quantum-dots-grown-on-100-and-311b-gaas-substrates-by-molecular-beam-epitaxy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1161</span> Hydrogen Production Using Solar Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Sakr">I. M. Sakr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Abdelsalam"> Ali M. Abdelsalam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ibrahim"> K. A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20El-Askary"> W. A. El-Askary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an experimental study for hydrogen production using alkaline water electrolysis operated by solar energy. Two methods are used and compared for separation between the cathode and anode, which are acrylic separator and polymeric membrane. Further, the effects of electrolyte concentration, solar insolation, and space between the pair of electrodes on the amount of hydrogen produced and consequently on the overall electrolysis efficiency are investigated. It is found that the rate of hydrogen production increases using the polymeric membrane installed between the electrodes. The experimental results show also that, the performance of alkaline water electrolysis unit is dominated by the electrolyte concentration and the gap between the electrodes. Smaller gaps between the pair of electrodes are demonstrated to produce higher rates of hydrogen with higher system efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20electrolysis" title=" water electrolysis"> water electrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a> </p> <a href="https://publications.waset.org/abstracts/62050/hydrogen-production-using-solar-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1160</span> The Impact of an Ionic Liquid on Hydrogen Generation from a Redox Process Involving Magnesium and Acidic Oilfield Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Deyab">Mohamed A. Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20E.%20Awadallah"> Ahmed E. Awadallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under various conditions, we present a promising method for producing pure hydrogen energy from the electrochemical reaction of Mg metal in waste oilfield water (WOW). Mg metal and WOW are primarily consumed in this process. The results show that the hydrogen gas output is highly dependent on temperature and solution pH. The best conditions for hydrogen production were found to be a low pH (2.5) and a high temperature (338 K). For the first time, the Allyl methylimidazolium bis-trifluoromethyl sulfonyl imide) (IL) ionic liquid is used to regulate the rate of hydrogen generation. It has been confirmed that increasing the solution temperature and decreasing the solution pH accelerates Mg dissolution and produces more hydrogen per unit of time. The adsorption of IL on the active sites of the Mg surface is unrestricted by mixing physical and chemical orientation. Inspections using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and FT-IR spectroscopy were used to identify and characterise surface corrosion of Mg in WOW. This process is also completely safe and can create energy on demand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=Mg" title=" Mg"> Mg</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a> </p> <a href="https://publications.waset.org/abstracts/143045/the-impact-of-an-ionic-liquid-on-hydrogen-generation-from-a-redox-process-involving-magnesium-and-acidic-oilfield-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1159</span> The Effect of Ni/Dolomite Catalyst for Production of Hydrogen from NaBH₄</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burcu%20Kiren">Burcu Kiren</a>, <a href="https://publications.waset.org/abstracts/search?q=Alattin%20CAkan"> Alattin CAkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nezihe%20Ayas"> Nezihe Ayas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen will be arguably the best fuel in the future as it is the most abundant element in the universe. Hydrogen, as a fuel, is notably environmentally benign, sustainable and has high energy content compared to other sources of energy. It can be generated from both conventional and renewable sources. The hydrolysis reaction of metal hydrides provides an option for hydrogen production in the presence of a catalyst. In this study, Ni/dolomite catalyst was synthesized by the wet impregnation method for hydrogen production by hydrolysis reaction of sodium borohydride (NaBH4). Besides, the synthesized catalysts characterizations were examined by means of thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer –Emmett – Teller (BET) and scanning electron microscopy (SEM). The influence of reaction temperature (25-75 °C), reaction time (15-60 min.), amount of catalyst (50-250 mg) and active metal loading ratio (20,30,40 wt.%) were investigated. The catalyst prepared with 30 wt.