CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;23 of 23 results for author: <span class="mathjax">Lindroos, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Lindroos%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lindroos, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lindroos%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lindroos, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14136">arXiv:2411.14136</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14136">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Deformation and adiabatic heating of single crystalline and nanocrystalline Ni micropillars at high strain rates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mathews%2C+N+G">Nidhin George Mathews</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">Matti Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michler%2C+J">Johann Michler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mohanty%2C+G">Gaurav Mohanty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14136v1-abstract-short" style="display: inline;"> The deformation behavior of single crystal and nanocrystalline nickel were studied with in situ micropillar compression experiments from quasi-static to high strain rates up to 10^3/s. Deformation occurred by dislocation slip activity in single crystal nickel whereas extensive grain boundary sliding was observed in nanocrystalline nickel, with a shift towards more inhomogeneous, localized deformat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14136v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14136v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14136v1-abstract-full" style="display: none;"> The deformation behavior of single crystal and nanocrystalline nickel were studied with in situ micropillar compression experiments from quasi-static to high strain rates up to 10^3/s. Deformation occurred by dislocation slip activity in single crystal nickel whereas extensive grain boundary sliding was observed in nanocrystalline nickel, with a shift towards more inhomogeneous, localized deformation above 1/s. The overall strain rate sensitivity was observed to be nearly two times in nanocrystalline nickel compared to single crystal, as expected. Crystal plasticity based finite element modeling was used to estimate the adiabatic heating, spatially resolved within pillar, at the highest tested strain rates. The simulations predicted a significant temperature rise up to ~ 200 K in nanocrystalline Ni at the grain boundaries and ~ 20 K in single crystalline Ni, due to strain localization. The strain rate sensitivity exponent was observed to remain roughly constant over the tested strain rate range suggesting no change in deformation mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14136v1-abstract-full').style.display = 'none'; document.getElementById('2411.14136v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages (17 in total including supplementary information). 4 main figures, 4 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10566">arXiv:2109.10566</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.10566">pdf</a>, <a href="https://arxiv.org/format/2109.10566">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rsta.2020.0319">10.1098/rsta.2020.0319 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiscale analysis of crystal defect formation in rapid solidification of pure aluminium and aluminium-copper alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pinomaa%2C+T">Tatu Pinomaa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">Matti Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jreidini%2C+P">Paul Jreidini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haapalehto%2C+M">Matias Haapalehto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ammar%2C+K">Kais Ammar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forest%2C+S">Samuel Forest</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Provatas%2C+N">Nikolas Provatas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laukkanen%2C+A">Anssi Laukkanen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10566v1-abstract-short" style="display: inline;"> Rapid solidification leads to unique microstructural features, where a less studied topic is the formation of various crystalline defects, including high dislocation densities, as well as gradients and splitting of the crystalline orientation. As these defects critically affect the material&#39;s mechanical properties and performance features, it is important to understand the defect formation mechani&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10566v1-abstract-full').style.display = 'inline'; document.getElementById('2109.10566v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10566v1-abstract-full" style="display: none;"> Rapid solidification leads to unique microstructural features, where a less studied topic is the formation of various crystalline defects, including high dislocation densities, as well as gradients and splitting of the crystalline orientation. As these defects critically affect the material&#39;s mechanical properties and performance features, it is important to understand the defect formation mechanisms, and how they depend on the solidification conditions and alloying. To illuminate the formation mechanisms of the rapid solidification induced crystalline defects, we conduct a multiscale modeling analysis consisting of bond-order potential based molecular dynamics (MD), phase field crystal based amplitude expansion (PFC-AE) simulations, and sequentially coupled phase field -- crystal plasticity (PF--CP) simulations. The resulting dislocation densities are quantified and compared to past experiments. The atomistic approaches (MD, PFC) can be used to calibrate continuum level crystal plasticity models, and the framework adds mechanistic insights arising from the multiscale analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10566v1-abstract-full').style.display = 'none'; document.getElementById('2109.10566v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.04153">arXiv:1502.04153</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.04153">pdf</a>, <a href="https://arxiv.org/format/1502.04153">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.085109">10.1103/PhysRevB.91.085109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resolving unoccupied electronic states with laser ARPES in bismuth-based cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+L">Tristan L Miller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%84rr%C3%A4l%C3%A4%2C+M">Minna 脛rr盲l盲</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smallwood%2C+C+L">Christopher L. Smallwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wentao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hafiz%2C+H">Hasnain Hafiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbiellini%2C+B">Bernardo Barbiellini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurashima%2C+K">Koshi Kurashima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adachi%2C+T">Tadashi Adachi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koike%2C+Y">Yoji Koike</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">Matti Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D">Dung-Hai Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lanzara%2C+A">Alessandra Lanzara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.04153v1-abstract-short" style="display: inline;"> Angle-resolved photoemission spectroscopy (ARPES) is typically used to study only the occupied electronic band structure of a material. Here we use laser-based ARPES to observe a feature in bismuth-based superconductors