% Ni was noted as the most suitable catalyst, achieving of 35.18% H₂ and hydrogen production rate of 19.23 mL/gcat.min at 25 °C at reaction conditions of 5 mL of 0.25 M NaOH and 100 mg NaBH₄, 100 mg Ni/dolomite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sodium%20borohydride" title="sodium borohydride">sodium borohydride</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%2Fdolomite" title=" Ni/dolomite"> Ni/dolomite</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a> </p> <a href="https://publications.waset.org/abstracts/128593/the-effect-of-nidolomite-catalyst-for-production-of-hydrogen-from-nabh4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1158</span> Biohydrogen and Potential Vinegar Production from Agricultural Wastes Using Thermotoga neopolitana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nidhi%20Nalin">Nidhi Nalin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is theoretical modelling of the fermentation process of glucose in agricultural wastes like discarded peaches to produce hydrogen, acetic acid, and carbon dioxide using Thermotoga neopolitana bacteria. The hydrogen gas produced in this process can be used in hydrogen fuel cells to generate power, and the fermented broth with acetic acid and salts could be utilized as salty vinegar if enough acetic acid is produced. The theoretical modelling was done using SuperPro software, and the results indicated how much sugar (discarded peaches) is required to produce both hydrogen and vinegar for the process to be profitable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermotoga" title=" thermotoga"> thermotoga</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=vinegar" title=" vinegar"> vinegar</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a> </p> <a href="https://publications.waset.org/abstracts/132463/biohydrogen-and-potential-vinegar-production-from-agricultural-wastes-using-thermotoga-neopolitana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1157</span> Development of Membrane Reactor for Auto Thermal Reforming of Dimethyl Ether for Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tie-Qing%20Zhang">Tie-Qing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghun%20Jung"> Seunghun Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Bae%20Kim"> Young-Bae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is devoted to developing a membrane reactor to flexibly meet the hydrogen demand of onboard fuel cells, which is an important part of green energy development. Among many renewable chemical products, dimethyl ether (DME) has the advantages of low reaction temperature (400 °C in this study), high hydrogen atom content, low toxicity, and easy preparation. Autothermal reforming, on the other hand, has a high hydrogen recovery rate and exhibits thermal neutrality during the reaction process, so the additional heat source in the hydrogen production process can be omitted. Therefore, the DME auto thermal reforming process was adopted in this study. To control the temperature of the reaction catalyst bed and hydrogen production rate, a Model Predictive Control (MPC) scheme was designed. Taking the above two variables as the control objectives, stable operation of the reformer can be achieved by controlling the flow rates of DME, steam, and high-purity air in real-time. To prevent catalyst poisoning in the fuel cell, the hydrogen needs to be purified to reduce the carbon monoxide content to below 50 ppm. Therefore, a Pd-Ag hydrogen semi-permeable membrane with a thickness of 3-5 μm was inserted into the auto thermal reactor, and the permeation efficiency of hydrogen was improved by steam purging on the permeation side. Finally, hydrogen with a purity of 99.99 was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=auto%20thermal%20reforming" title=" auto thermal reforming"> auto thermal reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a> </p> <a href="https://publications.waset.org/abstracts/152000/development-of-membrane-reactor-for-auto-thermal-reforming-of-dimethyl-ether-for-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1156</span> Numerical Analysis of Engine Performance and Emission of a 2-Stroke Opposed Piston Hydrogen Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahamin%20Bazooyar">Bahamin Bazooyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinyan%20Wang"> Xinyan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Zhao"> Hua Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a zero-carbon fuel, hydrogen can be used in combustion engines to avoid carbon emissions. This paper numerically investigates the engine performance of a two-stroke opposed piston hydrogen engine by using three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations. The engine displacement is 12.2 cm, and the compression ratio of 39. RANS simulations with the k-ε turbulence model and coupled chemistry combustion models are performed at an engine speed of 4500 rpm and hydrogen flow rate of up to 100 gr/s. In order to model the hydrogen injection process, the hydrogen nozzle was meshed with refined mesh, and injection pressure varied between 100 and 200 bars. In order to optimize the hydrogen combustion process, the injection timing was optimized between 15 before the top dead center and 10. The results showed that the combustion efficiency was mostly influenced by the injection pressures due to its impact on the fuel/air mixing and charge inhomogeneity. Nitrogen oxide (NOₓ) emissions are well correlated with engine peak temperatures, demonstrating that the thermal NO mechanism is dominant under engine conditions. Through the optimization of hydrogen injection timing and pressure, the peak thermal efficiency of 45 and NOx emission of 15 ppm/kWh can be achieved at an injection timing of 350 CA and pressure of 160 bars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engine" title="engine">engine</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=two-stroke" title=" two-stroke"> two-stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=opposed-piston" title=" opposed-piston"> opposed-piston</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonisation" title=" decarbonisation"> decarbonisation</a> </p> <a href="https://publications.waset.org/abstracts/194593/numerical-analysis-of-engine-performance-and-emission-of-a-2-stroke-opposed-piston-hydrogen-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1155</span> Atomic Hydrogen Storage in Hexagonal GdNi5 and GdNi4Cu Rare Earth Compounds: A Comparative Density Functional Theory Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kellou">A. Kellou</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Rouaiguia"> L. Rouaiguia</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Rabahi"> L. Rabahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, the atomic hydrogen absorption trend in the GdNi5 and GdNi4Cu rare earth compounds within the hexagonal CaCu5 type of crystal structure (space group P6/mmm) is investigated. The density functional theory (DFT) combined with the generalized gradient approximation (GGA) is used to study the site preference of atomic hydrogen at 0K. The octahedral and tetrahedral interstitial sites are considered. The formation energies and structural properties are determined in order to evaluate hydrogen effects on the stability of the studied compounds. The energetic diagram of hydrogen storage is established and compared in GdNi5 and GdNi4Cu. The magnetic properties of the selected compounds are determined using spin polarized calculations. The obtained results are discussed with and without hydrogen addition taking into account available theoretical and experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title="density functional theory">density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage" title=" hydrogen storage"> hydrogen storage</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20compounds" title=" rare earth compounds"> rare earth compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20and%20magnetic%20properties" title=" structural and magnetic properties"> structural and magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/113034/atomic-hydrogen-storage-in-hexagonal-gdni5-and-gdni4cu-rare-earth-compounds-a-comparative-density-functional-theory-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1154</span> Addressing the Oracle Problem: Decentralized Authentication in Blockchain-Based Green Hydrogen Certification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Volker%20Wannack">Volker Wannack</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to present a concept for addressing the Oracle Problem in the context of hydrogen production using renewable energy sources. The proposed approach relies on the authentication of the electricity used for hydrogen production by multiple surrounding actors with similar electricity generation facilities, which attest to the authenticity of the electricity production. The concept introduces an Authenticity Score assigned to each certificate, as well as a Trust Score assigned to each witness. Each certificate must be attested by different actors with a sufficient Trust Score to achieve an Authenticity Score above a predefined threshold, thereby demonstrating that the produced hydrogen is indeed "green." <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20change" title=" structural change"> structural change</a> </p> <a href="https://publications.waset.org/abstracts/181604/addressing-the-oracle-problem-decentralized-authentication-in-blockchain-based-green-hydrogen-certification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1153</span> Investigation of the Morphology and Optical Properties of CuAlO₂ Thin Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Aminu">T. M. Aminu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Salisu"> A. Salisu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Abdu"> B. Abdu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20U.%20Alhassan"> H. U. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Dharma"> T. H. Dharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin films of CuAlO2 were deposited on clean glass substrate using the chemical solution deposition (sol-gel) method of deposition with CuCl and AlCl3 taken as the starting materials. CuCl was dissolved in HCl while AlCl₃ in distilled water, pH value of the mixture was controlled by addition of NaOH. The samples were annealed at different temperatures in order to determine the effect of annealing temperatures on the morphological and optical properties of the deposited CuAlO₂ thin film. The surface morphology reveals an improved crystalline as annealing temperature increases. The results of the UV-vis and FT-IR spectrophotometry indicate that the absorbance for all the samples decreases sharply from a common value of about 89% at about 329 nm to a range of values of 56.2%-35.2% and the absorption / extinction coefficients of the films decrease with increase in annealing temperature from 1.58 x 10⁻⁶ to1.08 x 10⁻⁶ at about 1.14eV in the infrared region to about 1.93 x 10⁻⁶ to 1.29 x 10⁻⁶ at about 3.62eV in the visible region, the transmittance, reflectance and band gaps vary directly with annealing temperature, the deposited films were found to be suitable in optoelectronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20aluminium-oxide%20%28CuAlO2%29" title="copper