that, in contrast, is related to the unoccupied states. Specifically, we observe a dispersive suppression of intensity cutting across the valence band, which, when compared with re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.04153v1-abstract-full').style.display = 'inline'; document.getElementById('1502.04153v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.04153v1-abstract-full" style="display: none;"> Angle-resolved photoemission spectroscopy (ARPES) is typically used to study only the occupied electronic band structure of a material. Here we use laser-based ARPES to observe a feature in bismuth-based superconductors that, in contrast, is related to the unoccupied states. Specifically, we observe a dispersive suppression of intensity cutting across the valence band, which, when compared with relativistic one-step calculations, can be traced to two final-state gaps in the bands 6 eV above the Fermi level. This finding opens up possibilities to bring the ultra-high momentum resolution of existing laser-ARPES instruments to the unoccupied electron states. For cases where the final-state gap is not the object of study, we find that its effects can be made to vanish under certain experimental conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.04153v1-abstract-full').style.display = 'none'; document.getElementById('1502.04153v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 085109 (2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.5143">arXiv:1312.5143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.5143">pdf</a>, <a href="https://arxiv.org/ps/1312.5143">ps</a>, <a href="https://arxiv.org/format/1312.5143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.137001">10.1103/PhysRevLett.113.137001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The high-energy anomaly in ARPES spectra of the cuprates-many body or matrix element effect? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%84rr%C3%A4l%C3%A4%2C+M">M. 脛rr盲l盲</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roth%2C+F">F. Roth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tabis%2C+W">W. Tabis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">G. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greven%2C+M">M. Greven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.5143v2-abstract-short" style="display: inline;"> We used polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, (x=0.123). We have found that at particular photon energies the anomalous, waterfalllike dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.5143v2-abstract-full').style.display = 'inline'; document.getElementById('1312.5143v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.5143v2-abstract-full" style="display: none;"> We used polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, (x=0.123). We have found that at particular photon energies the anomalous, waterfalllike dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasi-particle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further proof for this scenario. The possibility to detect the full quasi-particle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.5143v2-abstract-full').style.display = 'none'; document.getElementById('1312.5143v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages 2 figures, corrected typos</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 113, 137001 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.6161">arXiv:1303.6161</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1303.6161">pdf</a>, <a href="https://arxiv.org/format/1303.6161">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.216801">10.1103/PhysRevLett.110.216801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reversal of the circular dichroism in the angle-resolved photoemission from Bi2Te3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scholz%2C+M+R">M. R. Scholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Barriga%2C+J">J. S谩nchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braun%2C+J">J. Braun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marchenko%2C+D">D. Marchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varykhalov%2C+A">A. Varykhalov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+J">Yung Jui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">A. Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%C3%A1r%2C+J">J. Min谩r</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ebert%2C+H">H. Ebert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Volykhov%2C+A">A. Volykhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yashina%2C+L+V">L. V. Yashina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rader%2C+O">O. Rader</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.6161v1-abstract-short" style="display: inline;"> The helical Dirac fermions at the surface of topological insulators show a strong circular dichroism which has been explained as being due to either the initial-state spin angular momentum, the initial-state orbital angular momentum, or the handedness of the experimental setup. All of these interpretations conflict with our data from Bi2Te3 which depend on the photon energy and show several sign c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.6161v1-abstract-full').style.display = 'inline'; document.getElementById('1303.6161v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.6161v1-abstract-full" style="display: none;"> The helical Dirac fermions at the surface of topological insulators show a strong circular dichroism which has been explained as being due to either the initial-state spin angular momentum, the initial-state orbital angular momentum, or the handedness of the experimental setup. All of these interpretations conflict with our data from Bi2Te3 which depend on the photon energy and show several sign changes. Our one-step photoemission calculations coupled to ab initio theory confirm the sign change and assign the dichroism to a final-state effect. The spin polarization of the photoelectrons, instead, remains a reliable probe for the spin in the initial state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.6161v1-abstract-full').style.display = 'none'; document.getElementById('1303.6161v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures; submitted to Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.2589">arXiv:1011.2589</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.2589">pdf</a>, <a href="https://arxiv.org/ps/1011.2589">ps</a>, <a href="https://arxiv.org/format/1011.2589">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.105.189702">10.1103/PhysRevLett.105.189702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reply to Comment on Circular Dichroism in the Angle-Resolved Photoemission Spectrum of the High-Temperature Bi2Sr2CaCu2O8 Superconductor http://arxiv.org/abs/1004.1648 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">Matti Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arpiainen%2C+V">Ville Arpiainen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.2589v1-abstract-short" style="display: inline;"> We conclude that arguments of Norman et al. in their Comment do not provide a significant basis for their claim that the geometric mechanism for explaining the observations reported by them is not viable. More generally, our study highlights the importance of assessing structural issues before invoking exotic mechanisms for explaining unusual spectroscopic observations, especially in complex mater&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2589v1-abstract-full').style.display = 'inline'; document.getElementById('1011.2589v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.2589v1-abstract-full" style="display: none;"> We conclude that arguments of Norman et al. in their Comment do not provide a significant basis for their claim that the geometric mechanism for explaining the observations reported by them is not viable. More generally, our study highlights the importance of assessing structural issues before invoking exotic mechanisms for explaining unusual spectroscopic observations, especially in complex materia. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2589v1-abstract-full').style.display = 'none'; document.getElementById('1011.2589v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 105(2010)189702 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.3493">arXiv:1009.3493</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.3493">pdf</a>, <a href="https://arxiv.org/format/1009.3493">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.106.027002">10.1103/PhysRevLett.106.027002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Existence, character and origin of surface-related bands in the high temperature iron pnictide superconductor BaFe_{2-x}Co_{x}As_{2} </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=van+Heumen%2C+E">Erik van Heumen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vuorinen%2C+J">Johannes Vuorinen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koepernik%2C+K">Klaus Koepernik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Massee%2C+F">Freek Massee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yingkai Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">Ming Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klei%2C+J">Jesse Klei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goedkoop%2C+J">Jeroen Goedkoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">Matti Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Golden%2C+M+S">Mark S. Golden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.3493v1-abstract-short" style="display: inline;"> Low energy electron diffraction (LEED) experiments, LEED simulations and finite slab density functional calculations are combined to study the cleavage surface of Co doped BaFe_{2-x}Co_{x}As_{2} (x = 0.1, 0.17). We demonstrate that the energy dependence of the LEED data can only be understood from a terminating 1/2 Ba layer accompanied by distortions of the underlying As-Fe_2-As block. As a result&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.3493v1-abstract-full').style.display = 'inline'; document.getElementById('1009.3493v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.3493v1-abstract-full" style="display: none;"> Low energy electron diffraction (LEED) experiments, LEED simulations and finite slab density functional calculations are combined to study the cleavage surface of Co doped BaFe_{2-x}Co_{x}As_{2} (x = 0.1, 0.17). We demonstrate that the energy dependence of the LEED data can only be understood from a terminating 1/2 Ba layer accompanied by distortions of the underlying As-Fe_2-As block. As a result, surface related Fe 3d states are present in the electronic structure, which we identify in angle resolved photoemission experiments. The close proximity of the surface-related states to the bulk bands inevitably leads to broadening of the ARPES signals, which excludes the use of the BaFe_{2-x}Co_{x}As_{2} system for accurate determination of self-energies using ARPES. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.3493v1-abstract-full').style.display = 'none'; document.getElementById('1009.3493v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures includes supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 106, 027002 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.0271">arXiv:1009.0271</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.0271">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Uniaxial &#34;nematic-like&#34; electronic structure and Fermi surface of untwinned CaFe2As2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronning%2C+F">Filip Ronning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markiewicz%2C+R+S">Robert S. Markiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">Matti Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbiellini%2C+B">Bernardo Barbiellini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dessau%2C+D+S">Daniel S. Dessau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.0271v1-abstract-short" style="display: inline;"> Obtaining the electronic structure of the newly discovered iron-based superconductors is the key to understanding the mechanism of their high-temperature superconductivity. We used angle-resolved photoemission spectroscopy (ARPES) to make direct measurements of the electronic structure and Fermi surface (FS) of the untwinned uniaxial state of CaFe2As2, the parent compound of iron-based superconduc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0271v1-abstract-full').style.display = 'inline'; document.getElementById('1009.0271v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.0271v1-abstract-full" style="display: none;"> Obtaining the electronic structure of the newly discovered iron-based superconductors is the key to understanding the mechanism of their high-temperature superconductivity. We used angle-resolved photoemission spectroscopy (ARPES) to make direct measurements of the electronic structure and Fermi surface (FS) of the untwinned uniaxial state of CaFe2As2, the parent compound of iron-based superconductors. We observed unequal dispersions and FS geometries along the orthogonal Fe-Fe bond directions. More importantly, unidirectional straight and flat FS segments are observed near the zone center, which indicates the existence of a unidirectional nematic charge density wave order, strengthening the case for a quantum electronic liquid crystalline &#34;nematic&#34; phase. Further, the doping dependence extrapolates to a possible quantum critical point of the disappearance of this order in the heavily overdoped regime of these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0271v1-abstract-full').style.display = 'none'; document.getElementById('1009.0271v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1003.2351">arXiv:1003.2351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1003.2351">pdf</a>, <a href="https://arxiv.org/ps/1003.2351">ps</a>, <a href="https://arxiv.org/format/1003.2351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.81.245430">10.1103/PhysRevB.81.245430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Structural Influence on the Rashba-type Spin-Splitting in Surface Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gierz%2C+I">Isabella Gierz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vuorinen%2C+J">Johannes Vuorinen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">Matti Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meier%2C+F">Fabian Meier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dil%2C+J+H">J. Hugo Dil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kern%2C+K">Klaus Kern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ast%2C+C+R">Christian R. Ast</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1003.2351v1-abstract-short" style="display: inline;"> The Bi/Ag(111), Pb/Ag(111), and Sb/Ag(111) surface alloys exhibit a two-dimensional band structure with a strongly enhanced Rashba-type spin-splitting, which is in part attributed to the structural asymmetry resulting from an outward relaxation of the alloy atoms. In order to gain further insight into the spin-splitting mechanism, we have experimentally determined the outward relaxation of the all&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.2351v1-abstract-full').style.display = 'inline'; document.getElementById('1003.2351v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1003.2351v1-abstract-full" style="display: none;"> The Bi/Ag(111), Pb/Ag(111), and Sb/Ag(111) surface alloys exhibit a two-dimensional band structure with a strongly enhanced Rashba-type spin-splitting, which is in part attributed to the structural asymmetry resulting from an outward relaxation of the alloy atoms. In order to gain further insight into the spin-splitting mechanism, we have experimentally determined the outward relaxation of the alloy atoms in these surface alloys using quantitative low-energy electron diffraction (LEED). The structure plays an important role in the size of the spinsplitting as it dictates the potential landscape, the symmetry as well as the orbital character. Furthermore, we discuss the band ordering of the Pb/Ag(111) surface alloy as well as the reproducible formation of Sb/Ag(111) surface alloys with unfaulted (face-centered cubic) and faulted (hexagonally close-packed) toplayer stacking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.2351v1-abstract-full').style.display = 'none'; document.getElementById('1003.2351v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, 3tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0904.1749">arXiv:0904.1749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0904.1749">pdf</a>, <a href="https://arxiv.org/ps/0904.1749">ps</a>, <a href="https://arxiv.org/format/0904.1749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.80.214520">10.1103/PhysRevB.80.214520 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of the high-energy kink or the waterfall effect in the photoemission spectrum of the ${\rm Bi_2Sr_2CaCu_2O_8}$ high-temperature superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Basak%2C+S">Susmita Basak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+T">Tanmoy Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nieminen%2C+J">J. Nieminen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markiewicz%2C+R+S">R. S. Markiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">A. Bansil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0904.1749v1-abstract-short" style="display: inline;"> The high-energy kink or the waterfall effect seen in the photoemission spectra of the cuprates is suggestive of the coupling of the quasiparticles to a high energy bosonic mode with implications for the mechanism of superconductivity. Recent experiments however indicate that this effect may be an artifact produced entirely by the matrix element effects, i.e. by the way the photoemitted electron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0904.1749v1-abstract-full').style.display = 'inline'; document.getElementById('0904.1749v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0904.1749v1-abstract-full" style="display: none;"> The high-energy kink or the waterfall effect seen in the photoemission spectra of the cuprates is suggestive of the coupling of the quasiparticles to a high energy bosonic mode with implications for the mechanism of superconductivity. Recent experiments however indicate that this effect may be an artifact produced entirely by the matrix element effects, i.e. by the way the photoemitted electron couples to the incident photons in the emission process. In order to address this issue directly, we have carried out realistic computations of the photo-intensity in ${\rm Bi_2Sr_2CaCu_2O_8}$ (Bi2212) where the effects of the matrix element are included together with those of the corrections to the self-energy resulting from electronic excitations. Our results demonstrate that while the photoemission matrix element plays an important role in shaping the spectra, the waterfall effect is a clear signature of the presence of strong coupling of quasiparticles to electronic excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0904.1749v1-abstract-full').style.display = 'none'; document.getElementById('0904.1749v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 80, 214520 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0809.2357">arXiv:0809.2357</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0809.2357">pdf</a>, <a href="https://arxiv.org/ps/0809.2357">ps</a>, <a href="https://arxiv.org/format/0809.2357">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.78.104513">10.1103/PhysRevB.78.104513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Appearance of Universal Metallic Dispersion in a Doped Mott Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sahrakorpi%2C+S">S. Sahrakorpi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markiewicz%2C+R+S">R. S. Markiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshida%2C+T">T. Yoshida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W+L">W. L. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kakeshita%2C+T">T. Kakeshita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">H. Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uchida%2C+S">S. Uchida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Komiya%2C+S">Seiki Komiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ando%2C+Y">Yoichi Ando</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+F">F. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+X">Z. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sasagawa%2C+T">T. Sasagawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujimori%2C+A">A. Fujimori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+-">Z. -X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">A. Bansil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0809.2357v1-abstract-short" style="display: inline;"> We have investigated the dispersion renormalization $Z_{disp}$ in La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) over the wide doping range of $x=0.03-0.30$, for binding energies extending to several hundred meV&#39;s. Strong correlation effects conspire in such a way that the system exhibits an LDA-like dispersion which essentially `undresses&#39; ($Z_{disp}\to 1$) as the Mott insulator is approached. Our finding that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0809.2357v1-abstract-full').style.display = 'inline'; document.getElementById('0809.2357v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0809.2357v1-abstract-full" style="display: none;"> We have investigated the dispersion renormalization $Z_{disp}$ in La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) over the wide doping range of $x=0.03-0.30$, for binding energies extending to several hundred meV&#39;s. Strong correlation effects conspire in such a way that the system exhibits an LDA-like dispersion which essentially `undresses&#39; ($Z_{disp}\to 1$) as the Mott insulator is approached. Our finding that the Mott insulator contains `nascent&#39; or `preformed&#39; metallic states with a vanishing spectral weight offers a challenge to existing theoretical scenarios for cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0809.2357v1-abstract-full').style.display = 'none'; document.getElementById('0809.2357v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. PRB 2008 in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 78, 104513 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0607598">arXiv:cond-mat/0607598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0607598">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0607598">ps</a>, <a href="https://arxiv.org/format/cond-mat/0607598">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.97.037601">10.1103/PhysRevLett.97.037601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of symmetry distortions on photoelectron selection rules and spectra of Bi_2Sr_2CaCu_2O_{8+ delta} </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Arpiainen%2C+V">V. Arpiainen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0607598v1-abstract-short" style="display: inline;"> We derive photoelectron selection rules along the glide plane in orthorhombic Bi_2Sr_2CaCu_2O_{8+未} (Bi2212). These selection rules explain the reversed intensity behavior of the shadow and the main band of the material as a natural consequence of the variating representation of the final state as a function of k_\parallel. Our one-step simulations strongly support the structural origin of the s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0607598v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0607598v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0607598v1-abstract-full" style="display: none;"> We derive photoelectron selection rules along the glide plane in orthorhombic Bi_2Sr_2CaCu_2O_{8+未} (Bi2212). These selection rules explain the reversed intensity behavior of the shadow and the main band of the material as a natural consequence of the variating representation of the final state as a function of k_\parallel. Our one-step simulations strongly support the structural origin of the shadow band but we also introduce a scenario for detecting antiferromagnetic signatures in low doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0607598v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0607598v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">AMS-LaTeX, 5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 97, 037601(2006) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0508127">arXiv:cond-mat/0508127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0508127">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0508127">ps</a>, <a href="https://arxiv.org/format/cond-mat/0508127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Experimental proof of a structural origin for the shadow Fermi surface in Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mans%2C+A">A. Mans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Santoso%2C+I">I. Santoso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siu%2C+W">W. Siu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tavaddod%2C+S">S. Tavaddod</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arpiainen%2C+V">V. Arpiainen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berger%2C+H">H. Berger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patthey%2C+L">L. Patthey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Golden%2C+M+S">M. S. Golden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=."> .</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0508127v2-abstract-short" style="display: inline;"> By combining surprising new results from a full polarization analysis of nodal angle-resolved photoemission data from pristine and modulation-free Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ with structural information from LEED and {\it ab initio} one-step photoemission simulations, we prove that the shadow Fermi surface in these systems has structural origin, being due to orthorhombic distortions from tetra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0508127v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0508127v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0508127v2-abstract-full" style="display: none;"> By combining surprising new results from a full polarization analysis of nodal angle-resolved photoemission data from pristine and modulation-free Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ with structural information from LEED and {\it ab initio} one-step photoemission simulations, we prove that the shadow Fermi surface in these systems has structural origin, being due to orthorhombic distortions from tetragonal symmetry present in both surface and bulk. Consequently, one of the longest standing open issues in the fermiology of these widely studied systems finally meets its resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0508127v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0508127v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2006; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2. Marginal changes. Accepted for publication in PRL, Jan. 2006</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0503064">arXiv:cond-mat/0503064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0503064">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0503064">ps</a>, <a href="https://arxiv.org/format/cond-mat/0503064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.72.054519">10.1103/PhysRevB.72.054519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One-band tight-binding model parametrization of the high-$T_c$ cuprates, including the effect of $k_z$-dispersion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Markiewicz%2C+R+S">R. S. Markiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahrakorpi%2C+S">S. Sahrakorpi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">A. Bansil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0503064v1-abstract-short" style="display: inline;"> We discuss the effects of interlayer hopping and the resulting $k_z$-dispersion in the cuprates within the framework of the one-band tight binding (TB) model Hamiltonian. Specific forms of the dispersion relations in terms of the in-plane hopping parameters $t$, $t&#39;$, $t&#39;&#39;$ and $t&#39;&#39;&#39;$ and the effective interlayer hopping $t_z$ in La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) and Nd$_{2-x}$Ce$_x$CuO$_4$ (NCCO)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0503064v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0503064v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0503064v1-abstract-full" style="display: none;"> We discuss the effects of interlayer hopping and the resulting $k_z$-dispersion in the cuprates within the framework of the one-band tight binding (TB) model Hamiltonian. Specific forms of the dispersion relations in terms of the in-plane hopping parameters $t$, $t&#39;$, $t&#39;&#39;$ and $t&#39;&#39;&#39;$ and the effective interlayer hopping $t_z$ in La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) and Nd$_{2-x}$Ce$_x$CuO$_4$ (NCCO) and the added intracell hopping $t_{bi}$ between the CuO$_2$ bilayers in Bi$_2$Sr$_2$CaCu$_2$O$_{8}$ (Bi2212) are presented. The values of the `bare&#39; parameters are obtained via fits with the first principles LDA-based band structures in LSCO, NCCO and Bi2212. The corresponding `dressed&#39; parameter sets which account for correlation effects beyond the LDA are derived by fitting experimental FS maps and dispersions near the Fermi energy in optimally doped and overdoped systems. The interlayer couplings $t_z$ and $t_{bi}$ are found generally to be a substantial fraction of the in-plane hopping $t$, although the value of $t_z$ in NCCO is anomalously small, reflecting absence of apical O atoms in the crystal structure. Our results provide some insight into the issues of the determination of doping from experimental FS maps in Bi2212, the role of intercell coupling in c-axis transport, and the possible correlations between the doping dependencies of the binding energies of the Van Hove singularities (VHSs) and various prominent features observed in the angle-resolved photoemission (ARPES) and tunneling spectra of the cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0503064v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0503064v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0501500">arXiv:cond-mat/0501500</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0501500">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0501500">ps</a>, <a