aluminium-oxide (CuAlO2)">copper aluminium-oxide (CuAlO2)</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbance" title=" absorbance"> absorbance</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectance" title=" reflectance"> reflectance</a>, <a href="https://publications.waset.org/abstracts/search?q=band%20gaps" title=" band gaps"> band gaps</a> </p> <a href="https://publications.waset.org/abstracts/49351/investigation-of-the-morphology-and-optical-properties-of-cualo2-thin-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1152</span> Nanoindentation Behaviour and Microstructural Evolution of Annealed Single-Crystal Silicon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Woei-Shyan%20Lee">Woei-Shyan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuo-Ling%20Chang"> Shuo-Ling Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nanoindentation behaviour and phase transformation of annealed single-crystal silicon wafers are examined. The silicon specimens are annealed at temperatures of 250, 350 and 450ºC, respectively, for 15 minutes and are then indented to maximum loads of 30, 50 and 70 mN. The phase changes induced in the indented specimens are observed using transmission electron microscopy (TEM) and micro-Raman scattering spectroscopy (RSS). For all annealing temperatures, an elbow feature is observed in the unloading curve following indentation to a maximum load of 30 mN. Under higher loads of 50 mN and 70 mN, respectively, the elbow feature is replaced by a pop-out event. The elbow feature reveals a complete amorphous phase transformation within the indented zone, whereas the pop-out event indicates the formation of Si XII and Si III phases. The experimental results show that the formation of these crystalline silicon phases increases with an increasing annealing temperature and indentation load. The hardness and Young’s modulus both decrease as the annealing temperature and indentation load are increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title="nanoindentation">nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transformation" title=" phase transformation"> phase transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous" title=" amorphous"> amorphous</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing" title=" annealing"> annealing</a> </p> <a href="https://publications.waset.org/abstracts/23123/nanoindentation-behaviour-and-microstructural-evolution-of-annealed-single-crystal-silicon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1151</span> On the Effect of Carbon on the Efficiency of Titanium as a Hydrogen Storage Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20R.%20Reda%20%20Mahmoud%20Reda">Ghazi R. Reda Mahmoud Reda </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the metal that forms hydride´s, Mg and Ti are known as the most lightweight materials; however, they are covered with a passive layer of oxides and hydroxides and require activation treatment under high temperature ( > 300 C ) and hydrogen pressure ( > 3 MPa) before being used for storage and transport applications. It is well known that small graphite addition to Ti or Mg, lead to a dramatic change in the kinetics of mechanically induced hydrogen sorption ( uptake) and significantly stimulate the Ti-Hydrogen interaction. Many explanations were given by different authors to explain the effect of graphite addition on the performance of Ti as material for hydrogen storage. Not only graphite but also the addition of a polycyclic aromatic compound will also improve the hydrogen absorption kinetics. It will be shown that the function of carbon addition is two-fold. First carbon acts as a vacuum cleaner, which scavenges out all the interstitial oxygen that can poison or slow down hydrogen absorption. It is also important to note that oxygen favors the chemisorption of hydrogen, which is not desirable for hydrogen storage. Second, during scavenging of the interstitial oxygen, the carbon reacts with oxygen in the nano and microchannel through a highly exothermic reaction to produce carbon dioxide and monoxide which provide the necessary heat for activation and thus in the presence of carbon lower heat of activation for hydrogen absorption which is observed experimentally. Furthermore, the product of the reaction of hydrogen with the carbon oxide will produce water which due to ball milling hydrolyze to produce the linear H5O2 + this will reconstruct the primary structure of the nanocarbon to form secondary structure, where the primary structure (a sheet of carbon) are connected through hydrogen bonding. It is the space between these sheets where physisorption or defect mediated sorption occurs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20forming%20hydrides" title="metal forming hydrides">metal forming hydrides</a>, <a href="https://publications.waset.org/abstracts/search?q=polar%20molecule%20impurities" title=" polar molecule impurities"> polar molecule impurities</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20diagram" title=" phase diagram"> phase diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20absorption" title=" hydrogen absorption"> hydrogen absorption</a> </p> <a href="https://publications.waset.org/abstracts/33527/on-the-effect-of-carbon-on-the-efficiency-of-titanium-as-a-hydrogen-storage-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1150</span> Efficient Hydrogen Separation