href="https://arxiv.org/format/cond-mat/0501500">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.95.157601">10.1103/PhysRevLett.95.157601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of Mid-gap States and Residual 3-Dimensionality in La$_{2-x}$Sr$_x$CuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sahrakorpi%2C+S">S. Sahrakorpi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markiewicz%2C+R+S">R. S. Markiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">A. Bansil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0501500v1-abstract-short" style="display: inline;"> We have carried out extensive first principles doping-dependent computations of angle-resolved photoemission (ARPES) intensities in La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) over a wide range of binding energies. Intercell hopping and the associated 3-dimensionality, which is usually neglected in discussing cuprate physics, is shown to play a key role in shaping the ARPES spectra. Despite the obvious impor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0501500v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0501500v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0501500v1-abstract-full" style="display: none;"> We have carried out extensive first principles doping-dependent computations of angle-resolved photoemission (ARPES) intensities in La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) over a wide range of binding energies. Intercell hopping and the associated 3-dimensionality, which is usually neglected in discussing cuprate physics, is shown to play a key role in shaping the ARPES spectra. Despite the obvious importance of strong coupling effects (e.g. the presence of a lower Hubbard band coexisting with mid-gap states in the doped insulator), we show that a number of salient features of the experimental ARPES spectra are captured to a surprisingly large extent when effects of $k_z$-dispersion are properly included in the analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0501500v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0501500v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0407555">arXiv:cond-mat/0407555</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0407555">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0407555">ps</a>, <a href="https://arxiv.org/format/cond-mat/0407555">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.71.012503">10.1103/PhysRevB.71.012503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Influence of the Third Dimension of Quasi-Two-Dimensional Cuprate Superconductors on Angle-Resolved Photoemission Spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">A. Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahrakorpi%2C+S">S. Sahrakorpi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markiewicz%2C+R+S">R. S. Markiewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0407555v1-abstract-short" style="display: inline;"> Angle-resolved photoemission spectroscopy (ARPES) presents significant simplications in analyzing strictly two-dimensional (2D) materials, but even the most anisotropic physical systems display some residual three-dimensionality. Here we demonstrate how this third dimension manifests itself in ARPES spectra of quasi-2D materials by considering the example of the cuprate Bi$_2$Sr$_2$CaCu$_2$O&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0407555v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0407555v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0407555v1-abstract-full" style="display: none;"> Angle-resolved photoemission spectroscopy (ARPES) presents significant simplications in analyzing strictly two-dimensional (2D) materials, but even the most anisotropic physical systems display some residual three-dimensionality. Here we demonstrate how this third dimension manifests itself in ARPES spectra of quasi-2D materials by considering the example of the cuprate Bi$_2$Sr$_2$CaCu$_2$O$_{8}$ (Bi2212). The intercell, interlayer hopping, which is responsible for $k_z$-dispersion of the bands, is found to induce an irreducible broadening to the ARPES lineshapes with a characteristic dependence on the in-plane momentum $k_\parallel$. Our study suggests that ARPES lineshapes can provide a direct spectroscopic window for establishing the existence of coherent c-axis conductivity in a material via the detection of this new broadening mechanism, and bears on the understanding of 2D to 3D crossover and pseudogap and stripe physics in novel materials through ARPES experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0407555v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0407555v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0403189">arXiv:cond-mat/0403189</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0403189">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0403189">ps</a>, <a href="https://arxiv.org/format/cond-mat/0403189">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jpcs.2003.12.010">10.1016/j.jpcs.2003.12.010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Matrix Element and Strong Electron Correlation Effects in ARPES from Cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">A. Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markiewicz%2C+R+S">R. S. Markiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kusko%2C+C">C. Kusko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahrakorpi%2C+S">S. Sahrakorpi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0403189v1-abstract-short" style="display: inline;"> We discuss selected results from our recent work concerning the ARPES (angle-resolved photoemission) spectra from the cuprates. Our focus is on developing an understanding of the effects of the ARPES matrix element and those of strong electron correlations in analyzing photointensities. With simulations on Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212), we show that the ARPES matrix element possesses re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0403189v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0403189v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0403189v1-abstract-full" style="display: none;"> We discuss selected results from our recent work concerning the ARPES (angle-resolved photoemission) spectra from the cuprates. Our focus is on developing an understanding of the effects of the ARPES matrix element and those of strong electron correlations in analyzing photointensities. With simulations on Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212), we show that the ARPES matrix element possesses remarkable selectivity properties, such that by tuning the photon energy and polarization, emission from the bonding or the antibonding states can be enhanced. Moreover, at low photon energies (below 25 eV), the Fermi surface (FS) emission is dominated by transitions from just the O-atoms in the CuO$_2$ planes. In connection with strong correlation effects, we consider the evolution with doping of the FS of Nd$_{2-x}$Ce$_x$CuO$_{4\pm未}$ (NCCO) in terms of the $t$-$t&#39;$-$U$ Hubbard model Hamiltonian. We thus delineate how the FS evolves on electron doping from the insulating state in NCCO. The Mott pseudogap is found to collapse around optimal doping suggesting the existence of an associated quantum critical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0403189v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0403189v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, accepted to be published in Journal of Physics and Chemistry of Solids</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0304278">arXiv:cond-mat/0304278</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0304278">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0304278">ps</a>, <a href="https://arxiv.org/format/cond-mat/0304278">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> </div> <p class="title is-5 mathjax"> Remarkable site selectivity properties of the ARPES matrix element in Bi$_2$Sr$_2$CaCu$_2$O$_8$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sahrakorpi%2C+S">S. Sahrakorpi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">A. Bansil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0304278v1-abstract-short" style="display: inline;"> We show that the ARPES spectra for emission from the bonding as well as the antibonding Fermi surface sheet in Bi$_2$Sr$_2$CaCu$_2$O$_8$ (Bi2212) possess remarkable site selectivity properties in that the emission for photon energies less than 25 eV is dominated by $p \to d$ excitations from just the O-sites in the CuO$_2$ planes. There is little contribution from Cu electrons to the ARPES inten&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0304278v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0304278v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0304278v1-abstract-full" style="display: none;"> We show that the ARPES spectra for emission from the bonding as well as the antibonding Fermi surface sheet in Bi$_2$Sr$_2$CaCu$_2$O$_8$ (Bi2212) possess remarkable site selectivity properties in that the emission for photon energies less than 25 eV is dominated by $p \to d$ excitations from just the O-sites in the CuO$_2$ planes. There is little contribution from Cu electrons to the ARPES intensity, even though the initial states at the Fermi energy contain an admixture of Cu-$d$ and O-$p$ electrons. We analyze the origin of this effect by considering the nature of the associated dipole matrix element in detail and find that various possible transition channels (other than $p \to d$ on O-sites) are effectively blocked by either the fact that the related radial cross section is small and/or a lack of available final states. Our prediction that ARPES can preferentially sample Cu or O states by tuning the photon energy suggests novel possibilities for exploiting energy dependent ARPES spectra for probing initial state characters in the cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0304278v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0304278v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, Submitted to PRB</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0201117">arXiv:cond-mat/0201117</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0201117">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0201117">ps</a>, <a href="https://arxiv.org/format/cond-mat/0201117">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantum Critical Point in Electron-Doped Cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kusko%2C+C">C. Kusko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markiewicz%2C+R+S">R. S. Markiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">A. Bansil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0201117v2-abstract-short" style="display: inline;"> We analyze doping dependent spectral intensities and Fermi surface maps obtained recently in Nd$_{2-x}$Ce$_x$CuO$_{4\pm未}$ (NCCO) via high resolution ARPES measurements, and show that the behavior of this electron-doped compound can be understood as the closing of a Mott (pseudo) gap, leading to a quantum critical point just above optimal doping. The doping dependence of the effective Hubbard&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0201117v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0201117v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0201117v2-abstract-full" style="display: none;"> We analyze doping dependent spectral intensities and Fermi surface maps obtained recently in Nd$_{2-x}$Ce$_x$CuO$_{4\pm未}$ (NCCO) via high resolution ARPES measurements, and show that the behavior of this electron-doped compound can be understood as the closing of a Mott (pseudo) gap, leading to a quantum critical point just above optimal doping. The doping dependence of the effective Hubbard $U$ adduced by comparing theoretical and experimental spectra is in resonable accord with various estimates and a simple screening calculation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0201117v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0201117v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2002; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2002; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2002. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0111197">arXiv:cond-mat/0111197</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0111197">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0111197">ps</a>, <a href="https://arxiv.org/format/cond-mat/0111197">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> How different Fermi surface maps emerge in photoemission from Bi2212 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Asensio%2C+M+C">M. C. Asensio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Avila%2C+J">J. Avila</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roca%2C+L">L. Roca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tejeda%2C+A">A. Tejeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markiewicz%2C+R+S">R. S. Markiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">A. Bansil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0111197v1-abstract-short" style="display: inline;"> We report angle-resolved photoemission spectra (ARPES) from the Fermi energy ($E_F$) over a large area of the ($k_x,k_y$) plane using 21.2 eV and 32 eV photons in two distinct polarizations from an optimally doped single crystal of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212), together with extensive first-principles simulations of the ARPES intensities. The results display a wide-ranging level of acc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0111197v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0111197v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0111197v1-abstract-full" style="display: none;"> We report angle-resolved photoemission spectra (ARPES) from the Fermi energy ($E_F$) over a large area of the ($k_x,k_y$) plane using 21.2 eV and 32 eV photons in two distinct polarizations from an optimally doped single crystal of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212), together with extensive first-principles simulations of the ARPES intensities. The results display a wide-ranging level of accord between theory and experiment and clarify how myriad Fermi surface (FS) maps emerge in ARPES under various experimental conditions. The energy and polarization dependences of the ARPES matrix element help disentangle primary contributions to the spectrum due to the pristine lattice from those arising from modulations of the underlying tetragonal symmetry and provide a route for separating closely placed FS sheets in low dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0111197v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0111197v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0109039">arXiv:cond-mat/0109039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0109039">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0109039">ps</a>, <a href="https://arxiv.org/format/cond-mat/0109039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.65.054514">10.1103/PhysRevB.65.054514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Matrix element effects in angle-resolved photoemission from Bi2212: Energy and polarization dependencies, final state spectrum, spectral