through Pd-Pt Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Muhammad%20Adam">Lawan Muhammad Adam</a>, <a href="https://publications.waset.org/abstracts/search?q=Abduljabar%20Hilal%20Alsayoud"> Abduljabar Hilal Alsayoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most promising techniques to produce pure hydrogen is through a palladium-based membrane (Pd-membrane). Density functional theory (DFT) is employed in this work to examine how the physical and chemical adsorption properties of hydrogen on the surface of Pd-Pt can be mutated in the presence of contaminating gases, CH₄, CO, and CO₂. The main target is to survey the energy topology related to hydrogen adsorption while adjusting the stages of freedom in both the structure and composition. The adsorption sites, crystal plane of the slab, and relative orientation of the adsorbed molecules on its surface, as well as various arrangements of adsorbed species, have been considered in this study. The dependency of hydrogen adsorption on surface coverage is studied. The study demonstrated the physical adsorption energies of the molecules on the surface concerning the different coverages of hydrogen atoms. The most stable combinations of the adsorption sites (Top, Hollow, and Bridge) with various orientations of gaseous molecules on the Pd-Pt surface were identified according to their calculated energies. When the binding of contaminating gaseous species to the Pd-Pt surface and their impact on the physical adsorption energies of the H₂ are examined, it is observed that the most poisonous gas relative to all other gases modifies the energetics of the adsorption process of hydrogen on the surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=Pd-Pt-membrane" title=" Pd-Pt-membrane"> Pd-Pt-membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%82%82" title=" H₂"> H₂</a>, <a href="https://publications.waset.org/abstracts/search?q=CO" title=" CO"> CO</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82" title=" CO₂"> CO₂</a> </p> <a href="https://publications.waset.org/abstracts/178203/efficient-hydrogen-separation-through-pd-pt-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1149</span> Effect of Hydrogen-Diesel Dual Fuel Combustion on the Performance and Emission Characteristics of a Four Stroke-Single Cylinder Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhujit%20Deb">Madhujit Deb</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20R.%20K.%20Sastry"> G. R. K. Sastry</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Panua"> R. S. Panua</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Banerjee"> Rahul Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Bose"> P. K. Bose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work attempts to investigate the combustion, performance and emission characteristics of an existing single-cylinder four-stroke compression-ignition engine operated in dual-fuel mode with hydrogen as an alternative fuel. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels like hydrogen for internal combustion (IC) engines. In this experimental investigation, a diesel engine is made to run using hydrogen in dual fuel mode with diesel, where hydrogen is introduced into the intake manifold using an LPG-CNG injector and pilot diesel is injected using diesel injectors. A Timed Manifold Injection (TMI) system has been developed to vary the injection strategies. The optimized timing for the injection of hydrogen was 100 CA after top dead center (ATDC). From the study it was observed that with increasing hydrogen rate, enhancement in brake thermal efficiency (BTHE) of the engine has been observed with reduction in brake specific energy consumption (BSEC). Furthermore, Soot contents decrease with an increase in indicated specific NOx emissions with the enhancement of hydrogen flow rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=BTHE" title=" BTHE"> BTHE</a>, <a href="https://publications.waset.org/abstracts/search?q=BSEC" title=" BSEC"> BSEC</a>, <a href="https://publications.waset.org/abstracts/search?q=soot" title=" soot"> soot</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx" title=" NOx"> NOx</a> </p> <a href="https://publications.waset.org/abstracts/28162/effect-of-hydrogen-diesel-dual-fuel-combustion-on-the-performance-and-emission-characteristics-of-a-four-stroke-single-cylinder-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1148</span> Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halil%20Ibrahim%20Demir">Halil Ibrahim Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Caner%20Erden"> Caner Erden</a>, <a href="https://publications.waset.org/abstracts/search?q=Mumtaz%20Ipek"> Mumtaz Ipek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozer%20Uygun"> Ozer Uygun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process%20planning" title="process planning">process planning</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling" title=" weighted scheduling"> weighted scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20due-date%20assignment" title=" weighted due-date assignment"> weighted due-date assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20search" title=" genetic search"> genetic search</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20meta-heuristics" title=" hybrid meta-heuristics"> hybrid meta-heuristics</a> </p> <a href="https://publications.waset.org/abstracts/57629/solving-weighted-number-of-operation-plus-processing-time-due-date-assignment-weighted-scheduling-and-process-planning-integration-problem-using-genetic-and-simulated-annealing-search-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1147</span> Modeling of Hydrogen Production by Inductively Coupled Methane Plasma for Input Power Pin=700W</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelatif%20Gadoum">Abdelatif Gadoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Djilali%20Benyoucef"> Djilali Benyoucef</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouloudj%20Hadj"> Mouloudj Hadj</a>, <a href="https://publications.waset.org/abstracts/search?q=Alla%20Eddine%20Toubal%20Maamar"> Alla Eddine Toubal Maamar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Habib%20Allah%20%20Lahoual"> Mohamed Habib Allah Lahoual</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen occurs naturally in the form of chemical compounds, most often in water and hydrocarbons. The main objective of this study is 2D modeling of hydrogen production in inductively coupled plasma in methane at low pressure. In the present model, we include the motions and the collisions of both neutral and charged particles by considering 19 species (i.e in total ; neutrals, radicals, ions, and electrons), and more than 120 reactions (electron impact with methane, neutral-neutral, neutral-ions and surface reactions). The results show that the rate conversion of methane reach 90% and the hydrogen production is about 30%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=inductively%20coupled%20plasma" title=" inductively coupled plasma"> inductively coupled plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20model" title=" fluid model"> fluid model</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20plasma" title=" methane plasma"> methane plasma</a> </p> <a href="https://publications.waset.org/abstracts/123259/modeling-of-hydrogen-production-by-inductively-coupled-methane-plasma-for-input-power-pin700w" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1146</span> Hydrogen Storage Optimisation: Development of Advanced Tools for Improved Permeability Modelling in Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirine%20Sayed">Sirine Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahrez%20Ait%20Mohammed"> Mahrez Ait Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Nachtane"> Mourad Nachtane</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelwahed%20Barkaoui"> Abdelwahed Barkaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Bouziane"> Khalid Bouziane</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostapha%20Tarfaoui"> Mostapha Tarfaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study addresses a critical challenge in transitioning to a hydrogen-based economy by introducing and validating a one-dimensional (1D) tool for modelling hydrogen permeability through hybrid materials, focusing on tank applications. The model developed integrates rigorous experimental validation, published data, and advanced computational modelling using the PanDiffusion framework, significantly enhancing its validity and applicability. By elucidating complex interactions between material properties, storage system configurations, and operational parameters, the tool demonstrates its capability to optimize design and operational parameters in real-world scenarios, as illustrated through a case study of hydrogen leakage. This comprehensive approach to assessing hydrogen permeability contributes significantly to overcoming key barriers in hydrogen infrastructure development, potentially accelerating the widespread adoption of hydrogen technology across various industrial sectors and marking a crucial step towards a more sustainable energy future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage" title="hydrogen storage">hydrogen storage</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20tank" title=" composite tank"> composite tank</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability%20modelling" title=" permeability modelling"> permeability modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=PanDiffusion" title=" PanDiffusion"> PanDiffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20carrier" title=" energy carrier"> energy carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20technology" title=" transportation technology"> transportation technology</a> </p> <a href="https://publications.waset.org/abstracts/193069/hydrogen-storage-optimisation-development-of-advanced-tools-for-improved-permeability-modelling-in-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1145</span> Improved Hydrogen Sorption Kinetics of Compacted LiNH₂-LiH Based Small Hydrogen Storage Tank by Doping with TiF₄ and MWCNTs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chongsutthamani%20Sitthiwet">Chongsutthamani Sitthiwet</a>, <a href="https://publications.waset.org/abstracts/search?q=Praphatsorn%20Plerdsranoy"> Praphatsorn Plerdsranoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Palmarin%20Dansirima"> Palmarin Dansirima</a>, <a href="https://publications.waset.org/abstracts/search?q=Priew%20Eiamlamai"> Priew Eiamlamai</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Utke"> Oliver Utke</a>, <a href="https://publications.waset.org/abstracts/search?q=Rapee%20Utke"> Rapee Utke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen storage tank containing