signatures of specific transitions and related issues </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahrakorpi%2C+S">S. Sahrakorpi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">A. Bansil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0109039v1-abstract-short" style="display: inline;"> We have carried out extensive simulations of the angle-resolved photoemission (ARPES) intensity in Bi2212 within the one-step and three-step type models using a first-principles band theory framework. The focus is on understanding the behavior of emissions from the antibonding and bonding bands arising from the $CuO_2$ bilayers around the $\overline{M}(蟺,0)$ symmetry point. The specific issues a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0109039v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0109039v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0109039v1-abstract-full" style="display: none;"> We have carried out extensive simulations of the angle-resolved photoemission (ARPES) intensity in Bi2212 within the one-step and three-step type models using a first-principles band theory framework. The focus is on understanding the behavior of emissions from the antibonding and bonding bands arising from the $CuO_2$ bilayers around the $\overline{M}(蟺,0)$ symmetry point. The specific issues addressed include: Dependencies of the photointensity on the energy and polarization of the incident light; character of the initial and final states involved as well as the spectrum of the relevant final states; and, changes in the spectral intensity as a function of the perpendicular component, $k_\perp$, of the momentum of the photoelectron. Considerable insight into the nature of individual transitions is adduced by examining the momentum matrix element for bulk transitions within the solid and by further decomposing this matrix element into contributions from various atomic sites and angular momentum channels. These results indicate that, via remarkable interference effects, the ARPES matrix element can in particular cases help zoom in on the properties of electrons excited from specific sites and/or angular momentum channels even in a complex material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0109039v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0109039v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures, submitted to PRB</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9912125">arXiv:cond-mat/9912125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9912125">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9912125">ps</a>, <a href="https://arxiv.org/format/cond-mat/9912125">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.61.7388">10.1103/PhysRevB.61.7388 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Fermi Surface study of Ba$_{1-x}$K$_{x}$BiO$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sahrakorpi%2C+S">S. Sahrakorpi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbiellini%2C+B">B. Barbiellini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markiewicz%2C+R+S">R. S. Markiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaprzyk%2C+S">S. Kaprzyk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">A. Bansil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9912125v1-abstract-short" style="display: inline;"> We present all electron computations of the 3D Fermi surfaces (FS&#39;s) in Ba$_{1-x}$K$_{x}$BiO$_{3}$ for a number of different compositions based on the selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) approach for incorporating the effects of Ba/K substitution. By assuming a simple cubic structure throughout the composition range, the evolution of the nesting and o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9912125v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9912125v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9912125v1-abstract-full" style="display: none;"> We present all electron computations of the 3D Fermi surfaces (FS&#39;s) in Ba$_{1-x}$K$_{x}$BiO$_{3}$ for a number of different compositions based on the selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) approach for incorporating the effects of Ba/K substitution. By assuming a simple cubic structure throughout the composition range, the evolution of the nesting and other features of the FS of the underlying pristine phase is correlated with the onset of various structural transitions with K doping. A parameterized scheme for obtaining an accurate 3D map of the FS in Ba$_{1-x}$K$_{x}$BiO$_{3}$ for an arbitrary doping level is developed. We remark on the puzzling differences between the phase diagrams of Ba$_{1-x}$K$_{x}$BiO$_{3}$ and BaPb$_{x}$Bi$_{1-x}$O$_{3}$ by comparing aspects of their electronic structures and those of the end compounds BaBiO$_{3}$, KBiO$_3$ and BaPbO$_3$. Our theoretically predicted FS&#39;s in the cubic phase are relevant for analyzing high-resolution Compton scattering and positron-annihilation experiments sensitive to the electron momentum density, and are thus amenable to substantial experimental verification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9912125v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9912125v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures, to appear in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B, 61 (2000) 7388 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9910496">arXiv:cond-mat/9910496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9910496">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9910496">ps</a>, <a href="https://arxiv.org/format/cond-mat/9910496">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.83.5154">10.1103/PhysRevLett.83.5154 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Importance of matrix elements in the ARPES spectra of BISCO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">A. Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9910496v1-abstract-short" style="display: inline;"> We have carried out extensive first-principles angle-resolved photointensity (ARPES) simulations in Bi2212 wherein the photoemission process is modelled realistically by taking into account the full crystal wavefunctions of the initial and final states in the presence of the surface. The spectral weight of the ARPES feature associated with the CuO_2 plane bands is found to undergo large and syst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9910496v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9910496v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9910496v1-abstract-full" style="display: none;"> We have carried out extensive first-principles angle-resolved photointensity (ARPES) simulations in Bi2212 wherein the photoemission process is modelled realistically by taking into account the full crystal wavefunctions of the initial and final states in the presence of the surface. The spectral weight of the ARPES feature associated with the CuO_2 plane bands is found to undergo large and systematic variations with $k_\parallel$ as well as the energy and polarization of the incident photons. These theoretical predictions are in good accord with the corresponding measurements, indicating that the remarkable observed changes in the spectral weights in Bi2212 are essentially a matrix element effect and that the importance of matrix elements should be kept in mind in analyzing the ARPES spectra in the high-Tc&#39;s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9910496v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9910496v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures: To appear in Phys. Rev. Lett. Nov. 1999</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10