compacted LiNH2-LiH is developed by doping with TiF₄ and multi-walled nanotubes (MWCNTs) to study kinetic properties. Transition metal-based catalyst (TiF₄) provides the catalytic effect on hydrogen dissociation/recombination, while MWCNTs benefit thermal conductivity and hydrogen permeability during de/rehydrogenation process. The Enhancement of dehydrogenation kinetics is observed from the single-step reaction at a narrower and lower temperature range of 150-350 ºC (100 ºC lower than the compacted LiNH₂-LiH without additives) as well as long plateau temperature and constant hydrogen flow rate (50 SCCM) up to 30 min during desorption. Besides, Hydrogen contents de/absorbed during 5-6 cycles increase from 1.90-2.40 to 3.10-4.70 wt. % H₂ (from 29 to up to 80 % of theoretical capacity). In the process, Li₅TiN₃ is detected upon cycling probably absorbs NH₃ to form Li₅TiN₃(NH₃)x, which is favoring hydrogen sorption properties of the LiNH₂-LiH system. Importantly, the homogeneous reaction mechanisms and performances are found at all positions inside the tank of compacted LiNH₂-LiH doped with TiF₄ and MWCNTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon" title="carbon">carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydride" title=" hydride"> hydride</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydrogenation" title=" dehydrogenation"> dehydrogenation</a> </p> <a href="https://publications.waset.org/abstracts/121181/improved-hydrogen-sorption-kinetics-of-compacted-linh2-lih-based-small-hydrogen-storage-tank-by-doping-with-tif4-and-mwcnts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1144</span> Influence and Interaction of Temperature, H2S and pH on Concrete Sewer Pipe Corrosion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Romanova">Anna Romanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Mahmoodian"> Mojtaba Mahmoodian</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20A.%20Alani"> Morteza A. Alani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete sewer pipes are known to suffer from a process of hydrogen sulfide gas induced sulfuric acid corrosion. This leads to premature pipe degradation, performance failure and collapses which in turn may lead to property and health damage. The above work reports on a field study undertaken in working sewer manholes where the parameters of effluent temperature and pH as well as ambient temperature and concentration of hydrogen sulfide were continuously measured over a period of two months. Early results suggest that effluent pH has no direct effect on hydrogen sulfide build up; on average the effluent temperature is 3.5°C greater than the ambient temperature inside the manhole and also it was observed that hydrogen sulfate concentration increases with increasing temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20corrosion" title="concrete corrosion">concrete corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sulfide%20gas" title=" hydrogen sulfide gas"> hydrogen sulfide gas</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=sewer%20pipe" title=" sewer pipe"> sewer pipe</a> </p> <a href="https://publications.waset.org/abstracts/10077/influence-and-interaction-of-temperature-h2s-and-ph-on-concrete-sewer-pipe-corrosion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1143</span> A Green Hydrogen Route for Electromobility in Brazil and Its Impact in Climate Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milena%20Fran%C3%A7a%20Marques">Milena França Marques</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the climate crisis, several countries such as Brazil began to look for energy alternatives, finding green hydrogen as a possible solution. In addition to not emitting polluting gasses, it also has a large energy capacity, being an excellent alternative for the transport sector, the third sector that emits the most Greenhouse Gases (GHG) in Brazil. Therefore, this work aims to suggest a route for using green hydrogen, through the analysis of plans implemented in other countries, the Brazilian situation, and its difficulties in the development of hydrogen and electromobility, aiming to understand how its value chain works, as well as how to make the Brazilian fleet more efficient and decarbonize. As a result, 68 structuring measures were suggested for the first 5 axes of the National Hydrogen Program (PNH2) using the Three-Year Plan as a basis. Categorizations of measures were also made, definitions of those responsible for their development and implementation, as well as deadlines for them to be met. It is concluded that the study has the potential to promote national energy-environmental mobility transition planning realistically, capable of developing hydrogen and electromobility in Brazil, in addition to contributing to achieving the goals established by its Nationally Determined Contribution (NDC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=electromobility" title=" electromobility"> electromobility</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=roadmap" title=" roadmap"> roadmap</a> </p> <a href="https://publications.waset.org/abstracts/183039/a-green-hydrogen-route-for-electromobility-in-brazil-and-its-impact-in-climate-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing&amp;page=40">40</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing&amp;page=41">41</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10